Characterizations of non-Seymour graphs

Zoltán Szigeti

Laboratoire G-SCOP
Grenoble, France

24th October 2014
Outline

1 Motivation
2 Definitions: joins, complete packing of cuts
3 Seymour graphs
4 Characterizations of non-Seymour graphs
5 Ingredients from Matching Theory
6 Equivalent forms
7 Proof ideas
8 Algorithmic aspects
9 Open problem
Motivation

Edge-disjoint paths problem

Given a graph $H = (V, E)$ and k pairs of vertices $\{s_i, t_i\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_i, t_i.
Edge-disjoint paths problem

Given a graph $H = (V, E)$ and k pairs of vertices $\{s_i, t_i\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_i, t_i.

Applications:

1. Real-time communication,
2. VLSI design,
3. Transportation networks,
Motivation

Edge-disjoint paths problem

Given a graph $H = (V, E)$ and k pairs of vertices $\{s_i, t_i\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_i, t_i.

Reformulation by adding the set F of edges s_it_i.

Motivation

Edge-disjoint paths problem

Given a graph $H = (V, E)$ and k pairs of vertices $\{s_i, t_i\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_i, t_i.

Reformulation by adding the set F of edges $s_i t_i$.

Complete packing of cycles

Given a graph $H' = (V, E + F)$, decide whether there exist $|F|$ edge-disjoint cycles in H', each containing exactly one edge of F.

Motivation

Edge-disjoint paths problem

Given a graph $H = (V, E)$ and k pairs of vertices $\{s_i, t_i\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_i, t_i.

Reformulation by adding the set F of edges s_it_i.

Complete packing of cycles

Given a graph $H' = (V, E + F)$, decide whether there exist $|F|$ edge-disjoint cycles in H', each containing exactly one edge of F.

Suppose H' is planar. The problem in the dual:
Motivation

Edge-disjoint paths problem

Given a graph $H = (V, E)$ and k pairs of vertices $\{s_i, t_i\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_i, t_i.

Reformulation by adding the set F of edges s_it_i.

Complete packing of cycles

Given a graph $H' = (V, E + F)$, decide whether there exist $|F|$ edge-disjoint cycles in H', each containing exactly one edge of F.

Suppose H' is planar. The problem in the dual:

Complete packing of cuts

Given a graph $G = (V', E' + F')$, decide whether there exist $|F'|$ edge-disjoint cuts in G, each containing exactly one edge of F'.

An example

Edge-disjoint paths problem

Characterizations of non-Seymour graphs

Z. Szigeti (G-SCOP, Grenoble)

24th October 2014

4 / 26
Complete packing of paths

An example
An example

Adding the edges $s_i t_i$
An example

The graph H'
An example

Complete packing of cycles
H' is planar
An example

H' and his dual G
An example

H' and his dual G
An example

Complete packing of cycles and cuts
Complete packing of cuts

The graphs are not planar anymore!
Complete packing of cuts

The problem

Given a graph $G = (V, E + F)$, decide whether there exist $|F|$ edge-disjoint cuts in G, each containing exactly one edge of F.
Complete packing of cuts

The problem

Given a graph $G = (V, E + F)$, decide whether there exist $|F|$ edge-disjoint cuts in G, each containing exactly one edge of F.

Necessary condition

If the graph $G = (V, E + F)$ admits a complete packing of cuts, then F is a join: for every cycle C, $|C \cap F| \leq |C \setminus F|$.
Complete packing of cuts

The problem

Given a graph \(G = (V, E + F) \), decide whether there exist \(|F| \) edge-disjoint cuts in \(G \), each containing exactly one edge of \(F \).

Necessary condition

If the graph \(G = (V, E + F) \) admits a complete packing of cuts, then \(F \) is a join: for every cycle \(C \), \(|C \cap F| \leq |C \setminus F| \).

Sufficient condition?

If \(F \) is a join, the graph \(G = (V, E + F) \) admits a complete packing of cuts?
Complete packing of cuts

The problem

Given a graph $G = (V, E + F)$, decide whether there exist $|F|$ edge-disjoint cuts in G, each containing exactly one edge of F.

Necessary condition

If the graph $G = (V, E + F)$ admits a complete packing of cuts, then F is a join: for every cycle C, $|C \cap F| \leq |C \setminus F|$.

Sufficient condition?

If F is a join, the graph $G = (V, E + F)$ admits a complete packing of cuts?

NOT: K_4
Complete packing of cuts

The problem

Given a graph $G = (V, E + F)$, decide whether there exist $|F|$ edge-disjoint cuts in G, each containing exactly one edge of F.

Necessary condition

If the graph $G = (V, E + F)$ admits a complete packing of cuts, then F is a join: for every cycle C, $|C \cap F| \leq |C \setminus F|$.

Sufficient condition?

If F is a join, the graph $G = (V, E + F)$ admits a complete packing of cuts?

Theorem (Middendorf, Pfeiffer ’93)

Given a join in a graph, decide whether there exists a complete packing of cuts is an NP-complete problem.
Theorem (Seymour ’77)

If G is a series-parallel graph, then for every join there exists a complete packing of cuts.
Theorem (Seymour ’77)
If \(G \) is a series-parallel graph, then for every join there exists a complete packing of cuts.

Theorem (Seymour ’81)
If \(G \) is a bipartite graph, then for every join there exists a complete packing of cuts.
Theorem (Seymour ’77)
If G is a series-parallel graph, then for every join there exists a complete packing of cuts.

Theorem (Seymour ’81)
If G is a bipartite graph, then for every join there exists a complete packing of cuts.

Definition
G is a Seymour graph if for every join there exists a complete packing of cuts.
Seymour graphs

Theorem (Seymour ’77)

If G is a series-parallel graph, (⇐⇒ no subdivision of K_4) then for every join there exists a complete packing of cuts.

Theorem (Seymour ’81)

If G is a bipartite graph, then for every join there exists a complete packing of cuts.

Definition

G is a Seymour graph if for every join there exists a complete packing of cuts.
Seymour graphs

Theorem (Seymour ’77)

If G is a series-parallel graph, (\iff no subdivision of K_4) then for every join there exists a complete packing of cuts.

Theorem (Seymour ’81)

If G is a bipartite graph, (\iff no odd cycle) then for every join there exists a complete packing of cuts.

Definition

G is a Seymour graph if for every join there exists a complete packing of cuts.
Theorem (Seymour ’77)

If G is a series-parallel graph, (\iff no subdivision of K_4) then for every join there exists a complete packing of cuts.

Theorem (Seymour ’81)

If G is a bipartite graph, (\iff no odd cycle) then for every join there exists a complete packing of cuts.

Definition

G is a Seymour graph \iff if for every join there exists a complete packing of cuts.
Subclasses

1. Seymour '77 : Graphs without subdivision of K_4,
2. Seymour '81 : Graphs without odd cycle,
3. Gerards '92 : Graphs without odd K_4 and without odd prism,
4. Szigeti '93 : Graphs without non-Seymour odd K_4 and without non-Seymour odd prism.
Around Seymour graphs

Subclasses

1. **Seymour ’77**: Graphs without subdivision of K_4,
2. **Seymour ’81**: Graphs without odd cycle,
3. **Gerards ’92**: Graphs without odd K_4 and without odd prism,
4. **Szigeti ’93**: Graphs without non-Seymour odd K_4 and without non-Seymour odd prism.
Around Seymour graphs

Subclasses

1. **Seymour ’77**: Graphs without subdivision of K_4,
2. **Seymour ’81**: Graphs without odd cycle,
3. **Gerards ’92**: Graphs without odd K_4 and without odd prism,
4. **Szigeti ’93**: Graphs without non-Seymour odd K_4 and without non-Seymour odd prism.
Subclasses

1. **Seymour ’77**: Graphs without subdivision of K_4,
2. **Seymour ’81**: Graphs without odd cycle,
3. **Gerards ’92**: Graphs without odd K_4 and without odd prism,
4. **Szigeti ’93**: Graphs without non-Seymour odd K_4 and without non-Seymour odd prism.
Around Seymour graphs

Subclasses

1. **Seymour ’77**: Graphs without subdivision of K_4,
2. **Seymour ’81**: Graphs without odd cycle,
3. **Gerards ’92**: Graphs without odd K_4 and without odd prism,
4. **Szigeti ’93**: Graphs without non-Seymour odd K_4 and without non-Seymour odd prism.
Subclasses

1. **Seymour ’77**: Graphs without subdivision of K_4,
2. **Seymour ’81**: Graphs without odd cycle,
3. **Gerards ’92**: Graphs without odd K_4 and without odd prism,
4. **Szigeti ’93**: Graphs without non-Seymour odd K_4 and without non-Seymour odd prism.

![Graphs and Substructures](image)
Around Seymour graphs

Subclasses

1. **Seymour '77**: Graphs without subdivision of K_4,
2. **Seymour '81**: Graphs without odd cycle,
3. **Gerards '92**: Graphs without odd K_4 and without odd prism,
4. **Szigeti '93**: Graphs without non-Seymour odd K_4 and without non-Seymour odd prism.

![Graphs](image-url)
Around Seymour graphs

Subclasses

1. **Seymour ’77**: Graphs without subdivision of K_4,
2. **Seymour ’81**: Graphs without odd cycle,
3. **Gerards ’92**: Graphs without odd K_4 and without odd prism,
4. **Szigeti ’93**: Graphs without non-Seymour odd K_4 and without non-Seymour odd prism.

Superclass

Seymour graph \implies no even subdivision of K_4 and of prism.
Preliminaries

Characterizations of non-Seymour graphs

Z. Szigeti (G-SCOP, Grenoble)

24th October 2014
Definition

Given a join F, a cycle C is F-tight if $|C \cap F| = |C \setminus F|$.
Definition

Given a join F, a cycle C is F-tight if $|C \cap F| = |C \setminus F|$.
Preliminaries

Definition
Given a join F, a cycle C is F-tight if $|C \cap F| = |C \setminus F|$.

Lemma (Sebő '92)
If for a join F of G there exist two F-tight cycles whose union is not bipartite, then G is not Seymour.
Preliminaries

Definition
Given a join F, a cycle C is F-tight if $|C \cap F| = |C \setminus F|$.

Lemma (Sebő '92)
If for a join F of G there exist two F-tight cycles whose union is not bipartite, then G is not Seymour.
Preliminaries

Definition

Given a join F, a cycle C is F-tight if $|C \cap F| = |C \setminus F|$.

Lemma (Sebő '92)

If for a join F of G there exist two F-tight cycles whose union is not bipartite, then G is not Seymour.
Definition

Given a join F, a cycle C is F-tight if $|C \cap F| = |C \setminus F|$.

Lemma (Sebő '92)

If for a join F of G there exist two F-tight cycles whose union is not bipartite, then G is not Seymour.

Conjecture (Sebő '92)

G is not Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_4 or an odd prism.
Theorem (Ageev, Kostochka, Szigeti ’97)

G is non-Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_4 or an odd prism.
Theorem (Ageev, Kostochka, Szigeti ’97)

G is non-Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_4 or an odd prism.

Examples

Seymour odd K_4 non-Seymour odd prism
Theorem (Ageev, Kostochka, Szigeti ’97)

G is non-Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_4 or an odd prism.

Examples

- Seymour odd K_4
- non-Seymour odd prism
Characterizations of non-Seymour graphs

Theorem (Ageev, Kostochka, Szigeti ’97)

G is non-Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_4 or an odd prism.

Examples

- Seymour odd K_4
- non-Seymour odd prism
Theorem (Ageev, Kostochka, Szigeti ’97)

G is non-Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_4 or an odd prism.

Examples

Seymour odd K_4 non-Seymour odd prism
Theorem (Ageev, Kostochka, Szigeti ’97)

G is non-Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_4 or an odd prism.

Examples

- Seymour odd K_4
- non-Seymour odd prism
Theorem (Ageev, Kostochka, Szigeti ’97)

G is non-Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_4 or an odd prism.

Examples

- Seymour odd K_4
- non-Seymour odd prism

Theorem (Ageev, Benchetrit, Sebő, Szigeti ’11)

G is non-Seymour if and only if contracting stars and odd cycles it contains an even subdivision of K_4.
Definitions

1. **Matching-covered** = connected and any edge belongs to a perfect matching,

2. **Elementary** = edges belonging to a perfect matching form a connected subgraph,

3. **Barrier** of elementary graph $G = \text{vertex set } X$ such that the number of odd components of $G - X$ is $|X|$.
Definitions

1. **Matching-covered** = connected and any edge belongs to a perfect matching,

2. **Elementary** = edges belonging to a perfect matching form a connected subgraph,

3. **Barrier** of elementary graph $G = \text{vertex set } X$ such that the number of odd components of $G - X$ is $|X|$.
Matching Theory : Graphs

Definitions

1. **Matching-covered** = connected and any edge belongs to a perfect matching, examples: K_2^3, K_4, prism

2. **Elementary** = edges belonging to a perfect matching form a connected subgraph,

3. **Barrier** of elementary graph $G = \text{vertex set } X$ such that the number of odd components of $G - X$ is $|X|$.
Definitions

1. **Matching-covered** = connected and any edge belongs to a perfect matching, examples: K_2^3, K_4, prism and their even subdivisions.

2. **Elementary** = edges belonging to a perfect matching form a connected subgraph,

3. **Barrier of elementary graph** $G = \text{vertex set } X$ such that the number of odd components of $G - X$ is $|X|$.

![even subdivision of K_2^3]

Definitions

1. **Matching-covered** = connected and any edge belongs to a perfect matching, examples: K_2^3, K_4, prism and their even subdivisions.

2. **Elementary** = edges belonging to a perfect matching form a connected subgraph,

3. **Barrier** of elementary graph $G = \{X\}$ such that the number of odd components of $G - X$ is $|X|$.
Definitions

1. **Matching-covered** = connected and any edge belongs to a perfect matching, examples: K_2^3, K_4, prism and their even subdivisions.

2. **Elementary** = edges belonging to a perfect matching form a connected subgraph, examples: matching-covered plus some edges.

3. **Barrier** of elementary graph $G = \text{vertex set } X$ such that the number of odd components of $G - X$ is $|X|$.
Matching Theory: Graphs

Definitions

1. **Matching-covered** = connected and any edge belongs to a perfect matching, examples: K_2^3, K_4, prism and their even subdivisions.

2. **Elementary** = edges belonging to a perfect matching form a connected subgraph, examples: matching-covered plus some edges.

3. **Barrier** of elementary graph $G = \text{vertex set } X$ such that the number of odd components of $G - X$ is $|X|$.
Definitions

1. **Factor-critical** = deleting any vertex results in a graph having a perfect matching,

2. **Bicritical** = deleting any vertex results in a factor-critical graph,

3. **Star** = vertex together with its neighbor.

4. **Sun** = factor-critical together with its neighbors,
Definitions

1. **Factor-critical** = deleting any vertex results in a graph having a perfect matching, examples: vertex, odd cycle.

2. **bicritical** = deleting any vertex results in a factor-critical graph,

3. **Star** = vertex together with its neighbor.

4. **Sun** = factor-critical together with its neighbors.
Matching Theory : Graphs

Definitions

1. Factor-critical = deleting any vertex results in a graph having a perfect matching, examples: vertex, odd cycle.
2. Bicritical = deleting any vertex results in a factor-critical graph,
3. Star = vertex together with its neighbor.
4. Sun = factor-critical together with its neighbors,
Definitions

1. **Factor-critical** = deleting any vertex results in a graph having a perfect matching, examples: vertex, odd cycle.

2. **Bicritical** = deleting any vertex results in a factor-critical graph, examples: K_2, K_4, prism; non-trivial = at least 4 vertices.

3. **Star** = vertex together with its neighbor.

4. **Sun** = factor-critical together with its neighbors,
Definitions

1. **Factor-critical** = deleting any vertex results in a graph having a perfect matching, examples: vertex, odd cycle.

2. **bicritical** = deleting any vertex results in a factor-critical graph, examples: K_2, K_4, prism; non-trivial = at least 4 vertices.

3. **Star** = vertex together with its neighbor.

4. **Sun** = factor-critical together with its neighbors,
Definitions

1. **Factor-critical** = deleting any vertex results in a graph having a perfect matching, examples: vertex, odd cycle.

2. **bicritical** = deleting any vertex results in a factor-critical graph, examples: K_2, K_4, prism; non-trivial = at least 4 vertices.

3. **Star** = vertex together with its neighbor.

4. **Sun** = factor-critical together with its neighbors,
Definitions

1. Factor-critical = deleting any vertex results in a graph having a perfect matching, examples: vertex, odd cycle.

2. Bicritical = deleting any vertex results in a factor-critical graph, examples: K_2, K_4, prism; non-trivial = at least 4 vertices.

3. Star = vertex together with its neighbor.

4. Sun = factor-critical together with its neighbors, example: star.
Matching Theory : Results

Theorems

1. Lovász ’75: A graph is factor-critical if and only contracting odd cycles it can be reduced to a vertex.

2. Lovász-Plummer ’86: Every non-bipartite matching-covered graph contains an even subdivision of K_4 or of the prism.
Theorems

1. **Lovász ’75**: A graph is **factor-critical** if and only contracting odd cycles it can be reduced to a vertex.

2. **Lovász-Plummer ’86**: Every non-bipartite **matching-covered** graph contains an even subdivision of K_4 or of the prism.
1. Each connected component of an elementary graph minus a maximal barrier is factor-critical, and hence provides a sun.

2. Let H be obtained by gluing G_1 and G_2 in a vertex set Y. If H/G_2 is elementary then H/G_1 can be obtained from H by contracting suns.
Remarks

1. Each connected component of an elementary graph minus a maximal barrier is factor-critical, and hence provides a sun.

2. Let H be obtained by gluing G_1 and G_2 in a vertex set Y. If H/G_2 is elementary then H/G_1 can be obtained from H by contracting suns.
Remarks

1. Each connected component of an elementary graph minus a maximal barrier is factor-critical, and hence provides a sun.

2. Let H be obtained by gluing G_1 and G_2 in a vertex set Y. If H/G_2 is elementary then H/G_1 can be obtained from H by contracting suns.
Remarks

1. Each connected component of an elementary graph minus a maximal barrier is factor-critical, and hence provides a sun.

2. Let H be obtained by gluing G_1 and G_2 in a vertex set Y. If H/G_2 is elementary then H/G_1 can be obtained from H by contracting suns.
Remarks

1. Each connected component of an elementary graph minus a maximal barrier is factor-critical, and hence provides a sun.

2. Let H be obtained by gluing G_1 and G_2 in a vertex set Y. If H/G_2 is elementary then H/G_1 can be obtained from H by contracting suns.
Remarks

1. Each connected component of an elementary graph minus a maximal barrier is factor-critical, and hence provides a sun.

2. Let H be obtained by gluing G_1 and G_2 in a vertex set Y. If H/G_2 is elementary then H/G_1 can be obtained from H by contracting suns.
Remarks

1. Each connected component of an elementary graph minus a maximal barrier is factor-critical, and hence provides a sun.

2. Let H be obtained by gluing G_1 and G_2 in a vertex set Y. If H/G_2 is elementary then H/G_1 can be obtained from H by contracting suns.
Remarks

1. Each connected component of an elementary graph minus a maximal barrier is factor-critical, and hence provides a sun.

2. Let H be obtained by gluing G_1 and G_2 in a vertex set Y. If H/G_2 is elementary then H/G_1 can be obtained from H by contracting suns.

\[H/G_2 \]
\[H/G_1 \]
Theorem (Ageev, Benchetrit, Sebő, Szigeti ’11)

The following conditions are equivalent for any graph G:

1. Contracting suns it contains a non-trivial bicritical graph,
2. Contracting suns it contains a non-bipartite matching-covered graph,
3. Contracting suns it contains an even subdivision of K_4 or of the prism,
4. Contracting stars and factor-critical graphs it contains an even subdivision of K_4 or of the prism,
5. Contracting stars and odd cycles it contains an even subdivision of K_4 or of the prism,
6. Contracting stars and odd cycles it contains an even subdivision of K_4,
7. Contracting cores it contains an even subdivision of K_4 or of the prism or of the biprism.
Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

The following conditions are equivalent for any graph G:

1. Contracting **suns** it contains a **non-trivial bicritical** graph,
2. Contracting **suns** it contains a **non-bipartite matching-covered** graph,
3. Contracting **suns** it contains an even subdivision of K_4 or of the **prism**,
4. Contracting **stars** and **factor-critical** graphs it contains an even subdivision of K_4 or of the **prism**,
5. Contracting **stars** and **odd cycles** it contains an even subdivision of K_4 or of the **prism**,
6. Contracting **stars** and **odd cycles** it contains an even subdivision of K_4,
7. Contracting **cores** it contains an even subdivision of K_4 or of the **prism** or of the **biprism**.
Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti ’11)

The following conditions are equivalent for any graph G:

1. Contracting suns it contains a non-trivial bicritical graph,
2. Contracting suns it contains a non-bipartite matching-covered graph,
3. Contracting suns it contains an even subdivision of K_4 or of the prism,
4. Contracting stars and factor-critical graphs it contains an even subdivision of K_4 or of the prism,
5. Contracting stars and odd cycles it contains an even subdivision of K_4 or of the prism,
6. Contracting stars and odd cycles it contains an even subdivision of K_4,
7. Contracting cores it contains an even subdivision of K_4 or of the prism or of the biprism.
Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti ’11)

The following conditions are equivalent for any graph G:

1. Contracting suns it contains a non-trivial bicritical graph,
2. Contracting suns it contains a non-bipartite matching-covered graph,
3. Contracting suns it contains an even subdivision of K_4 or the prism,
4. Contracting stars and factor-critical graphs it contains an even subdivision of K_4 or the prism,
5. Contracting stars and odd cycles it contains an even subdivision of K_4 or the prism,
6. Contracting stars and odd cycles it contains an even subdivision of K_4,
7. Contracting cores it contains an even subdivision of K_4 or the prism or the biprism.
Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti ’11)

The following conditions are equivalent for any graph G:

1. Contracting *suns* it contains a non-trivial bicritical graph,
2. Contracting *suns* it contains a non-bipartite matching-covered graph,
3. Contracting *suns* it contains an even subdivision of K_4 or of the *prism*,
4. Contracting *stars* and factor-critical graphs it contains an even subdivision of K_4 or of the *prism*,
5. Contracting *stars* and odd cycles it contains an even subdivision of K_4 or of the *prism*,
6. Contracting *stars* and odd cycles it contains an even subdivision of K_4,
7. Contracting *cores* it contains an even subdivision of K_4 or of the *prism* or of the *biprism*.
Theorem (Ageev, Benchetrit, Sebő, Szigeti '11)

The following conditions are equivalent for any graph G:

1. Contracting suns it contains a non-trivial bicritical graph,
2. Contracting suns it contains a non-bipartite matching-covered graph,
3. Contracting suns it contains an even subdivision of K_4 or of the prism,
4. Contracting stars and factor-critical graphs it contains an even subdivision of K_4 or of the prism,
5. Contracting stars and odd cycles it contains an even subdivision of K_4 or of the prism,
6. Contracting stars and odd cycles it contains an even subdivision of K_4,
7. Contracting cores it contains an even subdivision of K_4 or of the prism or of the biprism.
Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti ’11)

The following conditions are equivalent for any graph G:

1. Contracting suns it contains a non-trivial bicritical graph,
2. Contracting suns it contains a non-bipartite matching-covered graph,
3. Contracting suns it contains an even subdivision of K_4 or of the prism,
4. Contracting stars and factor-critical graphs it contains an even subdivision of K_4 or of the prism,
5. Contracting stars and odd cycles it contains an even subdivision of K_4 or of the prism,
6. Contracting stars and odd cycles it contains an even subdivision of K_4,
7. Contracting cores it contains an even subdivision of K_4 or of the prism or of the biprism.
Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti ’11)

The following conditions are equivalent for any graph G:

1. Contracting

2. Contracting

3. Contracting

4. Contracting

5. Contracting

6. Contracting

7. Contracting

Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti ’11)

The following conditions are equivalent for any graph G:

1. Contracting *suns* it contains a non-trivial bicritical graph,
2. Contracting *suns* it contains a non-bipartite matching-covered graph,
3. Contracting *suns* it contains an even subdivision of K_4 or of the prism,
4. Contracting *stars* and factor-critical graphs it contains an even subdivision of K_4 or of the prism,
5. Contracting *stars* and *odd cycles* it contains an even subdivision of K_4 or of the prism,
6. Contracting *stars* and *odd cycles* it contains an even subdivision of K_4,
7. Contracting *cores* it contains an even subdivision of K_4 or of the prism or of the biprism.

$(1) \implies (2)$: OK, $(2) \implies (1)$: Contract suns of a maximal barrier
Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti ’11)

The following conditions are equivalent for any graph G:

1. Contracting *suns* it contains a non-trivial bicritical graph,
2. Contracting *suns* it contains a non-bipartite matching-covered graph,
3. Contracting *suns* it contains an even subdivision of K_4 or of the *prism*,
4. Contracting *stars* and factor-critical graphs it contains an even subdivision of K_4 or of the *prism*,
5. Contracting *stars* and odd cycles it contains an even subdivision of K_4 or of the *prism*,
6. Contracting *stars* and odd cycles it contains an even subdivision of K_4,
7. Contracting *cores* it contains an even subdivision of K_4 or of the *prism* or of the *biprism*.

$(2) \implies (3)$: Lovász-Plummer ’86, $(3) \implies (2)$: OK
Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti ’11)

The following conditions are equivalent for any graph G:

1. Contracting *suns* it contains a non-trivial bicritical graph,
2. Contracting *suns* it contains a non-bipartite matching-covered graph,
3. Contracting *suns* it contains an even subdivision of K_4 or of the *prism*,
4. Contracting *stars* and *factor-critical* graphs it contains an even subdivision of K_4 or of the *prism*,
5. Contracting *stars* and *odd cycles* it contains an even subdivision of K_4 or of the *prism*,
6. Contracting *stars* and *odd cycles* it contains an even subdivision of K_4,
7. Contracting *cores* it contains an even subdivision of K_4 or of the *prism* or of the *biprism*.

$(3) \implies (4) :$ OK, $(4) \implies (3) :$?
Theorem (Ageev, Benchetrit, Sebő, Szigeti ’11)

The following conditions are equivalent for any graph G:

1. Contracting suns it contains a non-trivial bicritical graph,
2. Contracting suns it contains a non-bipartite matching-covered graph,
3. Contracting suns it contains an even subdivision of K_4 or of the prism,
4. Contracting stars and factor-critical graphs it contains an even subdivision of K_4 or of the prism,
5. Contracting stars and odd cycles it contains an even subdivision of K_4 or of the prism,
6. Contracting stars and odd cycles it contains an even subdivision of K_4,
7. Contracting cores it contains an even subdivision of K_4 or of the prism or of the biprism.

$(4) \implies (5)$: Lovász ’75, $(5) \implies (4)$: OK
The following conditions are equivalent for any graph G:

1. Contracting suns it contains a non-trivial bicritical graph,
2. Contracting suns it contains a non-bipartite matching-covered graph,
3. Contracting suns it contains an even subdivision of K_4 or of the prism,
4. Contracting stars and factor-critical graphs it contains an even subdivision of K_4 or of the prism,
5. Contracting stars and odd cycles it contains an even subdivision of K_4 or of the prism,
6. Contracting stars and odd cycles it contains an even subdivision of K_4,
7. Contracting cores it contains an even subdivision of K_4 or of the prism or of the biprism.

$(5) \implies (6)$: Contract an odd cycle of the even subdivision of the prism to get an even subdivision of K_4. $(6) \implies (5)$: OK.
Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti ’11)

The following conditions are equivalent for any graph G:

1. Contracting suns it contains a non-trivial bicritical graph,
2. Contracting suns it contains a non-bipartite matching-covered graph,
3. Contracting suns it contains an even subdivision of K_4 or of the prism,
4. Contracting stars and factor-critical graphs it contains an even subdivision of K_4 or of the prism,
5. Contracting stars and odd cycles it contains an even subdivision of K_4 or of the prism,
6. Contracting stars and odd cycles it contains an even subdivision of K_4,
7. Contracting cores it contains an even subdivision of K_4 or of the prism or of the biprism.

To see that (6) \implies (3), we need (7).
Equivalent forms

Theorem (Ageev, Benchetrit, Sebő, Szigeti ’11)

The following conditions are equivalent for any graph G:

1. Contracting *suns* it contains a non-trivial bicritical graph,
2. Contracting *suns* it contains a non-bipartite matching-covered graph,
3. Contracting *suns* it contains an even subdivision of K_4 or of the *prism*,
4. Contracting *stars* and factor-critical graphs it contains an even subdivision of K_4 or of the *prism*,
5. Contracting *stars* and odd cycles it contains an even subdivision of K_4 or of the *prism*,
6. Contracting *stars* and odd cycles it contains an even subdivision of K_4,
7. Contracting *cores* it contains an even subdivision of K_4 or of the *prism* or of the *biprism*.
The following conditions are equivalent for any graph G:

1. Contracting suns it contains a non-trivial bicritical graph,
2. Contracting suns it contains a non-bipartite matching-covered graph,
3. Contracting suns it contains an even subdivision of K_4 or of the prism,
4. Contracting stars and factor-critical graphs it contains an even subdivision of K_4 or of the prism,
5. Contracting stars and odd cycles it contains an even subdivision of K_4 or of the prism,
6. Contracting stars and odd cycles it contains an even subdivision of K_4,
7. Contracting cores it contains an even subdivision of K_4 or of the prism or of the biprism.

We will see that (6) \implies (7).
The following conditions are equivalent for any graph G:

1. Contracting suns it contains a non-trivial bicritical graph,
2. Contracting suns it contains a non-bipartite matching-covered graph,
3. Contracting suns it contains an even subdivision of K_4 or of the prism,
4. Contracting stars and factor-critical graphs it contains an even subdivision of K_4 or of the prism,
5. Contracting stars and odd cycles it contains an even subdivision of K_4 or of the prism,
6. Contracting stars and odd cycles it contains an even subdivision of K_4,
7. Contracting cores it contains an even subdivision of K_4 or of the prism or of the biprism.

We will see that (7) \implies (3).
The following conditions are equivalent for any graph G:

1. Contracting suns it contains a non-trivial bicritical graph,
2. Contracting suns it contains a non-bipartite matching-covered graph,
3. Contracting suns it contains an even subdivision of K_4 or of the prism,
4. Contracting stars and factor-critical graphs it contains an even subdivision of K_4 or of the prism,
5. Contracting stars and odd cycles it contains an even subdivision of K_4 or of the prism,
6. Contracting stars and odd cycles it contains an even subdivision of K_4,
7. Contracting cores it contains an even subdivision of K_4 or of the prism or of the biprism.
3 graphs

K_4 prism bi-prism
3 graphs

K_4 prism bi-prism

and their even subdivisions
Graphs

3 graphs

- K_4
- prism
- bi-prism

and their even subdivisions
3 graphs

- K_4
- prism
- bi-prism

and their even subdivisions
Core-contraction to K_4

K_4-obstruction

An odd K_4 subgraph H of G with disjoint sets $U_i \subseteq V(H)$ such that

1. $H[U_i \cup N_H(U_i)]$ is an even subdivision of a 3-star,
2. contracting each $U_i \cup N_G(U_i)$, H transforms into an even subdivision of K_4.
Core-contraction to the prism or to the biprism

Prism- or biprism-obstruction

An odd prism subgraph H of G with disjoint sets $U_i \subseteq V(H)$ such that

1. $H[U_i \cup N_H(U_i)]$ is an even subdivision of a 2- or 3-star,

2. contracting each $U_i \cup N_G(U_i)$, H transforms into an even subdivision of the prism or of the biprism (no edge of G connects the two connected components of the biprism minus its separator).
Remark:

1. The contraction of a core in an obstruction changes the parity of the three paths of the obstruction that contain the core.

2. Their main role is to be able to change the odd K_4 (or odd prism) into an even subdivision of K_4 (or of the prism).
Remark:

1. The contraction of a core in an obstruction changes the parity of the three paths of the obstruction that contain the core.

2. Their main role is to be able to change the odd K_4 (or odd prism) into an even subdivision of K_4 (or of the prism).

![Graphs](image-url)
Remark:

1. The contraction of a core in an obstruction changes the parity of the three paths of the obstruction that contain the core.

2. Their main role is to be able to change the odd K_4 (or odd prism) into an even subdivision of K_4 (or of the prism).

![Diagram](image-url)
Remark:

1. The contraction of a core in an obstruction changes the parity of the three paths of the obstruction that contain the core.

2. Their main role is to be able to change the odd K_4 (or odd prism) into an even subdivision of K_4 (or of the prism).
Remark:

1. The contraction of a core in an obstruction changes the parity of the three paths of the obstruction that contain the core.

2. Their main role is to be able to change the odd K_4 (or odd prism) into an even subdivision of K_4 (or of the prism).
Contracting *stars* and *odd cycles* it contains an even subdivision of K_4, or contracting *cores* it contains an even subdivision of K_4 or of the *prism* or of the *biprism*.
(6) implies (7)

(6) and (7)

(6) Contracting stars and odd cycles it contains an even subdivision of K_4,

(7) It contains an K_4- or prism- or biprism-obstruction.
(6) implies (7)

(6) and (7)

(6) Contracting stars and odd cycles it contains an even subdivision of K_4,
(7) It contains an K_4- or prism- or biprism-obstruction.

Lemma

If G/C (C : star or odd cycle) contains an obstruction then so does G.
(7) implies (3)

(7) and (3)

(7) Contracting cores it contains an even subdivision of K_4 or of the prism or of the biprism.

(3) Contracting suns it contains an even subdivision of K_4 or of the prism.
(7) implies (3)

(7) and (3)

(7) Contracting cores it contains an even subdivision of K_4 or of the prism or of the biprism.

(3) Contracting suns it contains an even subdivision of K_4 or of the prism.

Lemma

1. A core-contraction can be replaced by some sun-contractions.
2. An even subdivision of the biprism can be sun-contracted to an even subdivision of the K_4.
(7) implies (3)

(7) and (3)

(7) Contracting cores it contains an even subdivision of K_4 or of the prism or of the biprism.

(3) Contracting suns it contains an even subdivision of K_4 or of the prism.

Lemma

1. A core-contraction can be replaced by some sun-contractions.
2. An even subdivision of the biprism can be sun-contraction to an even subdivision of the K_4.
(7) implies (3)

(7) and (3)

(7) Contracting cores it contains an even subdivision of K_4 or of the prism or of the biprism.

(3) Contracting suns it contains an even subdivision of K_4 or of the prism.

Lemma

1. A core-contraction can be replaced by some sun-contractions.
2. An even subdivision of the biprism can be sun-contracted to an even subdivision of the K_4.
Lemma

1. A core-contraction can be replaced by some sun-contractions.
2. An even subdivision of the biprism can be sun-contracted to an even subdivision of the K_4.

Both are implied by the lemma about the contraction of elementary graphs because an even subdivision of K^3_2 (and of K_4) is matching-covered.
Returning to non-Seymour graphs

Equivalence to non-Seymour graphs

1. Non-Seymour graph implies (1) : by structure theorem of Sebő ’90.

2. (7) implies non-Seymour graph : by lemma of Sebő ’92 : a join of G and two tight cycles whose union is an odd K_4 or an odd prism can be easily found in an obstruction.
Equivalence to non-Seymour graphs

1. Non-Seymour graph implies (1) : by structure theorem of Sebő '90.
2. (7) implies non-Seymour graph : by lemma of Sebő '92: a join of G and two tight cycles whose union is an odd K_4 or an odd prism can be easily found in an obstruction.
Algorithmic aspects

What we can not do

1. Given a graph G, decide whether it is a Seymour graph.
2. Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.
Algorithmic aspects

What we can not do

1. Given a graph G, decide whether it is a Seymour graph.
2. Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.
What we can not do

1. Given a graph G, decide whether it is a Seymour graph.
2. Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.
Algorithmic aspects

What we can not do

1. Given a graph G, decide whether it is a Seymour graph.
2. Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G,

1. either provide an F-complete packing of cuts
2. or show that G is not Seymour.
Algorithmic aspects

What we can not do

1. Given a graph \(G \), decide whether it is a Seymour graph.
2. Given a graph \(G \) and a join \(F \) in \(G \), decide whether there exists an \(F \)-complete packing of cuts.

What we can do

Given a graph \(G \) and a join \(F \) in \(G \),

1. either provide an \(F \)-complete packing of cuts
2. or show that \(G \) is not Seymour.
Algorithmic aspects

What we can not do

1. Given a graph G, decide whether it is a Seymour graph.
2. Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G,

1. either provide an F-complete packing of cuts
2. or show that G is not Seymour.
Algorithmic aspects

What we can not do

1. Given a graph G, decide whether it is a Seymour graph.
2. Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G,

1. either provide an F-complete packing of cuts
2. or show that G is not Seymour.

What we can do

Given a matching-covered graph, decide if it is Seymour or not:

1. if it is bipartite then it is Seymour,
2. if it is not bipartite then it is not Seymour.
Algorithmic aspects

What we can not do

1. Given a graph G, decide whether it is a Seymour graph.
2. Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G,
1. either provide an F-complete packing of cuts
2. or show that G is not Seymour.

Given a matching-covered graph, decide if it is Seymour or not:
1. if it is bipartite then it is Seymour,
2. if it is not bipartite then it is not Seymour.
Algorithmic aspects

What we can not do

1. Given a graph G, decide whether it is a Seymour graph.
2. Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G,

1. either provide an F-complete packing of cuts
2. or show that G is not Seymour.

What we can do

Given a matching-covered graph, decide if it is Seymour or not:

1. if it is bipartite then it is Seymour,
2. if it is not bipartite then it is not Seymour.
Open problem

NP characterization?
Open problem

NP characterization?
Find a construction for Seymour graphs!
Thanks!