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Outline 2

Orientation

Mr. Orient, the Mayor of the city called ”The Edges”,
having wanted to make the main street a one way street,
unfortunately made a mistake by ordering the ”one way” sign
and received 100 signs, as many as the number of streets in the city.
To be justified, he decides to use all the signs,
i.e. to make all the streets of the city one way.

root-connected, strongly connected orientation

Having finished his plan, he realizes that
it does not enable him to go home.
He thus goes back to work while keeping in mind that he must be able,
from the City Hall, to reach any point of the city.
After one moment of reflexion, he realizes that he must be able,
from any point of the city, to reach all the others.
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Outline 2

2-arc-connected orientation

Being proud of himself, he presents his project to his assistant,
a well-balanced man, who reminds him that during summer,
some streets of the city may be blocked by floods,
they thus try to conceive a plan where
blocking any street does not make a district inaccessible.

well-balanced orientation

But they are still not satisfied ; examining their plan, they see that
there are far too many paths from the downtown to the shopping center
and not enough in the other direction.
They try an ultimate improvement : to place the ”one way” signs so that
the orientation of the streets be well-balanced.

Since then, the city was renamed ”The Arcs”.
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Orientation problems with connectivity constraints

root-connected / k-root-connected

strongly connected / k-arc-connected

well-balanced

k-connected
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Orientation problems with connectivity constraints

root-connected / k-root-connected

strongly connected / k-arc-connected

well-balanced

k-connected

same problems with prescribed degrees
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Notations

Given an undirected graph G ,

dG (X ) = number of edges of G entering X ,
iG (X ) = number of edges of G in X .

Given a directed graph D,

d−

D (X ) = number of arcs of D entering X ,
d+

D (X ) = number of arcs of D leaving X .

X V − X
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Connectivity properties 1

Definitions

local-edge-connectivity λG (u, v) = maximum number of edge-disjoint
paths from u to v in G ,

local-arc-connectivity λD(u, v) = maximum number of arc-disjoint
paths from u to v in D.
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Connectivity properties 2

Theorem (Menger)

local-edge-connectivity λG (u, v) = maximum number of edge-disjoint
paths from u to v in G = min{dG (X ) : v ∈ X , u /∈ X},

local-arc-connectivity λD(u, v) = maximum number of arc-disjoint
paths from u to v in D = min{d−

D (X ) : v ∈ X , u /∈ X}.

Theorem (Menger)

k-edge-connected : dG (X ) ≥ k ∀X ⊂ V ,

root-connected : d−

D (X ) ≥ 1 ∀X ⊂ V − s, s fixed,

k-root-connected : d−

D (X ) ≥ k ∀X ⊂ V − s, s fixed,

strongly connected : d−

D (X ) ≥ 1 ∀X ⊂ V ,

k-arc-connected : d−

D (X ) ≥ k ∀X ⊂ V .
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Root-connected orientation

Exercise

Given an undirected graph G and a vertex s of G ,

there exists a root-connected orientation of G at s ⇐⇒

there exists an orientation of G containing an s-arborescence ⇐⇒

there exists a spanning tree of G ⇐⇒

G is connected.

s

G
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k-root-connected orientation

Theorem (Frank’78)

Given an undirected graph G, a vertex s of G and an integer k ≥ 1,

there exists ~G of G that is k-root-connected at s ⇐⇒ (Menger)

there exists ~G of G with d−

~G
(X ) ≥ k ∀X ⊂ V − s ⇐⇒ (Edmonds)

there exists ~G of G containing k arc-disjoint s-arborescences ⇐⇒

there exist k edge-disjoint spanning trees of G ⇐⇒ (Nash-Williams)

for every partition P of V ,

s

G , k = 2
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there exists ~G of G that is k-root-connected at s ⇐⇒ (Menger)
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E (P)
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k-root-connected orientation

Theorem (Frank’78)

Given an undirected graph G, a vertex s of G and an integer k ≥ 1,

there exists ~G of G that is k-root-connected at s ⇐⇒ (Menger)

there exists ~G of G with d−

~G
(X ) ≥ k ∀X ⊂ V − s ⇐⇒ (Edmonds)

there exists ~G of G containing k arc-disjoint s-arborescences ⇐⇒

there exist k edge-disjoint spanning trees of G ⇐⇒ (Nash-Williams)

for every partition P of V , |E (P)|≥ k(|P| − 1).

|E (P)|

F1 F2
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Strongly connected orientation

Theorem (Robbins’39)

Given an undirected graph G ,

there exists a strongly connected orientation of G ⇐⇒

there is an orientation of G having a directed ear-decomposition ⇐⇒

there exists an ear-decomposition of G ⇐⇒

G is 2-edge-connected.

G

Z. Szigeti (G-SCOP, Grenoble) Orientations of graphs 8 November 2011 12 / 31



Strongly connected orientation

Theorem (Robbins’39)

Given an undirected graph G ,

there exists a strongly connected orientation of G ⇐⇒

there is an orientation of G having a directed ear-decomposition ⇐⇒

there exists an ear-decomposition of G ⇐⇒

G is 2-edge-connected.

strongly conn. ~G
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Strongly connected orientation

Theorem (Robbins’39)

Given an undirected graph G ,

there exists a strongly connected orientation of G ⇐⇒

there is an orientation of G having a directed ear-decomposition ⇐⇒

there exists an ear-decomposition of G ⇐⇒

G is 2-edge-connected.

1

2

3

4

dir. ear-dec.
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Strongly connected orientation

Theorem (Robbins’39)

Given an undirected graph G ,

there exists a strongly connected orientation of G ⇐⇒

there is an orientation of G having a directed ear-decomposition ⇐⇒

there exists an ear-decomposition of G ⇐⇒

G is 2-edge-connected.

1

2

3

4

ear-dec. of G
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Strongly connected orientation

Theorem (Robbins’39)

Given an undirected graph G ,

there exists a strongly connected orientation of G ⇐⇒

there is an orientation of G having a directed ear-decomposition ⇐⇒

there exists an ear-decomposition of G ⇐⇒

G is 2-edge-connected.

2-e-c G
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k-arc-connected orientation

Theorem (Nash-Williams’60)(weak orientation)

Given an undirected graph G ,

there exists a k-arc-connected orientation of G ⇐⇒

G is 2k-edge-connected.
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k-arc-connected orientation

Theorem (Nash-Williams’60)(weak orientation)

Given an undirected graph G ,

there exists a k-arc-connected orientation of G ⇐⇒

G is 2k-edge-connected.

necessity :

X V − X

k

k

~G
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k-arc-connected orientation

Theorem (Nash-Williams’60)(weak orientation)

Given an undirected graph G ,

there exists a k-arc-connected orientation of G ⇐⇒

G is 2k-edge-connected.

necessity :

X V − X

2k

G
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k-arc-connected orientation

sufficiency :

G ′ is minimally 2k-edge-connected, =⇒ (Mader)

there exists a vertex of degree 2k, =⇒ (Lovász)

there exists a 2k-admissible complete splitting off, =⇒ (induction)

there exists a k-arc-connected orientation ~G ′′ of G ′′, =⇒
~G ′′ provides a k-arc-connected orientation ~G ′ of G ′, =⇒
~G ′ provides a k-arc-connected orientation ~G of G .

G 2k-e-c.
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k-arc-connected orientation

sufficiency :

G ′ is minimally 2k-edge-connected, =⇒ (Mader)

there exists a vertex of degree 2k, =⇒ (Lovász)

there exists a 2k-admissible complete splitting off, =⇒ (induction)

there exists a k-arc-connected orientation ~G ′′ of G ′′, =⇒
~G ′′ provides a k-arc-connected orientation ~G ′ of G ′, =⇒
~G ′ provides a k-arc-connected orientation ~G of G .

G ′ minimally 2k-e-c.
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k-arc-connected orientation

sufficiency :

G ′ is minimally 2k-edge-connected, =⇒ (Mader)

there exists a vertex of degree 2k, =⇒ (Lovász)

there exists a 2k-admissible complete splitting off, =⇒ (induction)

there exists a k-arc-connected orientation ~G ′′ of G ′′, =⇒
~G ′′ provides a k-arc-connected orientation ~G ′ of G ′, =⇒
~G ′ provides a k-arc-connected orientation ~G of G .

G ′ minimally 2k-e-c.

s
dG′ (s) = 2k
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k-arc-connected orientation

sufficiency :

G ′ is minimally 2k-edge-connected, =⇒ (Mader)

there exists a vertex of degree 2k, =⇒ (Lovász)

there exists a 2k-admissible complete splitting off, =⇒ (induction)

there exists a k-arc-connected orientation ~G ′′ of G ′′, =⇒
~G ′′ provides a k-arc-connected orientation ~G ′ of G ′, =⇒
~G ′ provides a k-arc-connected orientation ~G of G .

G ′ minimally 2k-e-c.

s
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k-arc-connected orientation

sufficiency :

G ′ is minimally 2k-edge-connected, =⇒ (Mader)

there exists a vertex of degree 2k, =⇒ (Lovász)

there exists a 2k-admissible complete splitting off, =⇒ (induction)

there exists a k-arc-connected orientation ~G ′′ of G ′′, =⇒
~G ′′ provides a k-arc-connected orientation ~G ′ of G ′, =⇒
~G ′ provides a k-arc-connected orientation ~G of G .

G ′′ 2k-e-c.
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k-arc-connected orientation

sufficiency :

G ′ is minimally 2k-edge-connected, =⇒ (Mader)

there exists a vertex of degree 2k, =⇒ (Lovász)

there exists a 2k-admissible complete splitting off, =⇒ (induction)

there exists a k-arc-connected orientation ~G ′′ of G ′′, =⇒
~G ′′ provides a k-arc-connected orientation ~G ′ of G ′, =⇒
~G ′ provides a k-arc-connected orientation ~G of G .

~G ′′ k-a-c.
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k-arc-connected orientation

sufficiency :

G ′ is minimally 2k-edge-connected, =⇒ (Mader)

there exists a vertex of degree 2k, =⇒ (Lovász)

there exists a 2k-admissible complete splitting off, =⇒ (induction)

there exists a k-arc-connected orientation ~G ′′ of G ′′, =⇒
~G ′′ provides a k-arc-connected orientation ~G ′ of G ′, =⇒
~G ′ provides a k-arc-connected orientation ~G of G .

~G ′ k-a-c.

s
d+
~G′

(s) = k = d
−

~G′
(s)
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k-arc-connected orientation

sufficiency :

G ′ is minimally 2k-edge-connected, =⇒ (Mader)

there exists a vertex of degree 2k, =⇒ (Lovász)

there exists a 2k-admissible complete splitting off, =⇒ (induction)

there exists a k-arc-connected orientation ~G ′′ of G ′′, =⇒
~G ′′ provides a k-arc-connected orientation ~G ′ of G ′, =⇒
~G ′ provides a k-arc-connected orientation ~G of G .

~G k-a-c.

s
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In-degree vector

If m is the in-degree vector of D (m(v) = d−

D (v) ∀v ∈ V ), then

m(X ) − iD(X ) = d−

D (X ).

The in-degree vector characterizes the in-degree function.

The in-degree function characterizes the connectivity properties.

X V − X
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In-degree vector

If m is the in-degree vector of D (m(v) = d−

D (v) ∀v ∈ V ), then

m(X ) − iD(X ) = d−

D (X ).

The in-degree vector characterizes the in-degree function.

The in-degree function characterizes the connectivity properties.

X V − X

1
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In-degree vector

If m is the in-degree vector of D (m(v) = d−

D (v) ∀v ∈ V ), then

m(X ) − iD(X ) = d−

D (X ).

The in-degree vector characterizes the in-degree function.

The in-degree function characterizes the connectivity properties.

X V − X
2
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In-degree vector

If m is the in-degree vector of D (m(v) = d−

D (v) ∀v ∈ V ), then

m(X ) − iD(X ) = d−

D (X ).

The in-degree vector characterizes the in-degree function.

The in-degree function characterizes the connectivity properties.

X V − X

1
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In-degree vector

If m is the in-degree vector of D (m(v) = d−

D (v) ∀v ∈ V ), then

m(X ) − iD(X ) = d−

D (X ).

The in-degree vector characterizes the in-degree function.

The in-degree function characterizes the connectivity properties.

X V − X

1

1

2
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In-degree vector

If m is the in-degree vector of D (m(v) = d−

D (v) ∀v ∈ V ), then

m(X ) − iD(X ) = d−

D (X ).

The in-degree vector characterizes the in-degree function.

The in-degree function characterizes the connectivity properties.

X V − X
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In-degree vector

If m is the in-degree vector of D (m(v) = d−

D (v) ∀v ∈ V ), then

m(X ) − iD(X ) = d−

D (X ).

The in-degree vector characterizes the in-degree function.

The in-degree function characterizes the connectivity properties.

X V − X
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In-degree constrained orientation

Theorem (Hakimi’65)

Given an undirected graph G= (V ,E ) and a vector m: V → Z+,

there exists an orientation ~G of G with in-degree vector m ⇐⇒

m(X ) ≥ iG (X ) ∀X ⊆ V ,
m(V ) = |E |.

1

0

1 2

2
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In-degree constrained orientation

Theorem (Hakimi’65)

Given an undirected graph G= (V ,E ) and a vector m: V → Z+,

there exists an orientation ~G of G with in-degree vector m ⇐⇒

m(X ) ≥ iG (X ) ∀X ⊆ V ,
m(V ) = |E |.

1

0

1 2

2
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In-degree constrained orientation

Theorem (Hakimi’65)

Given an undirected graph G= (V ,E ) and a vector m: V → Z+,

there exists an orientation ~G of G with in-degree vector m ⇐⇒

m(X ) ≥ iG (X ) ∀X ⊆ V ,
m(V ) = |E |.

2

0

1 2

1

X
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Applications of in-degree constrained orientations

Applications

Eulerian orientation of an undirected graph (Euler),

Eulerian orientation of a mixed graph (Ford-Fulkerson),

Perfect matching in a bipartite graph (Hall, Frobenius),

f -factor in a bipartite graph (Ore, Tutte).

G

Z. Szigeti (G-SCOP, Grenoble) Orientations of graphs 8 November 2011 17 / 31



Applications of in-degree constrained orientations

Applications

Eulerian orientation of an undirected graph (Euler),

Eulerian orientation of a mixed graph (Ford-Fulkerson),

Perfect matching in a bipartite graph (Hall, Frobenius),

f -factor in a bipartite graph (Ore, Tutte).

G

m(v) =
dG (v)

2
∀v ∈ V
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Applications of in-degree constrained orientations

Applications

Eulerian orientation of an undirected graph (Euler),

Eulerian orientation of a mixed graph (Ford-Fulkerson),

Perfect matching in a bipartite graph (Hall, Frobenius),

f -factor in a bipartite graph (Ore, Tutte).

G = (V , E∪A)
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Applications of in-degree constrained orientations

Applications

Eulerian orientation of an undirected graph (Euler),

Eulerian orientation of a mixed graph (Ford-Fulkerson),

Perfect matching in a bipartite graph (Hall, Frobenius),

f -factor in a bipartite graph (Ore, Tutte).

~G = (V , ~E∪A)

m(v) =
dE (v)+d+

A
(v)+d

−

A
(v)

2
− d

−

A
(v) ∀v ∈ V
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Applications of in-degree constrained orientations

Applications

Eulerian orientation of an undirected graph (Euler),

Eulerian orientation of a mixed graph (Ford-Fulkerson),

Perfect matching in a bipartite graph (Hall, Frobenius),

f -factor in a bipartite graph (Ore, Tutte).

G = (U ∪ V ; E )

U

V
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Applications of in-degree constrained orientations

Applications

Eulerian orientation of an undirected graph (Euler),

Eulerian orientation of a mixed graph (Ford-Fulkerson),

Perfect matching in a bipartite graph (Hall, Frobenius),

f -factor in a bipartite graph (Ore, Tutte).

G = (U ∪ V ; E )

U

V

Z. Szigeti (G-SCOP, Grenoble) Orientations of graphs 8 November 2011 17 / 31



Applications of in-degree constrained orientations

Applications

Eulerian orientation of an undirected graph (Euler),

Eulerian orientation of a mixed graph (Ford-Fulkerson),

Perfect matching in a bipartite graph (Hall, Frobenius),

f -factor in a bipartite graph (Ore, Tutte).

G = (U ∪ V ; E )

m(v) = d(v) − 1 ∀v ∈ V

m(u) = 1 ∀u ∈ U

U

V
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Applications of in-degree constrained orientations

Applications

Eulerian orientation of an undirected graph (Euler),

Eulerian orientation of a mixed graph (Ford-Fulkerson),

Perfect matching in a bipartite graph (Hall, Frobenius),

f -factor in a bipartite graph (Ore, Tutte).

G = (U ∪ V ; E ), f : V → Z+

U

V
1

1

1

12

2

3

3
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Applications of in-degree constrained orientations

Applications

Eulerian orientation of an undirected graph (Euler),

Eulerian orientation of a mixed graph (Ford-Fulkerson),

Perfect matching in a bipartite graph (Hall, Frobenius),

f -factor in a bipartite graph (Ore, Tutte).

G = (U ∪ V ; E ), f -factor

U

V
1 3 2 1

2 1 3 1
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Applications of in-degree constrained orientations

Applications

Eulerian orientation of an undirected graph (Euler),

Eulerian orientation of a mixed graph (Ford-Fulkerson),

Perfect matching in a bipartite graph (Hall, Frobenius),

f -factor in a bipartite graph (Ore, Tutte).

G = (U ∪ V ; E ), f -factor

U

V
1 3 2 1

2 1 3 1

m(u) = f (u) ∀u ∈ U

m(v) = d(v) − f (v) ∀v ∈ V
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In-degree constrained orientation with connectivity propert.

Theorem (Frank’80)

Given an undirected graph G= (V ,E ) and a vector m: V → Z+,
there exists an orientation ~G of G with in-degree vector m that is ⇐⇒

root-connected : d−

~G
(X ) ≥ 1 ∀X ⊂ V − s, s fixed,

k-root-connected : d−

~G
(X ) ≥ k ∀X ⊂ V − s, s fixed,

strongly connected : d−

~G
(X ) ≥ 1 ∀X ⊂ V ,

k-arc-connected : d−

~G
(X ) ≥ k ∀X ⊂ V ,

d−

~G
(V ) = 0.
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In-degree constrained orientation with connectivity propert.

Theorem (Frank’80)

Given an undirected graph G= (V ,E ) and a vector m: V → Z+,
there exists an orientation ~G of G with in-degree vector m that is ⇐⇒

root-connected : m(X ) − iG (X ) ≥ 1 ∀X ⊂ V − s, s fixed,

k-root-connected : m(X ) − iG (X ) ≥ k ∀X ⊂ V − s, s fixed,

strongly connected : m(X ) − iG (X ) ≥ 1 ∀X ⊂ V ,

k-arc-connected : m(X ) − iG (X ) ≥ k ∀X ⊂ V ,

m(V ) − |E | = 0.
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Eulerian orientation

Exercise

1 Let G be an Eulerian graph.

2 Let G be an Eulerian graph and Pv a partition of the edges incident
to v into pairs for every v ∈ V .

G eulerian

v
d(v) even
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Eulerian orientation

Exercise

1 Let G be an Eulerian graph. Then G has an Eulerian orientation ~G .

2 Let G be an Eulerian graph and Pv a partition of the edges incident
to v into pairs for every v ∈ V .

~G eulerian

v
d+(v) = d−(v)
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Eulerian orientation

Exercise

1 Let G be an Eulerian graph. Then G has an Eulerian orientation ~G .

2 Let G be an Eulerian graph and Pv a partition of the edges incident
to v into pairs for every v ∈ V .

G eulerian, Pv partition

v
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Eulerian orientation

Exercise

1 Let G be an Eulerian graph. Then G has an Eulerian orientation ~G .

2 Let G be an Eulerian graph and Pv a partition of the edges incident
to v into pairs for every v ∈ V . Then G has an Eulerian orientation ~G
that is compatible with each Pv .

~G eulerian and compatible with Pv

v
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Eulerian orientation

Exercise

1 Let G be an Eulerian graph. Then G has an Eulerian orientation ~G .

2 Let G be an Eulerian graph and Pv a partition of the edges incident
to v into pairs for every v ∈ V . Then G has an Eulerian orientation ~G
that is compatible with each Pv .

Exercise

An orientation ~G of an Eulerian graph G is Eulerian ⇐⇒

1 d−

~G
(v) − d+

~G
(v) = 0 ∀v ∈ V ⇐⇒

2 d−

~G
(X ) − d+

~G
(X ) = 0 ∀X ⊆ V ⇐⇒

3 d−

~G
(X ) = 1

2dG (X ) ∀X ⊆ V ⇐⇒

4 λ~G
(u, v) = 1

2λG (u, v) ∀(u, v) ∈ V × V .
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Eulerian orientation

Exercise

1 Let G be an Eulerian graph. Then G has an Eulerian orientation ~G .

2 Let G be an Eulerian graph and Pv a partition of the edges incident
to v into pairs for every v ∈ V . Then G has an Eulerian orientation ~G
that is compatible with each Pv .

Exercise

An orientation ~G of an Eulerian graph G is Eulerian ⇐⇒

1 d−

~G
(v) − d+

~G
(v) = 0 ∀v ∈ V ⇐⇒

2 d−

~G
(X ) − d+

~G
(X ) = 0 ∀X ⊆ V ⇐⇒

3 d−

~G
(X ) = 1

2dG (X ) ∀X ⊆ V ⇐⇒

4 λ~G
(u, v) = 1

2λG (u, v) ∀(u, v) ∈ V × V .
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Eulerian orientation

Exercise

1 Let G be an Eulerian graph. Then G has an Eulerian orientation ~G .

2 Let G be an Eulerian graph and Pv a partition of the edges incident
to v into pairs for every v ∈ V . Then G has an Eulerian orientation ~G
that is compatible with each Pv .

Exercise

An orientation ~G of an Eulerian graph G is Eulerian ⇐⇒

1 d−

~G
(v) − d+

~G
(v) = 0 ∀v ∈ V ⇐⇒

2 d−

~G
(X ) − d+

~G
(X ) = 0 ∀X ⊆ V ⇐⇒

3 d−

~G
(X ) = 1

2dG (X ) ∀X ⊆ V ⇐⇒

4 λ~G
(u, v) = 1

2λG (u, v) ∀(u, v) ∈ V × V .
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Eulerian orientation

Exercise

1 Let G be an Eulerian graph. Then G has an Eulerian orientation ~G .

2 Let G be an Eulerian graph and Pv a partition of the edges incident
to v into pairs for every v ∈ V . Then G has an Eulerian orientation ~G
that is compatible with each Pv .

Exercise

An orientation ~G of an Eulerian graph G is Eulerian ⇐⇒

1 d−

~G
(v) − d+

~G
(v) = 0 ∀v ∈ V ⇐⇒

2 d−

~G
(X ) − d+

~G
(X ) = 0 ∀X ⊆ V ⇐⇒

3 d−

~G
(X ) = 1

2dG (X ) ∀X ⊆ V ⇐⇒

4 λ~G
(u, v) = 1

2λG (u, v) ∀(u, v) ∈ V × V .
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Eulerian orientation

Exercise

1 Let G be an Eulerian graph. Then G has an Eulerian orientation ~G .

2 Let G be an Eulerian graph and Pv a partition of the edges incident
to v into pairs for every v ∈ V . Then G has an Eulerian orientation ~G
that is compatible with each Pv .

Exercise

An orientation ~G of an Eulerian graph G is Eulerian ⇐⇒

1 d−

~G
(v) − d+

~G
(v) = 0 ∀v ∈ V ⇐⇒

2 d−

~G
(X ) − d+

~G
(X ) = 0 ∀X ⊆ V ⇐⇒

3 d−

~G
(X ) = 1

2dG (X ) ∀X ⊆ V ⇐⇒

4 λ~G
(u, v) = 1

2λG (u, v) ∀(u, v) ∈ V × V .
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Well-balanced orientation

Definition

An orientation ~G of a graph G is best-balanced if

1 λ~G
(u, v) ≥ ⌊1

2λG (u, v)⌋ ∀(u, v) ∈ V × V , (well-balanced)

2 |d−

~G
(v) − d+

~G
(v)| ≤ 1 ∀v ∈ V . (smooth)
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Well-balanced orientation

Definition

An orientation ~G of a graph G is best-balanced if

1 λ~G
(u, v) ≥ ⌊1

2λG (u, v)⌋ ∀(u, v) ∈ V × V , (well-balanced)

2 |d−

~G
(v) − d+

~G
(v)| ≤ 1 ∀v ∈ V . (smooth)

v3

v1

λG (vi , vj) = min{val(i), val(j)}

v2 v4

v5
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Well-balanced orientation
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An orientation ~G of a graph G is best-balanced if

1 λ~G
(u, v) ≥ ⌊1

2λG (u, v)⌋ ∀(u, v) ∈ V × V , (well-balanced)
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2 v3

v1

λ~G
(vi , vj) ≥ min{val(i), val(j)}

v2 v4

v5
2

1

2

1

Z. Szigeti (G-SCOP, Grenoble) Orientations of graphs 8 November 2011 20 / 31



Well-balanced orientation

Definition

An orientation ~G of a graph G is best-balanced if

1 λ~G
(u, v) ≥ ⌊1

2λG (u, v)⌋ ∀(u, v) ∈ V × V , (well-balanced)

2 |d−

~G
(v) − d+

~G
(v)| ≤ 1 ∀v ∈ V . (smooth)

Theorem (Nash-Williams’60)(strong orientation)

Every graph G admits a best-balanced orientation.
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Theorem (Nash-Williams’60)(strong orientation)
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Best-balanced orientation

Exercise : How to find a smooth orientation ?
1 Take the set TG of odd degree vertices of G ,

2 add a pairing M of TG : G + M is Eulerian,

3 take an Eulerian orientation ~G + ~M of G + M,

4 delete the arcs of M : ~G is a smooth orientation of G .

v3

v1

v2 v4

v5
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4 delete the arcs of M : ~G is a smooth orientation of G .
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Exercise : How to find a smooth orientation ?
1 Take the set TG of odd degree vertices of G ,

2 add a pairing M of TG : G + M is Eulerian,

3 take an Eulerian orientation ~G + ~M of G + M,

4 delete the arcs of M : ~G is a smooth orientation of G .
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Best-balanced orientation

Exercise : How to find a smooth orientation ?
1 Take the set TG of odd degree vertices of G ,

2 add a pairing M of TG : G + M is Eulerian,

3 take an Eulerian orientation ~G + ~M of G + M,

4 delete the arcs of M : ~G is a smooth orientation of G .
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Best-balanced orientation

Exercise : How to find a smooth orientation ?
1 Take the set TG of odd degree vertices of G ,

2 add a pairing M of TG : G + M is Eulerian,

3 take an Eulerian orientation ~G + ~M of G + M,

4 delete the arcs of M : ~G is a smooth orientation of G .
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Best-balanced orientation

Exercise : How to find a smooth orientation ?
1 Take the set TG of odd degree vertices of G ,

2 add a pairing M of TG : G + M is Eulerian,

3 take an Eulerian orientation ~G + ~M of G + M,

4 delete the arcs of M : ~G is a smooth orientation of G .

Theorem (Nash-Williams’60)(strong orientation)

There exists a pairing M of TG and there exists an Eulerian orientation
~G + ~M of G + M such that ~G is well-balanced.
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Best-balanced orientation

Exercise : How to find a smooth orientation ?
1 Take the set TG of odd degree vertices of G ,

2 add a pairing M of TG : G + M is Eulerian,

3 take an Eulerian orientation ~G + ~M of G + M,

4 delete the arcs of M : ~G is a smooth orientation of G .

Theorem (Nash-Williams’60)(strong orientation)

There exists a pairing M of TG and there exists an Eulerian orientation
~G + ~M of G + M such that ~G is well-balanced.

Theorem (Nash-Williams’60)(pairing theorem)

There exists a pairing M of TG such that for every Eulerian orientation
~G + ~M of G + M, ~G is well-balanced.
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Generalizations

Theorem (Nash-Williams’60)(subgraph theorem)

For every subgraph H of a graph G , there exists an orientation ~G of G :
~G and ~G(H) are best-balanced orientations of G and H.
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Generalizations

Theorem (Nash-Williams’60)(subgraph theorem)

For every subgraph H of a graph G , there exists an orientation ~G of G :
~G and ~G(H) are best-balanced orientations of G and H.

Theorem (Király-Szigeti’06)(edge-partition theorem)

For every partition {E1, . . . Ek} of E (G ), there exists an orient. ~G of G :
~G and ~G(Ei ) ∀i are best-balanced orientations of the correspond. graphs.
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For every subgraph H of a graph G , there exists an orientation ~G of G :
~G and ~G(H) are best-balanced orientations of G and H.

Theorem (Király-Szigeti’06)(edge-partition theorem)

For every partition {E1, . . . Ek} of E (G ), there exists an orient. ~G of G :
~G and ~G(Ei ) ∀i are best-balanced orientations of the correspond. graphs.

Theorem (Király-Szigeti’06)(vertex-partition theorem)

For every partition {V1, . . . Vk} of V (G ), there exists an orient. ~G of G :
~G and ~G/(V i ) ∀i , are best-balanced orientations of the corresp. graphs.
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Generalizations

Theorem (Nash-Williams’60)(subgraph theorem)

For every subgraph H of a graph G , there exists an orientation ~G of G :
~G and ~G(H) are best-balanced orientations of G and H.

Theorem (Király-Szigeti’06)(edge-partition theorem)

For every partition {E1, . . . Ek} of E (G ), there exists an orient. ~G of G :
~G and ~G(Ei ) ∀i are best-balanced orientations of the correspond. graphs.

Theorem (Király-Szigeti’06)(vertex-partition theorem)

For every partition {V1, . . . Vk} of V (G ), there exists an orient. ~G of G :
~G and ~G/(V i ) ∀i , are best-balanced orientations of the corresp. graphs.

Easy by pairing theorem.
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Polyhedral aspects on k-arc-connected orientations

Pk
G := {m : R

V : m(X ) ≥ iG (X ) + k ∀X ⊂ V ,m(V ) = |E |}.
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V : m(X ) ≥ iG (X ) + k ∀X ⊂ V ,m(V ) = |E |}.

Theorem (Frank)

1 the integer points of Pk
G are exactly the in-degree vectors of

k-arc-connected orientations of G ,
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Pk
G := {m : R

V : m(X ) ≥ iG (X ) + k ∀X ⊂ V ,m(V ) = |E |}.

Theorem (Frank)

1 the integer points of Pk
G are exactly the in-degree vectors of

k-arc-connected orientations of G ,
2 Pk

G is an integer polyhedra :

the function p(X ) = iG (X ) + k if X 6= ∅, V and 0 otherwise is crossing
supermodular,
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Polyhedral aspects on k-arc-connected orientations

Pk
G := {m : R

V : m(X ) ≥ iG (X ) + k ∀X ⊂ V ,m(V ) = |E |}.

Theorem (Frank)

1 the integer points of Pk
G are exactly the in-degree vectors of

k-arc-connected orientations of G ,
2 Pk

G is an integer polyhedra :

the function p(X ) = iG (X ) + k if X 6= ∅, V and 0 otherwise is crossing
supermodular,
Pk

G is a base polyhedra,
({m : R

V : m(X ) ≥ p(X ) ∀X ⊂ V , m(V ) = p(V )})
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Polyhedral aspects on k-arc-connected orientations

Pk
G := {m : R

V : m(X ) ≥ iG (X ) + k ∀X ⊂ V ,m(V ) = |E |}.

Theorem (Frank)

1 the integer points of Pk
G are exactly the in-degree vectors of

k-arc-connected orientations of G ,

2 Pk
G is an integer polyhedra :

3 Pk
G is the convex hull of in-degree vectors of k-arc-connected

orientations of G .
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Polyhedral aspects on k-arc-connected orientations

Pk
G := {m : R

V : m(X ) ≥ iG (X ) + k ∀X ⊂ V ,m(V ) = |E |}.

Theorem (Frank)

1 the integer points of Pk
G are exactly the in-degree vectors of

k-arc-connected orientations of G ,

2 Pk
G is an integer polyhedra :

3 Pk
G is the convex hull of in-degree vectors of k-arc-connected

orientations of G .

4 Minimum Cost k-Arc-Connected Orientation Problem can be solved
in polynomial time.
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Polyhedral aspects on well-balanced orientations

Pw
G := {m : R

V : m(X ) ≥ iG (X ) + RG (X ) ∀X ⊂ V ,m(V ) = |E |},

where RG (X ) = max{⌊1
2λG (u, v)⌋ : u ∈ X , v ∈ V − X}.
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G := {m : R

V : m(X ) ≥ iG (X ) + RG (X ) ∀X ⊂ V ,m(V ) = |E |},

where RG (X ) = max{⌊1
2λG (u, v)⌋ : u ∈ X , v ∈ V − X}.

Theorem ( Bernáth, Iwata, Király, Király, Szigeti’08)

1 the integer points of Pw
G are exactly the in-degree vectors of

well-balanced orientations of G ,
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Polyhedral aspects on well-balanced orientations

Pw
G := {m : R

V : m(X ) ≥ iG (X ) + RG (X ) ∀X ⊂ V ,m(V ) = |E |},

where RG (X ) = max{⌊1
2λG (u, v)⌋ : u ∈ X , v ∈ V − X}.

Theorem ( Bernáth, Iwata, Király, Király, Szigeti’08)

1 the integer points of Pw
G are exactly the in-degree vectors of

well-balanced orientations of G ,

2 Pw
G is not an integer polyhedra,

3 Pw
G is not the convex hull of in-degree vectors of well-balanced

orientations of G .
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Polyhedral aspects on well-balanced orientations

Pw
G := {m : R

V : m(X ) ≥ iG (X ) + RG (X ) ∀X ⊂ V ,m(V ) = |E |},

where RG (X ) = max{⌊1
2λG (u, v)⌋ : u ∈ X , v ∈ V − X}.

Theorem ( Bernáth, Iwata, Király, Király, Szigeti’08)

1 the integer points of Pw
G are exactly the in-degree vectors of

well-balanced orientations of G ,

2 Pw
G is not an integer polyhedra,

3 Pw
G is not the convex hull of in-degree vectors of well-balanced

orientations of G .

4 Minimum Cost Well-Balanced Orientation Problem is NP-complete.
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k-connected graphs

Definition

A directed graph D = (V ,A) with |V | > k is k-connected ⇐⇒
D − X is strongly connected for all X ⊂ V with |X | = k − 1
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k-connected graphs

Definition

A directed graph D = (V ,A) with |V | > k is k-connected ⇐⇒
D − X is strongly connected for all X ⊂ V with |X | = k − 1

D 2-connected
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k-connected graphs

Definition

A directed graph D = (V ,A) with |V | > k is k-connected ⇐⇒
D − X is strongly connected for all X ⊂ V with |X | = k − 1

D − v strongly connected ∀v

v
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k-connected orientation

Conjecture [Thomassen]

There exists a function f (k) such that every f (k)-connected graph has a
k-connected orientation.
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k-connected orientation

Conjecture [Thomassen]

There exists a function f (k) such that every f (k)-connected graph has a
k-connected orientation.

Conjecture [Frank]

Given an undirected graph G = (V ,E ) with |V | > k,

there exists a k-connected orientation of G ⇐⇒

G − X is (2k − 2|X |)-edge-connected for all X ⊆ V with |X | < k.

necessity :

~G is k-connected
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k-connected orientation

Conjecture [Thomassen]

There exists a function f (k) such that every f (k)-connected graph has a
k-connected orientation.

Conjecture [Frank]

Given an undirected graph G = (V ,E ) with |V | > k,

there exists a k-connected orientation of G ⇐⇒

G − X is (2k − 2|X |)-edge-connected for all X ⊆ V with |X | < k.

necessity :

~G − X is (k − |X |)-connected
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k-connected orientation

Conjecture [Thomassen]

There exists a function f (k) such that every f (k)-connected graph has a
k-connected orientation.

Conjecture [Frank]

Given an undirected graph G = (V ,E ) with |V | > k,

there exists a k-connected orientation of G ⇐⇒

G − X is (2k − 2|X |)-edge-connected for all X ⊆ V with |X | < k.

necessity :

G − X is (2k − 2|X |)-edge-connected
Z. Szigeti (G-SCOP, Grenoble) Orientations of graphs 8 November 2011 26 / 31



2-connected orientation

Conjecture [Frank]

Given an undirected graph G = (V ,E ) with |V | > 2,

there exists a 2-connected orientation of G ⇐⇒

G is 4-edge-connected and G − v is 2-edge-connected for all v ∈ V .
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2-connected orientation

Conjecture [Frank]

Given an undirected graph G = (V ,E ) with |V | > 2,

there exists a 2-connected orientation of G ⇐⇒

G is 4-edge-connected and G − v is 2-edge-connected for all v ∈ V .

Theorem (Berg-Jordán’06)

Given an Eulerian graph G = (V ,E ) with |V | > 2,

there exists a 2-connected orientation of G ⇐⇒

G is 4-edge-connected and G − v is 2-edge-connected for all v ∈ V .
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2-connected orientation

Conjecture [Frank]

Given an undirected graph G = (V ,E ) with |V | > 2,

there exists a 2-connected orientation of G ⇐⇒

G is 4-edge-connected and G − v is 2-edge-connected for all v ∈ V .

Theorem (Berg-Jordán’06)

Given an Eulerian graph G = (V ,E ) with |V | > 2,

there exists a 2-connected Eulerian orientation of G ⇐⇒

G is 4-edge-connected and G − v is 2-edge-connected for all v ∈ V .
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A generalization

Theorem (Berg-Jordán’06)

Given an Eulerian graph G = (V ,E ) with |V | > 2,

there is an Eulerian ~G of G s. t. ~G − v is 1-arc-conn. ∀ v ∈ V ⇐⇒

G − v is 2-edge-connected for all v ∈ V .
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A generalization
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Given an Eulerian graph G = (V ,E ) with |V | > 2,

there is an Eulerian ~G of G s. t. ~G − v is 1-arc-conn. ∀ v ∈ V ⇐⇒

G − v is 2-edge-connected for all v ∈ V .

Theorem (Király-Szigeti’06)

Given an Eulerian graph G = (V ,E ) with |V | > k + 1,

there is an Eulerian ~G of G s. t. ~G − v is k-arc-conn. ∀ v ∈ V ⇐⇒

G − v is 2k-edge-connected for all v ∈ V .
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Given an Eulerian graph G = (V ,E ) with |V | > k + 1,

there is an Eulerian ~G of G s. t. ~G − v is k-arc-conn. ∀ v ∈ V ⇐⇒

G − v is 2k-edge-connected for all v ∈ V .

About the proof :

very short, applying pairing theorem,

provides a short proof for Berg-Jordán’s theorem.
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Proof

sufficiency :

Let Mv be a NW-pairing for G − v for each v ∈ V .

Mv provides pairs of edges incident to v ,

Let ~G be an Eulerian orientation of G compatible with each Pv .

~G provides an orientation ~Mv of Mv .
~G − v + ~Mv is Eulerian,

Mv NW-pairing of G − v

v

TG−v
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sufficiency :

Let Mv be a NW-pairing for G − v for each v ∈ V .

Mv provides pairs of edges incident to v , the remaining edges has a
natural partition into pairs, let Pv be the partition obtained.

Let ~G be an Eulerian orientation of G compatible with each Pv .

~G provides an orientation ~Mv of Mv .
~G − v + ~Mv is Eulerian,

~G − v + Mv eulerian
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Proof

sufficiency :

Let Mv be a NW-pairing for G − v for each v ∈ V .

Mv provides pairs of edges incident to v , the remaining edges has a
natural partition into pairs, let Pv be the partition obtained.

Let ~G be an Eulerian orientation of G compatible with each Pv .

~G provides an orientation ~Mv of Mv .
~G − v + ~Mv is Eulerian, (G − v is 2k-edge-connected and Mv is a
NW-pairing for G − v) so ~G − v is k-arc-connected for each v ∈ V .

~G − v k-arc-connexe
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2-connected orientation

Conjecture [Thomassen]

There exists a value f (2) such that every f (2)-connected graph has a
2-connected orientation.
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2-connected orientation

Conjecture [Thomassen]

There exists a value f (2) such that every f (2)-connected graph has a
2-connected orientation.

Theorem (Jordán’05)

Every 18-connected graph has a 2-connected orientation, that is f (2) ≤ 18.

Theorem (Cheriyan-Durand de Gevigney-Szigeti’11)

Every 14-connected graph has a 2-connected orientation, that is f (2) ≤ 14.

Frank’s conjecture would imply that f (2) ≤ 4.
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2-connected orientation

Conjecture [Thomassen]

There exists a value f (2) such that every f (2)-connected graph has a
2-connected orientation.

Theorem (Jordán’05)

Every 18-connected graph has a 2-connected orientation, that is f (2) ≤ 18.

Theorem (Cheriyan-Durand de Gevigney-Szigeti’11)

Every 14-connected graph has a 2-connected orientation, that is f (2) ≤ 14.

Theorem (Cheriyan-Durand de Gevigney-Szigeti’11)

Every (12k + 2)-connected graph has an orientation ~G such that ~G − v is
k-arc-connected ∀ v ∈ V .
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Thank you for your attention !
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