Orientations of graphs

Zoltán Szigeti
Laboratoire G-SCOP
INP Grenoble, France

8 November 2011

Outline 1

Outline 1

Mr. Orient, the Mayor of the city called "The Edges",

Outline 1

Mr. Orient, the Mayor of the city called "The Edges", having wanted to make the main street a one way street,

ONEWAY

Outline 1

Mr. Orient, the Mayor of the city called "The Edges", having wanted to make the main street a one way street, unfortunately made a mistake by ordering the ooneway sign

Outline 1

Mr. Orient, the Mayor of the city called "The Edges", having wanted to make the main street a one way street, unfortunately made a mistake by ordering the ouneway sign and received 100 signs,

Outline 1

Mr. Orient, the Mayor of the city called "The Edges",
having wanted to make the main street a one way street,
unfortunately made a mistake by ordering the oneway sign
and received 100 signs, as many as the number of streets in the city.

Outline 1

Mr. Orient, the Mayor of the city called "The Edges", having wanted to make the main street a one way street, unfortunately made a mistake by ordering the -onewarl sign and received 100 signs, as many as the number of streets in the city. To be justified, he decides to use all the signs,

Outline 1

Mr. Orient, the Mayor of the city called "The Edges", having wanted to make the main street a one way street, unfortunately made a mistake by ordering the -oneway sign and received 100 signs, as many as the number of streets in the city. To be justified, he decides to use all the signs, i.e. to make all the streets of the city one way.

Outline 1

> Mr. Orient, the Mayor of the city called "The Edges", having wanted to make the main street a one way street, unfortunately made a mistake by ordering the -onewarl sign and received 100 signs, as many as the number of streets in the city. To be justified, he decides to use all the signs, i.e. to make all the streets of the city one way.

Having finished his plan, he realizes that

Outline 1

Mr. Orient, the Mayor of the city called "The Edges", having wanted to make the main street a one way street, unfortunately made a mistake by ordering the boneway sign and received 100 signs, as many as the number of streets in the city. To be justified, he decides to use all the signs, i.e. to make all the streets of the city one way.

Having finished his plan, he realizes that it does not enable him to go home.

Outline 1

> Mr. Orient, the Mayor of the city called "The Edges", having wanted to make the main street a one way street, unfortunately made a mistake by ordering the poneway sign and received 100 signs, as many as the number of streets in the city. To be justified, he decides to use all the signs, i.e. to make all the streets of the city one way.

Having finished his plan, he realizes that it does not enable him to go home. He thus goes back to work while keeping in mind that he must be able,

Outline 1

> Mr. Orient, the Mayor of the city called "The Edges", having wanted to make the main street a one way street, unfortunately made a mistake by ordering the poneway sign and received 100 signs, as many as the number of streets in the city. To be justified, he decides to use all the signs, i.e. to make all the streets of the city one way.

Having finished his plan, he realizes that it does not enable him to go home. He thus goes back to work while keeping in mind that he must be able, from the City Hall, to reach any point of the city.

Outline 1

> Mr. Orient, the Mayor of the city called "The Edges", having wanted to make the main street a one way street, unfortunately made a mistake by ordering the -onewarl sign and received 100 signs, as many as the number of streets in the city. To be justified, he decides to use all the signs, i.e. to make all the streets of the city one way.

Having finished his plan, he realizes that it does not enable him to go home. He thus goes back to work while keeping in mind that he must be able, from the City Hall, to reach any point of the city.
After one moment of reflexion, he realizes that he must be able,

Outline 1

> Mr. Orient, the Mayor of the city called "The Edges", having wanted to make the main street a one way street, unfortunately made a mistake by ordering the -onewarl sign and received 100 signs, as many as the number of streets in the city. To be justified, he decides to use all the signs, i.e. to make all the streets of the city one way.

Having finished his plan, he realizes that it does not enable him to go home. He thus goes back to work while keeping in mind that he must be able, from the City Hall, to reach any point of the city.
After one moment of reflexion, he realizes that he must be able, from any point of the city, to reach all the others.

Outline 1

Being proud of himself, he presents his project to his assistant,

Outline 1

Being proud of himself, he presents his project to his assistant, a well-balanced man, who reminds him that during summer,

Outline 1

Being proud of himself, he presents his project to his assistant, a well-balanced man, who reminds him that during summer, some streets of the city may be blocked by floods,

Outline 1

Being proud of himself, he presents his project to his assistant, a well-balanced man, who reminds him that during summer, some streets of the city may be blocked by floods, they thus try to conceive a plan where

Outline 1

Being proud of himself, he presents his project to his assistant, a well-balanced man, who reminds him that during summer, some streets of the city may be blocked by floods, they thus try to conceive a plan where blocking any street does not make a district inaccessible.

Outline 1

Being proud of himself, he presents his project to his assistant, a well-balanced man, who reminds him that during summer, some streets of the city may be blocked by floods, they thus try to conceive a plan where blocking any street does not make a district inaccessible.

But they are still not satisfied;

Outline 1

Being proud of himself, he presents his project to his assistant, a well-balanced man, who reminds him that during summer, some streets of the city may be blocked by floods, they thus try to conceive a plan where blocking any street does not make a district inaccessible.

But they are still not satisfied ; examining their plan, they see that

Outline 1

Being proud of himself, he presents his project to his assistant, a well-balanced man, who reminds him that during summer, some streets of the city may be blocked by floods, they thus try to conceive a plan where blocking any street does not make a district inaccessible.

But they are still not satisfied ; examining their plan, they see that there are far too many paths from the downtown to the shopping center and not enough in the other direction.

Outline 1

Being proud of himself, he presents his project to his assistant, a well-balanced man, who reminds him that during summer, some streets of the city may be blocked by floods, they thus try to conceive a plan where blocking any street does not make a district inaccessible.

But they are still not satisfied ; examining their plan, they see that there are far too many paths from the downtown to the shopping center and not enough in the other direction.
They try an ultimate improvement : to place the "one way" signs so that

Outline 1

> Being proud of himself, he presents his project to his assistant, a well-balanced man, who reminds him that during summer, some streets of the city may be blocked by floods, they thus try to conceive a plan where blocking any street does not make a district inaccessible.

But they are still not satisfied ; examining their plan, they see that there are far too many paths from the downtown to the shopping center and not enough in the other direction.
They try an ultimate improvement : to place the "one way" signs so that the orientation of the streets be well-balanced.

Outline 1

> Being proud of himself, he presents his project to his assistant, a well-balanced man, who reminds him that during summer, some streets of the city may be blocked by floods, they thus try to conceive a plan where blocking any street does not make a district inaccessible.

But they are still not satisfied ; examining their plan, they see that there are far too many paths from the downtown to the shopping center and not enough in the other direction.
They try an ultimate improvement : to place the "one way" signs so that the orientation of the streets be well-balanced.

Since then, the city was renamed "The Arcs".

Outline 2

Orientation

Mr. Orient, the Mayor of the city called "The Edges", having wanted to make the main street a one way street, unfortunately made a mistake by ordering the "one way" sign and received 100 signs, as many as the number of streets in the city.
To be justified, he decides to use all the signs,
i.e. to make all the streets of the city one way.

root-connected, strongly connected orientation

Having finished his plan, he realizes that
it does not enable him to go home.
He thus goes back to work while keeping in mind that he must be able, from the City Hall, to reach any point of the city.
After one moment of reflexion, he realizes that he must be able, from any point of the city, to reach all the others.

Outline 2

2-arc-connected orientation

Being proud of himself, he presents his project to his assistant, a well-balanced man, who reminds him that during summer, some streets of the city may be blocked by floods, they thus try to conceive a plan where blocking any street does not make a district inaccessible.

well-balanced orientation

But they are still not satisfied; examining their plan, they see that there are far too many paths from the downtown to the shopping center and not enough in the other direction.
They try an ultimate improvement : to place the "one way" signs so that the orientation of the streets be well-balanced.

Since then, the city was renamed "The Arcs".

Orientation problems with connectivity constraints

- root-connected / k-root-connected
- strongly connected / k-arc-connected
- well-balanced
- k-connected

Orientation problems with connectivity constraints

- root-connected / k-root-connected
- strongly connected / k-arc-connected
- well-balanced
- k-connected
- same problems with prescribed degrees

Notations

- Given an undirected graph G,
- $d_{G}(X)=$ number of edges of G entering X, - $i_{G}(X)=$ number of edges of G in X.
- Given a directed graph D,

Notations

- Given an undirected graph G,
- $d_{G}(X)=$ number of edges of G entering X,

- Given a directed graph D,

Notations

- Given an undirected graph G,
- $d_{G}(X)=$ number of edges of G entering X,
- $i_{G}(X)=$ number of edges of G in X.
- Given a directed graph D,

Notations

- Given an undirected graph G,
- $d_{G}(X)=$ number of edges of G entering X,
- $i_{G}(X)=$ number of edges of G in X.
- Given a directed graph D,
$\begin{aligned} \text { - } d_{D}^{-}(X) & =\text { number of arcs of } D \text { entering } X, \\ \text { - } d_{D}^{+}(X) & =\text { number of arcs of } D \text { leaving } X .\end{aligned}$

Notations

- Given an undirected graph G,
- $d_{G}(X)=$ number of edges of G entering X,
- $i_{G}(X)=$ number of edges of G in X.
- Given a directed graph D,
- $d_{D}^{-}(X)=$ number of arcs of D entering X,

Notations

- Given an undirected graph G,
- $d_{G}(X)=$ number of edges of G entering X,
- $i_{G}(X)=$ number of edges of G in X.
- Given a directed graph D,
- $d_{D}^{-}(X)=$ number of arcs of D entering X,
- $d_{D}^{+}(X)=$ number of arcs of D leaving X.

Connectivity properties 1

Definitions

- local-edge-connectivity $\lambda_{G}(u, v)=$ maximum number of edge-disjoint paths from u to v in G,
- Iocal-arc-connectivity $\lambda_{D}(u, v)=$ maximum number of arc-disjoint paths from u to v in D.

Connectivity properties 1

Definitions

- local-edge-connectivity $\lambda_{G}(u, v)=$ maximum number of edge-disjoint paths from u to v in G,
- local-arc-connectivity $\lambda_{D}(u, v)=$ maximum number of arc-disjoint paths from u to v in D.

Connectivity properties 1

Definitions

- local-edge-connectivity $\lambda_{G}(u, v)=$ maximum number of edge-disjoint paths from u to v in G,
- local-arc-connectivity $\lambda_{D}(u, v)=$ maximum number of arc-disjoint paths from u to v in D.

Connectivity properties 1

Definitions

- local-edge-connectivity $\lambda_{G}(u, v)=$ maximum number of edge-disjoint paths from u to v in G,
- local-arc-connectivity $\lambda_{D}(u, v)=$ maximum number of arc-disjoint paths from u to v in D.

Definitions

- k-edge-connected : $\lambda_{G}(u, v) \geq k \forall(u, v) \in V \times V$,
- root-connected

- k-arc-connected

Connectivity properties 1

Definitions

- local-edge-connectivity $\lambda_{G}(u, v)=$ maximum number of edge-disjoint paths from u to v in G,
- local-arc-connectivity $\lambda_{D}(u, v)=$ maximum number of arc-disjoint paths from u to v in D.

Definitions

- k-edge-connected : $\lambda_{G}(u, v) \geq k \forall(u, v) \in V \times V$,
- root-connected : $\quad \lambda_{D}(s, v) \geq 1 \forall v \in V-s$, s fixed,
- k-root-connected $\lambda_{D}(s, v) \geq k \forall v \in V-s, s$ fixed,
- strongly connected
- K-are connected

Connectivity properties 1

Definitions

- local-edge-connectivity $\lambda_{G}(u, v)=$ maximum number of edge-disjoint paths from u to v in G,
- local-arc-connectivity $\lambda_{D}(u, v)=$ maximum number of arc-disjoint paths from u to v in D.

Definitions

- k-edge-connected: $\lambda_{G}(u, v) \geq k \forall(u, v) \in V \times V$,
- root-connected : $\quad \lambda_{D}(s, v) \geq 1 \forall v \in V-s$, s fixed,
- k-root-connected : $\lambda_{D}(s, v) \geq k \forall v \in V-s, s$ fixed,
- strongly connected
- k-arc-connected

Connectivity properties 1

Definitions

- local-edge-connectivity $\lambda_{G}(u, v)=$ maximum number of edge-disjoint paths from u to v in G,
- local-arc-connectivity $\lambda_{D}(u, v)=$ maximum number of arc-disjoint paths from u to v in D.

Definitions

- k-edge-connected : $\lambda_{G}(u, v) \geq k \forall(u, v) \in V \times V$,
- root-connected : $\quad \lambda_{D}(s, v) \geq 1 \forall v \in V-s$, s fixed,
- k-root-connected : $\lambda_{D}(s, v) \geq k \forall v \in V-s$, s fixed,
- strongly connected : $\lambda_{D}(u, v) \geq 1 \forall(u, v) \in V \times V$,
- k-arc-connected

Connectivity properties 1

Definitions

- local-edge-connectivity $\lambda_{G}(u, v)=$ maximum number of edge-disjoint paths from u to v in G,
- local-arc-connectivity $\lambda_{D}(u, v)=$ maximum number of arc-disjoint paths from u to v in D.

Definitions

- k-edge-connected : $\lambda_{G}(u, v) \geq k \forall(u, v) \in V \times V$,
- root-connected : $\quad \lambda_{D}(s, v) \geq 1 \forall v \in V-s$, s fixed,
- k-root-connected : $\lambda_{D}(s, v) \geq k \forall v \in V-s$, s fixed,
- strongly connected : $\lambda_{D}(u, v) \geq 1 \forall(u, v) \in V \times V$,
- k-arc-connected : $\quad \lambda_{D}(u, v) \geq k \forall(u, v) \in V \times V$.

Connectivity properties 2

Theorem (Menger)

- local-edge-connectivity $\lambda_{G}(u, v)=$ maximum number of edge-disjoint paths from u to v in $G \quad=\min \left\{d_{G}(X): v \in X, u \notin X\right\}$,
- local-arc-connectivity $\lambda_{D}(u, v)=$ maximum number of arc-disjoint paths from u to v in $D \quad=\min \left\{d_{D}^{-}(X): v \in X, u \notin X\right\}$.

Theorem (Menger)

- k-edge-connected: $d_{G}(X) \geq k \forall X \subset V$,
- root-connected : $\quad d_{D}^{-}(X) \geq 1 \forall X \subset V-s$, s fixed,
- k-root-connected : $d_{D}^{-}(X) \geq k \forall X \subset V-s$, s fixed,
- strongly connected : $d_{D}^{-}(X) \geq 1 \forall X \subset V$,
- k-arc-connected : $\quad d_{D}^{-}(X) \geq k \forall X \subset V$.

Root-connected orientation

Exercise

Given an undirected graph G and a vertex s of G,

- there exists a root-connected orientation of G at s
- there exists an orientation of G containing an s-arborescence
- there exists a snanning tree of G
- G is connected

Root-connected orientation

Exercise

Given an undirected graph G and a vertex s of G,

- there exists a root-connected orientation of G at s \qquad
- there exists an orientation of G containing an s-arborescence
- there exists a spanning tree of G
- G is conmected

Root-connected orientation

Exercise

Given an undirected graph G and a vertex s of G,

- there exists a root-connected orientation of G at s \qquad
- there exists an orientation of G containing an s-arborescence \qquad
- there exists a spanning tree of G

Root-connected orientation

Exercise

Given an undirected graph G and a vertex s of G,

- there exists a root-connected orientation of G at s
- there exists an orientation of G containing an s-arborescence
- there exists a spanning tree of G

Root-connected orientation

Exercise

Given an undirected graph G and a vertex s of G,

- there exists a root-connected orientation of G at s

- there exists an orientation of G containing an s-arborescence \qquad
- there exists a spanning tree of G
- G is connected.

k-root-connected orientation

Theorem (Frank'78)

Given an undirected graph G, a vertex s of G and an integer $k \geq 1$,

- there exist k edge-disjoint spanning trees of G

- for every nartition

k-root-connected orientation

Theorem (Frank'78)

Given an undirected graph G, a vertex s of G and an integer $k \geq 1$,

- there exists \vec{G} of G that is k-root-connected at s \Longleftrightarrow (Menger) - there exists \vec{G} of G with $d_{\vec{G}}^{-}(X) \geq k \forall X \subset V-s \quad \Longleftrightarrow$ (Edmonds)
- there exists \vec{G} of G containing k arc-disjoint s-arborescences \Longleftrightarrow
- there exist k edoe-disioint snanning trees of G
- for every partition \mathcal{P} of V.

k-root-connected orientation

Theorem (Frank'78)

Given an undirected graph G, a vertex s of G and an integer $k \geq 1$,

- there exists \vec{G} of G that is k-root-connected at s \Longleftrightarrow (Menger)
- there exists \vec{G} of G with $d_{\vec{G}}^{-}(X) \geq k \forall X \subset V-s \quad \Longleftrightarrow$ (Edmonds)
- there exists \vec{G} of G containing k arc-disjoint s-arborescences
- there exist k edge-disjoint spanning trees of G
\longleftrightarrow (Nash-Williams)

k-root-connected orientation

Theorem (Frank'78)

Given an undirected graph G, a vertex s of G and an integer $k \geq 1$,

- there exists \vec{G} of G that is k-root-connected at s
- there exists \vec{G} of G with $d_{\vec{G}}^{-}(X) \geq k \forall X \subset V-s$
- there exists \vec{G} of G containing k arc-disjoint s-arborescences
\Longleftrightarrow (Edmonds)
- there exist k edge-disjoint spanning trees of G
\Longleftrightarrow (Nash-Williams)

k-root-connected orientation

Theorem (Frank'78)

Given an undirected graph G, a vertex s of G and an integer $k \geq 1$,

- there exists \vec{G} of G that is k-root-connected at s
- there exists \vec{G} of G with $d_{\vec{G}}^{-}(X) \geq k \forall X \subset V-s$
- there exists \vec{G} of G containing k arc-disjoint s-arborescences
- there exist k edge-disjoint spanning trees of $G \Longleftrightarrow$ (Nash-Williams)

k-root-connected orientation

Theorem (Frank'78)

Given an undirected graph G, a vertex s of G and an integer $k \geq 1$,

- there exists \vec{G} of G that is k-root-connected at s
- there exists \vec{G} of G with $d_{\vec{G}}^{-}(X) \geq k \forall X \subset V-s$
- there exists \vec{G} of G containing k arc-disjoint s-arborescences
- there exist k edge-disjoint spanning trees of $G \Longleftrightarrow$ (Nash-Williams)
- for every partition \mathcal{P} of V,

Orientations of graphs
8 November 2011
$11 / 31$

k-root-connected orientation

Theorem (Frank'78)

Given an undirected graph G, a vertex s of G and an integer $k \geq 1$,

- there exists \vec{G} of G that is k-root-connected at s
- there exists \vec{G} of G with $d_{\vec{G}}^{-}(X) \geq k \forall X \subset V-s$
- there exists \vec{G} of G containing k arc-disjoint s-arborescences
- there exist k edge-disjoint spanning trees of $G \Longleftrightarrow$ (Nash-Williams)
- for every partition \mathcal{P} of $V,|E(\mathcal{P})|$

$E(\mathcal{P})$

k-root-connected orientation

Theorem (Frank'78)

Given an undirected graph G, a vertex s of G and an integer $k \geq 1$,

- there exists \vec{G} of G that is k-root-connected at s
- there exists \vec{G} of G with $d_{\vec{G}}^{-}(X) \geq k \forall X \subset V-s$
- there exists \vec{G} of G containing k arc-disjoint s-arborescences
- there exist k edge-disjoint spanning trees of $G \Longleftrightarrow$ (Nash-Williams)
- for every partition \mathcal{P} of $V,|E(\mathcal{P})| \geq k(|\mathcal{P}|-1)$.

$|E(\mathcal{P})|$

Strongly connected orientation

Theorem (Robbins'39)
Given an undirected graph G,

- there exists a strongly connected orientation of G
- there is an orientation of G having a directed ear-decomposition \Longleftrightarrow
- there exists an ear-decomposition of G
- G is 2-edge-connected.

Strongly connected orientation

Theorem (Robbins'39)

Given an undirected graph G,

- there exists a strongly connected orientation of G \qquad
- there is an orientation of G having a directed ear-decomposition
- there exists an ear-decomposition of G
- G is 2-edre-connected

Strongly connected orientation

Theorem (Robbins'39)

Given an undirected graph G,

- there exists a strongly connected orientation of G \qquad
- there is an orientation of G having a directed ear-decomposition \Longleftrightarrow
- there exists an ear-decomposition of G
- G is 2-edge-connected

dir. ear-dec.

Strongly connected orientation

Theorem (Robbins'39)

Given an undirected graph G,

- there exists a strongly connected orientation of G
- there is an orientation of G having a directed ear-decomposition \qquad
- there exists an ear-decomposition of G

ear-dec. of G

Strongly connected orientation

Theorem (Robbins'39)

Given an undirected graph G,

- there exists a strongly connected orientation of G
- there is an orientation of G having a directed ear-decomposition \qquad
- there exists an ear-decomposition of G
- G is 2-edge-connected.

2-e-c G

k-arc-connected orientation

Theorem (Nash-Williams'60)(weak orientation)

Given an undirected graph G,

- there exists a k-arc-connected orientation of G

k-arc-connected orientation

Theorem (Nash-Williams'60)(weak orientation)

Given an undirected graph G,

- there exists a k-arc-connected orientation of G

necessity :

k-arc-connected orientation

Theorem (Nash-Williams'60)(weak orientation)

Given an undirected graph G,

- there exists a k-arc-connected orientation of G
- G is $2 k$-edge-connected.

necessity :

k-arc-connected orientation

sufficiency :

- G^{\prime} is minimally $2 k$-edge-connected, \Longrightarrow (Mader)
- there exists a vertex of degree $2 k$,
\Longrightarrow (Lovász)
- there exists a $2 k$-admissible complete splitting off,
\Longrightarrow (induction)
- there exists a k-arc-connected orientation $\vec{G}^{\prime \prime}$ of $G^{\prime \prime}, \Longrightarrow$
- $\vec{G}^{\prime \prime}$ provides a k-arc-connected orientation \vec{G}^{\prime} of $G^{\prime}, \Longrightarrow$
- \vec{G}^{\prime} provides a K are connected orientation \vec{G} of G.

k-arc-connected orientation

sufficiency :

- G^{\prime} is minimally $2 k$-edge-connected,
- there exists a vertex of degree $2 k$,
\Longrightarrow (Lovász)
- there exists a $2 k$-admissible complete splitting off,
\Longrightarrow (Mader)
- there exists a k-arc-connected orientation $\vec{G}^{\prime \prime}$ of $G^{\prime \prime}$. \longrightarrow
- $\vec{G}^{\prime \prime}$ provides a k-arc-connected orientation \vec{G}^{\prime} of $G^{\prime}, \Longrightarrow$
- \vec{G}^{\prime} provides a k-arc-connected orientation \vec{G} of G.

k-arc-connected orientation

sufficiency :

- G^{\prime} is minimally $2 k$-edge-connected,
- there exists a vertex of degree $2 k$, \Longrightarrow (Mader)
\Longrightarrow (Lovász)
- there exists a $2 k$-admissible complete splitting off,

- there exists a k-arc-connected orientation $\vec{G}^{\prime \prime}$ of $G^{\prime \prime}, \Longrightarrow$
- $\vec{G}^{\prime \prime}$ provides a k-arc-connected orientation \vec{G}^{\prime} of $G^{\prime} . \Longrightarrow$
- \vec{G}^{\prime} provides a k-arc-connected orientation \vec{G} of G.

k-arc-connected orientation

sufficiency :

- G^{\prime} is minimally $2 k$-edge-connected,
- there exists a vertex of degree $2 k$,
\Longrightarrow (Lovász)
- there exists a $2 k$-admissible complete splitting off, \Longrightarrow (induction)
- there exists a k-arc-connected orientation $\vec{G}^{\prime \prime}$ of $G^{\prime \prime}, \Longrightarrow$
- $\vec{G}^{\prime \prime}$ provides a k-arc-connected orientation \vec{G}^{\prime} of $G^{\prime}, \Longrightarrow$
- \vec{G}^{\prime} provides a k-arc-connected orientation \vec{G} of G.

k-arc-connected orientation

sufficiency :

- G^{\prime} is minimally $2 k$-edge-connected,
- there exists a vertex of degree $2 k$,
\Longrightarrow (Lovász)
- there exists a $2 k$-admissible complete splitting off, \Longrightarrow (induction)
- there exists a k-arc-connected orientation $\vec{G}^{\prime \prime}$ of $G^{\prime \prime}, \Longrightarrow$
- $\vec{G}^{\prime \prime}$ provides a k-arc-connected orientation \vec{G}^{\prime} of $G^{\prime}, \Longrightarrow$
- \vec{G}^{\prime} provides a k-arc-connected orientation \vec{G} of G.

k-arc-connected orientation

sufficiency :

- G^{\prime} is minimally $2 k$-edge-connected,
- there exists a vertex of degree $2 k$, \Longrightarrow (Mader)
- there exists a $2 k$-admissible complete splitting off,
\Longrightarrow (Lovász)
\longrightarrow (induction)
- there exists a k-arc-connected orientation $\vec{G}^{\prime \prime}$ of $G^{\prime \prime}, \Longrightarrow$
- $G^{\prime \prime}$ provides a k-arc-connected orientation G^{\prime} of $G^{\prime}, \Longrightarrow$ - \vec{G}^{\prime} provides a k-arc-connected orientation \vec{G} of G.

k-arc-connected orientation

sufficiency :

- G^{\prime} is minimally $2 k$-edge-connected, \Longrightarrow (Mader)
- there exists a vertex of degree $2 k$, \Longrightarrow (Lovász)
- there exists a $2 k$-admissible complete splitting off, \Longrightarrow (induction)
- there exists a k-arc-connected orientation $\vec{G}^{\prime \prime}$ of $G^{\prime \prime}, \Longrightarrow$
- $\vec{G}^{\prime \prime}$ provides a k-arc-connected orientation \vec{G}^{\prime} of $G^{\prime}, \Longrightarrow$
- \vec{G}^{\prime} provides a k-arc-connected orientation \vec{G} of G.

k-arc-connected orientation

sufficiency :

- G^{\prime} is minimally $2 k$-edge-connected, \Longrightarrow (Mader)
- there exists a vertex of degree $2 k$, \Longrightarrow (Lovász)
- there exists a $2 k$-admissible complete splitting off, \Longrightarrow (induction)
- there exists a k-arc-connected orientation $\vec{G}^{\prime \prime}$ of $G^{\prime \prime}, \Longrightarrow$
- $\vec{G}^{\prime \prime}$ provides a k-arc-connected orientation \vec{G}^{\prime} of $G^{\prime}, \Longrightarrow$
- \vec{G}^{\prime} provides a k-arc-connected orientation \vec{G} of G.

In-degree vector

- If m is the in-degree vector of $D\left(m(v)=d_{D}^{-}(v) \forall v \in V\right)$, then

$$
m(X)-i_{D}(X)=d_{D}^{-}(X)
$$

- The in-degree vector characterizes the in-degree function.
- The in-degree function characterizes the connectivity properties.

In-degree vector

- If m is the in-degree vector of $D\left(m(v)=d_{D}^{-}(v) \forall v \in V\right)$, then

$$
m(X)-i_{D}(X)=d_{D}^{-}(X)
$$

- The in-degree vector characterizes the in-degree function.
- The in-degree function characterizes the connectivity properties.

In-degree vector

- If m is the in-degree vector of $D\left(m(v)=d_{D}^{-}(v) \forall v \in V\right)$, then

$$
m(X)-i_{D}(X)=d_{D}^{-}(X)
$$

- The in-degree vector characterizes the in-degree function.
- The in-degree function characterizes the connectivity properties.

In-degree vector

- If m is the in-degree vector of $D\left(m(v)=d_{D}^{-}(v) \forall v \in V\right)$, then

$$
m(X)-i_{D}(X)=d_{D}^{-}(X)
$$

- The in-degree vector characterizes the in-degree function.
- The in-degree function characterizes the connectivity properties.

In-degree vector

- If m is the in-degree vector of $D\left(m(v)=d_{D}^{-}(v) \forall v \in V\right)$, then

$$
m(X)-i_{D}(X)=d_{D}^{-}(X)
$$

- The in-degree vector characterizes the in-degree function.
- The in-degree function characterizes the connectivity properties.

In-degree vector

- If m is the in-degree vector of $D\left(m(v)=d_{D}^{-}(v) \forall v \in V\right)$, then

$$
m(X)-i_{D}(X)=d_{D}^{-}(X)
$$

- The in-degree vector characterizes the in-degree function.
- The in-degree function characterizes the connectivity properties.

In-degree vector

- If m is the in-degree vector of $D\left(m(v)=d_{D}^{-}(v) \forall v \in V\right)$, then

$$
m(X)-i_{D}(X)=d_{D}^{-}(X)
$$

- The in-degree vector characterizes the in-degree function.
- The in-degree function characterizes the connectivity properties.

In-degree constrained orientation

Theorem (Hakimi'65)

Given an undirected graph $G=(V, E)$ and a vector $m: V \rightarrow \mathbb{Z}_{+}$,

- there exists an orientation G of G with in-degree vector m

In-degree constrained orientation

Theorem (Hakimi'65)

Given an undirected graph $G=(V, E)$ and a vector $m: V \rightarrow \mathbb{Z}_{+}$,

- there exists an orientation \vec{G} of G with in-degree vector m

In-degree constrained orientation

Theorem (Hakimi'65)

Given an undirected graph $G=(V, E)$ and a vector $m: V \rightarrow \mathbb{Z}_{+}$,

- there exists an orientation \vec{G} of G with in-degree vector m

$$
\Longleftrightarrow
$$

- $m(X) \geq i_{G}(X) \forall X \subseteq V$, $m(V)=|E|$.

Applications of in-degree constrained orientations

Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- f-factor in a bipartite graph (Ore, Tutte).

G

Applications of in-degree constrained orientations

Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- f-factor in a bipartite graph (Ore, Tutte).

G

$$
m(v)=\frac{d_{G}(v)}{2} \forall v \in V
$$

Applications of in-degree constrained orientations

Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- f-factor in a bipartite graph (Ore, Tutte)

Applications of in-degree constrained orientations

Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- f-factor in a bipartite graph (Ore, Tutte)

Applications of in-degree constrained orientations

Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- f-factor in a bipartite graph (Ore, Tutte).

Applications of in-degree constrained orientations

Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- f-factor in a bipartite graph (Ore, Tutte).

Applications of in-degree constrained orientations

Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- f-factor in a bipartite graph (Ore, Tutte).

Applications of in-degree constrained orientations

Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- f-factor in a bipartite graph (Ore, Tutte).

Applications of in-degree constrained orientations

Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- f-factor in a bipartite graph (Ore, Tutte).

Applications of in-degree constrained orientations

Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- f-factor in a bipartite graph (Ore, Tutte).

In-degree constrained orientation with connectivity propert.

Theorem (Frank'80)

Given an undirected graph $G=(V, E)$ and a vector $m: V \rightarrow \mathbb{Z}_{+}$, there exists an orientation \vec{G} of G with in-degree vector m that is

- root-connected:
- k-root-connected :
- strongly connected :
- k-arc-connected :

$$
\begin{aligned}
& d_{\vec{G}}^{-}(X) \geq 1 \forall X \subset V-s, \text { s fixed, } \\
& d_{\vec{G}}^{-}(X) \geq k \forall X \subset V-s, \text { s fixed, } \\
& d_{\vec{G}}^{-}(X) \geq 1 \forall X \subset V, \\
& d_{\vec{G}}^{-}(X) \geq k \forall X \subset V, \\
& d_{\vec{G}}^{-}(V)=0
\end{aligned}
$$

In-degree constrained orientation with connectivity propert.

Theorem (Frank' 80)

Given an undirected graph $G=(V, E)$ and a vector $m: V \rightarrow \mathbb{Z}_{+}$, there exists an orientation \vec{G} of G with in-degree vector m that is \qquad

- root-connected:

$$
m(X)-i_{G}(X) \geq 1 \forall X \subset V-s, \text { s fixed }
$$

- k-root-connected : $m(X)-i_{G}(X) \geq k \forall X \subset V-s$, s fixed,
- strongly connected : $m(X)-i_{G}(X) \geq 1 \forall X \subset V$,
- k-arc-connected : $m(X)-i_{G}(X) \geq k \forall X \subset V$,

$$
m(V)-|E|=0
$$

Eulerian orientation

Exercise

(1) Let G be an Eulerian graph.
(2) Let G be an Eulerian graph and \mathcal{P}_{v} a partition of the edges incident to v into pairs for every $v \in V$.

Eulerian orientation

Exercise

(1) Let G be an Eulerian graph. Then G has an Eulerian orientation \vec{G}.
(8) Let G be an Eulerian graph and \mathcal{P}_{v} a partition of the edges incident to v into pairs for every $v \in V$.

Eulerian orientation

Exercise

(1) Let G be an Eulerian graph. Then G has an Eulerian orientation \vec{G}.
(2) Let G be an Eulerian graph and \mathcal{P}_{v} a partition of the edges incident to v into pairs for every $v \in V$.

Eulerian orientation

Exercise

(1) Let G be an Eulerian graph. Then G has an Eulerian orientation \vec{G}.
(3) Let G be an Eulerian graph and \mathcal{P}_{v} a partition of the edges incident to v into pairs for every $v \in V$. Then G has an Eulerian orientation \vec{G} that is compatible with each \mathcal{P}_{v}.

Eulerian orientation

Exercise

(1) Let G be an Eulerian graph. Then G has an Eulerian orientation \vec{G}.
(2) Let G be an Eulerian graph and \mathcal{P}_{v} a partition of the edges incident to v into pairs for every $v \in V$. Then G has an Eulerian orientation \vec{G} that is compatible with each \mathcal{P}_{v}.

Exercise

An orientation \vec{G} of an Eulerian graph G is Eulerian

Eulerian orientation

Exercise

(1) Let G be an Eulerian graph. Then G has an Eulerian orientation \vec{G}.
(2) Let G be an Eulerian graph and \mathcal{P}_{v} a partition of the edges incident to v into pairs for every $v \in V$. Then G has an Eulerian orientation \vec{G} that is compatible with each \mathcal{P}_{v}.

Exercise

An orientation \vec{G} of an Eulerian graph G is Eulerian

(1) $d_{\vec{G}}^{-}(v)-d_{\vec{G}}^{+}(v)=0 \quad \forall v \in V$
\Longleftrightarrow

Eulerian orientation

Exercise

(1) Let G be an Eulerian graph. Then G has an Eulerian orientation \vec{G}.
(2) Let G be an Eulerian graph and \mathcal{P}_{v} a partition of the edges incident to v into pairs for every $v \in V$. Then G has an Eulerian orientation \vec{G} that is compatible with each \mathcal{P}_{v}.

Exercise

An orientation \vec{G} of an Eulerian graph G is Eulerian

(1) $d_{\vec{G}}^{-}(v)-d_{\vec{G}}^{+}(v)=0 \quad \forall v \in V$
\Longleftrightarrow
(2) $d_{\vec{G}}^{-}(X)-d_{\vec{G}}^{+}(X)=0 \quad \forall X \subseteq V$
\Longleftrightarrow

Eulerian orientation

Exercise

(1) Let G be an Eulerian graph. Then G has an Eulerian orientation \vec{G}.
(2) Let G be an Eulerian graph and \mathcal{P}_{v} a partition of the edges incident to v into pairs for every $v \in V$. Then G has an Eulerian orientation \vec{G} that is compatible with each \mathcal{P}_{v}.

Exercise

An orientation \vec{G} of an Eulerian graph G is Eulerian
(1) $d_{\vec{G}}^{-}(v)-d_{\vec{G}}^{+}(v)=0 \quad \forall v \in V$

(2) $d_{\vec{G}}^{-}(X)-d_{\vec{G}}^{+}(X)=0 \quad \forall X \subseteq V$
\Longleftrightarrow
(3) $d_{\vec{G}}^{-}(X)=\frac{1}{2} d_{G}(X) \quad \forall X \subseteq V$
\Longleftrightarrow

(4)

Eulerian orientation

Exercise

(1) Let G be an Eulerian graph. Then G has an Eulerian orientation \vec{G}.
(2) Let G be an Eulerian graph and \mathcal{P}_{v} a partition of the edges incident to v into pairs for every $v \in V$. Then G has an Eulerian orientation \vec{G} that is compatible with each \mathcal{P}_{v}.

Exercise

An orientation \vec{G} of an Eulerian graph G is Eulerian
(1) $d_{\vec{G}}^{-}(v)-d_{\vec{G}}^{+}(v)=0 \quad \forall v \in V$
(2) $d_{\vec{G}}^{-}(X)-d_{\vec{G}}^{+}(X)=0 \quad \forall X \subseteq V$
(3) $d_{\vec{G}}^{-}(X)=\frac{1}{2} d_{G}(X) \quad \forall X \subseteq V$
(9) $\lambda_{\vec{G}}(u, v)=\frac{1}{2} \lambda_{G}(u, v) \quad \forall(u, v) \in V \times V$.

Well-balanced orientation

Definition

An orientation \vec{G} of a graph G is best-balanced if
(1) $\lambda_{\vec{G}}(u, v) \geq\left\lfloor\frac{1}{2} \lambda_{G}(u, v)\right\rfloor \forall(u, v) \in V \times V$, (well-balanced)
(2) $\left|d_{\vec{G}}^{-}(v)-d_{\vec{G}}^{+}(v)\right| \leq 1 \quad \forall v \in V$. (smooth)

Well-balanced orientation

Definition

An orientation \vec{G} of a graph G is best-balanced if
(1) $\lambda_{\vec{G}}(u, v) \geq\left\lfloor\frac{1}{2} \lambda_{G}(u, v)\right\rfloor \forall(u, v) \in V \times V$, (well-balanced)
(2) $\left|d_{\vec{G}}^{-}(v)-d_{\vec{G}}^{+}(v)\right| \leq 1 \quad \forall v \in V$. (smooth)

Well-balanced orientation

Definition

An orientation \vec{G} of a graph G is best-balanced if
(1) $\lambda_{\vec{G}}(u, v) \geq\left\lfloor\frac{1}{2} \lambda_{G}(u, v)\right\rfloor \forall(u, v) \in V \times V$, (well-balanced)
(2) $\left|d_{\vec{G}}^{-}(v)-d_{\vec{G}}^{+}(v)\right| \leq 1 \quad \forall v \in V$. (smooth)

Well-balanced orientation

Definition

An orientation \vec{G} of a graph G is best-balanced if
(1) $\lambda_{\vec{G}}(u, v) \geq\left\lfloor\frac{1}{2} \lambda_{G}(u, v)\right\rfloor \quad \forall(u, v) \in V \times V$, (well-balanced)
(2) $\left|d_{\vec{G}}^{-}(v)-d_{\vec{G}}^{+}(v)\right| \leq 1 \quad \forall v \in V$. (smooth)

Theorem (Nash-Williams'60)(strong orientation)

Every graph G admits a best-balanced orientation.

Well-balanced orientation

Definition

An orientation \vec{G} of a graph G is best-balanced if
(1) $\lambda_{\vec{G}}(u, v) \geq\left\lfloor\frac{1}{2} \lambda_{G}(u, v)\right\rfloor$
$\forall(u, v) \in V \times V,($ well-balanced $)$
(2) $\left|d_{\vec{G}}^{-}(v)-d_{\vec{G}}^{+}(v)\right| \leq 1 \quad \forall v \in V . \quad$ (smooth)

Theorem (Nash-Williams'60)(strong orientation)

Every graph G admits a best-balanced orientation.

strong orientation implies weak orientation

- G is $2 k$-edge-connected
- $\lambda_{G}(u, v) \geq 2 k \forall(u, v) \in V \times V \Longrightarrow$ (strong orient.)
- there exists \vec{G} - \vec{G} is k-arc-connected

Well-balanced orientation

Definition

An orientation \vec{G} of a graph G is best-balanced if
(1) $\lambda_{\vec{G}}(u, v) \geq\left\lfloor\frac{1}{2} \lambda_{G}(u, v)\right\rfloor$
$\forall(u, v) \in V \times V,($ well-balanced $)$
(2) $\left|d_{\vec{G}}^{-}(v)-d_{\vec{G}}^{+}(v)\right| \leq 1 \quad \forall v \in V . \quad$ (smooth)

Theorem (Nash-Williams'60)(strong orientation)

Every graph G admits a best-balanced orientation.

strong orientation implies weak orientation

- G is $2 k$-edge-connected

Well-balanced orientation

Definition

An orientation \vec{G} of a graph G is best-balanced if
(1) $\lambda_{\vec{G}}(u, v) \geq\left\lfloor\frac{1}{2} \lambda_{G}(u, v)\right\rfloor$
$\forall(u, v) \in V \times V,($ well-balanced $)$
(2) $\left|d_{\vec{G}}^{-}(v)-d_{\vec{G}}^{+}(v)\right| \leq 1 \quad \forall v \in V$. (smooth)

Theorem (Nash-Williams'60)(strong orientation)

Every graph G admits a best-balanced orientation.

strong orientation implies weak orientation

- G is $2 k$-edge-connected

$$
\lambda_{G}(u, v) \geq 2 k \forall(u, v) \in V \times V \Longrightarrow \text { (strong orient.) }
$$

- there exists \vec{G} - \vec{G} is k-arc-connected.

Well-balanced orientation

Definition

An orientation \vec{G} of a graph G is best-balanced if
(1) $\lambda_{\vec{G}}(u, v) \geq\left\lfloor\frac{1}{2} \lambda_{G}(u, v)\right\rfloor$
$\forall(u, v) \in V \times V,($ well-balanced $)$
(2) $\left|d_{\vec{G}}^{-}(v)-d_{\vec{G}}^{+}(v)\right| \leq 1 \quad \forall v \in V$. (smooth)

Theorem (Nash-Williams'60)(strong orientation)

Every graph G admits a best-balanced orientation.

strong orientation implies weak orientation

- G is $2 k$-edge-connected
- $\lambda_{G}(u, v) \geq 2 k \forall(u, v) \in V \times V \Longrightarrow$ (strong orient.)
- there exists $\vec{G}: \lambda_{\vec{G}}(u, v) \geq k \quad \forall(u, v) \in V \times V \Longrightarrow$

Well-balanced orientation

Definition

An orientation \vec{G} of a graph G is best-balanced if
(1) $\lambda_{\vec{G}}(u, v) \geq\left\lfloor\frac{1}{2} \lambda_{G}(u, v)\right\rfloor$
$\forall(u, v) \in V \times V,($ well-balanced $)$
(2) $\left|d_{\vec{G}}^{-}(v)-d_{\vec{G}}^{+}(v)\right| \leq 1 \quad \forall v \in V$. (smooth)

Theorem (Nash-Williams'60)(strong orientation)

Every graph G admits a best-balanced orientation.

strong orientation implies weak orientation

- G is $2 k$-edge-connected
- $\lambda_{G}(u, v) \geq 2 k \forall(u, v) \in V \times V \Longrightarrow$ (strong orient.)
- there exists $\vec{G}: \lambda_{\vec{G}}(u, v) \geq k \quad \forall(u, v) \in V \times V \Longrightarrow$
- \vec{G} is k-arc-connected.

Best-balanced orientation

Exercise : How to find a smooth orientation?

(1) Take the set T_{G} of odd degree vertices of G,
(2) add a pairing M of $T_{G}: G+M$ is Eulerian,
(3) take an Eulerian orientation $\vec{G}+\vec{M}$ of $G+M$,
(9) delete the arcs of $M: \vec{G}$ is a smooth orientation of G.

Best-balanced orientation

Exercise : How to find a smooth orientation?

(1) Take the set T_{G} of odd degree vertices of G,
(2) add a pairing M of $T_{G}: G+M$ is Eulerian,
(3) take an Eulerian orientation $\vec{G}+\vec{M}$ of $G+M$,
(9) delete the arcs of $M: \vec{G}$ is a smooth orientation of G.

Best-balanced orientation

Exercise : How to find a smooth orientation?

(1) Take the set T_{G} of odd degree vertices of G,
(2) add a pairing M of $T_{G}: G+M$ is Eulerian, (3) take an Eulerian orientation $\vec{G}+\vec{M}$ of $G+M$, (9) delete the arcs of M : \vec{G} is a smooth orientation of G.

Best-balanced orientation

Exercise : How to find a smooth orientation?

(1) Take the set T_{G} of odd degree vertices of G,
(2) add a pairing M of $T_{G}: G+M$ is Eulerian,
(3) take an Eulerian orientation $\vec{G}+\vec{M}$ of $G+M$,
(1) delete the arcs of $M: \vec{G}$ is a smooth orientation of G.

Best-balanced orientation

Exercise : How to find a smooth orientation?

(1) Take the set T_{G} of odd degree vertices of G,
(2) add a pairing M of $T_{G}: G+M$ is Eulerian,
(3) take an Eulerian orientation $\vec{G}+\vec{M}$ of $G+M$,
(9) delete the arcs of $M: \vec{G}$ is a smooth orientation of G.

Best-balanced orientation

Exercise: How to find a smooth orientation?

(1) Take the set T_{G} of odd degree vertices of G,
(2) add a pairing M of $T_{G}: G+M$ is Eulerian,
(3) take an Eulerian orientation $\vec{G}+\vec{M}$ of $G+M$,
(9) delete the arcs of $M: \vec{G}$ is a smooth orientation of G.

Theorem (Nash-Williams'60)(strong orientation)

There exists a pairing M of T_{G} and there exists an Eulerian orientation $\vec{G}+\vec{M}$ of $G+M$ such that \vec{G} is well-balanced.

Best-balanced orientation

Exercise : How to find a smooth orientation?

(1) Take the set T_{G} of odd degree vertices of G,
(2) add a pairing M of $T_{G}: G+M$ is Eulerian,
(3) take an Eulerian orientation $\vec{G}+\vec{M}$ of $G+M$,
(9) delete the arcs of $M: \vec{G}$ is a smooth orientation of G.

Theorem (Nash-Williams'60)(strong orientation)

There exists a pairing M of T_{G} and there exists an Eulerian orientation $\vec{G}+\vec{M}$ of $G+M$ such that \vec{G} is well-balanced.

Theorem (Nash-Williams'60)(pairing theorem)

There exists a pairing M of T_{G} such that for every Eulerian orientation $\vec{G}+\vec{M}$ of $G+M, \vec{G}$ is well-balanced.

Generalizations

Theorem (Nash-Williams'60)(subgraph theorem)

For every subgraph H of a graph G, there exists an orientation \vec{G} of G : \vec{G} and $\vec{G}(H)$ are best-balanced orientations of G and H.

Generalizations

Theorem (Nash-Williams'60)(subgraph theorem)

For every subgraph H of a graph G, there exists an orientation \vec{G} of G : \vec{G} and $\vec{G}(H)$ are best-balanced orientations of G and H.

Theorem (Király-Szigeti'06)(edge-partition theorem)

For every partition $\left\{E_{1}, \ldots E_{k}\right\}$ of $E(G)$, there exists an orient. \vec{G} of G : \vec{G} and $\vec{G}\left(E_{i}\right) \forall i$ are best-balanced orientations of the correspond. graphs.

Generalizations

Theorem (Nash-Williams'60)(subgraph theorem)

For every subgraph H of a graph G, there exists an orientation \vec{G} of G : \vec{G} and $\vec{G}(H)$ are best-balanced orientations of G and H.

Theorem (Király-Szigeti'06)(edge-partition theorem)

For every partition $\left\{E_{1}, \ldots E_{k}\right\}$ of $E(G)$, there exists an orient. \vec{G} of G : \vec{G} and $\vec{G}\left(E_{i}\right) \forall i$ are best-balanced orientations of the correspond. graphs.

Theorem (Király-Szigeti'06)(vertex-partition theorem)

For every partition $\left\{V_{1}, \ldots V_{k}\right\}$ of $V(G)$, there exists an orient. \vec{G} of G : \vec{G} and $\vec{G} /\left(\bar{V}_{i}\right) \forall i$, are best-balanced orientations of the corresp. graphs.

Generalizations

Theorem (Nash-Williams'60)(subgraph theorem)

For every subgraph H of a graph G, there exists an orientation \vec{G} of G : \vec{G} and $\vec{G}(H)$ are best-balanced orientations of G and H.

Theorem (Király-Szigeti'06)(edge-partition theorem)

For every partition $\left\{E_{1}, \ldots E_{k}\right\}$ of $E(G)$, there exists an orient. \vec{G} of G : \vec{G} and $\vec{G}\left(E_{i}\right) \forall i$ are best-balanced orientations of the correspond. graphs.

Theorem (Király-Szigeti'06)(vertex-partition theorem)

For every partition $\left\{V_{1}, \ldots V_{k}\right\}$ of $V(G)$, there exists an orient. \vec{G} of G : \vec{G} and $\vec{G} /\left(\bar{V}_{i}\right) \forall i$, are best-balanced orientations of the corresp. graphs.

Easy by pairing theorem.

Polyhedral aspects on k-arc-connected orientations

$$
P_{G}^{k}:=\left\{m: \mathbb{R}^{V}: m(X) \geq i_{G}(X)+k \forall X \subset V, m(V)=|E|\right\} .
$$

Polyhedral aspects on k-arc-connected orientations

$$
P_{G}^{k}:=\left\{m: \mathbb{R}^{V}: m(X) \geq i_{G}(X)+k \forall X \subset V, m(V)=|E|\right\} .
$$

Theorem (Frank)

(1) the integer points of P_{G}^{k} are exactly the in-degree vectors of k-arc-connected orientations of G,

Polyhedral aspects on k-arc-connected orientations

$$
P_{G}^{k}:=\left\{m: \mathbb{R}^{V}: m(X) \geq i_{G}(X)+k \forall X \subset V, m(V)=|E|\right\} .
$$

Theorem (Frank)

(1) the integer points of P_{G}^{k} are exactly the in-degree vectors of k-arc-connected orientations of G,
(2) P_{G}^{k} is an integer polyhedra:

Polyhedral aspects on k-arc-connected orientations

$$
P_{G}^{k}:=\left\{m: \mathbb{R}^{V}: m(X) \geq i_{G}(X)+k \forall X \subset V, m(V)=|E|\right\} .
$$

Theorem (Frank)

(1) the integer points of P_{G}^{k} are exactly the in-degree vectors of k-arc-connected orientations of G,
(2) P_{G}^{k} is an integer polyhedra:

- the function $p(X)=i_{G}(X)+k$ if $X \neq \emptyset, V$ and 0 otherwise is crossing supermodular,

Polyhedral aspects on k-arc-connected orientations

$$
P_{G}^{k}:=\left\{m: \mathbb{R}^{V}: m(X) \geq i_{G}(X)+k \forall X \subset V, m(V)=|E|\right\} .
$$

Theorem (Frank)

(1) the integer points of P_{G}^{k} are exactly the in-degree vectors of k-arc-connected orientations of G,
(2) P_{G}^{k} is an integer polyhedra:

- the function $p(X)=i_{G}(X)+k$ if $X \neq \emptyset, V$ and 0 otherwise is crossing supermodular,
- P_{G}^{k} is a base polyhedra, $\left(\left\{m: \mathbb{R}^{V}: m(X) \geq p(X) \forall X \subset V, m(V)=p(V)\right\}\right)$

Polyhedral aspects on k-arc-connected orientations

$$
P_{G}^{k}:=\left\{m: \mathbb{R}^{V}: m(X) \geq i_{G}(X)+k \forall X \subset V, m(V)=|E|\right\} .
$$

Theorem (Frank)

(1) the integer points of P_{G}^{k} are exactly the in-degree vectors of k-arc-connected orientations of G,
(2) P_{G}^{k} is an integer polyhedra:
(3) P_{G}^{k} is the convex hull of in-degree vectors of k-arc-connected orientations of G.

Polyhedral aspects on k-arc-connected orientations

$$
P_{G}^{k}:=\left\{m: \mathbb{R}^{V}: m(X) \geq i_{G}(X)+k \forall X \subset V, m(V)=|E|\right\} .
$$

Theorem (Frank)

(1) the integer points of P_{G}^{k} are exactly the in-degree vectors of k-arc-connected orientations of G,
(2) P_{G}^{k} is an integer polyhedra:
(3) P_{G}^{k} is the convex hull of in-degree vectors of k-arc-connected orientations of G.
(9) Minimum Cost k-Arc-Connected Orientation Problem can be solved in polynomial time.

Polyhedral aspects on well-balanced orientations

$$
\begin{array}{r}
P_{G}^{w}:=\left\{m: \mathbb{R}^{V}: m(X) \geq i_{G}(X)+R_{G}(X) \forall X \subset V, m(V)=|E|\right\}, \\
\text { where } R_{G}(X)=\max \left\{\left\lfloor\frac{1}{2} \lambda_{G}(u, v)\right\rfloor: u \in X, v \in V-X\right\} .
\end{array}
$$

Polyhedral aspects on well-balanced orientations

$$
\begin{aligned}
P_{G}^{w}:=\{ & \left.m: \mathbb{R}^{V}: m(X) \geq i_{G}(X)+R_{G}(X) \forall X \subset V, m(V)=|E|\right\}, \\
& \text { where } R_{G}(X)=\max \left\{\left\lfloor\frac{1}{2} \lambda_{G}(u, v)\right\rfloor: u \in X, v \in V-X\right\} .
\end{aligned}
$$

Theorem (Bernáth, Iwata, Király, Király, Szigeti'08)

(1) the integer points of P_{G}^{w} are exactly the in-degree vectors of well-balanced orientations of G,

Polyhedral aspects on well-balanced orientations

$$
\begin{aligned}
P_{G}^{w}:=\{ & \left.m: \mathbb{R}^{V}: m(X) \geq i_{G}(X)+R_{G}(X) \forall X \subset V, m(V)=|E|\right\}, \\
& \text { where } R_{G}(X)=\max \left\{\left\lfloor\frac{1}{2} \lambda_{G}(u, v)\right]: u \in X, v \in V-X\right\} .
\end{aligned}
$$

Theorem (Bernáth, Iwata, Király, Király, Szigeti'08)

(1) the integer points of P_{G}^{w} are exactly the in-degree vectors of well-balanced orientations of G,
(2) P_{G}^{w} is not an integer polyhedra,

Polyhedral aspects on well-balanced orientations

$$
\begin{aligned}
P_{G}^{w}:=\{ & \{ \\
& \left.: \mathbb{R}^{V}: m(X) \geq i_{G}(X)+R_{G}(X) \forall X \subset V, m(V)=|E|\right\}, \\
& \text { where } R_{G}(X)=\max \left\{\left\lfloor\frac{1}{2} \lambda_{G}(u, v)\right]: u \in X, v \in V-X\right\} .
\end{aligned}
$$

Theorem (Bernáth, Iwata, Király, Király, Szigeti'08)

(1) the integer points of P_{G}^{w} are exactly the in-degree vectors of well-balanced orientations of G,
(2) P_{G}^{w} is not an integer polyhedra,
(3) P_{G}^{w} is not the convex hull of in-degree vectors of well-balanced orientations of G.

Polyhedral aspects on well-balanced orientations

$$
\begin{aligned}
P_{G}^{w}:=\{ & \{ \\
& \left.: \mathbb{R}^{V}: m(X) \geq i_{G}(X)+R_{G}(X) \forall X \subset V, m(V)=|E|\right\}, \\
& \text { where } \left.R_{G}(X)=\max \left\{\frac{1}{2} \lambda_{G}(u, v)\right]: u \in X, v \in V-X\right\} .
\end{aligned}
$$

Theorem (Bernáth, Iwata, Király, Király, Szigeti'08)

(1) the integer points of P_{G}^{w} are exactly the in-degree vectors of well-balanced orientations of G,
(2) P_{G}^{w} is not an integer polyhedra,
(3) P_{G}^{w} is not the convex hull of in-degree vectors of well-balanced orientations of G.
(9) Minimum Cost Well-Balanced Orientation Problem is NP-complete.

k-connected graphs

Definition

A directed graph $D=(V, A)$ with $|V|>k$ is k-connected $D-X$ is strongly connected for all $X \subset V$ with $|X|=k-1$

k-connected graphs

Definition

A directed graph $D=(V, A)$ with $|V|>k$ is k-connected \Longleftrightarrow $D-X$ is strongly connected for all $X \subset V$ with $|X|=k-1$

D 2-connected

k-connected graphs

Definition

A directed graph $D=(V, A)$ with $|V|>k$ is k-connected
 $D-X$ is strongly connected for all $X \subset V$ with $|X|=k-1$

k-connected orientation

Conjecture [Thomassen]

There exists a function $f(k)$ such that every $f(k)$-connected graph has a k-connected orientation.

k-connected orientation

Conjecture [Thomassen]

There exists a function $f(k)$ such that every $f(k)$-connected graph has a k-connected orientation.

Conjecture [Frank]

Given an undirected graph $G=(V, E)$ with $|V|>k$,

- there exists a k-connected orientation of G

necessity :

$$
\vec{G} \text { is } k \text {-connected }
$$

k-connected orientation

Conjecture [Thomassen]

There exists a function $f(k)$ such that every $f(k)$-connected graph has a k-connected orientation.

Conjecture [Frank]

Given an undirected graph $G=(V, E)$ with $|V|>k$,

- there exists a k-connected orientation of G

necessity :

\vec{G} is k-connected

k-connected orientation

Conjecture [Thomassen]

There exists a function $f(k)$ such that every $f(k)$-connected graph has a k-connected orientation.

Conjecture [Frank]

Given an undirected graph $G=(V, E)$ with $|V|>k$,

- there exists a k-connected orientation of G

necessity :

$$
\vec{G}-X \text { is }(k-|X|) \text {-connected }
$$

k-connected orientation

Conjecture [Thomassen]

There exists a function $f(k)$ such that every $f(k)$-connected graph has a k-connected orientation.

Conjecture [Frank]

Given an undirected graph $G=(V, E)$ with $|V|>k$,

- there exists a k-connected orientation of G
- $G-X$ is $(2 k-2|X|)$-edge-connected for all $X \subseteq V$ with $|X|<k$.
necessity :

$$
G-X \text { is }(2 k-2|X|) \text {-edge-connected }
$$

2-connected orientation

Conjecture [Frank]

Given an undirected graph $G=(V, E)$ with $|V|>2$,

- there exists a 2 -connected orientation of G

- G is 4-edge-connected and $G-v$ is 2-edge-connected for all $v \in V$.

2-connected orientation

Conjecture [Frank]

Given an undirected graph $G=(V, E)$ with $|V|>2$,

- there exists a 2 -connected orientation of G

- G is 4-edge-connected and $G-v$ is 2-edge-connected for all $v \in V$.

Theorem (Berg-Jordán'06)

Given an Eulerian graph $G=(V, E)$ with $|V|>2$,

- there exists a 2-connected orientation of G
- G is 4-edge-connected and $G-v$ is 2-edge-connected for all $v \in V$.

2-connected orientation

Conjecture [Frank]

Given an undirected graph $G=(V, E)$ with $|V|>2$,

- there exists a 2 -connected orientation of G

- G is 4-edge-connected and $G-v$ is 2-edge-connected for all $v \in V$.

Theorem (Berg-Jordán'06)

Given an Eulerian graph $G=(V, E)$ with $|V|>2$,

- there exists a 2-connected Eulerian orientation of G
- G is 4-edge-connected and $G-v$ is 2-edge-connected for all $v \in V$.

A generalization

Theorem (Berg-Jordán'06)

Given an Eulerian graph $G=(V, E)$ with $|V|>2$,

- there is an Eulerian \vec{G} of G s. $t . \vec{G}-v$ is 1-arc-conn. $\forall v \in V \Longleftrightarrow$
- $G-v$ is 2-edge-connected for all $v \in V$.

A generalization

Theorem (Berg-Jordán'06)

Given an Eulerian graph $G=(V, E)$ with $|V|>2$,

- there is an Eulerian \vec{G} of G s. $t . \vec{G}-v$ is 1-arc-conn. $\forall v \in V \Longleftrightarrow$
- $G-v$ is 2-edge-connected for all $v \in V$.

Theorem (Király-Szigeti'06)

Given an Eulerian graph $G=(V, E)$ with $|V|>k+1$,

- there is an Eulerian \vec{G} of G s. $t . \vec{G}-v$ is k-arc-conn. $\forall v \in V \Longleftrightarrow$
- $G-v$ is $2 k$-edge-connected for all $v \in V$.

A generalization

Theorem (Berg-Jordán'06)

Given an Eulerian graph $G=(V, E)$ with $|V|>2$,

- there is an Eulerian \vec{G} of G s. $t . \vec{G}-v$ is 1-arc-conn. $\forall v \in V \Longleftrightarrow$
- $G-v$ is 2-edge-connected for all $v \in V$.

Theorem (Király-Szigeti'06)

Given an Eulerian graph $G=(V, E)$ with $|V|>k+1$,

- there is an Eulerian \vec{G} of G s. $t . \vec{G}-v$ is k-arc-conn. $\forall v \in V \Longleftrightarrow$
- $G-v$ is $2 k$-edge-connected for all $v \in V$.

About the proof :

- very short, applying pairing theorem,
- provides a short proof for Berg-Jordán's theorem

A generalization

Theorem (Berg-Jordán'06)

Given an Eulerian graph $G=(V, E)$ with $|V|>2$,

- there is an Eulerian \vec{G} of G s. $t . \vec{G}-v$ is 1-arc-conn. $\forall v \in V \Longleftrightarrow$
- $G-v$ is 2-edge-connected for all $v \in V$.

Theorem (Király-Szigeti'06)

Given an Eulerian graph $G=(V, E)$ with $|V|>k+1$,

- there is an Eulerian \vec{G} of G s. $t . \vec{G}-v$ is k-arc-conn. $\forall v \in V \Longleftrightarrow$
- $G-v$ is $2 k$-edge-connected for all $v \in V$.

About the proof :

- very short, applying pairing theorem,
- provides a short proof for Berg-Jordán's theorem.

Proof

sufficiency :

- Let M_{v} be a NW-pairing for $G-v$ for each $v \in V$.
- M_{v} provides pairs of edges incident to v,
- Let \vec{G} be an Eulerian orientation of G compatible with each \mathcal{P}_{v}.
- \vec{G} provides an orientation \vec{M} of M.
- $\vec{G}-v+\vec{M}_{v}$ is Eulerian,

Proof

sufficiency :

- Let M_{v} be a NW-pairing for $G-v$ for each $v \in V$.
- M_{v} provides pairs of edges incident to v,
- Let \vec{G} be an Eulerian orientation of G compatible with each \mathcal{P}_{v}
- \vec{G} provides an orientation \vec{M} of M.
- $\vec{G}-v+\vec{M}_{v}$ is Eulerian,

Proof

sufficiency :

- Let M_{v} be a NW-pairing for $G-v$ for each $v \in V$.
- M_{v} provides pairs of edges incident to v, the remaining edges has a natural partition into pairs, let \mathcal{P}_{v} be the partition obtained.
- Let G be an Eulerian orientation of G compatible with each \mathcal{P}_{v}
- \vec{G} provides an orientation \vec{M}_{v} of M_{v}
- $\vec{G}-v+\vec{M}_{v}$ is Eulerian,

Proof

sufficiency :

- Let M_{v} be a NW-pairing for $G-v$ for each $v \in V$.
- M_{v} provides pairs of edges incident to v, the remaining edges has a natural partition into pairs, let \mathcal{P}_{v} be the partition obtained.
- Let \vec{G} be an Eulerian orientation of G compatible with each \mathcal{P}_{v}.
- \vec{G} provides an orientation \vec{M}_{v} of M_{v}.
- $\vec{G}-v+\vec{M}_{v}$ is Eulerian,

\vec{G} eulerian compatible with \mathcal{P}_{v}

Proof

sufficiency :

- Let M_{v} be a NW-pairing for $G-v$ for each $v \in V$.
- M_{v} provides pairs of edges incident to v, the remaining edges has a natural partition into pairs, let \mathcal{P}_{v} be the partition obtained.
- Let \vec{G} be an Eulerian orientation of G compatible with each \mathcal{P}_{v}.
- \vec{G} provides an orientation \vec{M}_{v} of M_{v}.
- $\vec{G}-v+\vec{M}_{v}$ is Eulerian,

\vec{G} eulerian compatible with \mathcal{P}_{v}

Proof

sufficiency :

- Let M_{v} be a NW-pairing for $G-v$ for each $v \in V$.
- M_{v} provides pairs of edges incident to v, the remaining edges has a natural partition into pairs, let \mathcal{P}_{v} be the partition obtained.
- Let \vec{G} be an Eulerian orientation of G compatible with each \mathcal{P}_{v}.
- \vec{G} provides an orientation \vec{M}_{v} of M_{v}.
- $\vec{G}-v+\vec{M}_{v}$ is Eulerian,

Proof

sufficiency :

- Let M_{v} be a NW-pairing for $G-v$ for each $v \in V$.
- M_{v} provides pairs of edges incident to v, the remaining edges has a natural partition into pairs, let \mathcal{P}_{v} be the partition obtained.
- Let \vec{G} be an Eulerian orientation of G compatible with each \mathcal{P}_{v}.
- \vec{G} provides an orientation \vec{M}_{v} of M_{v}.
- $\vec{G}-v+\vec{M}_{v}$ is Eulerian, $\left(G-v\right.$ is $2 k$-edge-connected and M_{v} is a NW-pairing for $G-v)$ so $\vec{G}-v$ is k-arc-connected for each $v \in V$.

2-connected orientation

Conjecture [Thomassen]

There exists a value $f(2)$ such that every $f(2)$-connected graph has a 2-connected orientation.

2-connected orientation

Conjecture [Thomassen]

There exists a value $f(2)$ such that every $f(2)$-connected graph has a 2-connected orientation.

Theorem (Jordán'05)

Every 18-connected graph has a 2-connected orientation, that is $f(2) \leq 18$.

2-connected orientation

Conjecture [Thomassen]

There exists a value $f(2)$ such that every $f(2)$-connected graph has a 2-connected orientation.

Theorem (Jordán'05)

Every 18-connected graph has a 2-connected orientation, that is $f(2) \leq 18$.

Theorem (Cheriyan-Durand de Gevigney-Szigeti'11)

Every 14-connected graph has a 2-connected orientation, that is $f(2) \leq 14$.

2-connected orientation

Conjecture [Thomassen]

There exists a value $f(2)$ such that every $f(2)$-connected graph has a 2-connected orientation.

Theorem (Jordán'05)

Every 18 -connected graph has a 2-connected orientation, that is $f(2) \leq 18$.

Theorem (Cheriyan-Durand de Gevigney-Szigeti'11)

Every 14-connected graph has a 2-connected orientation, that is $f(2) \leq 14$.
Frank's conjecture would imply that $f(2) \leq 4$.

2-connected orientation

Conjecture [Thomassen]

There exists a value $f(2)$ such that every $f(2)$-connected graph has a 2-connected orientation.

Theorem (Jordán'05)

Every 18 -connected graph has a 2-connected orientation, that is $f(2) \leq 18$.

Theorem (Cheriyan-Durand de Gevigney-Szigeti' 11)

Every 14-connected graph has a 2-connected orientation, that is $f(2) \leq 14$.

Theorem (Cheriyan-Durand de Gevigney-Szigeti'11)

Every $(12 k+2)$-connected graph has an orientation \vec{G} such that $\vec{G}-v$ is k-arc-connected $\forall v \in V$.

Thank you for your attention!

