Definition: A graded ear-decomposition of G is a sequence $G_0, G_1, \ldots, G_k = G$
- G_0 is a cycle, (of even length)
- $G_{i+1} = G_i + P_{i_1} + \ldots + P_{i_k}$, disjoint odd paths
- G_k is matching-covered, nice.

Definition: 2-graded ear-decomposition if in each step we add ≤ 2 ears.

Theorem: (Lovász-Plummer)
- A graph is matching-covered if and only if it has a 2-graded ear-decomposition.
DEFINITION: G is elementary if the edges which belong to some perfect matching of G form a connected spanning subgraph.

$\phi(G)$:= number of perfect matchings of G.

THEOREM (Lovász-Plummer)

G is elementary, $e_1, e_2, \ldots, e_k \in E(G)$.

If $\phi(G + e_1 + e_2 + \ldots + e_k) > \phi(G)$ then

$\exists i, j : \phi(G + e_i + e_j) > \phi(G)$.

SHORT PROOF: 2.52.
Theorem (Lovász-Plummer)

G is matching-covered, $e_1, \ldots, e_k \in E(G)$:

$G + e_1 + \ldots + e_k$ is matching-covered.

Then $\exists i \neq j : G + e_i + e_j$ is matching-covered.

Short proof : 2.82.
Theorem: \(G \) is elementary, \(e_1, e_2, e_3 \in E(G) \)

- \(G + e_i \) has a perfect matching \(M \) containing \(e_1, e_2, e_3 \).
- \(G + e_i \) has no perfect matching containing \(e_i \) \(\ (i = 1, 2, 3) \)

Then \(\forall e_i : \exists e_j : G + e_i + e_j \) has a perfect matching containing \(e_i \) and \(e_j \).

Definition: \(G \) is elementary, \(X \subseteq V(G) \).

\(X \) is a strong barrier if \(G - X \) has \(|X| \) components and all of them are factor-critical.

Lemma: If \(G \) is elementary and \(X \) is a strong barrier of \(G \), then each edge leaving \(X \) belongs to a perfect matching of \(G \).
Proof: Suppose $G' = G + e_1, e_2$ has no perfect matching containing e_1 and e_2.

1. **A strong barrier X in G' containing e_1.**

2. $e_2 \in F$.

3. e_3 connects F_i and F_j.

4. e_4 connects X, F_i, and F_j.

5. $G + e_2$ has a perfect matching containing e_2.

\[e_i, e_j \]