# On minimally 2- $T$-connected digraphs 

Zoltán Szigeti

Combinatorial Optimization Group, G-SCOP
Univ. Grenoble Alpes, Grenoble INP, CNRS, France
2017 May 2

## Joint work with :

## Olivier Durand de Gevigney

## Outline

- Definitions on connectivity
- Motivation
- Result
- Definitions on bi-sets
- Proof


## k-arc-connected (k-ac) digraphs

## Definition

(1) $k$-ac : $\forall(u, v) \in V^{2}, \exists k$ arc disjoint $(u, v)$-paths,


## k-arc-connected (k-ac) digraphs

## Definition

(1) $k$-ac : $\forall(u, v) \in V^{2}, \exists k$ arc disjoint $(u, v)$-paths, $\Longleftrightarrow$ (Menger) $\left|\partial^{-}(X)\right| \geq k \forall \emptyset \neq X \subset V$,


## k-arc-connected (k-ac) digraphs

## Definition

(1) $k$-ac : $\forall(u, v) \in V^{2}, \exists k$ arc disjoint $(u, v)$-paths, $\Longleftrightarrow$ (Menger) $\left|\partial^{-}(X)\right| \geq k \forall \emptyset \neq X \subset V$,
(2) adding an arc


## k-arc-connected (k-ac) digraphs

## Definition

(1) $k$-ac : $\forall(u, v) \in V^{2}, \exists k$ arc disjoint $(u, v)$-paths, $\Longleftrightarrow$ (Menger) $\left|\partial^{-}(X)\right| \geq k \forall \emptyset \neq X \subset V$,
(2) adding an arc /deleting an arc,


## k-arc-connected (k-ac) digraphs

## Definition

(1) $k$-ac: $\forall(u, v) \in V^{2}, \exists k$ arc disjoint $(u, v)$-paths, $\Longleftrightarrow$ (Menger)

$$
\left|\partial^{-}(X)\right| \geq k \forall \emptyset \neq X \subset V,
$$

(3) adding an arc /deleting an arc,

- pinching $k$ arcs



## k-arc-connected (k-ac) digraphs

## Definition

(1) $k$-ac $: \forall(u, v) \in V^{2}, \exists k$ arc disjoint $(u, v)$-paths, $\Longleftrightarrow$ (Menger)

$$
\left|\partial^{-}(X)\right| \geq k \forall \emptyset \neq X \subset V
$$

(2) adding an arc /deleting an arc,
(3) pinching $k$ arcs /complete splitting off at $v:\left|\partial^{-}(v)\right|=\left|\partial^{+}(v)\right|=k$,


## k-arc-connected (k-ac) digraphs

## Definition

(1) $k$-ac : $\forall(u, v) \in V^{2}, \exists k$ arc disjoint $(u, v)$-paths, $\Longleftrightarrow$ (Menger)

$$
\left|\partial^{-}(X)\right| \geq k \forall \emptyset \neq X \subset V
$$

(2) adding an arc /deleting an arc,
(3) pinching $k$ arcs /complete splitting off at $v:\left|\partial^{-}(v)\right|=\left|\partial^{+}(v)\right|=k$,

## Theorem 1 (Mader 1978)

(1) A digraph is $k$-ac $\Longleftrightarrow$ it can be constructed from a vertex by repeated applications of operations 2 and 3.

## k-arc-connected (k-ac) digraphs

## Definition

(1) $k$-ac : $\forall(u, v) \in V^{2}, \exists k$ arc disjoint $(u, v)$-paths, $\Longleftrightarrow$ (Menger) $\left|\partial^{-}(X)\right| \geq k \forall \emptyset \neq X \subset V$,
(2) adding an arc /deleting an arc,
(3) pinching $k$ arcs /complete splitting off at $v:\left|\partial^{-}(v)\right|=\left|\partial^{+}(v)\right|=k$,
(a) minimally $k$-ac: $D$ is $k$-ac and $\forall a \in A, D-a$ is not $k$-ac.

## Theorem 1 (Mader 1978)

(1) A digraph is $k$-ac $\Longleftrightarrow$ it can be constructed from a vertex by repeated applications of operations 2 and 3.

## k-arc-connected (k-ac) digraphs

## Definition

(1) $k$-ac : $\forall(u, v) \in V^{2}, \exists k$ arc disjoint $(u, v)$-paths, $\Longleftrightarrow$ (Menger) $\left|\partial^{-}(X)\right| \geq k \forall \emptyset \neq X \subset V$,
(2) adding an arc /deleting an arc,
(3) pinching $k$ arcs /complete splitting off at $v:\left|\partial^{-}(v)\right|=\left|\partial^{+}(v)\right|=k$,
(a) minimally $k$-ac: $D$ is $k$-ac and $\forall a \in A, D-a$ is not $k$-ac.

## Theorem 1 (Mader 1978)

(1) A digraph is $k$-ac $\Longleftrightarrow$ it can be constructed from a vertex by repeated applications of operations 2 and 3.
(2) In a minimally $k$-ac digraph $\exists$ a vertex $v:\left|\partial^{-}(v)\right|=\left|\partial^{+}(v)\right|=k$.

## $k$-arc-connected ( $k$-ac) digraphs

## Definition

(1) $k$-ac : $\forall(u, v) \in V^{2}, \exists k$ arc disjoint $(u, v)$-paths, $\Longleftrightarrow$ (Menger) $\left|\partial^{-}(X)\right| \geq k \forall \emptyset \neq X \subset V$,
(2) adding an arc /deleting an arc,
(3) pinching $k$ arcs /complete splitting off at $v:\left|\partial^{-}(v)\right|=\left|\partial^{+}(v)\right|=k$,
(9) minimally $k$-ac: $D$ is $k$-ac and $\forall a \in A, D-a$ is not $k$-ac.

## Theorem 1 (Mader 1978)

(1) A digraph is $k$-ac $\Longleftrightarrow$ it can be constructed from a vertex by repeated applications of operations 2 and 3.
(2) In a minimally $k$-ac digraph $\exists$ a vertex $v:\left|\partial^{-}(v)\right|=\left|\partial^{+}(v)\right|=k$.
(3) In a $k$-ac digraph for $\left|\partial^{-}(s)\right|=\left|\partial^{+}(s)\right|, \exists$ a complete splitting off at $s$ resulting in a $k$-ac digraph.

## Construction of a 2-ac digraph

## Example



## Construction of a 2-ac digraph

## Example

## Construction of a 2-ac digraph

## Example



## Construction of a 2-ac digraph

## Example

## k-vertex-connected (k-vc) digraphs

## Definition

(1) $k$-vc : $|V| \geq k+1, \forall(u, v) \in V^{2}, \exists k$ vertex disjoint $(u, v)$-paths


## k-vertex-connected ( $k$-vc) digraphs

## Definition

(1) $k$-vc : $|V| \geq k+1, \forall(u, v) \in V^{2}, \exists k$ vertex disjoint $(u, v)$-paths $\Longleftrightarrow$ (Menger) $D-X$ is 1 -ac $\forall X \subset V,|X|=k-1$,


## k-vertex-connected ( $k$-vc) digraphs

## Definition

(1) $k$-vc : $|V| \geq k+1, \forall(u, v) \in V^{2}, \exists k$ vertex disjoint $(u, v)$-paths $\Longleftrightarrow$ (Menger) $D-X$ is 1 -ac $\forall X \subset V,|X|=k-1$,
(2) minimally $k$-vc : $D$ is $k$-vc and $\forall a \in A, D-a$ is not $k$-vc.


## $k$-vertex-connected ( $k$-vc) digraphs

## Definition

(1) $k$-vc : $|V| \geq k+1, \forall(u, v) \in V^{2}, \exists k$ vertex disjoint $(u, v)$-paths $\Longleftrightarrow$ (Menger) $D-X$ is 1 -ac $\forall X \subset V,|X|=k-1$,
(2) minimally $k$-vc : $D$ is $k$-vc and $\forall a \in A, D-a$ is not $k$-vc.

## Conjecture (Mader 1979)

In a minimally $k$-vc digraph $\exists$ a vertex $v:\left|\partial^{-}(v)\right|=\left|\partial^{+}(v)\right|=k$.

## k-vertex-connected (k-vc) digraphs

## Definition

(1) $k$-vc : $|V| \geq k+1, \forall(u, v) \in V^{2}, \exists k$ vertex disjoint $(u, v)$-paths $\Longleftrightarrow$ (Menger) $D-X$ is 1 -ac $\forall X \subset V,|X|=k-1$,
(2) minimally $k$-vc : $D$ is $k$-vc and $\forall a \in A, D-a$ is not $k$-vc.

## Conjecture (Mader 1979)

In a minimally $k$-vc digraph $\exists$ a vertex $v:\left|\partial^{-}(v)\right|=\left|\partial^{+}(v)\right|=k$.
Theorem 2 (Mader 2002)
In a minimally 2-vc digraph $\exists$ a vertex $v:\left|\partial^{-}(v)\right|=\left|\partial^{+}(v)\right|=2$.

## $k$-vertex-connected ( $k$-vc) digraphs

## Definition

(1) $k$-vc : $|V| \geq k+1, \forall(u, v) \in V^{2}, \exists k$ vertex disjoint $(u, v)$-paths $\Longleftrightarrow$ (Menger) $D-X$ is 1 -ac $\forall X \subset V,|X|=k-1$,
(2) minimally $k$-vc : $D$ is $k$-vc and $\forall a \in A, D-a$ is not $k$-vc.

## Conjecture (Mader 1979)

In a minimally $k$-vc digraph $\exists$ a vertex $v:\left|\partial^{-}(v)\right|=\left|\partial^{+}(v)\right|=k$.
Theorem 2 (Mader 2002)
In a minimally 2-vc digraph $\exists$ a vertex $v:\left|\partial^{-}(v)\right|=\left|\partial^{+}(v)\right|=2$.

## Open problem

Find a constructive characterization of 2-vc digraphs.

## 2-T-connected (2-T-c) digraphs

## Definition

(1) 2-T-c: $|V| \geq 3, \forall(u, v) \in V^{2}, \exists 2$ arc disjoint ( $u, v$ )-paths that are innerly vertex disjoint in $T \subseteq V$,


## 2-T-connected (2-T-c) digraphs

## Definition

(1) 2-T-c: $|V| \geq 3, \forall(u, v) \in V^{2}, \exists 2$ arc disjoint ( $u, v$ )-paths that are innerly vertex disjoint in $T \subseteq V$,
(2) minimally $2-T-\mathrm{c}: D 2-T-\mathrm{c} ; \forall a \in A, D-a$ not $2-T$-c.


## 2- $T$-connected (2-T-c) digraphs

## Definition

(1) 2-T-c : $|V| \geq 3, \forall(u, v) \in V^{2}, \exists 2$ arc disjoint ( $u, v$ )-paths that are innerly vertex disjoint in $T \subseteq V$,
(2) minimally $2-T-\mathrm{c}: D 2-T-\mathrm{c} ; \forall a \in A, D-a \operatorname{not} 2-T$-c.


## Remark

(1) $2-\emptyset-\mathrm{c}=2-\mathrm{ac}$ and $2-V-\mathrm{c}=2-\mathrm{vc}$.

## 2- $T$-connected (2- $T$-c) digraphs

## Definition

(1) 2-T-c: $|V| \geq 3, \forall(u, v) \in V^{2}, \exists 2$ arc disjoint ( $u, v$ )-paths that are innerly vertex disjoint in $T \subseteq V$,
(2) minimally $2-T-\mathrm{c}: D 2-T-\mathrm{c} ; \forall a \in A, D-a \operatorname{not} 2-T$-c.


## Remark

(1) $2-\emptyset-\mathrm{c}=2-\mathrm{ac}$ and $2-V-\mathrm{c}=2-\mathrm{vc}$.
(2) $D$ is $2-T$-c $\Longleftrightarrow \forall a \in A, D-a$ is $1-\mathrm{ac}$ and $\forall t \in T, D-t$ is $1-\mathrm{ac}$.

## 2- $T$-connected (2- $T$-c) digraphs

## Definition

(1) 2-T-c : $|V| \geq 3, \forall(u, v) \in V^{2}, \exists 2$ arc disjoint $(u, v)$-paths that are innerly vertex disjoint in $T \subseteq V$,
(2) minimally $2-T-\mathrm{c}: D 2-T-\mathrm{c} ; \forall a \in A, D-a \operatorname{not} 2-T$-c.


## Remark

(1) $2-\emptyset-\mathrm{c}=2-\mathrm{ac}$ and $2-V-\mathrm{c}=2-\mathrm{vc}$.
(2) $D$ is $2-T$-c $\Longleftrightarrow \forall a \in A, D-a$ is $1-\mathrm{ac}$ and $\forall t \in T, D-t$ is $1-\mathrm{ac}$.

## Theorem 3 (Durand de Gevigney, Szigeti)

In a minimally $2-T$-c digraph with $(\star)$ no parallel arc leaving a vertex in $T$, $\exists$ a vertex $v:\left|\partial^{-}(v)\right|=\left|\partial^{+}(v)\right|=2$.

## 2- $T$-connected (2-T-c) digraphs

## Definition

(1) 2-T-c: $|V| \geq 3, \forall(u, v) \in V^{2}, \exists 2$ arc disjoint ( $u, v$ )-paths that are innerly vertex disjoint in $T \subseteq V$,
(2) minimally $2-T-\mathrm{c}: D 2-T-\mathrm{c} ; \forall a \in A, D-a$ not $2-T$-c.


## Remark

(1) $2-\emptyset-\mathrm{c}=2-\mathrm{ac}$ and $2-V-\mathrm{c}=2-\mathrm{vc}$.
(2) $D$ is $2-T$-c $\Longleftrightarrow \forall a \in A, D-a$ is 1 -ac and $\forall t \in T, D-t$ is 1 -ac.

## Theorem 3 (Durand de Gevigney, Szigeti)

In a minimally $2-T$-c digraph with $(\star)$ no parallel arc leaving a vertex in $T$, $\exists$ a vertex $v:\left|\partial^{-}(v)\right|=\left|\partial^{+}(v)\right|=2$.

## Remark

Theorem 3 implies Theorem 1 (2) for $k=2$ and Theorem 2.

## Bi-sets

## Definition

(1) bi-set $X:=\left(X_{O}, X_{I}\right)$ with outer-set $X_{O}=$ inner-set $X_{I} \dot{U}$ wall $X_{W}$.


## Bi-sets

## Definition

(1) bi-set $\mathrm{X}:=\left(X_{O}, X_{I}\right)$ with outer-set $X_{O}=$ inner-set $X_{I}$ U் wall $X_{W}$.
(2) nontrivial bi-set : $X_{I} \neq \emptyset, X_{O} \neq V$.


## Bi-sets

## Definition

(1) bi-set $\mathrm{X}:=\left(X_{O}, X_{I}\right)$ with outer-set $X_{O}=$ inner-set $X_{I}$ U் wall $X_{W}$.
(2) nontrivial bi-set: $X_{I} \neq \emptyset, X_{O} \neq V$.
(3) complement of bi-set $\mathrm{X}: \overline{\mathrm{X}}=\left(\overline{X_{l}}, \overline{X_{O}}\right)$.


## Bi-sets

## Definition

(1) bi-set $\mathrm{X}:=\left(X_{O}, X_{I}\right)$ with outer-set $X_{O}=$ inner-set $X_{I}$ U் wall $X_{W}$.
(2) nontrivial bi-set: $X_{I} \neq \emptyset, X_{O} \neq V$.
(3) complement of bi-set $X: \bar{X}=\left(\overline{X_{l}}, \overline{X_{O}}\right)$.
(9) intersection of bi-sets $X$ and $Y: X \sqcap Y=\left(X_{O} \cap Y_{O}, X_{I} \cap Y_{I}\right)$,


## Bi-sets

## Definition

(1) bi-set $\mathrm{X}:=\left(X_{O}, X_{I}\right)$ with outer-set $X_{O}=$ inner-set $X_{I}$ U் wall $X_{W}$.
(2) nontrivial bi-set: $X_{I} \neq \emptyset, X_{O} \neq V$.
(3) complement of bi-set $X: \bar{X}=\left(\overline{X_{l}}, \overline{X_{O}}\right)$.
(9) intersection of bi-sets $X$ and $Y: X \sqcap Y=\left(X_{O} \cap Y_{O}, X_{I} \cap Y_{I}\right)$,


## Bi-sets

## Definition

(1) bi-set $\mathrm{X}:=\left(X_{O}, X_{I}\right)$ with outer-set $X_{O}=$ inner-set $X_{I}$ U் wall $X_{W}$.
(2) nontrivial bi-set: $X_{I} \neq \emptyset, X_{O} \neq V$.
(3) complement of bi-set $\mathrm{X}: \overline{\mathrm{X}}=\left(\overline{X_{l}}, \overline{X_{O}}\right)$.
(9) intersection of bi-sets $X$ and $Y: X \sqcap Y=\left(X_{O} \cap Y_{O}, X_{I} \cap Y_{1}\right)$,
(3) union of bi-sets $X$ and $Y: X \sqcup Y=\left(X_{O} \cup Y_{O}, X_{I} \cup Y_{l}\right)$,


## Bi-sets

## Definition

(1) bi-set $\mathrm{X}:=\left(X_{O}, X_{I}\right)$ with outer-set $X_{O}=$ inner-set $X_{I}$ U் wall $X_{W}$.
(2) nontrivial bi-set: $X_{I} \neq \emptyset, X_{O} \neq V$.
(3) complement of bi-set $\mathrm{X}: \overline{\mathrm{X}}=\left(\overline{X_{l}}, \overline{X_{O}}\right)$.
(9) intersection of bi-sets $X$ and $Y: X \sqcap Y=\left(X_{O} \cap Y_{O}, X_{I} \cap Y_{1}\right)$,
(3) union of bi-sets $X$ and $Y: X \sqcup Y=\left(X_{O} \cup Y_{O}, X_{I} \cup Y_{l}\right)$,


## Bi-sets

## Definition

(1) bi-set $\mathrm{X}:=\left(X_{O}, X_{I}\right)$ with outer-set $X_{O}=$ inner-set $X_{I}$ U் wall $X_{W}$.
(2) nontrivial bi-set: $X_{I} \neq \emptyset, X_{O} \neq V$.
(3) complement of bi-set $X: \bar{X}=\left(\overline{X_{l}}, \overline{X_{O}}\right)$.
(9) intersection of bi-sets $X$ and $Y: X \sqcap Y=\left(X_{O} \cap Y_{O}, X_{I} \cap Y_{1}\right)$,
(5) union of bi-sets $X$ and $Y: X \sqcup Y=\left(X_{O} \cup Y_{O}, X_{I} \cup Y_{l}\right)$,
(0) entering arc of bi-set $X: x y \in A$ with $x \in \overline{X_{O}}$ and $y \in X_{I}$.


## Bi-sets

## Definition

(1) bi-set $\mathrm{X}:=\left(X_{O}, X_{I}\right)$ with outer-set $X_{O}=$ inner-set $X_{I}$ ப் wall $X_{W}$.
(2) nontrivial bi-set: $X_{I} \neq \emptyset, X_{O} \neq V$.
(3) complement of bi-set $X: \bar{X}=\left(\overline{X_{l}}, \overline{X_{O}}\right)$.
(9) intersection of bi-sets $X$ and $Y: X \sqcap Y=\left(X_{O} \cap Y_{O}, X_{I} \cap Y_{l}\right)$,
(3) union of bi-sets $X$ and $Y: X \sqcup Y=\left(X_{O} \cup Y_{O}, X_{I} \cup Y_{l}\right)$,
(0) entering arc of bi-set $X: x y \in A$ with $x \in \overline{X_{O}}$ and $y \in X_{I}$.
(1) in-degree of bi-set $X:\left|\partial^{-}(X)\right|=$ number of arcs entering $X$.


## Bi-sets and $2-T-c$

## Definition

(1) $g^{T}(v)=1$ if $v \in T$ and $g^{T}(v)=2$ if $v \in V \backslash T$,


## Bi-sets and $2-T-c$

## Definition

(1) $g^{T}(v)=1$ if $v \in T$ and $g^{T}(v)=2$ if $v \in V \backslash T$,
(2) $f_{D}^{T}(\mathrm{X}):=\left|\partial_{D}^{-}(\mathrm{X})\right|+g^{T}\left(X_{W}\right)$,


## Bi-sets and $2-T-c$

## Definition

(1) $g^{T}(v)=1$ if $v \in T$ and $g^{T}(v)=2$ if $v \in V \backslash T$,
(2) $f_{D}^{T}(X):=\left|\partial_{D}^{-}(X)\right|+g^{T}\left(X_{W}\right)$,


## Remark

(1) $D$ is $2-T$-c $\Longleftrightarrow f_{D}^{T}(X) \geq 2 \forall$ nontrivial bi-set $X$,

## Bi-sets and $2-T-c$

## Definition

(1) $g^{T}(v)=1$ if $v \in T$ and $g^{T}(v)=2$ if $v \in V \backslash T$,
(2) $f_{D}^{T}(X):=\left|\partial_{D}^{-}(X)\right|+g^{T}\left(X_{W}\right)$,
(3) tight bi-set $X: f_{D}^{T}(X)=2$.


## Remark

(1) $D$ is $2-T-c \Longleftrightarrow f_{D}^{T}(X) \geq 2 \forall$ nontrivial bi-set $X$,

## Bi-sets and $2-T-\mathrm{c}$

## Definition

(1) $g^{T}(v)=1$ if $v \in T$ and $g^{T}(v)=2$ if $v \in V \backslash T$,
(2) $f_{D}^{T}(X):=\left|\partial_{D}^{-}(X)\right|+g^{T}\left(X_{W}\right)$,
(3) tight bi-set $X: f_{D}^{T}(X)=2$.


## Remark

(1) $D$ is $2-T-c \Longleftrightarrow f_{D}^{T}(X) \geq 2 \forall$ nontrivial bi-set $X$,
(2) minimally $2-T-c \Longleftrightarrow 2-T-c$ and each arc enters a tight bi-set.

## Bi-sets and $2-T-c$

## Definition

(1) $g^{T}(v)=1$ if $v \in T$ and $g^{T}(v)=2$ if $v \in V \backslash T$,
(2) $f_{D}^{T}(X):=\left|\partial_{D}^{-}(X)\right|+g^{T}\left(X_{W}\right)$,
(3) tight bi-set $X: f_{D}^{T}(X)=2$.


## Remark

(1) $D$ is $2-T-c \Longleftrightarrow f_{D}^{T}(X) \geq 2 \forall$ nontrivial bi-set $X$,
(2) minimally $2-T-c \Longleftrightarrow 2-T-c$ and each arc enters a tight bi-set.

## Claim

$f_{D}^{T}$ is a submodular bi-set function:
$f_{D}^{T}(X)+f_{D}^{T}(Y) \geq f_{D}^{T}(\mathrm{X} \sqcap \mathrm{Y})+f_{D}^{T}(\mathrm{X} \sqcup \mathrm{Y})$.


## Bi-sets and $2-T-c$

## Definition

(1) $g^{T}(v)=1$ if $v \in T$ and $g^{T}(v)=2$ if $v \in V \backslash T$,
(2) $f_{D}^{T}(X):=\left|\partial_{D}^{-}(X)\right|+g^{T}\left(X_{W}\right)$,
(3) tight bi-set $X: f_{D}^{T}(X)=2$.


## Remark

(1) $D$ is $2-T-c \Longleftrightarrow f_{D}^{T}(X) \geq 2 \forall$ nontrivial bi-set $X$,
(2) minimally $2-T-c \Longleftrightarrow 2-T-c$ and each arc enters a tight bi-set.

## Claim

$f_{D}^{T}$ is a submodular bi-set function:
$f_{D}^{T}(X)+f_{D}^{T}(Y) \geq f_{D}^{T}(\mathrm{X} \sqcap \mathrm{Y})+f_{D}^{T}(\mathrm{X} \sqcup \mathrm{Y})$.


## Proof of Theorem 3

## Theorem 3 (Durand de Gevigney, Szigeti)

In a minimally $2-T$-c digraph with $(\star)$ no parallel arc leaving a vertex in $T$, $\exists$ a vertex $v:\left|\partial^{-}(v)\right|=\left|\partial^{+}(v)\right|=2$.

## Beginning of the proof

(1) $D=(V, A)$ : counterexample.

## Proof of Theorem 3

## Theorem 3 (Durand de Gevigney, Szigeti)

In a minimally $2-T$-c digraph with $(\star)$ no parallel arc leaving a vertex in $T$, $\exists$ a vertex $v:\left|\partial^{-}(v)\right|=\left|\partial^{+}(v)\right|=2$.

## Beginning of the proof

(1) $D=(V, A)$ : counterexample.
(2) $A_{0}=\left\{x y \in A:\left|\partial^{+}(x)\right|>2\right.$ and $\left.\left|\partial^{-}(y)\right|>2\right\}$.

## Proof of Theorem 3

## Theorem 3 (Durand de Gevigney, Szigeti)

In a minimally $2-T$-c digraph with $(\star)$ no parallel arc leaving a vertex in $T$, $\exists$ a vertex $v:\left|\partial^{-}(v)\right|=\left|\partial^{+}(v)\right|=2$.

## Beginning of the proof

(1) $D=(V, A)$ : counterexample.
(2) $A_{0}=\left\{x y \in A:\left|\partial^{+}(x)\right|>2\right.$ and $\left.\left|\partial^{-}(y)\right|>2\right\}$.

## Lemma 1: $A_{0} \neq \emptyset$.

## Proof of Theorem 3

## Theorem 3 (Durand de Gevigney, Szigeti)

In a minimally $2-T$-c digraph with $(\star)$ no parallel arc leaving a vertex in $T$, $\exists$ a vertex $v:\left|\partial^{-}(v)\right|=\left|\partial^{+}(v)\right|=2$.

## Beginning of the proof

(1) $D=(V, A)$ : counterexample.
(2) $A_{0}=\left\{x y \in A:\left|\partial^{+}(x)\right|>2\right.$ and $\left.\left|\partial^{-}(y)\right|>2\right\}$.

## Lemma 1: $A_{0} \neq \emptyset$.

(1) $u$ covers $a:\left|\partial^{-}(u)\right|=2$ and $a$ enters $u$ or $\left|\partial^{+}(u)\right|=2$ and $a$ leaves $u$,

## Proof of Theorem 3

## Theorem 3 (Durand de Gevigney, Szigeti)

In a minimally $2-T$-c digraph with $(\star)$ no parallel arc leaving a vertex in $T$, $\exists$ a vertex $v:\left|\partial^{-}(v)\right|=\left|\partial^{+}(v)\right|=2$.

## Beginning of the proof

(1) $D=(V, A)$ : counterexample.
(2) $A_{0}=\left\{x y \in A:\left|\partial^{+}(x)\right|>2\right.$ and $\left.\left|\partial^{-}(y)\right|>2\right\}$.

## Lemma 1: $A_{0} \neq \emptyset$.

(1) $u$ covers $a:\left|\partial^{-}(u)\right|=2$ and $a$ enters $u$ or $\left|\partial^{+}(u)\right|=2$ and $a$ leaves $u$,
(2) If $A_{0}=\emptyset$, then every arc is covered by at least one of its end-vertices,

## Proof of Theorem 3

## Theorem 3 (Durand de Gevigney, Szigeti)

In a minimally $2-T$-c digraph with $(\star)$ no parallel arc leaving a vertex in $T$, $\exists$ a vertex $v:\left|\partial^{-}(v)\right|=\left|\partial^{+}(v)\right|=2$.

## Beginning of the proof

(1) $D=(V, A)$ : counterexample.
(2) $A_{0}=\left\{x y \in A:\left|\partial^{+}(x)\right|>2\right.$ and $\left.\left|\partial^{-}(y)\right|>2\right\}$.

## Lemma 1: $A_{0} \neq \emptyset$.

(1) $u$ covers $a:\left|\partial^{-}(u)\right|=2$ and $a$ enters $u$ or $\left|\partial^{+}(u)\right|=2$ and $a$ leaves $u$,
(2) If $A_{0}=\emptyset$, then every arc is covered by at least one of its end-vertices,
(3) a vertex can cover at most 2 arcs,

## Proof of Theorem 3

## Theorem 3 (Durand de Gevigney, Szigeti)

In a minimally $2-T$-c digraph with $(\star)$ no parallel arc leaving a vertex in $T$, $\exists$ a vertex $v:\left|\partial^{-}(v)\right|=\left|\partial^{+}(v)\right|=2$.

## Beginning of the proof

(1) $D=(V, A)$ : counterexample.
(2) $A_{0}=\left\{x y \in A:\left|\partial^{+}(x)\right|>2\right.$ and $\left.\left|\partial^{-}(y)\right|>2\right\}$.

## Lemma 1: $A_{0} \neq \emptyset$.

(1) $u$ covers $a:\left|\partial^{-}(u)\right|=2$ and $a$ enters $u$ or $\left|\partial^{+}(u)\right|=2$ and $a$ leaves $u$,
(2) If $A_{0}=\emptyset$, then every arc is covered by at least one of its end-vertices,
(3) a vertex can cover at most 2 arcs,
(9) $\left|\partial^{-}(v)\right|+\left|\partial^{+}(v)\right| \geq 5 \forall v \in V$,

## Proof of Theorem 3

## Theorem 3 (Durand de Gevigney, Szigeti)

In a minimally $2-T$-c digraph with $(\star)$ no parallel arc leaving a vertex in $T$, $\exists$ a vertex $v:\left|\partial^{-}(v)\right|=\left|\partial^{+}(v)\right|=2$.

## Beginning of the proof

(1) $D=(V, A)$ : counterexample.
(2) $A_{0}=\left\{x y \in A:\left|\partial^{+}(x)\right|>2\right.$ and $\left.\left|\partial^{-}(y)\right|>2\right\}$.

## Lemma 1: $A_{0} \neq \emptyset$.

(1) $u$ covers $a:\left|\partial^{-}(u)\right|=2$ and $a$ enters $u$ or $\left|\partial^{+}(u)\right|=2$ and $a$ leaves $u$,
(2) If $A_{0}=\emptyset$, then every arc is covered by at least one of its end-vertices,
(3) a vertex can cover at most 2 arcs,
(9) $\left|\partial^{-}(v)\right|+\left|\partial^{+}(v)\right| \geq 5 \forall v \in V$,
(3) $2|V| \geq|A|=\frac{1}{2} \sum_{v \in V}\left(\left|\partial^{-}(v)\right|+\left|\partial^{+}(v)\right|\right) \geq \frac{5}{2}|V|$, contradiction.

## Proof of Theorem 3

## Definition

(1) $\mathcal{T}:=\left\{\mathrm{T}: \mathrm{T}\right.$ or $\overline{\mathrm{T}}$ is a tight bi-set entered by an arc of $\left.A_{0}\right\}$

## Proof of Theorem 3

## Definition

(1) $\mathcal{T}:=\left\{\mathrm{T}: \mathrm{T}\right.$ or $\overline{\mathrm{T}}$ is a tight bi-set entered by an arc of $\left.A_{0}\right\}(\neq \emptyset$.

## Proof of Theorem 3

## Definition

(1) $\mathcal{T}:=\left\{\mathrm{T}: \mathrm{T}\right.$ or $\overline{\mathrm{T}}$ is a tight bi-set entered by an arc of $\left.A_{0}\right\}(\neq \emptyset$.
(2) $\mathrm{X}:=\left(X_{O}, X_{I}\right) \in \mathcal{T}$ such that $\left|X_{O}\right|+\left|X_{I}\right|$ is minimum.

## Proof of Theorem 3

## Definition

(1) $\mathcal{T}:=\left\{\mathrm{T}: \mathrm{T}\right.$ or $\overline{\mathrm{T}}$ is a tight bi-set entered by an arc of $\left.A_{0}\right\}(\neq \emptyset$.
(2) $\mathrm{X}:=\left(X_{O}, X_{I}\right) \in \mathcal{T}$ such that $\left|X_{O}\right|+\left|X_{I}\right|$ is minimum.
(3) Wlog. $X$ is a tight bi-set entered by the arc $a b$ of $A_{0}$.


## Proof of Theorem 3

## Definition

(1) $\mathcal{T}:=\left\{\mathrm{T}: \mathrm{T}\right.$ or $\overline{\mathrm{T}}$ is a tight bi-set entered by an arc of $\left.A_{0}\right\}(\neq \emptyset$.
(2) $\mathrm{X}:=\left(X_{O}, X_{l}\right) \in \mathcal{T}$ such that $\left|X_{O}\right|+\left|X_{I}\right|$ is minimum.
(3) Wlog. $X$ is a tight bi-set entered by the arc ab of $A_{0}$.

$$
\text { - } f_{\stackrel{\rightharpoonup}{D}}^{T}(\overline{\mathrm{X}})=\left|\partial_{\stackrel{-}{D}}^{-}(\overline{\mathrm{X}})\right|+g^{T}\left(\overline{\mathrm{X}}_{W}\right)=\left|\partial_{\vec{D}}^{-}(\mathrm{X})\right|+g^{T}\left(\mathrm{X}_{W}\right)=2, a b \in \partial_{\overleftarrow{D}}^{-}(\overline{\mathrm{X}}) .
$$



## Proof of Theorem 3

## Definition

(1) $\mathcal{T}:=\left\{\mathrm{T}: \mathrm{T}\right.$ or $\overline{\mathrm{T}}$ is a tight bi-set entered by an arc of $\left.A_{0}\right\}(\neq \emptyset$.
(2) $\mathrm{X}:=\left(X_{O}, X_{l}\right) \in \mathcal{T}$ such that $\left|X_{O}\right|+\left|X_{l}\right|$ is minimum.
(3) Wlog. $X$ is a tight bi-set entered by the arc ab of $A_{0}$.
(9) Rem. $: X_{W}=\emptyset$ and $\left|\partial_{D}^{-}(X)\right|=2$ or $X_{W} \in T$ and $\left|\partial_{D}^{-}(X)\right|=1$.

## Proof of Theorem 3

## Definition

(1) $\mathcal{T}:=\left\{\mathrm{T}: \mathrm{T}\right.$ or $\overline{\mathrm{T}}$ is a tight bi-set entered by an arc of $\left.A_{0}\right\}(\neq \emptyset$.
(2) $\mathrm{X}:=\left(X_{O}, X_{l}\right) \in \mathcal{T}$ such that $\left|X_{O}\right|+\left|X_{l}\right|$ is minimum.
(3) Wlog. $X$ is a tight bi-set entered by the arc ab of $A_{0}$.
(9) Rem. $: X_{W}=\emptyset$ and $\left|\partial_{D}^{-}(X)\right|=2$ or $X_{W} \in T$ and $\left|\partial_{D}^{-}(X)\right|=1$.

## Lemma 2 : $\nexists x y \in A_{0}, y \in X_{I}, x \in X_{0}$.



## Proof of Theorem 3

## Definition

(1) $\mathcal{T}:=\left\{\mathrm{T}: \mathrm{T}\right.$ or $\overline{\mathrm{T}}$ is a tight bi-set entered by an arc of $\left.A_{0}\right\}(\neq \emptyset$.
(2) $\mathrm{X}:=\left(X_{O}, X_{l}\right) \in \mathcal{T}$ such that $\left|X_{O}\right|+\left|X_{l}\right|$ is minimum.
(3) Wlog. $X$ is a tight bi-set entered by the arc ab of $A_{0}$.
(9) Rem. $: X_{W}=\emptyset$ and $\left|\partial_{D}^{-}(X)\right|=2$ or $X_{W} \in T$ and $\left|\partial_{D}^{-}(X)\right|=1$.

Lemma 2 : $\nexists x y \in A_{0}, y \in X_{I}, x \in X_{O}$.
(1) Suppose $x y \in A_{0}, y \in X_{I}, x \in X_{O}$.


## Proof of Theorem 3

## Definition

(1) $\mathcal{T}:=\left\{\mathrm{T}: \mathrm{T}\right.$ or $\overline{\mathrm{T}}$ is a tight bi-set entered by an arc of $\left.A_{0}\right\}(\neq \emptyset$.
(2) $\mathrm{X}:=\left(X_{O}, X_{l}\right) \in \mathcal{T}$ such that $\left|X_{O}\right|+\left|X_{l}\right|$ is minimum.
(3) Wlog. $X$ is a tight bi-set entered by the arc ab of $A_{0}$.
(9) Rem. $: X_{W}=\emptyset$ and $\left|\partial_{D}^{-}(X)\right|=2$ or $X_{W} \in T$ and $\left|\partial_{D}^{-}(X)\right|=1$.

## Lemma 2: $\nexists x y \in A_{0}, y \in X_{I}, x \in X_{0}$.

(1) Suppose $x y \in A_{0}, y \in X_{I}, x \in X_{O}$.
(2) $x y$ enters a tight bi-set $Y=\left(Y_{O}, Y_{l}\right),(Y \in \mathcal{T})$.


## Proof of Theorem 3

## Definition

(1) $\mathcal{T}:=\left\{\mathrm{T}: \mathrm{T}\right.$ or $\overline{\mathrm{T}}$ is a tight bi-set entered by an arc of $\left.A_{0}\right\}(\neq \emptyset$.
(2) $\mathrm{X}:=\left(X_{O}, X_{l}\right) \in \mathcal{T}$ such that $\left|X_{O}\right|+\left|X_{l}\right|$ is minimum.
(3) Wlog. $X$ is a tight bi-set entered by the arc ab of $A_{0}$.
(9) Rem. : $X_{W}=\emptyset$ and $\left|\partial_{D}^{-}(X)\right|=2$ or $X_{W} \in T$ and $\left|\partial_{D}^{-}(X)\right|=1$.

## Lemma 2: $\nexists x y \in A_{0}, y \in X_{I}, x \in X_{0}$.

(1) Suppose $x y \in A_{0}, y \in X_{I}, x \in X_{O}$.
(2) $x y$ enters a tight bi-set $Y=\left(Y_{O}, Y_{l}\right),(Y \in \mathcal{T})$.
(3) Claim : $X_{I} \cap Y_{I}=y,(X \sqcap Y)_{W}=\emptyset,\left|X_{W}\right|=\left|Y_{W}\right|=1$.


## Proof of Theorem 3

## Definition

(1) $\mathcal{T}:=\left\{\mathrm{T}: \mathrm{T}\right.$ or $\overline{\mathrm{T}}$ is a tight bi-set entered by an arc of $\left.A_{0}\right\}(\neq \emptyset$.
(2) $\mathrm{X}:=\left(X_{O}, X_{l}\right) \in \mathcal{T}$ such that $\left|X_{O}\right|+\left|X_{l}\right|$ is minimum.
(3) Wlog. $X$ is a tight bi-set entered by the arc ab of $A_{0}$.
(9) Rem. $: X_{W}=\emptyset$ and $\left|\partial_{D}^{-}(\mathrm{X})\right|=2$ or $X_{W} \in T$ and $\left|\partial_{D}^{-}(\mathrm{X})\right|=1$.

## Lemma 2: $\nexists x y \in A_{0}, y \in X_{I}, x \in X_{0}$.

(1) Suppose $x y \in A_{0}, y \in X_{I}, x \in X_{O}$.
(2) $x y$ enters a tight bi-set $Y=\left(Y_{O}, Y_{l}\right),(Y \in \mathcal{T})$.
(3) Claim: $X_{I} \cap Y_{I}=y,(X \sqcap Y)_{W}=\emptyset,\left|X_{W}\right|=\left|Y_{W}\right|=1$.

(9) $2<\left|\partial_{D}^{-}(y)\right|=\left|\partial_{D}^{-}(\mathrm{X} \sqcap \mathrm{Y})\right| \leq\left|\partial_{D}^{-}(\mathrm{X})\right|+\left|\partial_{D}^{-}(\mathrm{Y})\right|=2$ 。

## Proof of Theorem 3

Claim : $X_{I} \cap Y_{I}=y,(X \cap Y)_{w}=\emptyset$ and $\left|X_{W}\right|=\left|Y_{w}\right|=1$.

## Proof of Theorem 3

Claim : $X_{I} \cap Y_{I}=y,(X \cap Y)_{w}=\emptyset$ and $\left|X_{W}\right|=\left|Y_{w}\right|=1$.
(1) $X_{O} \cup Y_{O}=V$.

## Proof of Theorem 3

Claim : $X_{I} \cap Y_{I}=y,(X \sqcap Y)_{w}=\emptyset$ and $\left|X_{W}\right|=\left|Y_{w}\right|=1$.
(1) $X_{O} \cup Y_{O}=V$.
(1) Otherwise, $\mathrm{X} \sqcup \mathrm{Y}$, and by $y \in X_{I} \cap Y_{I}, \mathrm{X} \sqcap \mathrm{Y}$ are nontrivial bi-sets.

## Proof of Theorem 3

## Claim : $X_{I} \cap Y_{I}=y,(X \sqcap Y)_{w}=\emptyset$ and $\left|X_{W}\right|=\left|Y_{W}\right|=1$.

(1) $X_{O} \cup Y_{O}=V$.
(1) Otherwise, $\mathrm{X} \sqcup \mathrm{Y}$, and by $y \in X_{I} \cap Y_{I}, \mathrm{X} \sqcap \mathrm{Y}$ are nontrivial bi-sets.
(2) Then, by submodularity of $f_{D}^{T}, \mathrm{X} \sqcap \mathrm{Y}$ is tight:

$$
2+2 \geq f_{D}^{T}(X)+f_{D}^{T}(Y) \geq f_{D}^{T}(\mathrm{X} \sqcap \mathrm{Y})+f_{D}^{T}(\mathrm{X} \sqcup \mathrm{Y}) \geq 2+2
$$

## Proof of Theorem 3

Claim : $X_{I} \cap Y_{I}=y,(X \cap Y)_{w}=\emptyset$ and $\left|X_{W}\right|=\left|Y_{w}\right|=1$.
(1) $X_{O} \cup Y_{O}=V$.
(1) Otherwise, $\mathrm{X} \sqcup \mathrm{Y}$, and by $y \in X_{I} \cap Y_{I}, \mathrm{X} \sqcap \mathrm{Y}$ are nontrivial bi-sets.
(2) Then, by submodularity of $f_{D}^{T}, X \sqcap Y$ is tight:

$$
2+2 \geq f_{D}^{T}(X)+f_{D}^{T}(Y) \geq f_{D}^{T}(\mathrm{X} \sqcap \mathrm{Y})+f_{D}^{T}(\mathrm{X} \sqcup \mathrm{Y}) \geq 2+2
$$

(3) Then, since $x y$ enters $\mathrm{X} \sqcap \mathrm{Y}, \mathrm{X} \sqcap \mathrm{Y} \in \mathcal{T}$.


## Proof of Theorem 3

## Claim : $X_{I} \cap Y_{I}=y,(X \cap Y)_{w}=\emptyset$ and $\left|X_{W}\right|=\left|Y_{w}\right|=1$.

(1) $X_{O} \cup Y_{O}=V$.
(1) Otherwise, $\mathrm{X} \sqcup \mathrm{Y}$, and by $y \in X_{I} \cap Y_{I}, X \sqcap Y$ are nontrivial bi-sets.
(2) Then, by submodularity of $f_{D}^{T}, X \sqcap Y$ is tight:

$$
2+2 \geq f_{D}^{T}(X)+f_{D}^{T}(Y) \geq f_{D}^{T}(\mathrm{X} \sqcap Y)+f_{D}^{T}(\mathrm{X} \sqcup \mathrm{Y}) \geq 2+2
$$

(3) Then, since $x y$ enters $\mathrm{X} \sqcap \mathrm{Y}, \mathrm{X} \sqcap \mathrm{Y} \in \mathcal{T}$.
(3) By $x \in X_{O} \backslash Y_{O},\left|(\mathrm{X} \sqcap \mathrm{Y})_{O}\right|+\left|(\mathrm{X} \sqcap \mathrm{Y})_{l}\right|<\left|X_{O}\right|+\left|X_{l}\right|$, contradiction.


## Proof of Theorem 3

Claim : $X_{I} \cap Y_{I}=y,(X \sqcap Y)_{w}=\emptyset$ and $\left|X_{W}\right|=\left|Y_{w}\right|=1$.
(1) $X_{O} \cup Y_{O}=V$.
(2) By $\bar{Y}=\left(\overline{Y_{l}}, \overline{Y_{O}}\right) \in \mathcal{T}$ and minimality of $X,\left|\overline{Y_{l}}\right|+\left|\overline{Y_{O}}\right| \geq\left|X_{O}\right|+\left|X_{l}\right|$.


## Proof of Theorem 3

Claim : $X_{I} \cap Y_{I}=y,(X \sqcap Y)_{w}=\emptyset$ and $\left|X_{W}\right|=\left|Y_{w}\right|=1$.
(1) $X_{O} \cup Y_{O}=V$.
(2) By $\bar{Y}=\left(\overline{Y_{l}}, \overline{Y_{O}}\right) \in \mathcal{T}$ and minimality of $X,\left|\overline{Y_{l}}\right|+\left|\overline{Y_{O}}\right| \geq\left|X_{O}\right|+\left|X_{l}\right|$.


## Proof of Theorem 3

## Claim : $X_{I} \cap Y_{I}=y,(X \sqcap Y)_{w}=\emptyset$ and $\left|X_{W}\right|=\left|Y_{W}\right|=1$.

(1) $X_{O} \cup Y_{O}=V$.
(2) By $\bar{Y}=\left(\overline{Y_{l}}, \overline{Y_{O}}\right) \in \mathcal{T}$ and minimality of $X,\left|\overline{Y_{l}}\right|+\left|\overline{Y_{O}}\right| \geq\left|X_{O}\right|+\left|X_{l}\right|$.
(0) $2 \geq\left|X_{W}\right|+\left|Y_{W}\right| \geq\left|\overline{Y_{O}} \cap X_{W}\right|+\left|Y_{w} \cap \overline{X_{O}}\right|$


## Proof of Theorem 3

## Claim : $X_{I} \cap Y_{I}=y,(X \sqcap Y)_{w}=\emptyset$ and $\left|X_{W}\right|=\left|Y_{W}\right|=1$.

(1) $X_{O} \cup Y_{O}=V$.
(2) By $\bar{Y}=\left(\overline{Y_{l}}, \overline{Y_{O}}\right) \in \mathcal{T}$ and minimality of $X,\left|\overline{Y_{l}}\right|+\left|\overline{Y_{O}}\right| \geq\left|X_{O}\right|+\left|X_{l}\right|$.
(0) $2 \geq\left|X_{W}\right|+\left|Y_{W}\right| \geq\left|\overline{Y_{O}} \cap X_{W}\right|+\left|Y_{W} \cap \overline{X_{O}}\right|$

$$
\geq\left|X_{I} \cap Y_{W}\right|+2\left|X_{I} \cap Y_{l}\right|+\left|X_{W} \cap Y_{l}\right| \geq 2 .
$$



## Proof of Theorem 3

## Claim : $X_{I} \cap Y_{I}=y,(X \sqcap Y)_{w}=\emptyset$ and $\left|X_{W}\right|=\left|Y_{W}\right|=1$.

(1) $X_{O} \cup Y_{O}=V$.
(2) By $\bar{Y}=\left(\overline{Y_{l}}, \overline{Y_{O}}\right) \in \mathcal{T}$ and minimality of $X,\left|\overline{Y_{l}}\right|+\left|\overline{Y_{O}}\right| \geq\left|X_{O}\right|+\left|X_{l}\right|$.
(0) $2 \geq\left|X_{W}\right|+\left|Y_{W}\right| \geq\left|\overline{Y_{O}} \cap X_{W}\right|+\left|Y_{W} \cap \overline{X_{O}}\right|$

$$
\geq\left|X_{I} \cap Y_{W}\right|+2\left|X_{I} \cap Y_{l}\right|+\left|X_{W} \cap Y_{l}\right| \geq 2 .
$$

(- Thus we have equality everywhere and the claim follows.


## Proof of Theorem 3

## Lemma 3 : $D\left[X_{I}\right]$ is 1-ac.

## Proof of Theorem 3

## Lemma $3: D\left[X_{l}\right]$ is 1 -ac.

(1) Otherwise, $\exists \emptyset \neq U \subset X_{I}: \partial_{D\left[X_{1}\right]}^{-}(U)=\emptyset$.


## Proof of Theorem 3

## Lemma 3 : $D\left[X_{l}\right]$ is 1 -ac.

(1) Otherwise, $\exists \emptyset \neq U \subset X_{I}: \partial_{D\left[X_{I}\right]}^{-}(U)=\emptyset$.
(2) $Z:=\left(Z_{O}, Z_{l}\right)=\left(U \cup X_{W}, U\right)$.


## Proof of Theorem 3

## Lemma $3: D\left[X_{l}\right]$ is 1 -ac.

(1) Otherwise, $\exists \emptyset \neq U \subset X_{I}: \partial_{D\left[X_{I}\right]}^{-}(U)=\emptyset$.
(2) $Z:=\left(Z_{O}, Z_{l}\right)=\left(U \cup X_{W}, U\right)$.
(3) $2 \leq f_{D}^{T}(Z)=\left|\partial_{D}^{-}(Z)\right|+g^{T}\left(Z_{W}\right) \leq\left|\partial_{D}^{-}(X)\right|+g^{T}\left(X_{W}\right)=f_{D}^{T}(X)=2$.


## Proof of Theorem 3

## Lemma $3: D\left[X_{l}\right]$ is 1 -ac.

(1) Otherwise, $\exists \emptyset \neq U \subset X_{I}: \partial_{D\left[X_{I}\right]}^{-}(U)=\emptyset$.
(2) $Z:=\left(Z_{O}, Z_{l}\right)=\left(U \cup X_{W}, U\right)$.
(3) $2 \leq f_{D}^{T}(Z)=\left|\partial_{D}^{-}(Z)\right|+g^{T}\left(Z_{W}\right) \leq\left|\partial_{D}^{-}(X)\right|+g^{T}\left(X_{W}\right)=f_{D}^{T}(X)=2$.
(9) $Z$ is tight and $\partial_{D}^{-}(Z)=\partial_{D}^{-}(X)$, so ab enters $Z$, thus $Z \in \mathcal{T}$.


## Proof of Theorem 3

## Lemma $3: D\left[X_{l}\right]$ is 1 -ac.

(1) Otherwise, $\exists \emptyset \neq U \subset X_{I}: \partial_{D\left[X_{I}\right]}^{-}(U)=\emptyset$.
(2) $Z:=\left(Z_{O}, Z_{I}\right)=\left(U \cup X_{W}, U\right)$.
(3) $2 \leq f_{D}^{T}(Z)=\left|\partial_{D}^{-}(Z)\right|+g^{T}\left(Z_{W}\right) \leq\left|\partial_{D}^{-}(X)\right|+g^{T}\left(X_{W}\right)=f_{D}^{T}(X)=2$.
(9) $Z$ is tight and $\partial_{D}^{-}(Z)=\partial_{D}^{-}(X)$, so ab enters $Z$, thus $Z \in \mathcal{T}$.
(3) By $\left|Z_{O}\right|+\left|Z_{l}\right|<\left|X_{O}\right|+\left|X_{I}\right|$, contradiction.


## Proof of Theorem 3

Lemma $4: X_{O} \subseteq V=\left\{v \in V:\left|\partial_{D}^{-}(v)\right|>2=\left|\partial_{D}^{+}(v)\right|\right\}$ if $X_{I} \neq b$.

## Proof of Theorem 3

Lemma 4 : $X_{O} \subseteq V=\left\{v \in V:\left|\partial_{D}^{-}(v)\right|>2=\left|\partial_{D}^{+}(v)\right|\right\}$ if $X_{I} \neq b$.
(1) If $\left|\partial_{D}^{-}(v)\right|>2$ and $u v \in A \backslash A_{0}$, then $u \in V_{+}$.

## Proof of Theorem 3

## Lemma 4 : $X_{0} \subseteq V=\left\{v \in V:\left|\partial_{\bar{D}}^{-}(v)\right|>2=\left|\partial_{D}^{+}(v)\right|\right\}$ if $X_{l} \neq b$.

(1) If $\left|\partial_{D}^{-}(v)\right|>2$ and $u v \in A \backslash A_{0}$, then $u \in V_{+}$.

- By condition, $\left|\partial_{D}^{+}(u)\right|=2$, and then, since $D$ is a counterexample, $\left|\partial_{D}^{-}(u)\right|>2$ and hence $u \in V_{+}$.


## Proof of Theorem 3

Lemma 4 : $X_{O} \subseteq V=\left\{v \in V:\left|\partial_{D}^{-}(v)\right|>2=\left|\partial_{D}^{+}(v)\right|\right\}$ if $X_{I} \neq b$.
(1) If $\left|\partial_{D}^{-}(v)\right|>2$ and $u v \in A \backslash A_{0}$, then $u \in V_{+}$.
(2) $X_{I} \subseteq V_{+}$.

## Proof of Theorem 3

## Lemma $4: X_{0} \subseteq V^{\prime}=\left\{v \in V:\left|\partial_{D}^{-}(v)\right|>2=\left|\partial_{D}^{+}(v)\right|\right\}$ if $X_{I} \neq b$.

(1) If $\left|\partial_{D}^{-}(v)\right|>2$ and $u v \in A \backslash A_{0}$, then $u \in V_{+}$.
(2) $X_{I} \subseteq V_{+}$.

- By Lemmas 2, 3, and (1) :
- $X_{I} \subseteq\left\{v: \exists\right.$ nontrivial $(v, b)$-path in $\left.D-A_{0}\right\} \subseteq V_{+}$.



## Proof of Theorem 3

Lemma 4 : $X_{O} \subseteq V=\left\{v \in V:\left|\partial_{D}^{-}(v)\right|>2=\left|\partial_{D}^{+}(v)\right|\right\}$ if $X_{I} \neq b$.
(1) If $\left|\partial_{D}^{-}(v)\right|>2$ and $u v \in A \backslash A_{0}$, then $u \in V_{+}$.
(2) $X_{I} \subseteq V_{+}$.
(3) If $X_{w} \neq \emptyset$, then $X_{w} \in V_{+}$.

## Proof of Theorem 3

## Lemma $4: X_{O} \subseteq V=\left\{v \in V:\left|\partial_{D}^{-}(v)\right|>2=\left|\partial_{D}^{+}(v)\right|\right\}$ if $X_{I} \neq b$.

(1) If $\left|\partial_{D}^{-}(v)\right|>2$ and $u v \in A \backslash A_{0}$, then $u \in V_{+}$.
(2) $X_{I} \subseteq V_{+}$.
(0) If $X_{w} \neq \emptyset$, then $X_{w} \in V_{+}$.

- By $x=X_{w}, \partial_{D}^{-}(\mathrm{X})=a b$



## Proof of Theorem 3

## Lemma $4: X_{O} \subseteq V=\left\{v \in V:\left|\partial_{D}^{-}(v)\right|>2=\left|\partial_{D}^{+}(v)\right|\right\}$ if $X_{I} \neq b$.

(1) If $\left|\partial_{D}^{-}(v)\right|>2$ and $u v \in A \backslash A_{0}$, then $u \in V_{+}$.
(2) $X_{I} \subseteq V_{+}$.
(0) If $X_{w} \neq \emptyset$, then $X_{w} \in V_{+}$.

- By $x=X_{W}, \partial_{D}^{-}(\mathrm{X})=a b$ and hence $\exists x y \in \partial_{D}\left(X_{w}, X_{l}\right)$,



## Proof of Theorem 3

## Lemma $4: X_{O} \subseteq V=\left\{v \in V:\left|\partial_{D}^{-}(v)\right|>2=\left|\partial_{D}^{+}(v)\right|\right\}$ if $X_{I} \neq b$.

(1) If $\left|\partial_{D}^{-}(v)\right|>2$ and $u v \in A \backslash A_{0}$, then $u \in V_{+}$.
(2) $X_{I} \subseteq V_{+}$.
(0) If $X_{w} \neq \emptyset$, then $X_{w} \in V_{+}$.

- By $x=X_{W}, \partial_{D}^{-}(\mathrm{X})=a b$ and hence $\exists x y \in \partial_{D}\left(X_{W}, X_{I}\right)$,
- so, by (2), $y \in V_{+}$



## Proof of Theorem 3

## Lemma 4 : $X_{0} \subseteq V \quad=\left\{v \in V:\left|\partial_{\bar{D}}(v)\right|>2=\left|\partial_{D}^{+}(v)\right|\right\}$ if $X_{1} \neq b$.

(1) If $\left|\partial_{D}^{-}(v)\right|>2$ and $u v \in A \backslash A_{0}$, then $u \in V_{+}$.
(2) $X_{I} \subseteq V_{+}$.
(3) If $X_{W} \neq \emptyset$, then $X_{W} \in V_{+}$.

- By $x=X_{W}, \partial_{D}^{-}(X)=a b$ and hence $\exists x y \in \partial_{D}\left(X_{W}, X_{I}\right)$,
- so, by (2), $y \in V_{+}$and then, by Lemma 2 and (1), $X_{w}=x \in V_{+}$.



## Proof of Theorem 3

## Lemma 4 : $X_{0} \subseteq V \quad=\left\{v \in V:\left|\partial_{\bar{D}}(v)\right|>2=\left|\partial_{D}^{+}(v)\right|\right\}$ if $X_{1} \neq b$.

(1) If $\left|\partial_{D}^{-}(v)\right|>2$ and $u v \in A \backslash A_{0}$, then $u \in V_{+}$.
(2) $X_{I} \subseteq V_{+}$.
(3) If $X_{W} \neq \emptyset$, then $X_{W} \in V_{+}$.

- By $x=X_{W}, \partial_{D}^{-}(X)=a b$ and hence $\exists x y \in \partial_{D}\left(X_{W}, X_{I}\right)$,
- so, by (2), $y \in V_{+}$and then, by Lemma 2 and (1), $X_{w}=x \in V_{+}$.



## Everything has to come to an end, sometime.

(1) If $X_{I} \neq b$ : by Lemma 4 (3) and (2), we have a contradiction:
(2) If $X_{I}=b$ : by $a b \in A_{0},(\star)$ and $X$ is tight, we have a contradiction :
(3) These contradictions complete the proof of the theorem.

## Everything has to come to an end, sometime.

(1) If $X_{I} \neq b$ : by Lemma 4 (3) and (2), we have a contradiction:

$$
\begin{aligned}
3-2 & \geq\left|\partial_{D}^{-}(X)\right|+2\left|X_{W}\right|-2 \geq\left|\partial_{D}^{-}(X)\right|+\left|\partial_{D}\left(X_{W}, X_{l}\right)\right|-\left|\partial^{+}\left(X_{l}\right)\right| \\
& =\left|\partial_{D}^{-}\left(X_{l}\right)\right|-\left|\partial_{D}^{+}\left(X_{l}\right)\right|=\sum_{v \in X_{l}}\left(\left|\partial_{D}^{-}(v)\right|-\left|\partial_{D}^{+}(v)\right|\right) \geq\left|X_{l}\right| \geq 2
\end{aligned}
$$

(2) If $X_{I}=b$ : by $a b \in A_{0},(\star)$ and $X$ is tight, we have a contradiction :
(3) These contradictions complete the proof of the theorem.

## Everything has to come to an end, sometime.

(1) If $X_{I} \neq b$ : by Lemma 4 (3) and (2), we have a contradiction:
(2) If $X_{I}=b$ : by $a b \in A_{0},(\star)$ and $X$ is tight, we have a contradiction :

$$
2<\left|\partial_{D}^{-}(b)\right|=\left|\partial_{D}^{-}(\mathrm{X})\right|+\left|\partial_{D}\left(X_{W}, b\right)\right| \leq\left|\partial_{D}^{-}(\mathrm{X})\right|+g^{\top}\left(X_{W}\right)=2
$$

(3) These contradictions complete the proof of the theorem.

## Everything has to come to an end, sometime.

(1) If $X_{I} \neq b$ : by Lemma 4 (3) and (2), we have a contradiction:
(2) If $X_{I}=b$ : by $a b \in A_{0},(\star)$ and $X$ is tight, we have a contradiction :
(3) These contradictions complete the proof of the theorem.

| Tha | nk | you |
| :---: | :---: | :---: |
| for | yo | ur |
| Att | ent | ion |

