Zoltán Szigeti

Combinatorial Optimization Group, G-SCOP Univ. Grenoble Alpes, Grenoble INP, CNRS, France

2017 April 25

Joint work with:

```
Quentin Fortier (G-SCOP, Grenoble),
Csaba Király (EGRES, Budapest),
Shin-ichi Tanigawa (University of Tokyo).
```

Outline

- Motivation
- Definitions
- Problem
- Results
- Proofs
- Conclusion

Definition

Packing subgraphs: a set of arc-disjoint subgraphs in a directed graph.

Application of path packings

- Telecommunication
- Transportation
- VLSI

Storing of path packings

Suppose D has a packing of k(s, t)-paths from s to each vertex t in V.

Definition

Packing subgraphs: a set of arc-disjoint subgraphs in a directed graph.

Application of path packings

- Telecommunication
- Transportation
- VLSI

Storing of path packings

Suppose D has a packing of k (s, t)-paths from s to each vertex t in V. What is a compact certificate of this fact?

Definition

Packing subgraphs: a set of arc-disjoint subgraphs in a directed graph.

Application of path packings

- Telecommunication
- Transportation
- VLSI

Storing of path packings

Suppose D has a packing of k(s,t)-paths from s to each vertex t in V.

What is a compact certificate of this fact?

A packing of k spanning s-arborescences in D.

Packing of spanning s-arborescences

Definition

- lacktriangle s-arborescence : directed tree, in-degree of every vertex except s is 1,
- **2** spanning subgraph of D: subgraph that contains all the vertices of D.

Theorem (Edmonds 1973 + Menger 1927)

Let
$$D = (V + s, A)$$
, $k \in \mathbb{Z}_+$.

- D has a packing of k spanning s-arborescences
- D has a packing of k paths from s to each vertex in D.

Questions

- Packing k (s, t)-paths means sending k distinct commodities from s to t by assuming that each arc can transmit at most one commodity.
- What if commodities have a more involved independence structure?
- Suppose that every vertex can receive a sufficient amount of independent commodities to understand the whole structure. Does there exist a compact certificate for such packings of paths?

Matroids

Definition

For $\emptyset \neq \mathcal{I} \subseteq 2^E$, $\mathcal{M} = (E, \mathcal{I})$ is a matroid if

- If $X \subseteq Y \in \mathcal{I}$, then $X \in \mathcal{I}$,
- ② If $X, Y \in \mathcal{I}$ with |X| < |Y| then $\exists y \in Y \setminus X$ such that $X \cup y \in \mathcal{I}$.

Examples

- Free : all subsets of a set,
- 2 Graphic: edge-sets of forests of a graph,
- **3** Transversal : end-vertices in S of matchings of bipartite graph (S, T; E)
- Fano: subsets of sets of size 3 not being a line in the Fano plane.

Definition

• matroid-rooted digraph $(D = (V + s, A), \mathcal{M})$: a matroid \mathcal{M} is given on the set of root arcs (arcs leaving the special vertex s).

FIGURE: a matroid-rooted digraph

- matroid-rooted digraph $(D = (V + s, A), \mathcal{M})$: a matroid \mathcal{M} is given on the set of root arcs (arcs leaving the special vertex s).
- **2** \mathcal{M} -based packing of (s, t)-paths : if the root arcs form a base of \mathcal{M} .

FIGURE: an \mathcal{M} -based packing of (s, t)-paths

- matroid-rooted digraph $(D = (V + s, A), \mathcal{M})$: a matroid \mathcal{M} is given on the set of root arcs (arcs leaving the special vertex s).
- **2** \mathcal{M} -based packing of (s, t)-paths : if the root arcs form a base of \mathcal{M} .

FIGURE: Not an \mathcal{M} -based packing of (s, t)-paths

- matroid-rooted digraph $(D = (V + s, A), \mathcal{M})$: a matroid \mathcal{M} is given on the set of root arcs (arcs leaving the special vertex s).
- **2** \mathcal{M} -based packing of (s, t)-paths : if the root arcs form a base of \mathcal{M} .
- **3** \mathcal{M} -based packing of s-arborescences : if, for all $t \in V$, the packing of (s,t)-paths provided by the arborescences is \mathcal{M} -based.

FIGURE: an \mathcal{M} -based packing of s-arborescences

- matroid-rooted digraph $(D = (V + s, A), \mathcal{M})$: a matroid \mathcal{M} is given on the set of root arcs (arcs leaving the special vertex s).
- **2** \mathcal{M} -based packing of (s, t)-paths : if the root arcs form a base of \mathcal{M} .
- **3** \mathcal{M} -based packing of s-arborescences : if, for all $t \in V$, the packing of (s,t)-paths provided by the arborescences is \mathcal{M} -based.

FIGURE: an \mathcal{M} -based packing of spanning s-arborescences

Definition

- matroid-rooted digraph $(D = (V + s, A), \mathcal{M})$: a matroid \mathcal{M} is given on the set of root arcs (arcs leaving the special vertex s).
- **2** \mathcal{M} -based packing of (s, t)-paths : if the root arcs form a base of \mathcal{M} .
- **3** \mathcal{M} -based packing of s-arborescences : if, for all $t \in V$, the packing of (s,t)-paths provided by the arborescences is \mathcal{M} -based.

Remark

Let $(D = (V + s, A), \mathcal{M})$ be matroid-rooted digraph.

- ullet There exists an \mathcal{M} -based packing of (s,t)-paths for all $t\in V$
- $r(\partial(s,X)) + |\partial(V-X,X)| \ge r(\mathcal{M})$ for all $\emptyset \ne X \subseteq V$.

Definition

- matroid-rooted digraph $(D = (V + s, A), \mathcal{M})$: a matroid \mathcal{M} is given on the set of root arcs (arcs leaving the special vertex s).
- **2** \mathcal{M} -based packing of (s, t)-paths : if the root arcs form a base of \mathcal{M} .
- **3** \mathcal{M} -based packing of s-arborescences : if, for all $t \in V$, the packing of (s,t)-paths provided by the arborescences is \mathcal{M} -based.

Remark

Let $(D = (V + s, A), \mathcal{M})$ be matroid-rooted digraph.

- There exists an \mathcal{M} -based packing of (s,t)-paths for all $t \in V$
- $r(\partial(s,X)) + |\partial(V-X,X)| \ge r(\mathcal{M})$ for all $\emptyset \ne X \subseteq V$.

Question

Can Edmonds' theorem be extended for \mathcal{M} -based packings?

Conjecture (Bérczi-Frank 2015)

Let $(D = (V + s, A), \mathcal{M})$ be a matroid-rooted digraph.

- ullet There exists an ${\mathcal M}$ -based packing of spanning s-arborescences in D
- There exists an \mathcal{M} -based packing of (s, t)-paths for all $t \in V$.

Conjecture (Bérczi-Frank 2015)

Let $(D = (V + s, A), \mathcal{M})$ be a matroid-rooted digraph.

- ullet There exists an ${\mathcal M}$ -based packing of spanning s-arborescences in D
- There exists an \mathcal{M} -based packing of (s, t)-paths for all $t \in V$.

Conjecture (Bérczi-Frank 2015)

Let $(D = (V + s, A), \mathcal{M})$ be a matroid-rooted digraph.

- ullet There exists an ${\mathcal M}$ -based packing of spanning s-arborescences in D
- There exists an \mathcal{M} -based packing of (s, t)-paths for all $t \in V$.

Contribution (FKSzT)

Conjecture is not true in general.

Conjecture (Bérczi-Frank 2015)

Let $(D = (V + s, A), \mathcal{M})$ be a matroid-rooted digraph.

- ullet There exists an ${\mathcal M}$ -based packing of spanning s-arborescences in D
- There exists an \mathcal{M} -based packing of (s, t)-paths for all $t \in V$.

- Conjecture is not true in general.
- 2 Corresponding decision problem is NP-complet.

Conjecture (Bérczi-Frank 2015)

Let $(D = (V + s, A), \mathcal{M})$ be a matroid-rooted digraph.

- ullet There exists an ${\mathcal M}$ -based packing of spanning s-arborescences in D
- There exists an \mathcal{M} -based packing of (s, t)-paths for all $t \in V$.

- Conjecture is not true in general.
- Corresponding decision problem is NP-complet.
- Conjecture is true for

Conjecture (Bérczi-Frank 2015)

Let $(D = (V + s, A), \mathcal{M})$ be a matroid-rooted digraph.

- ullet There exists an ${\mathcal M}$ -based packing of spanning s-arborescences in D
- There exists an \mathcal{M} -based packing of (s, t)-paths for all $t \in V$.

- Conjecture is not true in general.
- Corresponding decision problem is NP-complet.
- Conjecture is true for
 - o rank 2 matroids,

Conjecture (Bérczi-Frank 2015)

Let $(D = (V + s, A), \mathcal{M})$ be a matroid-rooted digraph.

- ullet There exists an ${\mathcal M}$ -based packing of spanning s-arborescences in D
- There exists an \mathcal{M} -based packing of (s, t)-paths for all $t \in V$.

- Conjecture is not true in general.
- Corresponding decision problem is NP-complet.
- Conjecture is true for
 - o rank 2 matroids,
 - graphic matroids,

Conjecture (Bérczi-Frank 2015)

Let $(D = (V + s, A), \mathcal{M})$ be a matroid-rooted digraph.

- ullet There exists an ${\mathcal M}$ -based packing of spanning s-arborescences in D
- There exists an \mathcal{M} -based packing of (s, t)-paths for all $t \in V$.

- Conjecture is not true in general.
- Corresponding decision problem is NP-complet.
- Conjecture is true for
 - rank 2 matroids,
 - graphic matroids,
 - transversal matroids.

Counterexample

Digraph : acyclic, in-degree 3 for all $v \in V$, 46 vertices and 135 arcs,

Matroid: parallel extension of Fano with 64 elements,

Remark: matroid-based packing of (s, t)-paths exists for all t.

Counterexample

Graphic matroids

Theorem (FKSzT)

Let $(D = (V + s, A), \mathcal{M} = \text{graphic})$ be a matroid-rooted digraph.

- ullet There exists an ${\mathcal M}$ -based packing of spanning s-arborescences in D
- There exists an \mathcal{M} -based packing of (s,t)-paths for all $t \in V$
- $r(\partial(s,X)) + |\partial(V-X,X)| \ge r(\mathcal{M})$ for all $\emptyset \ne X \subseteq V$.

Graphic matroids

Theorem (FKSzT)

Let $(D = (V + s, A), \mathcal{M} = \text{graphic})$ be a matroid-rooted digraph.

- ullet There exists an ${\mathcal M}$ -based packing of spanning s-arborescences in D
- ullet There exists an \mathcal{M} -based packing of (s,t)-paths for all $t\in V$
- $r(\partial(s,X)) + |\partial(V-X,X)| \ge r(\mathcal{M})$ for all $\emptyset \ne X \subseteq V$.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(D = (V + s, A), \mathcal{M})$ be a matroid-rooted digraph.

- ullet There exists an ${\mathcal M}$ -based packing of s-arborescences in D
- There exists an \mathcal{M} -based packing of (s, t)-paths for all $t \in V$.
- $r(\partial(s,X)) + |\partial(V-X,X)| \ge r(\mathcal{M})$ for all $\emptyset \ne X \subseteq V$.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(D = (V + s, A), \mathcal{M})$ be a matroid-rooted digraph.

- ullet There exists an ${\mathcal M}$ -based packing of s-arborescences in D
- There exists an \mathcal{M} -based packing of (s,t)-paths for all $t \in V$.
- $r(\partial(s,X)) + |\partial(V-X,X)| \ge r(\mathcal{M})$ for all $\emptyset \ne X \subseteq V$.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(D = (V + s, A), \mathcal{M})$ be a matroid-rooted digraph.

- ullet There exists an ${\mathcal M}$ -based packing of s-arborescences in D
- There exists an \mathcal{M} -based packing of (s,t)-paths for all $t \in V$.
- $r(\partial(s,X)) + |\partial(V-X,X)| \ge r(\mathcal{M})$ for all $\emptyset \ne X \subseteq V$.

Remark

A packing of k spanning s-arborescences in D = (V + s, A) can be obtained as an \mathcal{M} -based packing of s'-arborescences in $D' = (V + s + s', A \cup A')$, where $A' = \{k \times s's\}$ and free matroid \mathcal{M} on A'.

 \exists an \mathcal{M} -based packing of s-arborescences in D

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(D = (V + s, A), \mathcal{M} = (\partial(V), \mathcal{I}))$ be a matroid-rooted digraph.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(D = (V + s, A), \mathcal{M} = (\partial(V), \mathcal{I}))$ be a matroid-rooted digraph.

 \exists an $\mathcal{M}\text{-based}$ packing of s-arborescences in D using all the root arcs \Longleftrightarrow

- $\bullet \ r(\partial(s,X)) + |\partial(V-X,X)| \ge r(\mathcal{M}) \text{ for all } \emptyset \ne X \subseteq V,$
- $\partial(s,v) \in \mathcal{I} \text{ for all } v \in V.$

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(D = (V + s, A), \mathcal{M} = (\partial(V), \mathcal{I}))$ be a matroid-rooted digraph. \exists an \mathcal{M} -based packing of s-arborescences in D using all the root arcs \iff

- $r(\partial(s,X)) + |\partial(V-X,X)| \ge r(\mathcal{M})$ for all $\emptyset \ne X \subseteq V$,
- $\partial(s,v)\in\mathcal{I}$ for all $v\in V$.

- **1** Induction on $\sum_{v \in V} (r(\mathcal{M}) |\partial(s, v)|) \ge 0$.
- ② If = 0, then $\partial(s, v)$ is a base of \mathcal{M} ; done.
- If > 0, then apply shifting operation.
- \blacksquare a shifting s.t. (D', \mathcal{M}') satisfies 1 and 2
- **⑤** By induction \exists a packing for (D', \mathcal{M}') .
- ① It provides packing for (D, \mathcal{M}) .

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(D = (V + s, A), \mathcal{M} = (\partial(V), \mathcal{I}))$ be a matroid-rooted digraph. \exists an \mathcal{M} -based packing of s-arborescences in D using all the root arcs \iff

- $r(\partial(s,X)) + |\partial(V-X,X)| \ge r(\mathcal{M})$ for all $\emptyset \ne X \subseteq V$,
- $\partial(s,v)\in\mathcal{I}$ for all $v\in V$.

- **1** Induction on $\sum_{v \in V} (r(\mathcal{M}) |\partial(s, v)|) \ge 0$.
- ② If = 0, then $\partial(s, v)$ is a base of \mathcal{M} ; done.
- If > 0, then apply shifting operation
- \bigcirc \exists a shifting s.t. (D', \mathcal{M}') satisfies 1 and 2
- **⑤** By induction \exists a packing for (D', \mathcal{M}') .
- **1** It provides packing for (D, \mathcal{M}) .

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(D = (V + s, A), \mathcal{M} = (\partial(V), \mathcal{I}))$ be a matroid-rooted digraph. \exists an \mathcal{M} -based packing of s-arborescences in D using all the root arcs \iff

- $r(\partial(s,X)) + |\partial(V-X,X)| \ge r(\mathcal{M})$ for all $\emptyset \ne X \subseteq V$,
- $\partial(s,v)\in\mathcal{I}$ for all $v\in V$.

- **1** Induction on $\sum_{v \in V} (r(\mathcal{M}) |\partial(s, v)|) \ge 0$.
- ② If = 0, then $\partial(s, v)$ is a base of \mathcal{M} ; done.
- If > 0, then apply shifting operation.
- ullet a shifting s.t. (D', \mathcal{M}') satisfies 1 and 2
- **⑤** By induction \exists a packing for (D', \mathcal{M}') .
- **1** It provides packing for (D, \mathcal{M}) .

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(D = (V + s, A), \mathcal{M} = (\partial(V), \mathcal{I}))$ be a matroid-rooted digraph. \exists an \mathcal{M} -based packing of s-arborescences in D using all the root arcs \iff

- $r(\partial(s,X)) + |\partial(V-X,X)| \ge r(\mathcal{M})$ for all $\emptyset \ne X \subseteq V$,
- $\partial(s,v)\in\mathcal{I}$ for all $v\in V$.

- **1** Induction on $\sum_{v \in V} (r(\mathcal{M}) |\partial(s, v)|) \ge 0$.
- ② If = 0, then $\partial(s, v)$ is a base of \mathcal{M} ; done.
- If > 0, then apply shifting operation.
- **4 a** shifting s.t. (D', \mathcal{M}') satisfies 1 and 2.
- **⑤** By induction \exists a packing for (D', \mathcal{M}') .
- **1** It provides packing for (D, \mathcal{M}) .

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(D = (V + s, A), \mathcal{M} = (\partial(V), \mathcal{I}))$ be a matroid-rooted digraph. \exists an \mathcal{M} -based packing of s-arborescences in D using all the root arcs \iff

- $\partial(s,v)\in\mathcal{I}$ for all $v\in V$.

- **1** Induction on $\sum_{v \in V} (r(\mathcal{M}) |\partial(s, v)|) \ge 0$.
- 2 If = 0, then $\partial(s, v)$ is a base of \mathcal{M} ; done.
- If > 0, then apply shifting operation.
- $oldsymbol{0}$ \exists a shifting s.t. (D', \mathcal{M}') satisfies 1 and 2.
- **⑤** By induction \exists a packing for (D', \mathcal{M}') .
- \odot It provides packing for (D, \mathcal{M}) .

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(D = (V + s, A), \mathcal{M} = (\partial(V), \mathcal{I}))$ be a matroid-rooted digraph. \exists an \mathcal{M} -based packing of s-arborescences in D using all the root arcs \iff

- $\partial(s,v)\in\mathcal{I}$ for all $v\in V$.

- **1** Induction on $\sum_{v \in V} (r(\mathcal{M}) |\partial(s, v)|) \ge 0$.
- 2 If = 0, then $\partial(s, v)$ is a base of \mathcal{M} ; done.
- If > 0, then apply shifting operation.
- \bullet \exists a shifting s.t. (D', \mathcal{M}') satisfies 1 and 2.
- **5** By induction \exists a packing for (D', \mathcal{M}') .
- **1** It provides packing for (D, \mathcal{M}) .

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(D = (V + s, A), \mathcal{M} = (\partial(V), \mathcal{I}))$ be a matroid-rooted digraph. \exists an \mathcal{M} -based packing of s-arborescences in D using all the root arcs \iff

- $r(\partial(s,X)) + |\partial(V-X,X)| \ge r(\mathcal{M})$ for all $\emptyset \ne X \subseteq V$,
- $\partial(s,v)\in\mathcal{I}$ for all $v\in V$.

- **1** Induction on $\sum_{v \in V} (r(\mathcal{M}) |\partial(s, v)|) \ge 0$.
- 2 If = 0, then $\partial(s, v)$ is a base of \mathcal{M} ; done.
- If > 0, then apply shifting operation.
- \bullet \exists a shifting s.t. (D', \mathcal{M}') satisfies 1 and 2.
- **5** By induction \exists a packing for (D', \mathcal{M}') .
- **1** It provides packing for (D, \mathcal{M}) .

Theorem (FKSzT)

Let $(D = (V + s, A), \mathcal{M} = \text{graphic})$ be a matroid-rooted digraph.

(i)
$$r(\partial(s,X)) + |\partial(V-X,X)| \ge r(\mathcal{M})$$
 for all $\emptyset \ne X \subseteq V$,

 $\exists \mathcal{M}$ -based packing of spanning s-arborescen. in D

Theorem (FKSzT)

Let $(D = (V + s, A), \mathcal{M} = \text{graphic})$ be a matroid-rooted digraph.

 \exists $\mathcal{M} ext{-based}$ packing of spanning $s ext{-arborescen.}$ in D using all root arcs \Longleftrightarrow

- (i) $r(\partial(s,X)) + |\partial(V-X,X)| \ge r(\mathcal{M})$ for all $\emptyset \ne X \subseteq V$,
- (ii) $\partial(s,v) \in \mathcal{I}$ for all $v \in V$.

Theorem (FKSzT)

Let $(D = (V + s, A), \mathcal{M} = \text{graphic})$ be a matroid-rooted digraph.

 \exists $\mathcal{M} ext{-based}$ packing of spanning $s ext{-arborescen.}$ in D using all root arcs \Longleftrightarrow

- (i) $r(\partial(s,X)) + |\partial(V-X,X)| \ge r(\mathcal{M})$ for all $\emptyset \ne X \subseteq V$,
- (ii) $\partial(s,v) \in \mathcal{I}$ for all $v \in V$.

- **1** Induction on $\sum_{v \in V} (r(\mathcal{M}) |\partial(s, v)|) \ge 0$.
- ② If = 0, then $\partial(s, v)$ is a base of \mathcal{M} ; done.
- \bigcirc If > 0, then apply shifting operation.
- ⓐ \exists a shifting s.t. (D', \mathcal{M}') satisfies 1 and 2.
- **⑤** By induction \exists a packing for (D', \mathcal{M}') s.t.
- It provides packing for (D, \mathcal{M}) .

Theorem (FKSzT)

Let $(D = (V + s, A), \mathcal{M} = \text{graphic})$ be a matroid-rooted digraph.

 \exists $\mathcal{M} ext{-based}$ packing of spanning $s ext{-arborescen.}$ in D using all root arcs \Longleftrightarrow

- (i) $r(\partial(s,X)) + |\partial(V-X,X)| \ge r(\mathcal{M})$ for all $\emptyset \ne X \subseteq V$,
- (ii) $\partial(s,v) \in \mathcal{I}$ for all $v \in V$.

- **1** Induction on $\sum_{v \in V} (r(\mathcal{M}) |\partial(s, v)|) \ge 0$.
- ② If = 0, then $\partial(s, v)$ is a base of \mathcal{M} ; done.
- \bigcirc If > 0, then apply shifting operation
- ⓐ \exists a shifting s.t. (D', \mathcal{M}') satisfies 1 and 2.
- **⑤** By induction \exists a packing for (D', \mathcal{M}') s.t.
- \odot It provides packing for (D, \mathcal{M}) .

Theorem (FKSzT)

Let $(D = (V + s, A), \mathcal{M} = \text{graphic})$ be a matroid-rooted digraph.

 $\exists \ \mathcal{M}\text{-based packing of spanning } \textit{s}\text{-arborescen. in } \textit{D} \ \text{using all root arcs} \Longleftrightarrow$

- (i) $r(\partial(s,X)) + |\partial(V-X,X)| \ge r(\mathcal{M})$ for all $\emptyset \ne X \subseteq V$,
- (ii) $\partial(s,v) \in \mathcal{I}$ for all $v \in V$.

- **1** Induction on $\sum_{v \in V} (r(\mathcal{M}) |\partial(s, v)|) \ge 0$.
- ② If = 0, then $\partial(s, v)$ is a base of \mathcal{M} ; done.
- \odot If > 0, then apply shifting operation.
- **④** \exists a shifting s.t. (D', \mathcal{M}') satisfies 1 and 2
- **⑤** By induction \exists a packing for (D', \mathcal{M}') s.t.
- \odot It provides packing for (D, \mathcal{M}) .

Theorem (FKSzT)

Let $(D = (V + s, A), \mathcal{M} = \text{graphic})$ be a matroid-rooted digraph.

 $\exists \; \mathcal{M}\text{-based packing of spanning } \textit{s}\text{-arborescen. in } \textit{D} \; \text{using all root arcs} \iff$

- (i) $r(\partial(s,X)) + |\partial(V-X,X)| \ge r(\mathcal{M})$ for all $\emptyset \ne X \subseteq V$,
- (ii) $\partial(s, v) \in \mathcal{I}$ for all $v \in V$.

- **1** Induction on $\sum_{v \in V} (r(\mathcal{M}) |\partial(s, v)|) \ge 0$.
- ② If = 0, then $\partial(s, v)$ is a base of \mathcal{M} ; done.
- If > 0, then apply shifting operation.
- **④** \exists a shifting s.t. (D', \mathcal{M}') satisfies 1 and 2.
- **⑤** By induction \exists a packing for (D', \mathcal{M}') s.t.
- \bullet It provides packing for (D, \mathcal{M}) .

Theorem (FKSzT)

Let $(D = (V + s, A), \mathcal{M} = \text{graphic})$ be a matroid-rooted digraph.

 $\exists \ \mathcal{M}\text{-based packing of spanning } \textit{s}\text{-arborescen. in } \textit{D} \ \text{using all root arcs} \Longleftrightarrow$

- (i) $r(\partial(s,X)) + |\partial(V-X,X)| \ge r(\mathcal{M})$ for all $\emptyset \ne X \subseteq V$,
- (ii) $\partial(s,v) \in \mathcal{I}$ for all $v \in V$.

- **1** Induction on $\sum_{v \in V} (r(\mathcal{M}) |\partial(s, v)|) \ge 0$.
- ② If = 0, then $\partial(s, v)$ is a base of \mathcal{M} ; done.
- If > 0, then apply shifting operation.
- \bullet \exists a shifting s.t. (D', \mathcal{M}') satisfies 1 and 2.
- **⑤** By induction \exists a packing for (D', \mathcal{M}') s.t.
- \odot It provides packing for (D, \mathcal{M}) .

Theorem (FKSzT)

Let $(D = (V + s, A), \mathcal{M} = \text{graphic})$ be a matroid-rooted digraph.

 $\exists \; \mathcal{M}\text{-based packing of spanning } \textit{s}\text{-arborescen. in } \textit{D} \; \text{using all root arcs} \iff$

- (i) $r(\partial(s,X)) + |\partial(V-X,X)| \ge r(\mathcal{M})$ for all $\emptyset \ne X \subseteq V$,
- (ii) $\partial(s,v) \in \mathcal{I}$ for all $v \in V$.

Proof

- **1** Induction on $\sum_{v \in V} (r(\mathcal{M}) |\partial(s, v)|) \ge 0$.
- ② If = 0, then $\partial(s, v)$ is a base of \mathcal{M} ; done.
- If > 0, then apply shifting operation.
- \bullet \exists a shifting s.t. (D', \mathcal{M}') satisfies 1 and 2.
- **5** By induction \exists a packing for (D', \mathcal{M}') s.t.
- \bigcirc It provides packing for (D, \mathcal{M}) .

(iii) x, x' belong to same arborescence

Theorem (FKSzT)

Let $(D = (V + s, A), \mathcal{M} = \text{graphic})$ be a matroid-rooted digraph.

 $\exists \ \mathcal{M}\text{-based packing of spanning } \textit{s-}\text{arborescen. in } \textit{D} \ \text{using all root arcs} \Longleftrightarrow$

- (i) $r(\partial(s,X)) + |\partial(V-X,X)| \ge r(\mathcal{M})$ for all $\emptyset \ne X \subseteq V$,
- (ii) $\partial(s,v) \in \mathcal{I}$ for all $v \in V$.

Proof

- **1** Induction on $\sum_{v \in V} (r(\mathcal{M}) |\partial(s, v)|) \ge 0$.
- ② If = 0, then $\partial(s, v)$ is a base of \mathcal{M} ; done.
- If > 0, then apply shifting operation.
- \bullet \exists a shifting s.t. (D', \mathcal{M}') satisfies 1 and 2.
- **3** By induction \exists a packing for (D', \mathcal{M}') s.t.
- **1** It provides packing for (D, \mathcal{M}) .

(iii) x, x' belong to same arborescence

Example concerning parallel elements

Remark

It cannot be required that parallel elements be contained in the same spanning *s*-arborescence.

Idea

Let (D, \mathcal{M}) be a matroid-rooted digraph where \mathcal{M} is a graphic matroid of rank k and $G = (\{0, 1, \dots, k\}, E)$ a graph representing \mathcal{M} .

(*) A root arc \vec{e} of D (that corresponds to an edge e = ij of G) may belong only to the i^{th} or to the j^{th} spanning arborescence.

- 0 $\partial(s, v)$ is a base of \mathcal{M} for all $v \in V$.
- 2 In G, corresponding edge set E_V forms a spanning tree T_V .
- 3 Orient T_v to get a spanning 0-arborescence \vec{T}_v
- ① $\vec{\mathcal{T}}_v$ provides a bijection from $\partial(s,v)$ to $\{1,\ldots,r(\mathcal{M})\}$ satisfying (\star)
- \odot These bijections provide the \mathcal{M} -based packing of s-arborescen. in D

- 0 $\partial(s, v)$ is a base of \mathcal{M} for all $v \in V$.
- ② In G, corresponding edge set E_v forms a spanning tree T_v .
- 3 Orient T_v to get a spanning 0-arborescence \vec{T}_v
- ① \vec{T}_v provides a bijection from $\partial(s,v)$ to $\{1,\ldots,r(\mathcal{M})\}$ satisfying (\star)
- \odot These bijections provide the \mathcal{M} -based packing of s-arborescen. in \mathcal{D}

- 0 $\partial(s, v)$ is a base of \mathcal{M} for all $v \in V$.
- 2 In G, corresponding edge set E_v forms a spanning tree T_v .
- **3** Orient T_v to get a spanning 0-arborescence \vec{T}_v .
- ① \vec{T}_v provides a bijection from $\partial(s,v)$ to $\{1,\ldots,r(\mathcal{M})\}$ satisfying (\star)
- \odot These bijections provide the \mathcal{M} -based packing of s-arborescen. in D

- 0 $\partial(s, v)$ is a base of \mathcal{M} for all $v \in V$.
- 2 In G, corresponding edge set E_v forms a spanning tree T_v .
- **3** Orient T_{ν} to get a spanning 0-arborescence \vec{T}_{ν} .
- \vec{T}_{ν} provides a bijection from $\partial(s, \nu)$ to $\{1, \dots, r(\mathcal{M})\}$ satisfying (\star) .
- \odot These bijections provide the \mathcal{M} -based packing of s-arborescen. in D

- 0 $\partial(s, v)$ is a base of \mathcal{M} for all $v \in V$.
- 2 In G, corresponding edge set E_v forms a spanning tree T_v .
- **3** Orient T_{ν} to get a spanning 0-arborescence \vec{T}_{ν} .
- **1** \vec{T}_{v} provides a bijection from $\partial(s, v)$ to $\{1, \ldots, r(\mathcal{M})\}$ satisfying (\star) .
- **1** These bijections provide the \mathcal{M} -based packing of s-arborescen. in D.

- 0 $\partial(s, v)$ is a base of \mathcal{M} for all $v \in V$.
- 2 In G, corresponding edge set E_v forms a spanning tree T_v .
- **3** Orient T_{ν} to get a spanning 0-arborescence \vec{T}_{ν} .
- \vec{T}_v provides a bijection from $\partial(s, v)$ to $\{1, \ldots, r(\mathcal{M})\}$ satisfying (\star) .
- **1** These bijections provide the \mathcal{M} -based packing of s-arborescen. in D.

Induction step

To be able to apply shifting

We need $pq \in A(D)$ and $x \in \partial(s,p)$ such that (D',\mathcal{M}') satisfies

- (i) $r'(\partial'(s,X)) + |\partial'(V-X,X)| \ge r'(\mathcal{M}')$ for all $\emptyset \ne X \subseteq V$,
- (ii) $\partial'(s, v) \in \mathcal{I}'$ for all $v \in V$,
- (iii) x and x' belong to the same spanning arborescence of any matroid-based packing of spanning arborescences of (D', \mathcal{M}') satisfying (\star) .

We show how to find one (pq, x) satisfying (ii) and (iii), one can show that one of them satisfies (i) as in DdG-N-Sz.

Remark : By (*),

- root arcs may belong to 2 arborescences,
- some of them may belong only to 1 arborescence.

Remark : By (\star) ,

- root arcs may belong to 2 arborescences, but
- some of them may belong only to 1 arborescence.

Remark : By (\star) ,

- root arcs may belong to 2 arborescences, but
- some of them may belong only to 1 arborescence. Which one?

Remark : By (*),

- root arcs may belong to 2 arborescences, but
- some of them may belong only to 1 arborescence. Which one? Those, contained in the connected component C_v of $G(E_v)$ that contains 0.

- **1** It is enough to find $pq \in A(D)$ such that $C_p \setminus C_q \neq \emptyset$.
- 2 $v^* \in V(D)$ that minimizes $|C_v|$, $C_{v^*} \subsetneq V(G)$ since not base case.
- ① $W := \{ v \in V(D) : C_v = C_{v^*} \}, C_W = C_{v^*} \text{ so } r(\partial(s, W)) < r(\mathcal{M}).$
- pq exists in $\partial(V \setminus W, W)$, by $|\partial(V W, W)| \ge r(\mathcal{M}) r(\partial(s, W))$

- **1** It is enough to find $pq \in A(D)$ such that $C_p \setminus C_q \neq \emptyset$.
- 2 $v^* \in V(D)$ that minimizes $|C_v|$, $C_{v^*} \subsetneq V(G)$ since not base case.
- ① $W := \{ v \in V(D) : C_v = C_{v^*} \}, C_W = C_{v^*} \text{ so } r(\partial(s, W)) < r(\mathcal{M}).$
- pq exists in $\partial(V \setminus W, W)$, by $|\partial(V W, W)| \ge r(\mathcal{M}) r(\partial(s, W))$
- **⑤** $C_p \setminus C_q \neq \emptyset$, by definition of W.

- **1** It is enough to find $pq \in A(D)$ such that $C_p \setminus C_q \neq \emptyset$.
- $v^* \in V(D)$ that minimizes $|C_v|$, $C_{v^*} \subsetneq V(G)$ since not base case.
- **3** $W := \{ v \in V(D) : C_v = C_{v^*} \}, C_W = C_{v^*} \text{ so } r(\partial(s, W)) < r(\mathcal{M}).$
- pq exists in $\partial(V \setminus W, W)$, by $|\partial(V W, W)| \ge r(\mathcal{M}) r(\partial(s, W))$

- **1** It is enough to find $pq \in A(D)$ such that $C_p \setminus C_q \neq \emptyset$.
- 2 $v^* \in V(D)$ that minimizes $|C_v|$, $C_{v^*} \subsetneq V(G)$ since not base case.
- **3** $W := \{ v \in V(D) : C_v = C_{v^*} \}, C_W = C_{v^*} \text{ so } r(\partial(s, W)) < r(\mathcal{M}).$
- pq exists in $\partial(V \setminus W, W)$, by $|\partial(V W, W)| \ge r(\mathcal{M}) r(\partial(s, W))$

- **1** It is enough to find $pq \in A(D)$ such that $C_p \setminus C_q \neq \emptyset$.
- 2 $v^* \in V(D)$ that minimizes $|C_v|$, $C_{v^*} \subsetneq V(G)$ since not base case.
- **3** $W := \{ v \in V(D) : C_v = C_{v^*} \}, C_W = C_{v^*} \text{ so } r(\partial(s, W)) < r(\mathcal{M}).$
- pq exists in $\partial(V \setminus W, W)$, by $|\partial(V W, W)| \ge r(\mathcal{M}) r(\partial(s, W))$

- **1** It is enough to find $pq \in A(D)$ such that $C_p \setminus C_q \neq \emptyset$.
- 2 $v^* \in V(D)$ that minimizes $|C_v|$, $C_{v^*} \subsetneq V(G)$ since not base case.
- pq exists in $\partial(V \setminus W, W)$, by $|\partial(V W, W)| \ge r(\mathcal{M}) r(\partial(s, W))$.

- **1** It is enough to find $pq \in A(D)$ such that $C_p \setminus C_q \neq \emptyset$.
- 2 $v^* \in V(D)$ that minimizes $|C_v|, C_{v^*} \subsetneq V(G)$ since not base case.
- **3** $W := \{ v \in V(D) : C_v = C_{v^*} \}, C_W = C_{v^*} \text{ so } r(\partial(s, W)) < r(\mathcal{M}).$
- pq exists in $\partial(V \setminus W, W)$, by $|\partial(V W, W)| \ge r(\mathcal{M}) r(\partial(s, W))$.
- **5** $C_p \setminus C_q \neq \emptyset$, by definition of W.

Conclusion

Summary

- Compact certificate of the existence of a matroid-based packing of paths :
 - 1 a matroid-based packing of arborescences and
 - 2 not a matroid-based packing of spanning arborescences;
 - **3** a matroid-based packing of spanning arborescences if the matroid is rank 2 or graphic or transversal.
- The decision problem whether a matroid-rooted graph has a matroid-based packing of spanning arborescences is NP-complet.

Thank you for your attention!