Matroid-based packing of spanning arborescences

Zoltán Szigeti

Combinatorial Optimization Group, G-SCOP
Univ. Grenoble Alpes, Grenoble INP, CNRS, France

2017 April 25

Joint work with :

Quentin Fortier	(G-SCOP, Grenoble),
Csaba Király \quad (EGRES, Budapest),	
Shin-ichi Tanigawa (University of Tokyo).	

Outline

- Motivation
- Definitions
- Problem
- Results
- Proofs
- Conclusion

Motivation

Definition

Packing subgraphs : a set of arc-disjoint subgraphs in a directed graph.

Application of path packings

- Telecommunication
- Transportation
- VLSI

Storing of path packings
Suppose D has a packing of $k(s, t)$-paths from s to each vertex t in V.

Motivation

Definition

Packing subgraphs : a set of arc-disjoint subgraphs in a directed graph.

Application of path packings

- Telecommunication
- Transportation
- VLSI

Storing of path packings
Suppose D has a packing of $k(s, t)$-paths from s to each vertex t in V. What is a compact certificate of this fact?

Motivation

Definition

Packing subgraphs : a set of arc-disjoint subgraphs in a directed graph.

Application of path packings

- Telecommunication
- Transportation
- VLSI

Storing of path packings

Suppose D has a packing of $k(s, t)$-paths from s to each vertex t in V. What is a compact certificate of this fact?
A packing of k spanning s-arborescences in D.

Packing of spanning s-arborescences

Definition

(1) s-arborescence: directed tree, in-degree of every vertex except s is 1 ,
(2) spanning subgraph of D : subgraph that contains all the vertices of D.

Theorem (Edmonds $1973+$ Menger 1927)

Let $D=(V+s, A), k \in \mathbb{Z}_{+}$.

- D has a packing of k spanning s-arborescences
- D has a packing of k paths from s to each vertex in D.

Motivation

Questions

(1) Packing $k(s, t)$-paths means sending k distinct commodities from s to t by assuming that each arc can transmit at most one commodity.
(2) What if commodities have a more involved independence structure?
(3) Suppose that every vertex can receive a sufficient amount of independent commodities to understand the whole structure. Does there exist a compact certificate for such packings of paths?

Matroids

Definition

For $\emptyset \neq \mathcal{I} \subseteq 2^{E}, \mathcal{M}=(E, \mathcal{I})$ is a matroid if
(1) If $X \subseteq Y \in \mathcal{I}$, then $X \in \mathcal{I}$,
(2) If $X, Y \in \mathcal{I}$ with $|X|<|Y|$ then $\exists y \in Y \backslash X$ such that $X \cup y \in \mathcal{I}$.

Examples

(1) Free : all subsets of a set,
(2) Graphic: edge-sets of forests of a graph,
(3) Transversal : end-vertices in S of matchings of bipartite graph ($S, T ; E$)
(9) Fano: subsets of sets of size 3 not being a line in the Fano plane.

Problem

Definition

(1) matroid-rooted digraph $(D=(V+s, A), \mathcal{M})$: a matroid \mathcal{M} is given on the set of root arcs (arcs leaving the special vertex s).

Figure: a matroid-rooted digraph

Problem

Definition

(1) matroid-rooted digraph $(D=(V+s, A), \mathcal{M})$: a matroid \mathcal{M} is given on the set of root arcs (arcs leaving the special vertex s).
(2) \mathcal{M}-based packing of (s, t)-paths : if the root arcs form a base of \mathcal{M}.

Figure: an \mathcal{M}-based packing of (s, t)-paths

Problem

Definition

(1) matroid-rooted digraph $(D=(V+s, A), \mathcal{M})$: a matroid \mathcal{M} is given on the set of root arcs (arcs leaving the special vertex s).
(2) \mathcal{M}-based packing of (s, t)-paths : if the root arcs form a base of \mathcal{M}.

Figure: Not an \mathcal{M}-based packing of (s, t)-paths

Problem

Definition

(1) matroid-rooted digraph $(D=(V+s, A), \mathcal{M})$: a matroid \mathcal{M} is given on the set of root arcs (arcs leaving the special vertex s).
(2) \mathcal{M}-based packing of (s, t)-paths : if the root arcs form a base of \mathcal{M}.
(3) \mathcal{M}-based packing of s-arborescences : if, for all $t \in V$, the packing of (s, t)-paths provided by the arborescences is \mathcal{M}-based.

Figure: an \mathcal{M}-based packing of s-arborescences

Problem

Definition

(1) matroid-rooted digraph $(D=(V+s, A), \mathcal{M})$: a matroid \mathcal{M} is given on the set of root arcs (arcs leaving the special vertex s).
(2) \mathcal{M}-based packing of (s, t)-paths : if the root arcs form a base of \mathcal{M}.
(3) \mathcal{M}-based packing of s-arborescences : if, for all $t \in V$, the packing of (s, t)-paths provided by the arborescences is \mathcal{M}-based.

Figure: an \mathcal{M}-based packing of spanning s-arborescences

Problem

Definition

(1) matroid-rooted digraph $(D=(V+s, A), \mathcal{M})$: a matroid \mathcal{M} is given on the set of root arcs (arcs leaving the special vertex s).
(2) \mathcal{M}-based packing of (s, t)-paths : if the root arcs form a base of \mathcal{M}.
(3) \mathcal{M}-based packing of s-arborescences : if, for all $t \in V$, the packing of (s, t)-paths provided by the arborescences is \mathcal{M}-based.

Remark

Let $(D=(V+s, A), \mathcal{M})$ be matroid-rooted digraph.

- There exists an \mathcal{M}-based packing of (s, t)-paths for all $t \in V$
- $r(\partial(s, X))+|\partial(V-X, X)| \geq r(\mathcal{M})$ for all $\emptyset \neq X \subseteq V$.

Problem

Definition

(1) matroid-rooted digraph $(D=(V+s, A), \mathcal{M})$: a matroid \mathcal{M} is given on the set of root arcs (arcs leaving the special vertex s).
(2) \mathcal{M}-based packing of (s, t)-paths : if the root arcs form a base of \mathcal{M}.
(3) \mathcal{M}-based packing of s-arborescences : if, for all $t \in V$, the packing of (s, t)-paths provided by the arborescences is \mathcal{M}-based.

Remark

Let $(D=(V+s, A), \mathcal{M})$ be matroid-rooted digraph.

- There exists an \mathcal{M}-based packing of (s, t)-paths for all $t \in V$
- $r(\partial(s, X))+|\partial(V-X, X)| \geq r(\mathcal{M})$ for all $\emptyset \neq X \subseteq V$.

Question

Can Edmonds' theorem be extended for \mathcal{M}-based packings ?

Matroid-based packing of spanning s-arborescences

Conjecture (Bérczi-Frank 2015)

Let $(D=(V+s, A), \mathcal{M})$ be a matroid-rooted digraph.

- There exists an \mathcal{M}-based packing of spanning s-arborescences in D
- There exists an \mathcal{M}-based packing of (s, t)-paths for all $t \in V$.

Matroid-based packing of spanning s-arborescences

Conjecture (Bérczi-Frank 2015)

Let $(D=(V+s, A), \mathcal{M})$ be a matroid-rooted digraph.

- There exists an \mathcal{M}-based packing of spanning s-arborescences in D
- There exists an \mathcal{M}-based packing of (s, t)-paths for all $t \in V$.

Contribution (FKSzT)

Matroid-based packing of spanning s-arborescences

Conjecture (Bérczi-Frank 2015)

Let $(D=(V+s, A), \mathcal{M})$ be a matroid-rooted digraph.

- There exists an \mathcal{M}-based packing of spanning s-arborescences in D
- There exists an \mathcal{M}-based packing of (s, t)-paths for all $t \in V$.

Contribution (FKSzT)

(1) Conjecture is not true in general.

Matroid-based packing of spanning s-arborescences

Conjecture (Bérczi-Frank 2015)

Let $(D=(V+s, A), \mathcal{M})$ be a matroid-rooted digraph.

- There exists an \mathcal{M}-based packing of spanning s-arborescences in D
- There exists an \mathcal{M}-based packing of (s, t)-paths for all $t \in V$.

Contribution (FKSzT)

(1) Conjecture is not true in general.
(2) Corresponding decision problem is NP-complet.

Matroid-based packing of spanning s-arborescences

Conjecture (Bérczi-Frank 2015)

Let $(D=(V+s, A), \mathcal{M})$ be a matroid-rooted digraph.

- There exists an \mathcal{M}-based packing of spanning s-arborescences in D
- There exists an \mathcal{M}-based packing of (s, t)-paths for all $t \in V$.

Contribution (FKSzT)

(1) Conjecture is not true in general.
(2) Corresponding decision problem is NP-complet.
(3) Conjecture is true for

Matroid-based packing of spanning s-arborescences

Conjecture (Bérczi-Frank 2015)

Let $(D=(V+s, A), \mathcal{M})$ be a matroid-rooted digraph.

- There exists an \mathcal{M}-based packing of spanning s-arborescences in D
- There exists an \mathcal{M}-based packing of (s, t)-paths for all $t \in V$.

Contribution (FKSzT)

(1) Conjecture is not true in general.
(2) Corresponding decision problem is NP-complet.
(3) Conjecture is true for
(1) rank 2 matroids,

Matroid-based packing of spanning s-arborescences

Conjecture (Bérczi-Frank 2015)

Let $(D=(V+s, A), \mathcal{M})$ be a matroid-rooted digraph.

- There exists an \mathcal{M}-based packing of spanning s-arborescences in D
- There exists an \mathcal{M}-based packing of (s, t)-paths for all $t \in V$.

Contribution (FKSzT)

(1) Conjecture is not true in general.
(2) Corresponding decision problem is NP-complet.
(3) Conjecture is true for
(1) rank 2 matroids,
(2) graphic matroids,

Matroid-based packing of spanning s-arborescences

Conjecture (Bérczi-Frank 2015)

Let $(D=(V+s, A), \mathcal{M})$ be a matroid-rooted digraph.

- There exists an \mathcal{M}-based packing of spanning s-arborescences in D
- There exists an \mathcal{M}-based packing of (s, t)-paths for all $t \in V$.

Contribution (FKSzT)

(1) Conjecture is not true in general.
(2) Corresponding decision problem is NP-complet.
(3) Conjecture is true for
(1) rank 2 matroids,
(2) graphic matroids,
(3) transversal matroids.

Counterexample

Digraph : acyclic, in-degree 3 for all $v \in V, 46$ vertices and 135 arcs, Matroid : parallel extension of Fano with 64 elements, Remark : matroid-based packing of (s, t)-paths exists for all t.

Operation 1

Operation 2

Operation 3

Operation 4

Operation 5

Counterexample

Graphic matroids

Theorem (FKSzT)

Let $(D=(V+s, A), \mathcal{M}=$ graphic) be a matroid-rooted digraph.

- There exists an \mathcal{M}-based packing of spanning s-arborescences in D
- There exists an \mathcal{M}-based packing of (s, t)-paths for all $t \in V$

Graphic matroids

Theorem (FKSzT)

Let $(D=(V+s, A), \mathcal{M}=$ graphic) be a matroid-rooted digraph.

- There exists an \mathcal{M}-based packing of spanning s-arborescences in D
- There exists an \mathcal{M}-based packing of (s, t)-paths for all $t \in V$
- $r(\partial(s, X))+|\partial(V-X, X)| \geq r(\mathcal{M})$ for all $\emptyset \neq X \subseteq V$.

Matroid-based packing of s-arborescences

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(D=(V+s, A), \mathcal{M})$ be a matroid-rooted digraph.

- There exists an \mathcal{M}-based packing of s-arborescences in D
- There exists an \mathcal{M}-based packing of (s, t)-paths for all $t \in V$.

Matroid-based packing of s-arborescences

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(D=(V+s, A), \mathcal{M})$ be a matroid-rooted digraph.

- There exists an \mathcal{M}-based packing of s-arborescences in D
- There exists an \mathcal{M}-based packing of (s, t)-paths for all $t \in V$.
- $r(\partial(s, X))+|\partial(V-X, X)| \geq r(\mathcal{M})$ for all $\emptyset \neq X \subseteq V$.

Matroid-based packing of s-arborescences

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(D=(V+s, A), \mathcal{M})$ be a matroid-rooted digraph.

- There exists an \mathcal{M}-based packing of s-arborescences in D
- There exists an \mathcal{M}-based packing of (s, t)-paths for all $t \in V$.
- $r(\partial(s, X))+|\partial(V-X, X)| \geq r(\mathcal{M})$ for all $\emptyset \neq X \subseteq V$.

Remark

A packing of k spanning s-arborescences in $D=(V+s, A)$ can be obtained as an \mathcal{M}-based packing of s^{\prime}-arborescences in $D^{\prime}=\left(V+s+s^{\prime}, A \cup A^{\prime}\right)$, where $A^{\prime}=\left\{k \times s^{\prime} s\right\}$ and free matroid \mathcal{M} on A^{\prime}.

Matroid-based packing of s-arborescences

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(D=(V+s, A), \mathcal{M}=(\partial(V), \mathcal{I}))$ be a matroid-rooted digraph. \exists an \mathcal{M}-based packing of s-arborescences in D
(1) $r(\partial(s, X))+|\partial(V-X, X)| \geq r(\mathcal{M})$ for all $\emptyset \neq X \subseteq V$,

Matroid-based packing of s-arborescences

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(D=(V+s, A), \mathcal{M}=(\partial(V), \mathcal{I}))$ be a matroid-rooted digraph. \exists an \mathcal{M}-based packing of s-arborescences in D using all the root arcs
(1) $r(\partial(s, X))+|\partial(V-X, X)| \geq r(\mathcal{M})$ for all $\emptyset \neq X \subseteq V$,
(2) $\partial(s, v) \in \mathcal{I}$ for all $v \in V$.

Matroid-based packing of s-arborescences

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(D=(V+s, A), \mathcal{M}=(\partial(V), \mathcal{I}))$ be a matroid-rooted digraph.
\exists an \mathcal{M}-based packing of s-arborescences in D using all the root arcs
(1) $r(\partial(s, X))+|\partial(V-X, X)| \geq r(\mathcal{M})$ for all $\emptyset \neq X \subseteq V$,
(2) $\partial(s, v) \in \mathcal{I}$ for all $v \in V$.

Proof

(1) Induction on $\sum_{v \in V}(r(\mathcal{M})-|\partial(s, v)|) \geq 0$.
(2) If $=0$, then $\partial(s, v)$ is a base of \mathcal{M}; done.
(3) If >0, then apply shifting operation.
(9) \exists a shifting s.t. $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$ satisfies 1 and 2 .
(5) By induction \exists a packing for $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$.

(0) It provides packing for (D, \mathcal{M})

Matroid-based packing of s-arborescences

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(D=(V+s, A), \mathcal{M}=(\partial(V), \mathcal{I}))$ be a matroid-rooted digraph.
\exists an \mathcal{M}-based packing of s-arborescences in D using all the root arcs
(1) $r(\partial(s, X))+|\partial(V-X, X)| \geq r(\mathcal{M})$ for all $\emptyset \neq X \subseteq V$,
(2) $\partial(s, v) \in \mathcal{I}$ for all $v \in V$.

Proof

(1) Induction on $\sum_{v \in V}(r(\mathcal{M})-|\partial(s, v)|) \geq 0$.
(2) If $=0$, then $\partial(s, v)$ is a base of \mathcal{M}; done.
(3) If >0, then apply shifting operation.
© \exists a shifting s.t. $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$ satisfies 1 and 2 .
(5) By induction \exists a packing for $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$.

(0) It provides packing for (D, \mathcal{M})

Matroid-based packing of s-arborescences

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(D=(V+s, A), \mathcal{M}=(\partial(V), \mathcal{I}))$ be a matroid-rooted digraph.
\exists an \mathcal{M}-based packing of s-arborescences in D using all the root arcs
(1) $r(\partial(s, X))+|\partial(V-X, X)| \geq r(\mathcal{M})$ for all $\emptyset \neq X \subseteq V$,
(2) $\partial(s, v) \in \mathcal{I}$ for all $v \in V$.

Proof

(1) Induction on $\sum_{v \in V}(r(\mathcal{M})-|\partial(s, v)|) \geq 0$.
(2) If $=0$, then $\partial(s, v)$ is a base of \mathcal{M}; done.
(3) If >0, then apply shifting operation.
© \exists a shifting s.t. $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$ satisfies 1 and 2 .
(5) By induction \exists a packing for $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$.

(0) It provides packing for (D, \mathcal{M})

Matroid-based packing of s-arborescences

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(D=(V+s, A), \mathcal{M}=(\partial(V), \mathcal{I}))$ be a matroid-rooted digraph.
\exists an \mathcal{M}-based packing of s-arborescences in D using all the root arcs
(1) $r(\partial(s, X))+|\partial(V-X, X)| \geq r(\mathcal{M})$ for all $\emptyset \neq X \subseteq V$,
(2) $\partial(s, v) \in \mathcal{I}$ for all $v \in V$.

Proof

(1) Induction on $\sum_{v \in V}(r(\mathcal{M})-|\partial(s, v)|) \geq 0$.
(2) If $=0$, then $\partial(s, v)$ is a base of \mathcal{M}; done.
(3) If >0, then apply shifting operation.
© \exists a shifting s.t. $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$ satisfies 1 and 2 .
(5) By induction \exists a packing for $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$.

(0) It provides packing for (D, \mathcal{M})

Matroid-based packing of s-arborescences

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(D=(V+s, A), \mathcal{M}=(\partial(V), \mathcal{I}))$ be a matroid-rooted digraph.
\exists an \mathcal{M}-based packing of s-arborescences in D using all the root arcs
(1) $r(\partial(s, X))+|\partial(V-X, X)| \geq r(\mathcal{M})$ for all $\emptyset \neq X \subseteq V$,
(2) $\partial(s, v) \in \mathcal{I}$ for all $v \in V$.

Proof

(1) Induction on $\sum_{v \in V}(r(\mathcal{M})-|\partial(s, v)|) \geq 0$.
(2) If $=0$, then $\partial(s, v)$ is a base of \mathcal{M}; done.
(3) If >0, then apply shifting operation.
(4) \exists a shifting s.t. $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$ satisfies 1 and 2 .
(3) By induction \exists a packing for $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$.

(6) It provides packing for (D, \mathcal{M})

Matroid-based packing of s-arborescences

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(D=(V+s, A), \mathcal{M}=(\partial(V), \mathcal{I}))$ be a matroid-rooted digraph.
\exists an \mathcal{M}-based packing of s-arborescences in D using all the root arcs
(1) $r(\partial(s, X))+|\partial(V-X, X)| \geq r(\mathcal{M})$ for all $\emptyset \neq X \subseteq V$,
(2) $\partial(s, v) \in \mathcal{I}$ for all $v \in V$.

Proof

(1) Induction on $\sum_{v \in V}(r(\mathcal{M})-|\partial(s, v)|) \geq 0$.
(2) If $=0$, then $\partial(s, v)$ is a base of \mathcal{M}; done.
(3) If >0, then apply shifting operation.
(4) \exists a shifting s.t. $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$ satisfies 1 and 2 .
(5) By induction \exists a packing for $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$.

(6) It provides packing for (D, \mathcal{M}).

Matroid-based packing of s-arborescences

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(D=(V+s, A), \mathcal{M}=(\partial(V), \mathcal{I}))$ be a matroid-rooted digraph.
\exists an \mathcal{M}-based packing of s-arborescences in D using all the root arcs
(1) $r(\partial(s, X))+|\partial(V-X, X)| \geq r(\mathcal{M})$ for all $\emptyset \neq X \subseteq V$,
(2) $\partial(s, v) \in \mathcal{I}$ for all $v \in V$.

Proof

(1) Induction on $\sum_{v \in V}(r(\mathcal{M})-|\partial(s, v)|) \geq 0$.
(2) If $=0$, then $\partial(s, v)$ is a base of \mathcal{M}; done.
(3) If >0, then apply shifting operation.
(4) \exists a shifting s.t. $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$ satisfies 1 and 2 .
(5) By induction \exists a packing for $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$.
(0) It provides packing for (D, \mathcal{M}).

Graphic matroids

Theorem (FKSzT)

Let $(D=(V+s, A), \mathcal{M}=$ graphic) be a matroid-rooted digraph.
$\exists \mathcal{M}$-based packing of spanning s-arborescen. in D
(i) $r(\partial(s, X))+|\partial(V-X, X)| \geq r(\mathcal{M})$ for all $\emptyset \neq X \subseteq V$,

Graphic matroids

Theorem (FKSzT)

Let $(D=(V+s, A), \mathcal{M}=$ graphic) be a matroid-rooted digraph.
$\exists \mathcal{M}$-based packing of spanning s-arborescen. in D using all root arcs \Longleftrightarrow
(i) $r(\partial(s, X))+|\partial(V-X, X)| \geq r(\mathcal{M})$ for all $\emptyset \neq X \subseteq V$,
(ii) $\partial(s, v) \in \mathcal{I}$ for all $v \in V$.

Graphic matroids

Theorem (FKSzT)

Let $(D=(V+s, A), \mathcal{M}=$ graphic) be a matroid-rooted digraph.
$\exists \mathcal{M}$-based packing of spanning s-arborescen. in D using all root arcs \Longleftrightarrow
(i) $r(\partial(s, X))+|\partial(V-X, X)| \geq r(\mathcal{M})$ for all $\emptyset \neq X \subseteq V$,
(ii) $\partial(s, v) \in \mathcal{I}$ for all $v \in V$.

Proof

(1) Induction on $\sum_{v \in V}(r(\mathcal{M})-|\partial(s, v)|) \geq 0$.
(2) If $=0$, then $\partial(s, v)$ is a base of \mathcal{M}; done.
(3) If >0, then apply shifting operation.

(0) \exists a shifting s.t. $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$ satisfies 1 and 2 .
© By induction \exists a packing for $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$ s.t.
(6) It provides packing for (D, \mathcal{M})

Graphic matroids

Theorem (FKSzT)

Let $(D=(V+s, A), \mathcal{M}=$ graphic) be a matroid-rooted digraph.
$\exists \mathcal{M}$-based packing of spanning s-arborescen. in D using all root arcs \Longleftrightarrow
(i) $r(\partial(s, X))+|\partial(V-X, X)| \geq r(\mathcal{M})$ for all $\emptyset \neq X \subseteq V$,
(ii) $\partial(s, v) \in \mathcal{I}$ for all $v \in V$.

Proof

(1) Induction on $\sum_{v \in V}(r(\mathcal{M})-|\partial(s, v)|) \geq 0$.
(2) If $=0$, then $\partial(s, v)$ is a base of \mathcal{M}; done.
(3) If >0, then apply shifting operation.

(9) \exists a shifting s.t. $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$ satisfies 1 and 2 .
© By induction \exists a packing for $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$ s.t.
(6) It provides packing for (D, \mathcal{M})

Graphic matroids

Theorem (FKSzT)

Let $(D=(V+s, A), \mathcal{M}=$ graphic) be a matroid-rooted digraph.
$\exists \mathcal{M}$-based packing of spanning s-arborescen. in D using all root arcs \Longleftrightarrow
(i) $r(\partial(s, X))+|\partial(V-X, X)| \geq r(\mathcal{M})$ for all $\emptyset \neq X \subseteq V$,
(ii) $\partial(s, v) \in \mathcal{I}$ for all $v \in V$.

Proof

(1) Induction on $\sum_{v \in V}(r(\mathcal{M})-|\partial(s, v)|) \geq 0$.
(2) If $=0$, then $\partial(s, v)$ is a base of \mathcal{M}; done.
(3) If >0, then apply shifting operation.

© \exists a shifting s.t. $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$ satisfies 1 and 2 . © By induction \exists a packing for $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$ s.t. (6) It provides packing for (D, \mathcal{M})

Graphic matroids

Theorem (FKSzT)

Let $(D=(V+s, A), \mathcal{M}=$ graphic) be a matroid-rooted digraph.
$\exists \mathcal{M}$-based packing of spanning s-arborescen. in D using all root arcs \Longleftrightarrow
(i) $r(\partial(s, X))+|\partial(V-X, X)| \geq r(\mathcal{M})$ for all $\emptyset \neq X \subseteq V$,
(ii) $\partial(s, v) \in \mathcal{I}$ for all $v \in V$.

Proof

(1) Induction on $\sum_{v \in V}(r(\mathcal{M})-|\partial(s, v)|) \geq 0$.
(2) If $=0$, then $\partial(s, v)$ is a base of \mathcal{M}; done.
(3) If >0, then apply shifting operation.

© a shifting s.t. $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$ satisfies 1 and 2 . © By induction \exists a packing for $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$ s.t. (6) It provides packing for (D, \mathcal{M})

Graphic matroids

Theorem (FKSzT)

Let $(D=(V+s, A), \mathcal{M}=$ graphic) be a matroid-rooted digraph.
$\exists \mathcal{M}$-based packing of spanning s-arborescen. in D using all root arcs \Longleftrightarrow
(i) $r(\partial(s, X))+|\partial(V-X, X)| \geq r(\mathcal{M})$ for all $\emptyset \neq X \subseteq V$,
(ii) $\partial(s, v) \in \mathcal{I}$ for all $v \in V$.

Proof

(1) Induction on $\sum_{v \in V}(r(\mathcal{M})-|\partial(s, v)|) \geq 0$.
(2) If $=0$, then $\partial(s, v)$ is a base of \mathcal{M}; done.
(3) If >0, then apply shifting operation.
(4) \exists a shifting s.t. $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$ satisfies 1 and 2 .
© By induction \exists a packing for $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$ s.t.
(6) It provides packing for (D, \mathcal{M})

Graphic matroids

Theorem (FKSzT)

Let $(D=(V+s, A), \mathcal{M}=$ graphic) be a matroid-rooted digraph.
$\exists \mathcal{M}$-based packing of spanning s-arborescen. in D using all root arcs \Longleftrightarrow
(i) $r(\partial(s, X))+|\partial(V-X, X)| \geq r(\mathcal{M})$ for all $\emptyset \neq X \subseteq V$,
(ii) $\partial(s, v) \in \mathcal{I}$ for all $v \in V$.

Proof

(1) Induction on $\sum_{v \in V}(r(\mathcal{M})-|\partial(s, v)|) \geq 0$.
(2) If $=0$, then $\partial(s, v)$ is a base of \mathcal{M}; done.
(3) If >0, then apply shifting operation.
(4) \exists a shifting s.t. $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$ satisfies 1 and 2 .
(6) By induction \exists a packing for $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$ s.t.
(6) It provides packing for (D, \mathcal{M})

(iii) x, x^{\prime} belong to same arborescence

Graphic matroids

Theorem (FKSzT)

Let $(D=(V+s, A), \mathcal{M}=$ graphic) be a matroid-rooted digraph.
$\exists \mathcal{M}$-based packing of spanning s-arborescen. in D using all root arcs \Longleftrightarrow
(i) $r(\partial(s, X))+|\partial(V-X, X)| \geq r(\mathcal{M})$ for all $\emptyset \neq X \subseteq V$,
(ii) $\partial(s, v) \in \mathcal{I}$ for all $v \in V$.

Proof

(1) Induction on $\sum_{v \in V}(r(\mathcal{M})-|\partial(s, v)|) \geq 0$.
(2) If $=0$, then $\partial(s, v)$ is a base of \mathcal{M}; done.
(3) If >0, then apply shifting operation.
(4) \exists a shifting s.t. $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$ satisfies 1 and 2 .
(6) By induction \exists a packing for $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$ s.t.
(0) It provides packing for (D, \mathcal{M}).

(iii) x, x^{\prime} belong to same arborescence

Example concerning parallel elements

Remark

It cannot be required that parallel elements be contained in the same spanning s-arborescence.

Graphic matroids

Idea

Let (D, \mathcal{M}) be a matroid-rooted digraph where \mathcal{M} is a graphic matroid of rank k and $G=(\{0,1, \ldots, k\}, E)$ a graph representing \mathcal{M}.
(\star) A root arc \vec{e} of D (that corresponds to an edge $e=i j$ of G) may belong only to the $i^{\text {th }}$ or to the $j^{\text {th }}$ spanning arborescence.

Base case for induction

Remark

(1) $\partial(s, v)$ is a base of \mathcal{M} for all $v \in V$.
(2) In G, corresponding edge set E_{V} forms a spanning tree T_{V}
(3) Orient T_{v} to get a spanning 0 -arborescence \vec{T}
(a) \vec{T}_{v} provides a bijection from $\partial(s, v)$ to $\{1, \ldots, r(\mathcal{M})\}$ satisfying $(*)$.
(5) These bijections provide the \mathcal{M}-based packing of s-arborescen. in D.

Base case for induction

Remark

(1) $\partial(s, v)$ is a base of \mathcal{M} for all $v \in V$.
(2) In G, corresponding edge set E_{V} forms a spanning tree T_{v}.
(3) Orient T_{v} to get a spanning 0 -arborescence
(1) \vec{T}_{v} provides a bijection from $\partial(s, v)$ to $\{1, \ldots, r(\mathcal{M})\}$ satisfying (\star).
(5) These bijections provide the \mathcal{M}-based packing of s-arborescen. in D.

Base case for induction

Remark

(1) $\partial(s, v)$ is a base of \mathcal{M} for all $v \in V$.
(2) In G, corresponding edge set E_{V} forms a spanning tree T_{v}.
(3) Orient T_{v} to get a spanning 0 -arborescence \vec{T}_{v}.
(9) \vec{T}_{v} provides a bijection from $\partial(s, v)$ to $\{1, \ldots, r(\mathcal{M})\}$ satisfying $(*)$.
(5) These bijections provide the \mathcal{M}-based packing of s-arborescen. in D.

Base case for induction

Remark

(1) $\partial(s, v)$ is a base of \mathcal{M} for all $v \in V$.
(2) In G, corresponding edge set E_{v} forms a spanning tree T_{v}.
(3) Orient T_{v} to get a spanning 0 -arborescence \vec{T}_{v}.
(4) \vec{T}_{v} provides a bijection from $\partial(s, v)$ to $\{1, \ldots, r(\mathcal{M})\}$ satisfying (\star).

© These bijections provide the \mathcal{M}-based packing of s-arborescen. in D.

Base case for induction

Remark

(1) $\partial(s, v)$ is a base of \mathcal{M} for all $v \in V$.
(2) In G, corresponding edge set E_{v} forms a spanning tree T_{v}.
(3) Orient T_{v} to get a spanning 0 -arborescence \vec{T}_{v}.
(1) \vec{T}_{v} provides a bijection from $\partial(s, v)$ to $\{1, \ldots, r(\mathcal{M})\}$ satisfying (\star).
(5) These bijections provide the \mathcal{M}-based packing of s-arborescen. in D.

Base case for induction

Remark

(1) $\partial(s, v)$ is a base of \mathcal{M} for all $v \in V$.
(2) In G, corresponding edge set E_{v} forms a spanning tree T_{v}.
(3) Orient T_{v} to get a spanning 0 -arborescence \vec{T}_{v}.
(4) \vec{T}_{v} provides a bijection from $\partial(s, v)$ to $\{1, \ldots, r(\mathcal{M})\}$ satisfying (\star).
(5) These bijections provide the \mathcal{M}-based packing of s-arborescen. in D.

Induction step

To be able to apply shifting

We need $p q \in A(D)$ and $x \in \partial(s, p)$ such that $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$ satisfies
(i) $r^{\prime}\left(\partial^{\prime}(s, X)\right)+\left|\partial^{\prime}(V-X, X)\right| \geq r^{\prime}\left(\mathcal{M}^{\prime}\right)$ for all $\emptyset \neq X \subseteq V$,
(ii) $\partial^{\prime}(s, v) \in \mathcal{I}^{\prime}$ for all $v \in V$,
(iii) x and x^{\prime} belong to the same spanning arborescence of any matroidbased packing of spanning arborescences of $\left(D^{\prime}, \mathcal{M}^{\prime}\right)$ satisfying (\star).
We show how to find one ($p q, x$) satisfying (ii) and (iii), one can show that one of them satisfies (i) as in DdG-N-Sz.

Unique arborescence

Remark: By (\star),

- root arcs may belong to 2 arborescences,
- some of them may belong only to 1 arborescence.

$$
G\left(E_{v}\right)
$$

Unique arborescence

Remark: By (\star),

- root arcs may belong to 2 arborescences, but
- some of them may belong only to 1 arborescence.

$$
G\left(E_{v}\right)
$$

D

Unique arborescence

Remark: By (\star),

- root arcs may belong to 2 arborescences, but
- some of them may belong only to 1 arborescence. Which one?

$$
G\left(E_{v}\right)
$$

Unique arborescence

Remark: By (\star),

- root arcs may belong to 2 arborescences, but
- some of them may belong only to 1 arborescence. Which one? Those, contained in the connected component C_{v} of $G\left(E_{v}\right)$ that contains 0 .

$$
G\left(E_{v}\right)
$$

How to find ($p q, x$) satisfying (ii) and (iii) ?

Proof

(1) It is enough to find $p q \in A(D)$ such that $C_{p} \backslash C_{q} \neq \emptyset$.
(2) $v^{*} \in V(D)$ that minimizes $\left|C_{v}\right|, C_{v^{*}} \subsetneq V(G)$ since not base case.
(3) $W:=\left\{v \in V(D): C_{v}=C_{v^{*}}\right\}, C_{W}=C_{v^{*}}$ so $r(\partial(s, W))<r(\mathcal{M})$
(9) pq exists in $\partial(V \backslash W, W)$, by $|\partial(V-W, W)| \geq r(\mathcal{M})-r(\partial(s, W))$
(©) $C_{p} \backslash C_{q} \neq \emptyset$, by definition of W.

$$
C_{p} \cup C_{q}
$$

D

How to find ($p q, x$) satisfying (ii) and (iii) ?

Proof

(1) It is enough to find $p q \in A(D)$ such that $C_{p} \backslash C_{q} \neq \emptyset$.
(3) $v^{*} \in V(D)$ that minimizes $\left|C_{V}\right|, C_{v^{*}} \subsetneq V(G)$ since not base case.
(3) $W:=\left\{v \in V(D): C_{v}=C_{v^{*}}\right\}, C_{W}=C_{v^{*}}$ so $r(\partial(s, W))<r(\mathcal{M})$
(9) pq exists in $\partial(V \backslash W, W)$, by $|\partial(V-W, W)| \geq r(\mathcal{M})-r(\partial(s, W))$
(©) $C_{p} \backslash C_{q} \neq \emptyset$, by definition of W.

$$
C_{p} \cup C_{q}
$$

D

How to find ($p q, x$) satisfying (ii) and (iii) ?

Proof

(1) It is enough to find $p q \in A(D)$ such that $C_{p} \backslash C_{q} \neq \emptyset$.
(2) $v^{*} \in V(D)$ that minimizes $\left|C_{V}\right|, C_{v^{*}} \subsetneq V(G)$ since not base case.
(3) $W:=\left\{v \in V(D): C_{v}=C_{v^{*}}\right\}, C_{W}=C_{v^{*}}$ so $r(\partial(s, W))<r(\mathcal{M})$
(9) pq exists in $\partial(V \backslash W, W)$, by $|\partial(V-W, W)| \geq r(\mathcal{M})-r(\partial(s, W))$
(©) $C_{p} \backslash C_{q} \neq \emptyset$, by definition of W.

$$
C_{p}^{\prime} \cup C_{q}^{\prime} \quad D^{\prime}
$$

How to find ($p q, x$) satisfying (ii) and (iii) ?

Proof

(1) It is enough to find $p q \in A(D)$ such that $C_{p} \backslash C_{q} \neq \emptyset$.
(2) $v^{*} \in V(D)$ that minimizes $\left|C_{v}\right|, C_{V^{*}} \subsetneq V(G)$ since not base case.

(9) pq exists in $\partial(V \backslash W, W)$, by $|\partial(V-W, W)| \geq r(\mathcal{M})-r(\partial(s, W))$.
(6) $C_{p} \backslash C_{q} \neq \emptyset$, by definition of W.

$$
C_{p}^{\prime} \cup C_{q}^{\prime}
$$

D^{\prime}

How to find ($p q, x$) satisfying (ii) and (iii) ?

Proof

(1) It is enough to find $p q \in A(D)$ such that $C_{p} \backslash C_{q} \neq \emptyset$.
(2) $v^{*} \in V(D)$ that minimizes $\left|C_{v}\right|, C_{V^{*}} \subsetneq V(G)$ since not base case.
(3) $W:=\left\{v \in V(D): C_{v}=C_{v^{*}}\right\}, C_{W}=C_{v^{*}}$ so $r(\partial(s, W))<r(\mathcal{M})$.
© pq exists in $\partial(V \backslash W, W)$, by $|\partial(V-W, W)| \geq r(\mathcal{M})-r(\partial(s, W))$.
(5) $C_{p} \backslash C_{q} \neq \emptyset$, by definition of W.

$$
C_{p}^{\prime} \cup C_{q}^{\prime}
$$

D^{\prime}

How to find ($p q, x$) satisfying (ii) and (iii) ?

Proof

(1) It is enough to find $p q \in A(D)$ such that $C_{p} \backslash C_{q} \neq \emptyset$.
(2) $v^{*} \in V(D)$ that minimizes $\left|C_{v}\right|, C_{v^{*}} \subsetneq V(G)$ since not base case.
(3) $W:=\left\{v \in V(D): C_{v}=C_{v^{*}}\right\}, C_{W}=C_{v^{*}}$ so $r(\partial(s, W))<r(\mathcal{M})$.
(9) pq exists in $\partial(V \backslash W, W)$, by $|\partial(V-W, W)| \geq r(\mathcal{M})-r(\partial(s, W))$.
(©) $C_{p} \backslash C_{q} \neq \emptyset$, by definition of W.

$$
C_{p}^{\prime} \cup C_{q}^{\prime}
$$

D^{\prime}

How to find ($p q, x$) satisfying (ii) and (iii) ?

Proof

(1) It is enough to find $p q \in A(D)$ such that $C_{p} \backslash C_{q} \neq \emptyset$.
(2) $v^{*} \in V(D)$ that minimizes $\left|C_{v}\right|, C_{v^{*}} \subsetneq V(G)$ since not base case.
(3) $W:=\left\{v \in V(D): C_{v}=C_{v^{*}}\right\}, C_{W}=C_{v^{*}}$ so $r(\partial(s, W))<r(\mathcal{M})$.
(9) pq exists in $\partial(V \backslash W, W)$, by $|\partial(V-W, W)| \geq r(\mathcal{M})-r(\partial(s, W))$.
(0) $C_{p} \backslash C_{q} \neq \emptyset$, by definition of W.

$$
C_{p}^{\prime} \cup C_{q}^{\prime} \quad D^{\prime}
$$

Conclusion

Summary

(1) Compact certificate of the existence of a matroid-based packing of paths :
(1) a matroid-based packing of arborescences and
(2) not a matroid-based packing of spanning arborescences;
(3) a matroid-based packing of spanning arborescences if the matroid is rank 2 or graphic or transversal.
(2) The decision problem whether a matroid-rooted graph has a matroid-based packing of spanning arborescences is NP-complet.

Thank you for your attention!

