Reliable Network Design

Zoltán SZIGETI

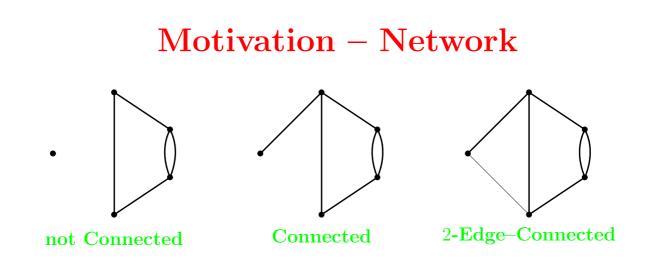
Equipe Combinatoire et Optimisation Université Paris 6

Joint work with L. Végh

B-G-J-Sz= J. Bang-Jensen, H. Gabow, T. Jordán, Z. Szigeti

Plan of the talk

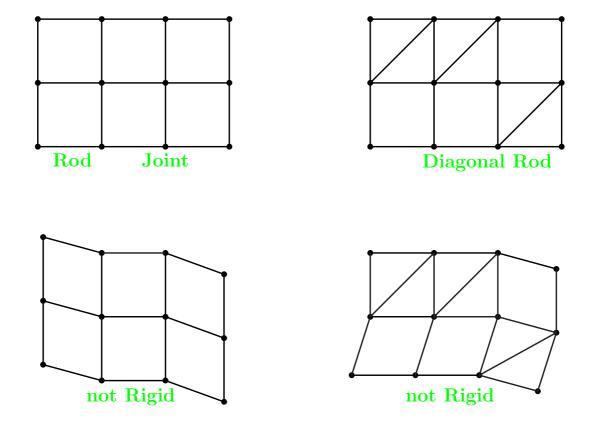
Motivations	: Networks, Frameworks
Problem	: Connectivity Augmentation
Versions	: Graphs & Bipartite Graphs Global & Local Edge-Conn.
Results	: Authors
\mathbf{Method}	: Algorithm of Frank
	(Extension & Splitting)
Results	: Extension Splitting Min-Max Theorems Algorithms

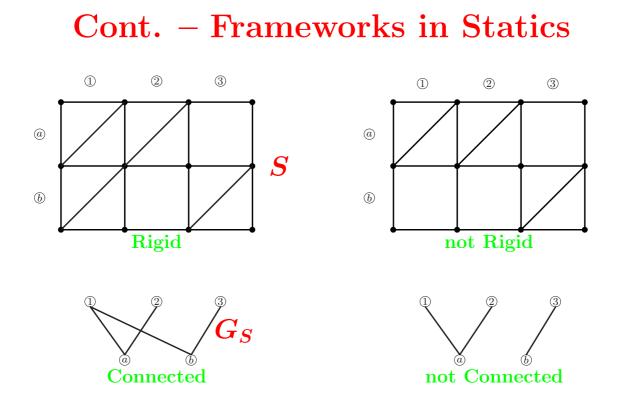


Reliability of Network = Edge-Conn. of Graph

Basic Problem : Given a graph G = (V, E)and $k \ge 2$, add a minimum number of edges Fto G s.t. G + F to be k-edge-connected.

Motivation – Frameworks in Statics Rigidity of 2-dim. Square Grid Frameworks





Theorem (Bolker-Crapo) S is Rigid iff G_S iss Connected.

Reliability of the Framework

Problem : Given a framework S and $k \ge 2$, add a minimum number of diagonal rods to S s.t. the deletion of any k-1 diagonal rods does not destroy the rigidity of the framework.

Reliability of S = Edge-Connectivity of G_S

Main Problem : Given a bipartite graph G = (A, B; E) and $k \ge 2$, add a minimum number of edges F between A and B s.t. G + F to be k-edge-connected.

Problem

Edge-Connectivity Augmentation of an undirected graph by adding a minimum number of new edges

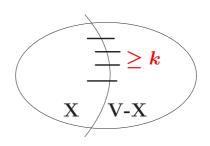
In this talk we do not consider : vertex-connectivity directed graphs hypergraphs minimum cost (NP-complete)

In this talk we consider : Graphs & Bipartite Graphs Global E-C & Local E-C

Definitions

Global Edge-Connectivity

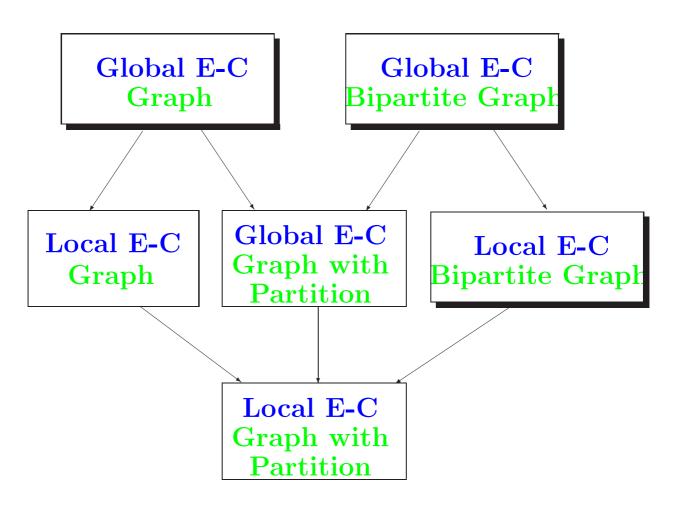
G = (V, E) is k-edge-connected if $d(X) \ge k \ \forall X \subset V.$



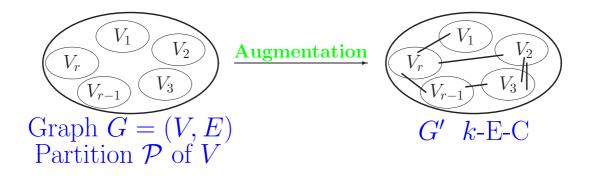
Local Edge-Connectivity $G = (V, E), u, v \in V$ $\lambda(u, v) := \min\{d(X) : u \in X, v \in V - X\}$

Global Edge-Connectivity II G = (V + s, E) is k-edge-connected in V if $d(X) \ge k \ \forall X \subset V.$

Versions to consider



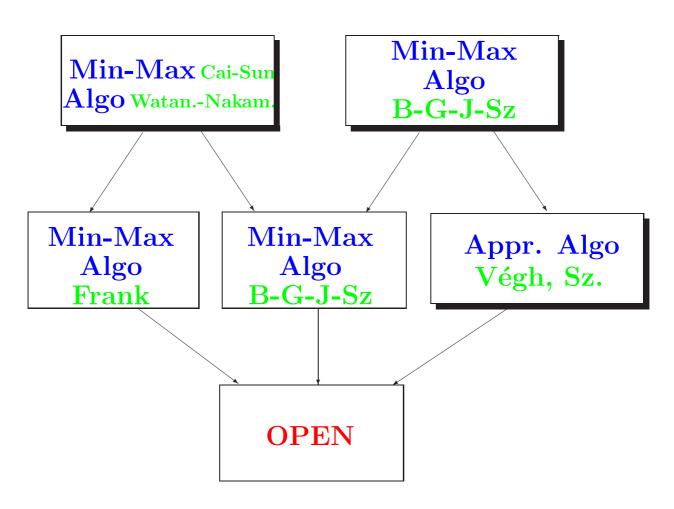
Generalization



Special Cases :

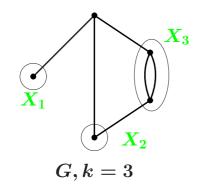
(1) $G = (A, B; E), \mathcal{P} = \{A, B\}$ = Main Prob. (2) $G = (V, E), \mathcal{P} = \{\{v\} : v \in V\}$ = Basic Prob.

Results



Method Basic Problem

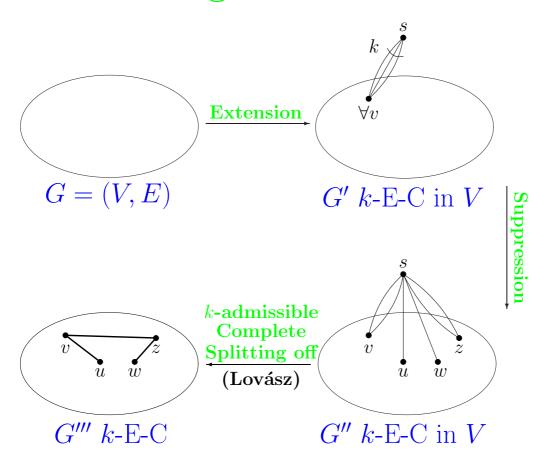
Bound for min. number γ of new edges



 $\begin{array}{l} \text{Deficient set} : X_1\\ \text{deficiency of } X_1 \colon \boldsymbol{k} - \boldsymbol{d}(\boldsymbol{X_1}) = 2\\ \text{Def. Subpart.} \colon \{X_1, X_2, X_3\} = \mathcal{X}\\ \text{def. of } \mathcal{X} \colon \sum_{\boldsymbol{X_i} \in \mathcal{X}} (\boldsymbol{k} - \boldsymbol{d}(\boldsymbol{X_i})) = 4\\ \text{def}_{G+e}(\mathcal{X}) \geq \textbf{def}_G(\mathcal{X}) - 2 \end{array}$

 $\gamma \ge \alpha := \lceil \frac{1}{2} \text{ max. deficiency of subpart. of } V \rceil$ **Theorem (Cai, Sun)** $\gamma = \alpha$.

Method Algorithm of Frank



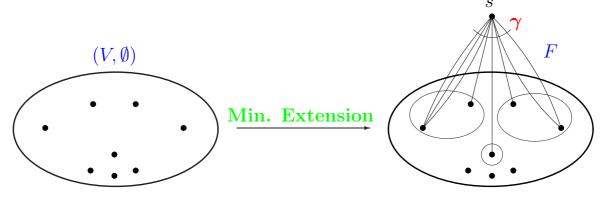
Min. Extension Theorem of Frank

Given $p: V \to Z$ sym. skew-supermod, (V, \emptyset) can be extended to a graph F by adding a new vertex s and γ edges incident to s s.t.

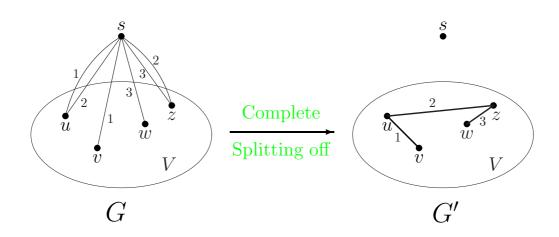
 $d_F(X) \ge p(X) \qquad \forall \ \emptyset \neq X \subset V$

if and only if

 $\Sigma_1^l p(X_i) \leq \gamma \quad \forall \text{ subpart. } \{X_1, ..., X_l\} \text{ of } V.$



Complete Splitting off



Complete Splitting off is

k-admis. if G' is *k*-E-C in V. λ -admis. if $\lambda_{G'}(x, y) = \lambda_G(x, y) \ \forall x, y \in V$.

Theorems Complete Splitting off

Given

Graph G = (V + s, E) s.t. $d_G(s)$ is even,

(Lovász) If G is k-E-C in $V (k \ge 2)$,

 \exists k-admis. Complete Splitting off.

(Mader) If G is 2-E-C,

 $\exists \lambda$ -admis. Complete Splitting off.

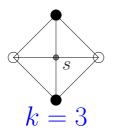
 \Rightarrow Global and Local E-C Augmentation can be solved.

Main Problem Bounds

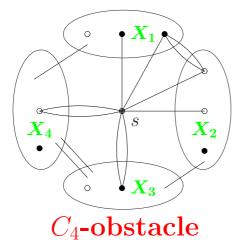
 $\boldsymbol{\alpha} := \lceil \frac{1}{2} \text{ max. deficiency of subpart. of } A \cup B \rceil$ $\boldsymbol{\beta}_{A} := \sum_{\substack{v \in A \\ d(v) < k}} (k - d(v)) \qquad \boldsymbol{\beta}_{B} := \sum_{\substack{v \in B \\ d(v) < k}} (k - d(v))$ $\underset{\substack{v \in B \\ d(v) < k}}{\boldsymbol{\beta}_{B} := 0}$

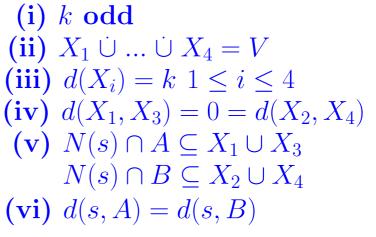
$$oldsymbol{\gamma} \geq oldsymbol{\Phi}$$
:=max $\{lpha,eta_A,eta_B\}$

Main Problem



no k-admis. Complete Allowed Splitting off





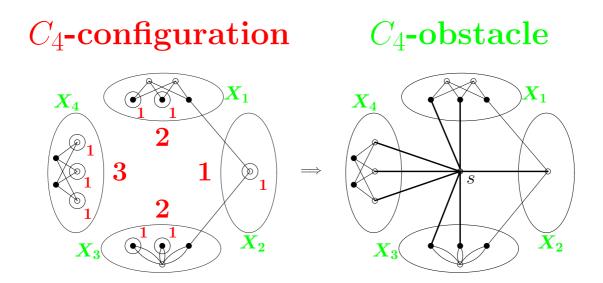
Main Problem Theorems (B-G-J-Sz)

Complete Splitting off Given Graph $G = (A \cup B \cup s, E')$ s.t. G - s is Bipartite, $k \ge 2$. $\exists k$ -admis. Complete Allowed Splitting off \longleftrightarrow (a) d(s, A) = d(s, B), (b) G is k-E-C in V, (c) G contains no C_4 -obstacle.

Augmentation

For Bipartite Graph $G = (A, B; E), k \ge 2$,

 $\gamma = \begin{cases} \Phi & \text{if } G \text{ has no } C_4\text{-configuration,} \\ \Phi + 1 & \text{otherwise.} \end{cases}$



 $\exists C_4 ext{-configuration} \Rightarrow oldsymbol{\gamma} \geq oldsymbol{\Phi} + oldsymbol{1}$

Main Problem – Local E-C Approximation Algorithm (Végh-Sz)

Given a bipartite graph G = (A, B; E) and $r(u, v) \ge 2 \quad \forall u, v \in A \cup B$, we can find in polynomial time a new edge-set F between A and B s.t.

$$egin{aligned} \lambda_{G+F}(u,v) &\geq r(u,v) \,\,\,orall u, v \in A \cup B, \ &|F| \leq rac{3}{2}OPT. \end{aligned}$$

Is this Problem NP-complete ?