Edge-connectivity of permutation hypergraphs

Zoltán Szigeti
Laboratoire G-SCOP
INP Grenoble, France

29 september 2010

joint work with Neil Jami, Ensimag, INP Grenoble, France
Outline

1. Permutation graphs
2. Splitting off in graphs
3. Permutation hypergraphs
4. Splitting off in hypergraphs
Definition

Given a graph G on n vertices and a permutation π of $[n]$, we define the permutation graph G_{π} as follows:

1. we take 2 disjoint copies $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ of G,
2. for every vertex $v_i \in V_1$, we add an edge between v_i of G_1 and $v_{\pi(i)}$ of G_2, this edge set is denoted by E_3,
3. $G_{\pi} = (V_1 \cup V_2, E_1 \cup E_2 \cup E_3)$.

$G_{\pi} = (123)$
Definition

Given a graph G on n vertices and a permutation π of $[n]$, we define the permutation graph G_π as follows:

1. we take 2 disjoint copies $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ of G,
2. for every vertex $v_i \in V_1$, we add an edge between v_i of G_1 and $v_{\pi(i)}$ of G_2, this edge set is denoted by E_3,
3. $G_\pi = (V_1 \cup V_2, E_1 \cup E_2 \cup E_3)$.

\[\pi = (123) \]
Permutation graphs

Definition

Given a graph G on n vertices and a permutation π of $[n]$, we define the permutation graph G_{π} as follows:

1. we take 2 disjoint copies $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ of G,
2. for every vertex $v_i \in V_1$, we add an edge between v_i of G_1 and $v_{\pi(i)}$ of G_2, this edge set is denoted by E_3,
3. $G_{\pi} = (V_1 \cup V_2, E_1 \cup E_2 \cup E_3)$.
Permutation graphs

Definition
Given a graph G on n vertices and a permutation π of $[n]$, we define the permutation graph G_π as follows:

1. we take 2 disjoint copies $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ of G,
2. for every vertex $v_i \in V_1$, we add an edge between v_i of G_1 and $v_{\pi(i)}$ of G_2, this edge set is denoted by E_3,
3. $G_\pi = (V_1 \cup V_2, E_1 \cup E_2 \cup E_3)$.
Definition

Edge-connectivity of G: $\lambda(G) = \min \{ d_G(X) : \emptyset \neq X \subset V \}$,
Minimum degree of G: $\delta(G) = \min \{ d_G(v) : v \in V \}$.
Connectivity of permutation graphs

Definition

Edge-connectivity of G:
\[\lambda(G) = \min \{ d_G(X) : \emptyset \neq X \subset V \}, \]

Minimum degree of G:
\[\delta(G) = \min \{ d_G(v) : v \in V \}. \]

Remark

\[\lambda(G_\pi) \leq \delta(G_\pi) = \delta(G) + 1. \]
Connectivity of permutation graphs

Definition

Edge-connectivity of G: $\lambda(G) = \min\{d_G(X) : \emptyset \neq X \subset V\}$,
Minimum degree of G: $\delta(G) = \min\{d_G(v) : v \in V\}$.

Remark

$\lambda(G_\pi) \leq \delta(G_\pi) = \delta(G) + 1$.

Theorem (Goddard, Raines, Slater)

*For a simple graph G without isolated vertices, there exists a permutation π such that $\lambda(G_\pi) = \delta(G) + 1$ if and only if $G \neq 2K_k$ for some odd k.***
Theorem (Goddard, Raines, Slater)

For a simple graph G without isolated vertices, there exists a permutation π such that $\lambda(G_\pi) = \delta(G) + 1$ if and only if $G \neq 2K_k$ for some odd k.

$2K_3$
Theorem (Goddard, Raines, Slater)

For a simple graph G without isolated vertices, there exists a permutation π such that $\lambda(G_\pi) = \delta(G) + 1$ if and only if $G \neq 2K_k$ for some odd k.

\[\begin{aligned} 2K_3 & \quad \text{and} \quad 2K_3 \\ & \quad \text{and} \quad 2K_3 \end{aligned} \]
Theorem (Goddard, Raines, Slater)

For a simple graph G without isolated vertices, there exists a permutation π such that $\lambda(G_\pi) = \delta(G) + 1$ if and only if $G \neq 2K_k$ for some odd k.

$2K_3$
Theorem (Goddard, Raines, Slater)

For a simple graph G without isolated vertices, there exists a permutation π such that $\lambda(G_\pi) = \delta(G) + 1$ if and only if $G \neq 2K_k$ for some odd k.

$2K_3$
Sufficiency : Idea

Theorem (Goddard, Raines, Slater)

For a simple graph G without isolated vertices, there exists a permutation π such that $\lambda(G_\pi) = \delta(G) + 1$ if and only if $G \neq 2K_k$ for some odd k.

- Extension : $\lambda(H) = \delta(G) + 1$,
- Splitting off : between G_1 and G_2, maintaining edge-connectivity.
Sufficiency : Idea

Theorem (Goddard, Raines, Slater)

For a simple graph G without isolated vertices, there exists a permutation π such that $\lambda(G_{\pi}) = \delta(G) + 1$ if and only if $G \neq 2K_k$ for some odd k.

- Extension : $\lambda(H) = \delta(G) + 1$,
- Splitting off : between G_1 and G_2, maintaining edge-connectivity.
Theorem (Goddard, Raines, Slater)

For a simple graph G without isolated vertices, there exists a permutation π such that $\lambda(G_\pi) = \delta(G) + 1$ if and only if $G \neq 2K_k$ for some odd k.

- Extension: $\lambda(H) = \delta(G) + 1$,
- Splitting off: between G_1 and G_2, maintaining edge-connectivity.
Theorem (Goddard, Raines, Slater)

For a simple graph G without isolated vertices, there exists a permutation π such that $\lambda(G_\pi) = \delta(G) + 1$ if and only if $G \neq 2K_k$ for some odd k.

- Extension: $\lambda(H) = \delta(G) + 1$,
- Splitting off: between G_1 and G_2, maintaining edge-connectivity.
For a simple graph G without isolated vertices, there exists a permutation π such that $\lambda(G_\pi) = \delta(G) + 1$ if and only if $G \neq 2K_k$ for some odd k.

Extension: $\lambda(H) = \delta(G) + 1$,

Splitting off: between G_1 and G_2, maintaining edge-connectivity.
Splitting off in graphs

Given: graph $H = (V + s, E)$, partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

Definition

- **Splitting off at s:** replacing $\{su, sv\}$ by uv.
- **Complete splitting off at s:** a sequence of splitting off isolating s.
- It is k-admissible if $H' - s$ is k-edge-connected.
- It is \mathcal{P}-allowed if the new edges are between P_1 and P_2.

![Diagram](image-url)
Given: graph $H = (V + s, E)$, partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

Definition

- **Splitting off at s**: replacing $\{su, sv\}$ by uv.
- **Complete splitting off at s**: a sequence of splitting off isolating s.
- It is k-admissible if $H' - s$ is k-edge-connected.
- It is \mathcal{P}-allowed if the new edges are between P_1 and P_2.

![Diagram](image-url)
Splitting off in graphs

Given: graph $H = (V + s, E)$, partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

Definition

- **Splitting off at** s: replacing $\{su, sv\}$ by uv.
- **Complete splitting off at** s: a sequence of splitting off isolating s.
- It is k-admissible if $H' - s$ is k-edge-connected.
- It is \mathcal{P}-allowed if the new edges are between P_1 and P_2.
Given: graph $H = (V + s, E)$, partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

Definition

- **Splitting off at s**: replacing $\{su, sv\}$ by uv.
- **Complete splitting off at s**: a sequence of splitting off isolating s.
- It is k-admissible if $H' - s$ is k-edge-connected.
- It is \mathcal{P}-allowed if the new edges are between P_1 and P_2.
Given: graph $H = (V + s, E)$, partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

Definition

- **Splitting off at** s: replacing $\{su, sv\}$ by uv.
- **Complete splitting off at** s: a sequence of splitting off isolating s.
 - it is k-admissible if $H' - s$ is k-edge-connected.
 - it is \mathcal{P}-allowed if the new edges are between P_1 and P_2.
Splitting off in graphs

Given: graph $H = (V + s, E)$, partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

Definition

- **Splitting off at** s: replacing $\{su, sv\}$ by uv.
- **Complete splitting off at** s: a sequence of splitting off isolating s.
 - it is k-admissible if $H' - s$ is k-edge-connected.
 - it is \mathcal{P}-allowed if the new edges are between P_1 and P_2.
Splitting off in graphs

Given: graph $H = (V + s, E)$, partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

Definition

- **Splitting off at** s: replacing $\{su, sv\}$ by uv.
- **Complete splitting off at** s: a sequence of splitting off isolating s.
 - it is k-admissible if $H' - s$ is k-edge-connected.
 - it is \mathcal{P}-allowed if the new edges are between P_1 and P_2.

![Graph diagram](image)
Given: graph $H = (V + s, E)$, partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

Definition

- **Splitting off at** s: replacing $\{su, sv\}$ by uv.
- **Complete splitting off at** s: a sequence of splitting off isolating s.
- It is k-admissible if $H' - s$ is k-edge-connected.
- It is \mathcal{P}-allowed if the new edges are between P_1 and P_2.

Z. Szigeti (G-SCOP, Grenoble)

Permutation hypergraphs

29 September 2010
Splitting off in graphs

Given: graph $H = (V + s, E)$, partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

Definition

- **Splitting off at s**: replacing $\{su, sv\}$ by uv.
- **Complete splitting off at s**: a sequence of splitting off isolating s.

 - it is k-admissible if $H' - s$ is k-edge-connected.
 - it is \mathcal{P}-allowed if the new edges are between P_1 and P_2.

![Diagram](image)
Definition

- **Splitting off at** s: replacing $\{su, sv\}$ by uv.
- **Complete splitting off at** s: a sequence of splitting off isolating s.
 - It is k-admissible if $H' - s$ is k-edge-connected.
 - It is \mathcal{P}-allowed if the new edges are between P_1 and P_2.

Given: graph $H = (V + s, E)$, partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

Z. Szigeti (G-SCOP, Grenoble)

Permutation hypergraphs

29 september 2010
Given: graph $H = (V + s, E)$, partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

Definition

- **Splitting off at s**: replacing $\{su, sv\}$ by uv.
- **Complete splitting off at s**: a sequence of splitting off isolating s.
- It is k-admissible if $H' - s$ is k-edge-connected.
- It is \mathcal{P}-allowed if the new edges are between P_1 and P_2.

![Diagram]

Z. Szigeti (G-SCOP, Grenoble)
Given: graph $H = (V + s, E)$, partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

Definition

- **Splitting off at** s: replacing $\{su, sv\}$ by uv.
- **Complete splitting off at** s: a sequence of splitting off isolating s.
- It is k-admissible if $H' - s$ is k-edge-connected.
- It is \mathcal{P}-allowed if the new edges are between P_1 and P_2.
Splitting off in graphs

Given: graph $H = (V + s, E)$, partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k.

Definition

- **Splitting off at** s: replacing $\{su, sv\}$ by uv.
- **Complete splitting off at** s: a sequence of splitting off isolating s.
- It is k-admissible if $H' - s$ is k-edge-connected.
- It is \mathcal{P}-allowed if the new edges are between P_1 and P_2.
Theorem (Bang-Jensen, Gabow, Jordán, Szigeti)

Given : graph $H = (V + s, E)$, partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer $k \geq 2$. There exists a k-admissible \mathcal{P}-allowed complete splitting off at s if and only if

- H is k-edge-connected in V,
- $d(s, P_1) = d(s, P_2)$,
- H contains no C_4-obstacle.

C_4, $k = 3$
A partition \(\{A_1, A_2, A_3, A_4\} \) of \(V \) is called a \(C_4 \)-obstacle of \(H \) if

- \(k \) is odd,
- each \(A_i \) is of degree \(k \),
- no edge exists between \(A_i \) and \(A_{i+2} \),
- half of the edges incident to \(s \) are incident to \(P_1 \cap (A_1 \cup A_3) \),
- half of the edges incident to \(s \) are incident to \(P_2 \cap (A_2 \cup A_4) \).
\textbf{Definition}

A partition \(\{A_1, A_2, A_3, A_4\} \) of \(V \) is called a \textit{\(C_4 \)-obstacle} of \(H \) if

- \(k \) is odd,
- each \(A_i \) is of degree \(k \),
- no edge exists between \(A_i \) and \(A_{i+2} \),
- half of the edges incident to \(s \) are incident to \(P_1 \cap (A_1 \cup A_3) \),
- half of the edges incident to \(s \) are incident to \(P_2 \cap (A_2 \cup A_4) \).
C_4-obstacle

Definition

A partition $\{A_1, A_2, A_3, A_4\}$ of V is called a C_4-obstacle of H if

- k is odd,
- each A_i is of degree k,
- no edge exists between A_i and A_{i+2},
- half of the edges incident to s are incident to $P_1 \cap (A_1 \cup A_3)$,
- half of the edges incident to s are incident to $P_2 \cap (A_2 \cup A_4)$.
Theorem (Goddard, Raines, Slater)

For a simple graph G without isolated vertices,

- there exists a permutation π such that $\lambda(G_\pi) = \delta(G) + 1$,
 if and only if
- there exists a k-admissible \mathcal{P}-allowed complete splitting off at s in H,
 if and only if
- H contains no C_4-obstacle,
 if and only if
- $G \neq 2K_k$ for some odd k.

Theorem (Goddard, Raines, Slater)

For a simple graph G without isolated vertices,

- there exists a permutation π such that $\lambda(G_\pi) = \delta(G) + 1$,
 if and only if
- there exists a k-admissible P-allowed complete splitting off at s in H,
 if and only if
- H contains no C_4-obstacle,
 if and only if
- $G \neq 2K_k$ for some odd k.

Sufficiency
Theorem (Goddard, Raines, Slater)

For a simple graph G without isolated vertices,

- there exists a permutation π such that $\lambda(G_\pi) = \delta(G) + 1$, if and only if
- there exists a k-admissible \mathcal{P}-allowed complete splitting off at s in H, if and only if
- H contains no C_4-obstacle, if and only if
- $G \neq 2K_k$ for some odd k.

Sufficiency
Theorem (Goddard, Raines, Slater)

For a simple graph G without isolated vertices,

- there exists a permutation π such that $\lambda(G_{\pi}) = \delta(G) + 1$,
 if and only if

- there exists a k-admissible \mathcal{P}-allowed complete splitting off at s in H,
 if and only if

- H contains no C_4-obstacle,
 if and only if

- $G \neq 2K_k$ for some odd k.
Theorem (Goddard, Raines, Slater)

For a simple graph G without isolated vertices,

- there exists a permutation π such that $\lambda(G_\pi) = \delta(G) + 1$,
 if and only if
- there exists a k-admissible P-allowed complete splitting off at s in H,
 if and only if
- H contains no C_4-obstacle,
 if and only if
- $G \neq 2K_k$ for some odd k.
Hypergraphs

Definition

- **hypergraph**: $\mathcal{G} = (V, \mathcal{E})$, $V =$ set of vertices, $\mathcal{E} =$ set of hyperedges, subsets of V.
- \mathcal{G} is k-edge-connected if each cut contains at least k hyperedges.

\mathcal{G}
Hypergraphs

Definition

- hypergraph: \(G = (V, \mathcal{E}) \), \(V \) = set of vertices, \(\mathcal{E} \) = set of hyperedges, subsets of \(V \).
- \(G \) is \(k \)-edge-connected if each cut contains at least \(k \) hyperedges.

\[X \cup V - X \geq k \]
Definition

Given a hypergraph G on n vertices and a permutation π of $[n]$, we define the permutation hypergraph G_π as follows:

1. we take 2 disjoint copies $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ of G,
2. for every vertex $v_i \in V_1$, we add an edge between v_i of G_1 and $v_{\pi(i)}$ of G_2, this edge set is denoted by E_3,
3. $G_\pi = (V_1 \cup V_2, E_1 \cup E_2 \cup E_3)$.

$\pi = (613425)$

G

G_π
Theorem (Bernáth, Grappe, Szigeti)

Given: hypergraph $\mathcal{H} = (V + s, \mathcal{E})$, where s is incident only to graph edges, partition $\mathcal{P} = \{P_1, P_2\}$ of V, integer k. There exists a k-admissible \mathcal{P}-allowed complete splitting off at s if and only if

- \mathcal{H} is k-edge-connected in V,
- $d_{\mathcal{H}}(s) \geq 2\omega(\mathcal{H} - s)$,
- $d_{\mathcal{H}}(s, P_1) = d_{\mathcal{H}}(s, P_2)$,
- \mathcal{H} contains no C_4-obstacle.
Connectivity of permutation hypergraphs

Theorem (Jami, Szigeti)

For a hypergraph \mathcal{G} and an integer $k \geq 2$, there exists a permutation π such that $\lambda(\mathcal{G}_\pi) = k$ if and only if

1. $d_G(X) \geq k - |X|$ for all $\emptyset \neq X \subseteq V$,

2. \mathcal{G} is not composed of two connected components both of k vertices, k being odd.
Connectivity of permutation hypergraphs

Theorem (Jami, Szigeti)

For a hypergraph G and an integer $k \geq 2$, there exists a permutation π such that $\lambda(G_\pi) = k$ if and only if

1. $d_G(X) \geq k - |X|$ for all $\emptyset \neq X \subseteq V$,
2. G is not composed of two connected components both of k vertices, k being odd.

Remark

- Implied by Theorem of Bernáth, Grappe, Szigeti.
- Implies Theorem of Goddard, Raines, Slater: if G is a simple graph G without isolated vertices and $k = \delta(G) + 1$, then
 - $k \geq 2$,
 - 1 is satisfied,
 - 2 is implied by $G \neq 2K_k$ with k odd.
Connectivity of permutation hypergraphs

Theorem (Jami, Szigeti)

For a hypergraph G and an integer $k \geq 2$, there exists a permutation π such that $\lambda(G_\pi) = k$ if and only if

1. $d_G(X) \geq k - |X|$ for all $\emptyset \neq X \subseteq V$,
2. G is not composed of two connected components both of k vertices, k being odd.

Remark

- Implied by Theorem of Bernáth, Grappe, Szigeti.
- Implies Theorem of Goddard, Raines, Slater:
 if G is a simple graph G without isolated vertices and $k = \delta(G) + 1$, then
 - $k \geq 2$,
 - 1 is satisfied,
 - 2 is implied by $G \neq 2K_k$ with k odd.
Thank you for your attention!