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Notations

Given an undirected graph G and a set X of vertices of G ,

dG (X ) = number of edges of G entering X ,
iG (X ) = number of edges of G in X ,
eG (X ) = number of edges of G incident to X .

Given a directed graph D and a set X of vertices of D,

d−

D
(X ) = number of arcs of D entering X ,

d+
D

(X ) = number of arcs of D leaving X .

X V − X

G
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Functions

Definition

A set function b on V is submodular if for all X ,Y ⊂ V ,

b(X ) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ).

The function b is called supermodular if −b is submodular.

The function b is called modular if b is submodular and supermodular.

Z. Szigeti (G-SCOP, Grenoble) Sandwich problems on orientations 27 janvier 2011 4 / 21



Functions

Definition

A set function b on V is submodular if for all X ,Y ⊂ V ,

b(X ) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ).

The function b is called supermodular if −b is submodular.

The function b is called modular if b is submodular and supermodular.

Z. Szigeti (G-SCOP, Grenoble) Sandwich problems on orientations 27 janvier 2011 4 / 21



Functions

Definition

A set function b on V is submodular if for all X ,Y ⊂ V ,

b(X ) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ).

The function b is called supermodular if −b is submodular.

The function b is called modular if b is submodular and supermodular.

Z. Szigeti (G-SCOP, Grenoble) Sandwich problems on orientations 27 janvier 2011 4 / 21



Functions

Definition

A set function b on V is submodular if for all X ,Y ⊂ V ,

b(X ) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ).

The function b is called supermodular if −b is submodular.

The function b is called modular if b is submodular and supermodular.

Examples

Submodular functions :

the degree function dG (Z ) of an undirected graph G ,
the function eG (Z ),

Supermodular function :

the function iG (Z ).

Modular function :

the function m(X ) =
∑

x∈X
m(x).
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Matroids

Definition

A set system M = (V ,M) is called a matroid if M satisfies :

1 ∅ ∈ M,

2 if F ∈ M and F ′ ⊆ F , then F ′ ∈ M,

3 if F ,F ′ ∈ M and |F | > |F ′|, then ∃ f ∈ F \ F ′ : F ′ ∪ f ∈ M.

The rank of M is the maximum size of a set in M.

Z. Szigeti (G-SCOP, Grenoble) Sandwich problems on orientations 27 janvier 2011 5 / 21



Matroids

Definition

A set system M = (V ,M) is called a matroid if M satisfies :

1 ∅ ∈ M,

2 if F ∈ M and F ′ ⊆ F , then F ′ ∈ M,

3 if F ,F ′ ∈ M and |F | > |F ′|, then ∃ f ∈ F \ F ′ : F ′ ∪ f ∈ M.

The rank of M is the maximum size of a set in M.

Examples

1 Forests of a graph,

2 Linearly independent vectors of a vector space.
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Matroids

Definition

A set system M = (V ,M) is called a matroid if M satisfies :

1 ∅ ∈ M,

2 if F ∈ M and F ′ ⊆ F , then F ′ ∈ M,

3 if F ,F ′ ∈ M and |F | > |F ′|, then ∃ f ∈ F \ F ′ : F ′ ∪ f ∈ M.

The rank of M is the maximum size of a set in M.

Algorithmic aspects

1 Matroid is given by an oracle that answers if F ∈ M.

2 Greedy algorithm finds a set of M of maximum size,

3 more generally, given a matroid M, F1 ∈ M and |F1| ≤ k ≤ rank of
M, it finds F ∈ M that contains F1 and that has size k.
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Generalized Polymatroids

Definition
1 A pair (p, b) of set functions on V is a strong pair if

p is supermodular,
b is submodular,
they are compliant : for all X , Y ⊂ V ,

p(X ) − p(X \ Y ) ≤ b(Y ) − b(Y \ X ).

2 If (p, b) is a strong pair then the polyhedron

Q(p, b) = {z ∈ R
V : p(X ) ≤ z(X ) ≤ b(X ) ∀X ⊆ V }

is called a generalized polymatroid.

Z. Szigeti (G-SCOP, Grenoble) Sandwich problems on orientations 27 janvier 2011 6 / 21



Generalized Polymatroids

Definition
1 A pair (p, b) of set functions on V is a strong pair if

p is supermodular,
b is submodular,
they are compliant : for all X , Y ⊂ V ,

p(X ) − p(X \ Y ) ≤ b(Y ) − b(Y \ X ).

2 If (p, b) is a strong pair then the polyhedron

Q(p, b) = {z ∈ R
V : p(X ) ≤ z(X ) ≤ b(X ) ∀X ⊆ V }

is called a generalized polymatroid.

Z. Szigeti (G-SCOP, Grenoble) Sandwich problems on orientations 27 janvier 2011 6 / 21



Generalized Polymatroids

Definition
1 A pair (p, b) of set functions on V is a strong pair if

p is supermodular,
b is submodular,
they are compliant : for all X , Y ⊂ V ,

p(X ) − p(X \ Y ) ≤ b(Y ) − b(Y \ X ).

2 If (p, b) is a strong pair then the polyhedron

Q(p, b) = {z ∈ R
V : p(X ) ≤ z(X ) ≤ b(X ) ∀X ⊆ V }

is called a generalized polymatroid.

Remarks
1 A pair (m1,m2) of modular functions is a strong pair if and only if

m1(v) ≤ m2(v) ∀v ∈ V .

2 The pair (iG , eG ) is a strong pair.
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Generalized Polymatroid Intersection Theorem

Q(p, b) = {z ∈ R
V : p(X ) ≤ z(X ) ≤ b(X ) ∀X ⊆ V }

Theorem (Frank, Tardos ’88)

1 The g-polymatroid Q(p, b) is

2 The intersection of two g-polymatroids Q(p1, b1) and Q(p2, b2) is
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In-degree constrained orientation : Characterization

m-orientation Problem

Instance : Given a graph G = (V ,E ) and m : V → Z+.

1

0

1 2

2
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Instance : Given a graph G = (V ,E ) and m : V → Z+.
Question : Does there exist an orientation ~G whose in-degree vector is m

that is d−

~G
(v) = m(v) ∀v ∈ V ?
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In-degree constrained orientation : Characterization

m-orientation Problem

Instance : Given a graph G = (V ,E ) and m : V → Z+.
Question : Does there exist an orientation ~G whose in-degree vector is m

that is d−

~G
(v) = m(v) ∀v ∈ V ?

Theorem (Hakimi’65)

The answer is Yes if and only if m(X ) ≥ iG (X ) ∀X ⊆ V ,m(V ) = |E |.

2

0

1 2

1

X
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In-degree constrained orientation : Applications

Applications

Eulerian orientation of an undirected graph (Euler),

Eulerian orientation of a mixed graph (Ford-Fulkerson),

Perfect matching in a bipartite graph (Hall, Frobenius),

f -factor in a bipartite graph (Ore, Tutte).

G
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G

m(v) =
dG (v)

2
∀v ∈ V
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Applications

Eulerian orientation of an undirected graph (Euler),

Eulerian orientation of a mixed graph (Ford-Fulkerson),

Perfect matching in a bipartite graph (Hall, Frobenius),

f -factor in a bipartite graph (Ore, Tutte).

G = (V , E∪A)
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In-degree constrained orientation : Applications

Applications

Eulerian orientation of an undirected graph (Euler),

Eulerian orientation of a mixed graph (Ford-Fulkerson),

Perfect matching in a bipartite graph (Hall, Frobenius),

f -factor in a bipartite graph (Ore, Tutte).

~G = (V , ~E∪A)

m(v) =
dE (v)+d

+
A

(v)+d
−

A
(v)

2
− d

−

A
(v) ∀v ∈ V
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In-degree constrained orientation : Applications

Applications

Eulerian orientation of an undirected graph (Euler),

Eulerian orientation of a mixed graph (Ford-Fulkerson),

Perfect matching in a bipartite graph (Hall, Frobenius),

f -factor in a bipartite graph (Ore, Tutte).

G = (U ∪ V ; E )

m(v) = d(v) − 1 ∀v ∈ V

m(u) = 1 ∀u ∈ U

U

V
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In-degree constrained orientation : Applications

Applications

Eulerian orientation of an undirected graph (Euler),

Eulerian orientation of a mixed graph (Ford-Fulkerson),

Perfect matching in a bipartite graph (Hall, Frobenius),

f -factor in a bipartite graph (Ore, Tutte).

G = (U ∪ V ; E ), f : U ∪ V → Z+

U

V
1

1

1

12

2

3

3

Z. Szigeti (G-SCOP, Grenoble) Sandwich problems on orientations 27 janvier 2011 9 / 21



In-degree constrained orientation : Applications

Applications

Eulerian orientation of an undirected graph (Euler),

Eulerian orientation of a mixed graph (Ford-Fulkerson),

Perfect matching in a bipartite graph (Hall, Frobenius),

f -factor in a bipartite graph (Ore, Tutte).

G = (U ∪ V ; E ), f -factor

U

V
1 3 2 1

2 1 3 1
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In-degree constrained orientation : Applications

Applications

Eulerian orientation of an undirected graph (Euler),

Eulerian orientation of a mixed graph (Ford-Fulkerson),

Perfect matching in a bipartite graph (Hall, Frobenius),

f -factor in a bipartite graph (Ore, Tutte).

G = (U ∪ V ; E ), f -factor

U

V
1 3 2 1

2 1 3 1

m(u) = f (u) ∀u ∈ U

m(v) = d(v) − f (v) ∀v ∈ V
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In-degree constrained orientation : Algorithm

Algorithm 1

The in-degree constrained orientation problem is in P because it is
equivalent to the f -factor problem in a bipartite graph.
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In-degree constrained orientation : Algorithm

Algorithm 1

The in-degree constrained orientation problem is in P because it is
equivalent to the f -factor problem in a bipartite graph.

3

0 2

1

3

0 2

1

1

1

11

11

~G ,m = d−

~G
H, f ,F
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In-degree constrained orientation : Algorithm

Algorithm 2

1 Take an arbitrary orientation ~G of G .

2 If d−

~G
(v) ≤ m(v) ∀v , then it is an m-orientation, Stop.

3 Otherwise, take a big vertex v : d−

~G
(v) > m(v).

4 Let X be the set of vertices u from which there exists a path Pu to v .

5 Take a small vertex u ∈ X : d−

~G
(u) < m(u).

6 Let ~G ′ be obtained from ~G by reorienting Pu. Go to Step 2.

7 This algorithm finds an m-orientation in polynomial time.
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~G
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∑
w∈V

|d−

~G
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Sandwich problems

Graph Sandwich Problem for Property Π

Instance : Given graphs G1 = (V ,E1) and G2 = (V ,E2) with E1 ⊂ E2.
Question : Does there exist E1 ⊆ E ⊆ E2 such that the graph G = (V ,E )
satisfies property Π ?
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Sandwich problems

Graph Sandwich Problem for Property Π

Instance : Given graphs G1 = (V ,E1) and G2 = (V ,E2) with E1 ⊂ E2.
Question : Does there exist E1 ⊆ E ⊆ E2 such that the graph G = (V ,E )
satisfies property Π ?

Golumbic, Kaplan, Shamir ’95

Split graphs (in P), [V=C+I]

Cographs (in P), [no induced P4]

Eulerian graphs,

Comparability graphs (NP-complete), [has a transitive orientation]

Permutation graphs (NP-complete), [intersection graph of the chords
of a permutation diagram]

Interval graphs (NP-complete). [intersection graph of a family of
intervals on the real line]
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Degree Constrained Sandwich Problems

Undirected case

G1,G2 undirected graphs, Π = {dG (v) = m(v) ∀v ∈ V } (m : V → Z+).
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Degree Constrained Sandwich Problems

Undirected case

G1,G2 undirected graphs, Π = {dG (v) = m(v) ∀v ∈ V } (m : V → Z+).

Remark

It is equivalent to the f -factor problem. The answer is Yes if and only if
there exists an (m(v) − dG1

(v))-factor in the graph G0 = (V ,E2 \ E1).
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D
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Degree Constrained Sandwich Problems

Undirected case

G1,G2 undirected graphs, Π = {dG (v) = m(v) ∀v ∈ V } (m : V → Z+).

Remark

It is equivalent to the f -factor problem. The answer is Yes if and only if
there exists an (m(v) − dG1

(v))-factor in the graph G0 = (V ,E2 \ E1).

Directed case

D1,D2 directed graphs and Π = {d−

D
(v) = m(v) ∀v ∈ V } (m : V → Z+).

Exercise

The answer is Yes if and only if d−

D2
(v) ≥ m(v) ≥ d−

D1
(v) ∀v ∈ V .
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m-orientation Sandwich Problem 1

Undirected Graphs :

G1,G2 undirected graphs, Π =G has an m-orientation (m : V → Z+).
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m-orientation Sandwich Problem 1

m-orientation Sandwich Problem for Undirected

Graphs :

Instance : Given undirected graphs G1 = (V ,E1) and G2 = (V ,E2) with
E1 ⊆ E2 and a non-negative integer vector m on V .
Question : Does there exist a sandwich graph G = (V ,E ) (E1 ⊆ E ⊆ E2)
that has an orientation ~G whose in-degree vector is m that is
d−

~G
(v) = m(v) ∀v ∈ V ?
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m-orientation Sandwich Problem 1

m-orientation Sandwich Problem for Undirected

Graphs :

Instance : Given undirected graphs G1 = (V ,E1) and G2 = (V ,E2) with
E1 ⊆ E2 and a non-negative integer vector m on V .
Question : Does there exist a sandwich graph G = (V ,E ) (E1 ⊆ E ⊆ E2)
that has an orientation ~G whose in-degree vector is m that is
d−

~G
(v) = m(v) ∀v ∈ V ?

Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is Yes if and only if iE1
(X ) ≤ m(X ) ≤ eE2

(X ) ∀X ⊆ V .
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m-orientation Sandwich Problem 1

m-orientation Sandwich Problem for Undirected

Graphs :

Instance : Given undirected graphs G1 = (V ,E1) and G2 = (V ,E2) with
E1 ⊆ E2 and a non-negative integer vector m on V .
Question : Does there exist a sandwich graph G = (V ,E ) (E1 ⊆ E ⊆ E2)
that has an orientation ~G whose in-degree vector is m that is
d−

~G
(v) = m(v) ∀v ∈ V ?

Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is Yes if and only if iE1
(X ) ≤ m(X ) ≤ eE2

(X ) ∀X ⊆ V .

Remark

E1 = E2 : equivalent to Hakimi’s Theorem.
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Proof

Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is Yes if and only if iE1
(X ) ≤ m(X ) ≤ eE2

(X ) ∀X ⊆ V .

1 Necessity : if sandwich graph G that has an m-orientation exists
1 Each edge that contributes to iE1(X ) must contribute to m(X ) and
2 only the edges that contributes to eE2(X ) may contribute to m(X ).

2 Sufficiency :
1 Let M = {F ⊆ E2 : m(X ) ≥ iF (X ) ∀X ⊆ V }.
2 M is a matroid of rank min{m(V (F )) + |E2 \ F | : F ⊆ E2}.
3 By iE1(X ) ≤ m(X ) ∀X ⊆ V , E1 ∈ M.
4 For all F ⊆ E2, by m(X ) ≤ eE2(X ) ∀X ⊆ V , applied for V \ V (F ), and

by 2, rank of M is ≥ m(V ).
5 By 3 and 4, there exists E ∈ M that contains E1, of size m(V ).
6 By 5, G = (V , E ) is a sandwich graph that has, by Hakimi’s Theorem,

an m-orientation.

Z. Szigeti (G-SCOP, Grenoble) Sandwich problems on orientations 27 janvier 2011 14 / 21



Proof

Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is Yes if and only if iE1
(X ) ≤ m(X ) ≤ eE2

(X ) ∀X ⊆ V .

1 Necessity : if sandwich graph G that has an m-orientation exists
1 Each edge that contributes to iE1(X ) must contribute to m(X ) and
2 only the edges that contributes to eE2(X ) may contribute to m(X ).

2 Sufficiency :
1 Let M = {F ⊆ E2 : m(X ) ≥ iF (X ) ∀X ⊆ V }.
2 M is a matroid of rank min{m(V (F )) + |E2 \ F | : F ⊆ E2}.
3 By iE1(X ) ≤ m(X ) ∀X ⊆ V , E1 ∈ M.
4 For all F ⊆ E2, by m(X ) ≤ eE2(X ) ∀X ⊆ V , applied for V \ V (F ), and

by 2, rank of M is ≥ m(V ).
5 By 3 and 4, there exists E ∈ M that contains E1, of size m(V ).
6 By 5, G = (V , E ) is a sandwich graph that has, by Hakimi’s Theorem,

an m-orientation.

Z. Szigeti (G-SCOP, Grenoble) Sandwich problems on orientations 27 janvier 2011 14 / 21



Proof

Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is Yes if and only if iE1
(X ) ≤ m(X ) ≤ eE2

(X ) ∀X ⊆ V .

1 Necessity : if sandwich graph G that has an m-orientation exists
1 Each edge that contributes to iE1(X ) must contribute to m(X ) and
2 only the edges that contributes to eE2(X ) may contribute to m(X ).

2 Sufficiency :
1 Let M = {F ⊆ E2 : m(X ) ≥ iF (X ) ∀X ⊆ V }.
2 M is a matroid of rank min{m(V (F )) + |E2 \ F | : F ⊆ E2}.
3 By iE1(X ) ≤ m(X ) ∀X ⊆ V , E1 ∈ M.
4 For all F ⊆ E2, by m(X ) ≤ eE2(X ) ∀X ⊆ V , applied for V \ V (F ), and

by 2, rank of M is ≥ m(V ).
5 By 3 and 4, there exists E ∈ M that contains E1, of size m(V ).
6 By 5, G = (V , E ) is a sandwich graph that has, by Hakimi’s Theorem,

an m-orientation.

Z. Szigeti (G-SCOP, Grenoble) Sandwich problems on orientations 27 janvier 2011 14 / 21



Proof

Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is Yes if and only if iE1
(X ) ≤ m(X ) ≤ eE2

(X ) ∀X ⊆ V .

1 Necessity : if sandwich graph G that has an m-orientation exists
1 Each edge that contributes to iE1(X ) must contribute to m(X ) and
2 only the edges that contributes to eE2(X ) may contribute to m(X ).

2 Sufficiency :
1 Let M = {F ⊆ E2 : m(X ) ≥ iF (X ) ∀X ⊆ V }.
2 M is a matroid of rank min{m(V (F )) + |E2 \ F | : F ⊆ E2}.
3 By iE1(X ) ≤ m(X ) ∀X ⊆ V , E1 ∈ M.
4 For all F ⊆ E2, by m(X ) ≤ eE2(X ) ∀X ⊆ V , applied for V \ V (F ), and

by 2, rank of M is ≥ m(V ).
5 By 3 and 4, there exists E ∈ M that contains E1, of size m(V ).
6 By 5, G = (V , E ) is a sandwich graph that has, by Hakimi’s Theorem,

an m-orientation.

Z. Szigeti (G-SCOP, Grenoble) Sandwich problems on orientations 27 janvier 2011 14 / 21



Proof

Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is Yes if and only if iE1
(X ) ≤ m(X ) ≤ eE2

(X ) ∀X ⊆ V .

1 Necessity : if sandwich graph G that has an m-orientation exists
1 Each edge that contributes to iE1(X ) must contribute to m(X ) and
2 only the edges that contributes to eE2(X ) may contribute to m(X ).

2 Sufficiency :
1 Let M = {F ⊆ E2 : m(X ) ≥ iF (X ) ∀X ⊆ V }.
2 M is a matroid of rank min{m(V (F )) + |E2 \ F | : F ⊆ E2}.
3 By iE1(X ) ≤ m(X ) ∀X ⊆ V , E1 ∈ M.
4 For all F ⊆ E2, by m(X ) ≤ eE2(X ) ∀X ⊆ V , applied for V \ V (F ), and

by 2, rank of M is ≥ m(V ).
5 By 3 and 4, there exists E ∈ M that contains E1, of size m(V ).
6 By 5, G = (V , E ) is a sandwich graph that has, by Hakimi’s Theorem,

an m-orientation.

Z. Szigeti (G-SCOP, Grenoble) Sandwich problems on orientations 27 janvier 2011 14 / 21



Proof

Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is Yes if and only if iE1
(X ) ≤ m(X ) ≤ eE2

(X ) ∀X ⊆ V .

1 Necessity : if sandwich graph G that has an m-orientation exists
1 Each edge that contributes to iE1(X ) must contribute to m(X ) and
2 only the edges that contributes to eE2(X ) may contribute to m(X ).

2 Sufficiency :
1 Let M = {F ⊆ E2 : m(X ) ≥ iF (X ) ∀X ⊆ V }.
2 M is a matroid of rank min{m(V (F )) + |E2 \ F | : F ⊆ E2}.
3 By iE1(X ) ≤ m(X ) ∀X ⊆ V , E1 ∈ M.
4 For all F ⊆ E2, by m(X ) ≤ eE2(X ) ∀X ⊆ V , applied for V \ V (F ), and

by 2, rank of M is ≥ m(V ).
5 By 3 and 4, there exists E ∈ M that contains E1, of size m(V ).
6 By 5, G = (V , E ) is a sandwich graph that has, by Hakimi’s Theorem,

an m-orientation.

Z. Szigeti (G-SCOP, Grenoble) Sandwich problems on orientations 27 janvier 2011 14 / 21



Proof

Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is Yes if and only if iE1
(X ) ≤ m(X ) ≤ eE2

(X ) ∀X ⊆ V .

1 Necessity : if sandwich graph G that has an m-orientation exists
1 Each edge that contributes to iE1(X ) must contribute to m(X ) and
2 only the edges that contributes to eE2(X ) may contribute to m(X ).

2 Sufficiency :
1 Let M = {F ⊆ E2 : m(X ) ≥ iF (X ) ∀X ⊆ V }.
2 M is a matroid of rank min{m(V (F )) + |E2 \ F | : F ⊆ E2}.
3 By iE1(X ) ≤ m(X ) ∀X ⊆ V , E1 ∈ M.
4 For all F ⊆ E2, by m(X ) ≤ eE2(X ) ∀X ⊆ V , applied for V \ V (F ), and

by 2, rank of M is ≥ m(V ).
5 By 3 and 4, there exists E ∈ M that contains E1, of size m(V ).
6 By 5, G = (V , E ) is a sandwich graph that has, by Hakimi’s Theorem,

an m-orientation.

Z. Szigeti (G-SCOP, Grenoble) Sandwich problems on orientations 27 janvier 2011 14 / 21



Proof

Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is Yes if and only if iE1
(X ) ≤ m(X ) ≤ eE2

(X ) ∀X ⊆ V .

1 Necessity : if sandwich graph G that has an m-orientation exists
1 Each edge that contributes to iE1(X ) must contribute to m(X ) and
2 only the edges that contributes to eE2(X ) may contribute to m(X ).

2 Sufficiency :
1 Let M = {F ⊆ E2 : m(X ) ≥ iF (X ) ∀X ⊆ V }.
2 M is a matroid of rank min{m(V (F )) + |E2 \ F | : F ⊆ E2}.
3 By iE1(X ) ≤ m(X ) ∀X ⊆ V , E1 ∈ M.
4 For all F ⊆ E2, by m(X ) ≤ eE2(X ) ∀X ⊆ V , applied for V \ V (F ), and

by 2, rank of M is ≥ m(V ).
5 By 3 and 4, there exists E ∈ M that contains E1, of size m(V ).
6 By 5, G = (V , E ) is a sandwich graph that has, by Hakimi’s Theorem,

an m-orientation.

Z. Szigeti (G-SCOP, Grenoble) Sandwich problems on orientations 27 janvier 2011 14 / 21



Proof

Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is Yes if and only if iE1
(X ) ≤ m(X ) ≤ eE2

(X ) ∀X ⊆ V .

1 Necessity : if sandwich graph G that has an m-orientation exists
1 Each edge that contributes to iE1(X ) must contribute to m(X ) and
2 only the edges that contributes to eE2(X ) may contribute to m(X ).

2 Sufficiency :
1 Let M = {F ⊆ E2 : m(X ) ≥ iF (X ) ∀X ⊆ V }.
2 M is a matroid of rank min{m(V (F )) + |E2 \ F | : F ⊆ E2}.
3 By iE1(X ) ≤ m(X ) ∀X ⊆ V , E1 ∈ M.
4 For all F ⊆ E2, by m(X ) ≤ eE2(X ) ∀X ⊆ V , applied for V \ V (F ), and

by 2, rank of M is ≥ m(V ).
5 By 3 and 4, there exists E ∈ M that contains E1, of size m(V ).
6 By 5, G = (V , E ) is a sandwich graph that has, by Hakimi’s Theorem,

an m-orientation.

Z. Szigeti (G-SCOP, Grenoble) Sandwich problems on orientations 27 janvier 2011 14 / 21



Proof

Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is Yes if and only if iE1
(X ) ≤ m(X ) ≤ eE2

(X ) ∀X ⊆ V .

1 Necessity : if sandwich graph G that has an m-orientation exists
1 Each edge that contributes to iE1(X ) must contribute to m(X ) and
2 only the edges that contributes to eE2(X ) may contribute to m(X ).

2 Sufficiency :
1 Let M = {F ⊆ E2 : m(X ) ≥ iF (X ) ∀X ⊆ V }.
2 M is a matroid of rank min{m(V (F )) + |E2 \ F | : F ⊆ E2}.
3 By iE1(X ) ≤ m(X ) ∀X ⊆ V , E1 ∈ M.
4 For all F ⊆ E2, by m(X ) ≤ eE2(X ) ∀X ⊆ V , applied for V \ V (F ), and

by 2, rank of M is ≥ m(V ).
5 By 3 and 4, there exists E ∈ M that contains E1, of size m(V ).
6 By 5, G = (V , E ) is a sandwich graph that has, by Hakimi’s Theorem,

an m-orientation.

Z. Szigeti (G-SCOP, Grenoble) Sandwich problems on orientations 27 janvier 2011 14 / 21



Algorithmic aspects

Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is Yes if and only if iE1
(X ) ≤ m(X ) ≤ eE2

(X ) ∀X ⊆ V .
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Algorithmic aspects

Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)
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m-orientation Sandwich Problem 2

Mixed Graphs :

G1,G2 mixed graphs, Π =G has an m-orientation (m : V → Z+).
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m-orientation Sandwich Problem 2

m-orientation Sandwich Problem for Mixed Graphs :

Instance : Given mixed graphs G1 = (V ,E1 ∪ A1) and G2 = (V ,E2 ∪ A2)
with E1 ⊆ E2, A1 ⊆ A2 and a non-negative integer vector m on V .
Question : Does there exist a sandwich mixed graph G = (V ,E ∪ A) with

E1 ⊆ E ⊆ E2 and A1 ⊆ A ⊆ A2 that has an orientation ~G = (V ,
−→
E ∪ A)

whose in-degree vector is m that is d−

~G
(v) = m(v) ∀v ∈ V ?
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Special cases

1 E2 = ∅ : result on the In-degree Constrained Sandwich Problem.

2 A2 = ∅ : result on m-orient. Sandwich Problem for Undirected Graphs.
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Proof

1 Suppose that E1 ⊆ E ⊆ E2 has been choosen and oriented with
in-degree vector m1.

2 Then the problem is reduced to the Dir. Degree Const. Sandw.

Problem with m2(v) = m(v) − m1(v) ∀v ∈ V for A1 ⊆ A2,

3 which has a solution if and only if d−

A1
(v) ≤ m2(v) ≤ d−

A2
(v) ∀v ∈ V .

4 or equivalently (1) m(v) − d−

A2
(v) ≤ m1(v) ≤ m(v) − d−

A1
(v) ∀v ∈ V .

5 The problem is reduced to the m1-orientation Sandwich

Problem for Undirected Graphs for E1 ⊆ E2,

6 which has a solution iff (2) iE1
(X ) ≤ m1(X ) ≤ eE2

(X ) ∀X ⊆ V .

7 The Mixed m-orient. Sandwich Problem has an Yes answer if
and only if there exists a function m1 : V → Z satisfying (1) and (2).

8 By the Generalized Polymatroid Intersection Theorem, applied for
p1(X ) =

∑
v∈X

(m(v) − d−

A2
(v)), b1(X ) =

∑
v∈X

(m(v) − d−

A1
(v)),

p2(X ) = iE1
(X ), b2(X ) = eE2

(X ), we are done.
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Algorithmic aspects

Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is Yes if and only if

iE1
(X ) +

∑
v∈X

d−

A1
(v) ≤ m(X ) ≤ eE2

(X ) +
∑

v∈X
d−

A2
(v) ∀X ⊆ V .
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∑
v∈X

d−

A1
(v) ≤ m(X ) ≤ eE2

(X ) +
∑

v∈X
d−

A2
(v) ∀X ⊆ V .

1 Decide : The answer is Yes if and only if both submodular functions
b∗

1(X ) = b1(X ) − p2(X ) and b∗

2(X ) = b2(X ) − p1(X ) have minimum
value 0. Submodular function minimization is polynomial.

2 Find : ~G = (V ,
−→
E ∪ A) whose in-degree vector is m.

1 m1 : Q(p1, b1) is a box, so R = Q(p1, b1) ∩ Q(p2, b2) is a
g -polymatroid, hence an integer vector m1 can be found in R by
greedy algorithm.

2 ~E : m1-orientation Sandwich Problem for Undirected

Graphs for E1 ⊆ E2,
3 A : Dir. Degree Const. Sandw. Problem with m2= m − m1 for

A1 ⊆ A2.
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Strongly connected m-orientation Sandwich Problem

Strongly connected m-orientation Sandwich Problem :

G1,G2 undirected graphs, Π =G has an m-orientation that is strongly
connected (m : V → Z+).
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It is NP-complete.
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Strongly connected m-orientation Sandwich Problem

Strongly connected m-orientation Sandwich Problem :

G1,G2 undirected graphs, Π =G has an m-orientation that is strongly
connected (m : V → Z+).

Remark

It is NP-complete. The special case E1 = ∅,m(v) = 1 ∀v ∈ V is
equivalent to decide if G2 has a Hamiltonian cycle.

1

1

1 1

1
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Thank you for your attention !
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