# Sandwich problems on orientations 

Zoltán Szigeti<br>Laboratoire G-SCOP<br>INP Grenoble, France

27 janvier 2011

Joint work with
Olivier de Gevigney, Sulamita Klein, Viet Hang Nguyen

## Outline

(1) Definitions
(2) In-degree constrained orientation
(3) Sandwich problems

## Outline

(1) Definitions
(1) Graphs
(2) Functions
(3) Polyhedra
(2) In-degree constrained orientation
(3) Sandwich problems

## Outline

(1) Definitions
(1) Graphs
(2) Functions
(3) Polyhedra
(2) In-degree constrained orientation
(1) Characterization
(2) Applications
(3) Algorithm
(3) Sandwich problems

## Outline

(1) Definitions
(1) Graphs
(2) Functions
(3) Polyhedra
(2) In-degree constrained orientation
(1) Characterization
(2) Applications
(3) Algorithm
(3) Sandwich problems
(1) Degree constrained
(2) In-degree constrained orientation

## Outline

(1) Definitions
(1) Graphs
(2) Functions
(3) Polyhedra
(2) In-degree constrained orientation
(1) Characterization
(2) Applications
(3) Algorithm
(3) Sandwich problems
(1) Degree constrained
(2) In-degree constrained orientation
(1) Undirected graphs
(2) Mixed graphs

## Notations

- Given an undirected graph $G$ and a set $X$ of vertices of $G$,
- $d_{G}(X)=$ number of edges of $G$ entering $X$,
- $i_{G}(X)=$ number of edges of $G$ in $X$,
- $e_{G}(X)=$ number of edges of $G$ incident to $X$.
- Given a directed graph $D$ and a set $X$ of vertices of $D$,



## Notations

- Given an undirected graph $G$ and a set $X$ of vertices of $G$, - $d_{G}(X)=$ number of edges of $G$ entering $X$, - $e_{G}(X)=$ number of edges of $G$ incident to $X$.
- Given a directed graph $D$ and a set $X$ of vertices of $D$,



## Notations

- Given an undirected graph $G$ and a set $X$ of vertices of $G$,
- $d_{G}(X)=$ number of edges of $G$ entering $X$,
- $i_{G}(X)=$ number of edges of $G$ in $X$,
- Given a directed graph $D$ and a set $X$ of vertices of $D$,



## Notations

- Given an undirected graph $G$ and a set $X$ of vertices of $G$,
- $d_{G}(X)=$ number of edges of $G$ entering $X$,
- $i_{G}(X)=$ number of edges of $G$ in $X$,
- $e_{G}(X)=$ number of edges of $G$ incident to $X$.
- Given a directed graph $D$ and a set $X$ of vertices of $D$,



## Notations

- Given an undirected graph $G$ and a set $X$ of vertices of $G$,
- $d_{G}(X)=$ number of edges of $G$ entering $X$,
- $i_{G}(X)=$ number of edges of $G$ in $X$,
- $e_{G}(X)=$ number of edges of $G$ incident to $X$.
- Given a directed graph $D$ and a set $X$ of vertices of $D$, - $d_{D}^{-}(X)=$ number of arcs of $D$ entering $X$,



## Notations

- Given an undirected graph $G$ and a set $X$ of vertices of $G$,
- $d_{G}(X)=$ number of edges of $G$ entering $X$,
- $i_{G}(X)=$ number of edges of $G$ in $X$,
- $e_{G}(X)=$ number of edges of $G$ incident to $X$.
- Given a directed graph $D$ and a set $X$ of vertices of $D$,
- $d_{D}^{-}(X)=$ number of arcs of $D$ entering $X$,



## Notations

- Given an undirected graph $G$ and a set $X$ of vertices of $G$,
- $d_{G}(X)=$ number of edges of $G$ entering $X$,
- $i_{G}(X)=$ number of edges of $G$ in $X$,
- $e_{G}(X)=$ number of edges of $G$ incident to $X$.
- Given a directed graph $D$ and a set $X$ of vertices of $D$,
- $d_{D}^{-}(X)=$ number of arcs of $D$ entering $X$,
- $d_{D}^{+}(X)=$ number of arcs of $D$ leaving $X$.



## Functions

## Definition

- A set function $b$ on $V$ is submodular if for all $X, Y \subset V$,

$$
b(X)+b(Y) \geq b(X \cap Y)+b(X \cup Y) .
$$

- The function $b$ is called supermodular if $-b$ is submodular.
- The function $b$ is called modular if $b$ is submodular and supermodular.


## Functions

## Definition

- A set function $b$ on $V$ is submodular if for all $X, Y \subset V$,

$$
b(X)+b(Y) \geq b(X \cap Y)+b(X \cup Y)
$$

- The function $b$ is called supermodular if $-b$ is submodular. - The function $b$ is called modular if $b$ is submodular and supermodular.


## Functions

## Definition

- A set function $b$ on $V$ is submodular if for all $X, Y \subset V$,

$$
b(X)+b(Y) \geq b(X \cap Y)+b(X \cup Y)
$$

- The function $b$ is called supermodular if $-b$ is submodular.
- The function $b$ is called modular if $b$ is submodular and supermodular.


## Functions

## Definition

- A set function $b$ on $V$ is submodular if for all $X, Y \subset V$,

$$
b(X)+b(Y) \geq b(X \cap Y)+b(X \cup Y)
$$

- The function $b$ is called supermodular if $-b$ is submodular.
- The function $b$ is called modular if $b$ is submodular and supermodular.


## Examples

- Submodular functions :
- the degree function $d_{G}(Z)$ of an undirected graph $G$,
- the function $\mathrm{e}_{G}(Z)$,
- Supermodular function :
- Modular function :
- the function $m(X)$


## Functions

## Definition

- A set function $b$ on $V$ is submodular if for all $X, Y \subset V$,

$$
b(X)+b(Y) \geq b(X \cap Y)+b(X \cup Y)
$$

- The function $b$ is called supermodular if $-b$ is submodular.
- The function $b$ is called modular if $b$ is submodular and supermodular.


## Examples

- Submodular functions :
- the degree function $d_{G}(Z)$ of an undirected graph $G$,
- the function
- Supermodular function :
- Modular function :
- the function $m(X)$


## Functions

## Definition

- A set function $b$ on $V$ is submodular if for all $X, Y \subset V$,

$$
b(X)+b(Y) \geq b(X \cap Y)+b(X \cup Y) .
$$

- The function $b$ is called supermodular if $-b$ is submodular.
- The function $b$ is called modular if $b$ is submodular and supermodular.


## Examples

- Submodular functions :
- the degree function $d_{G}(Z)$ of an undirected graph $G$,
- the function $e_{G}(Z)$,
- Supermodular function :
- Modular function :
- the function $m(X)$


## Functions

## Definition

- A set function $b$ on $V$ is submodular if for all $X, Y \subset V$,

$$
b(X)+b(Y) \geq b(X \cap Y)+b(X \cup Y) .
$$

- The function $b$ is called supermodular if $-b$ is submodular.
- The function $b$ is called modular if $b$ is submodular and supermodular.


## Examples

- Submodular functions :
- the degree function $d_{G}(Z)$ of an undirected graph $G$,
- the function $e_{G}(Z)$,
- Supermodular function :
- the function $i_{G}(Z)$.
- Modular function :
- the function $m(X)$


## Functions

## Definition

- A set function $b$ on $V$ is submodular if for all $X, Y \subset V$,

$$
b(X)+b(Y) \geq b(X \cap Y)+b(X \cup Y) .
$$

- The function $b$ is called supermodular if $-b$ is submodular.
- The function $b$ is called modular if $b$ is submodular and supermodular.


## Examples

- Submodular functions :
- the degree function $d_{G}(Z)$ of an undirected graph $G$,
- the function $e_{G}(Z)$,
- Supermodular function :
- the function $i_{G}(Z)$.
- Modular function :
- the function $m(X)=\sum_{x \in X} m(x)$.


## Matroids

## Definition

A set system $M=(V, \mathcal{M})$ is called a matroid if $\mathcal{M}$ satisfies :
(1) $\emptyset \in \mathcal{M}$,
(2) if $F \in \mathcal{M}$ and $F^{\prime} \subseteq F$, then $F^{\prime} \in \mathcal{M}$,
(3) if $F, F^{\prime} \in \mathcal{M}$ and $|F|>\left|F^{\prime}\right|$, then $\exists f \in F \backslash F^{\prime}: F^{\prime} \cup f \in \mathcal{M}$.

The rank of $M$ is the maximum size of a set in $\mathcal{M}$.

## Matroids

## Definition

A set system $M=(V, \mathcal{M})$ is called a matroid if $\mathcal{M}$ satisfies:
(1) $\emptyset \in \mathcal{M}$,
(2) if $F \in \mathcal{M}$ and $F^{\prime} \subseteq F$, then $F^{\prime} \in \mathcal{M}$,
(3) if $F, F^{\prime} \in \mathcal{M}$ and $|F|>\left|F^{\prime}\right|$, then $\exists f \in F \backslash F^{\prime}: F^{\prime} \cup f \in \mathcal{M}$.

The rank of $M$ is the maximum size of a set in $\mathcal{M}$.

## Examples

(1) Forests of a graph,
(2) Linearly independent vectors of a vector space.

## Matroids

## Definition

A set system $M=(V, \mathcal{M})$ is called a matroid if $\mathcal{M}$ satisfies :
(1) $\emptyset \in \mathcal{M}$,
(2) if $F \in \mathcal{M}$ and $F^{\prime} \subseteq F$, then $F^{\prime} \in \mathcal{M}$,
(3) if $F, F^{\prime} \in \mathcal{M}$ and $|F|>\left|F^{\prime}\right|$, then $\exists f \in F \backslash F^{\prime}: F^{\prime} \cup f \in \mathcal{M}$.

The rank of $M$ is the maximum size of a set in $\mathcal{M}$.

## Algorithmic aspects

(1) Matroid is given by an oracle that answers if $F \in \mathcal{M}$.
(2) Greedy algorithm finds a set of $M$ of maximum size,
(3) more generally, given a matroid $M, F_{1} \in \mathcal{M}$ and $\left|F_{1}\right| \leq k \leq$ rank of $M$, it finds $F \in \mathcal{M}$ that contains $F_{1}$ and that has size $k$.

## Generalized Polymatroids

## Definition

(1) A pair $(p, b)$ of set functions on $V$ is a strong pair if

- $p$ is supermodular,
- $b$ is submodular,
- they are compliant : for all $X, Y \subset V$,

$$
p(X)-p(X \backslash Y) \leq b(Y)-b(Y \backslash X) .
$$

(2) If $(p, b)$ is a strong pair then the polyhedron

is called a generalized polymatroid.

## Generalized Polymatroids

## Definition

(1) A pair $(p, b)$ of set functions on $V$ is a strong pair if

- $p$ is supermodular,
- $b$ is submodular,
- they are compliant : for all $X, Y \subset V$,

$$
p(X)-p(X \backslash Y) \leq b(Y)-b(Y \backslash X)
$$

(2) If $(p, b)$ is a strong pair then the polyhedron

$$
Q(p, b)=\left\{z \in \mathbb{R}^{V}: p(X) \leq z(X) \leq b(X) \forall X \subseteq V\right\}
$$

is called a generalized polymatroid.

## Generalized Polymatroids

## Definition

(1) A pair $(p, b)$ of set functions on $V$ is a strong pair if

- $p$ is supermodular,
- $b$ is submodular,
- they are compliant : for all $X, Y \subset V$,

$$
p(X)-p(X \backslash Y) \leq b(Y)-b(Y \backslash X) .
$$

(2) If $(p, b)$ is a strong pair then the polyhedron

$$
Q(p, b)=\left\{z \in \mathbb{R}^{V}: p(X) \leq z(X) \leq b(X) \forall X \subseteq V\right\}
$$

is called a generalized polymatroid.

## Remarks

(1) A pair $\left(m_{1}, m_{2}\right)$ of modular functions is a strong pair if and only if
$\square$

## Generalized Polymatroids

## Definition

(1) A pair $(p, b)$ of set functions on $V$ is a strong pair if

- $p$ is supermodular,
- $b$ is submodular,
- they are compliant : for all $X, Y \subset V$,

$$
p(X)-p(X \backslash Y) \leq b(Y)-b(Y \backslash X)
$$

(2) If $(p, b)$ is a strong pair then the polyhedron

$$
Q(p, b)=\left\{z \in \mathbb{R}^{V}: p(X) \leq z(X) \leq b(X) \forall X \subseteq V\right\}
$$

is called a generalized polymatroid.

## Remarks

(1) A pair $\left(m_{1}, m_{2}\right)$ of modular functions is a strong pair if and only if

$$
m_{1}(v) \leq m_{2}(v) \forall v \in V
$$

$\square$
(2) The pair $\left(i_{G}, e_{G}\right)$ is a strong pair.

## Generalized Polymatroids

## Definition

(1) A pair $(p, b)$ of set functions on $V$ is a strong pair if

- $p$ is supermodular,
- $b$ is submodular,
- they are compliant : for all $X, Y \subset V$,

$$
p(X)-p(X \backslash Y) \leq b(Y)-b(Y \backslash X)
$$

(2) If $(p, b)$ is a strong pair then the polyhedron

$$
Q(p, b)=\left\{z \in \mathbb{R}^{V}: p(X) \leq z(X) \leq b(X) \forall X \subseteq V\right\}
$$

is called a generalized polymatroid.

## Remarks

(1) A pair $\left(m_{1}, m_{2}\right)$ of modular functions is a strong pair if and only if

$$
m_{1}(v) \leq m_{2}(v) \forall v \in V
$$

(2) The pair $\left(i_{G}, e_{G}\right)$ is a strong pair.

## Generalized Polymatroid Intersection Theorem

$$
Q(p, b)=\left\{z \in \mathbb{R}^{V}: p(X) \leq z(X) \leq b(X) \forall X \subseteq V\right\}
$$

Theorem (Frank, Tardos '88)
(1) The g-polymatroid $Q(p, b)$ is
(2) The intersection of two g-polymatroids $Q\left(p_{1}, b_{1}\right)$ and $Q\left(p_{2}, b_{2}\right)$ is

## Generalized Polymatroid Intersection Theorem

$$
Q(p, b)=\left\{z \in \mathbb{R}^{V}: p(X) \leq z(X) \leq b(X) \forall X \subseteq V\right\}
$$

Theorem (Frank, Tardos '88)
(1) The g-polymatroid $Q(p, b)$ is
(1) non-empty,
(2) an integral polyhedron if $p$ and $b$ are integral functions.
(2) The intersection of two g-polymatroids $Q\left(p_{1}, b_{1}\right)$ and $Q\left(p_{2}, b_{2}\right)$ is

## Generalized Polymatroid Intersection Theorem

$$
Q(p, b)=\left\{z \in \mathbb{R}^{V}: p(X) \leq z(X) \leq b(X) \forall X \subseteq V\right\}
$$

Theorem (Frank, Tardos '88)
(1) The g-polymatroid $Q(p, b)$ is
(1) non-empty,
(2) an integral polyhedron if $p$ and $b$ are integral functions.
(2) The intersection of two g-polymatroids $Q\left(p_{1}, b_{1}\right)$ and $Q\left(p_{2}, b_{2}\right)$ is

## Generalized Polymatroid Intersection Theorem

$$
Q(p, b)=\left\{z \in \mathbb{R}^{V}: p(X) \leq z(X) \leq b(X) \forall X \subseteq V\right\}
$$

## Theorem (Frank, Tardos '88)

(1) The g-polymatroid $Q(p, b)$ is
(1) non-empty,
(2) an integral polyhedron if $p$ and $b$ are integral functions.
(2) The intersection of two g-polymatroids $Q\left(p_{1}, b_{1}\right)$ and $Q\left(p_{2}, b_{2}\right)$ is

## Generalized Polymatroid Intersection Theorem

$$
Q(p, b)=\left\{z \in \mathbb{R}^{V}: p(X) \leq z(X) \leq b(X) \forall X \subseteq V\right\}
$$

## Theorem (Frank, Tardos '88)

(1) The g-polymatroid $Q(p, b)$ is
(1) non-empty,
(2) an integral polyhedron if $p$ and $b$ are integral functions.
(2) The intersection of two g-polymatroids $Q\left(p_{1}, b_{1}\right)$ and $Q\left(p_{2}, b_{2}\right)$ is
(1) non-empty if and only if $p_{1} \leq b_{2}$ and $p_{2} \leq b_{1}$,

## Generalized Polymatroid Intersection Theorem

$$
Q(p, b)=\left\{z \in \mathbb{R}^{V}: p(X) \leq z(X) \leq b(X) \forall X \subseteq V\right\}
$$

## Theorem (Frank, Tardos '88)

(1) The g-polymatroid $Q(p, b)$ is
(1) non-empty,
(2) an integral polyhedron if $p$ and $b$ are integral functions.
(2) The intersection of two g-polymatroids $Q\left(p_{1}, b_{1}\right)$ and $Q\left(p_{2}, b_{2}\right)$ is
(1) non-empty if and only if $p_{1} \leq b_{2}$ and $p_{2} \leq b_{1}$,
(2) an integral polyhedron if $p_{1}, p_{2}$ and $b_{1}, b_{2}$ are integral functions.

## In-degree constrained orientation : Characterization

## m-orientation Problem

Instance : Given a graph $G=(V, E)$ and $m: V \rightarrow \mathbb{Z}_{+}$.


## In-degree constrained orientation : Characterization

## m-orientation Problem

Instance : Given a graph $G=(V, E)$ and $m: V \rightarrow \mathbb{Z}_{+}$.
Question: Does there exist an orientation $\vec{G}$ whose in-degree vector is $m$ that is $d_{\vec{G}}^{-}(v)=m(v) \forall v \in V$ ?


## In-degree constrained orientation : Characterization

## m-orientation Problem

Instance : Given a graph $G=(V, E)$ and $m: V \rightarrow \mathbb{Z}_{+}$.
Question: Does there exist an orientation $\vec{G}$ whose in-degree vector is $m$ that is $d_{\vec{G}}^{-}(v)=m(v) \forall v \in V$ ?

## Theorem (Hakimi'65)

The answer is YES if and only if $m(X) \geq i_{G}(X) \forall X \subseteq V, m(V)=|E|$.


## In-degree constrained orientation : Applications

## Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- $f$-factor in a bipartite graph (Ore, Tutte).


G

## In-degree constrained orientation : Applications

## Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- $f$-factor in a bipartite graph (Ore, Tutte).


G

$$
m(v)=\frac{d_{G}(v)}{2} \forall v \in V
$$

## In-degree constrained orientation : Applications

## Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- f-factor in a bipartite graph (Ore, Tutte).



## In-degree constrained orientation : Applications

## Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- $f$-factor in a bipartite graph (Ore, Tutte).



## In-degree constrained orientation : Applications

## Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- $f$-factor in a bipartite graph (Ore, Tutte).



## In-degree constrained orientation : Applications

## Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- $f$-factor in a bipartite graph (Ore, Tutte).



## In-degree constrained orientation : Applications

## Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- $f$-factor in a bipartite graph (Ore, Tutte).



## In-degree constrained orientation : Applications

## Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- $f$-factor in a bipartite graph (Ore, Tutte).



## In-degree constrained orientation : Applications

## Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- $f$-factor in a bipartite graph (Ore, Tutte).



## In-degree constrained orientation : Applications

## Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- $f$-factor in a bipartite graph (Ore, Tutte).



## In-degree constrained orientation : Algorithm

## Algorithm 1

The in-degree constrained orientation problem is in $P$ because it is equivalent to the $f$-factor problem in a bipartite graph.

## In-degree constrained orientation : Algorithm

## Algorithm 1

The in-degree constrained orientation problem is in $P$ because it is equivalent to the $f$-factor problem in a bipartite graph.


G, m

## In-degree constrained orientation : Algorithm

## Algorithm 1

The in-degree constrained orientation problem is in $P$ because it is equivalent to the $f$-factor problem in a bipartite graph.


G, m

$H, f$

## In-degree constrained orientation : Algorithm

## Algorithm 1

The in-degree constrained orientation problem is in $P$ because it is equivalent to the $f$-factor problem in a bipartite graph.


G, m

$H, f, F$

## In-degree constrained orientation : Algorithm

## Algorithm 1

The in-degree constrained orientation problem is in $P$ because it is equivalent to the $f$-factor problem in a bipartite graph.


$H, f, F$

## In-degree constrained orientation : Algorithm

## Algorithm 2

(1) Take an arbitrary orientation $\vec{G}$ of $G$.
(2) If $d_{\vec{G}}^{-}(v) \leq m(v) \forall v$, then it is an m-orientation, Stop.
(3) Otherwise, take a big vertex $v: d_{\vec{G}}^{-}(v)>m(v)$.
(9) Let $X$ be the set of vertices $u$ from which there exists a path $P_{u}$ to $v$.
(3) Take a small vertex $u \in X: d_{\vec{G}}^{-}(u)<m(u)$.
(0) Let $\vec{G}^{\prime}$ be obtained from $\vec{G}$ by reorienting $P_{u}$. Go to Step 2 .
(1) This algorithm finds an m-orientation in polynomial time.

## In-degree constrained orientation : Algorithm

## Algorithm 2

(1) Take an arbitrary orientation $\vec{G}$ of $G$.
(2) If $d_{\vec{G}}^{-}(v) \leq m(v) \forall v$, then it is an $m$-orientation, Stop.
(3) Otherwise, take a big vertex $v: d_{\vec{G}}^{-}(v)>m(v)$.
(9) Let $X$ be the set of vertices $u$ from which there exists a path $P_{u}$ to $v$.
(5) Take a small vertex $u \in X: d_{\vec{G}}^{-}(u)<m(u)$
(0) Let $\vec{G}^{\prime}$ be obtained from $\vec{G}$ by reorienting $P_{u!}$. Go to Step 2 .
(1) This algorithm finds an m-orientation in polynomial time.

## In-degree constrained orientation : Algorithm

## Algorithm 2

(1) Take an arbitrary orientation $\vec{G}$ of $G$.
(2) If $d_{\vec{G}}^{-}(v) \leq m(v) \forall v$, then it is an $m$-orientation, Stop.
(Indeed, $|A|=\sum_{v \in V} d_{\vec{G}}^{-}(v) \leq \sum_{v \in V} m(v)=m(V)=|E|=|A|$.)
(3) Otherwise, take a big vertex $v: d_{\vec{G}}^{-}(v)>m(v)$.
(9) Let $X$ be the set of vertices $u$ from which there exists a path $P_{u}$ to $v$.
(3) Take a small vertex $u \in X: d_{\vec{G}}^{-}(u)<m(u)$.
(0) Let $\vec{G}^{\prime}$ be obtained from $\vec{G}$ by reorienting $P_{\prime \prime}$. Go to Step 2 .
(1) This algorithm finds an m-orientation in polynomial time.

## In-degree constrained orientation : Algorithm

## Algorithm 2

(1) Take an arbitrary orientation $\vec{G}$ of $G$.
(2) If $d_{\vec{G}}^{-}(v) \leq m(v) \forall v$, then it is an m-orientation, Stop.
(3) Otherwise, take a big vertex $v: d_{\vec{G}}^{-}(v)>m(v)$.
(1) Let $X$ be the set of vertices $u$ from which there exists a path $P_{u}$ to $v$.
(5) Take a small vertex $u \in X: d_{\vec{G}}^{-}(u)<m(u)$.
(6) Let $\vec{G}^{\prime}$ be obtained from $\vec{G}$ by reorienting $P_{u 1}$. Go to Step 2 .
(1) This algorithm finds an m-orientation in polynomial time.

## In-degree constrained orientation : Algorithm

## Algorithm 2

(1) Take an arbitrary orientation $\vec{G}$ of $G$.
(2) If $d_{\vec{G}}^{-}(v) \leq m(v) \forall v$, then it is an m-orientation, Stop.
(3) Otherwise, take a big vertex $v: d_{\vec{G}}^{-}(v)>m(v)$.
(9) Let $X$ be the set of vertices $u$ from which there exists a path $P_{u}$ to $v$.
(3) Take a small vertex $u \in X: d_{\vec{G}}^{-}(u)<m(u)$.
(0) Let $\vec{G}^{\prime}$ be obtained from $\vec{G}$ by reorienting $P_{u}$. Go to Step 2 .
(1) This algorithm finds an $m$-orientation in polynomial time.

## In-degree constrained orientation : Algorithm

## Algorithm 2

(1) Take an arbitrary orientation $\vec{G}$ of $G$.
(2) If $d_{\vec{G}}^{-}(v) \leq m(v) \forall v$, then it is an m-orientation, Stop.
(3) Otherwise, take a big vertex $v: d_{\vec{G}}^{-}(v)>m(v)$.
(9) Let $X$ be the set of vertices $u$ from which there exists a path $P_{u}$ to $v$.
(3) Take a small vertex $u \in X: d_{\vec{G}}^{-}(u)<m(u)$.
(0) Let $\vec{G}^{\prime}$ be obtained from $\vec{G}$ by reorienting $P_{u}$. Go to Step 2 .
(1) This algorithm finds an m-orientation in polynomial time.

## In-degree constrained orientation : Algorithm

## Algorithm 2

(1) Take an arbitrary orientation $\vec{G}$ of $G$.
(2) If $d_{\vec{G}}^{-}(v) \leq m(v) \forall v$, then it is an m-orientation, Stop.
(3) Otherwise, take a big vertex $v: d_{\vec{G}}^{-}(v)>m(v)$.
(9) Let $X$ be the set of vertices $u$ from which there exists a path $P_{u}$ to $v$.
(5) Take a small vertex $u \in X: d_{\vec{G}}^{-}(u)<m(u)$. (It exists because

$$
\left.\sum_{x \in X} m(x)=m(X) \geq i_{G}(X)=i_{G}(X)+d_{\vec{G}}^{-}(X)=\sum_{x \in X} d_{\vec{G}}^{-}(x) .\right)
$$

(0) Let $\vec{G}^{\prime}$ be obtained from $\vec{G}$ by reorienting $P_{u}$. Go to Step 2 .
(1) This algorithm finds an m-orientation in polynomial time.

## In-degree constrained orientation : Algorithm

## Algorithm 2

(1) Take an arbitrary orientation $\vec{G}$ of $G$.
(2) If $d_{\vec{G}}^{-}(v) \leq m(v) \forall v$, then it is an m-orientation, Stop.
(3) Otherwise, take a big vertex $v: d_{\vec{G}}^{-}(v)>m(v)$.
(9) Let $X$ be the set of vertices $u$ from which there exists a path $P_{u}$ to $v$.
(5) Take a small vertex $u \in X: d_{\vec{G}}^{-}(u)<m(u)$.
(c) Let $\vec{G}^{\prime}$ be obtained from $\vec{G}$ by reorienting $P_{u}$. Go to Step 2 .
(1) This algorithm finds an m-orientation in polynomial time.

## In-degree constrained orientation : Algorithm

## Algorithm 2

(1) Take an arbitrary orientation $\vec{G}$ of $G$.
(2) If $d_{\vec{G}}^{-}(v) \leq m(v) \forall v$, then it is an m-orientation, Stop.
(3) Otherwise, take a big vertex $v: d_{\vec{G}}^{-}(v)>m(v)$.
(9) Let $X$ be the set of vertices $u$ from which there exists a path $P_{u}$ to $v$.
(5) Take a small vertex $u \in X: d_{\vec{G}}^{-}(u)<m(u)$.
(0) Let $\vec{G}^{\prime}$ be obtained from $\vec{G}$ by reorienting $P_{u}$. Go to Step 2 . (It is better : $\sum_{w \in V}\left|d_{\vec{G}^{\prime}}^{-}(w)-m(w)\right|=\sum_{w \in V}\left|d_{\vec{G}}^{-}(w)-m(w)\right|-2$.)
(3) This algorithm finds an m-orientation in polynomial time.

## In-degree constrained orientation : Algorithm

## Algorithm 2

(1) Take an arbitrary orientation $\vec{G}$ of $G$.
(2) If $d_{\vec{G}}^{-}(v) \leq m(v) \forall v$, then it is an m-orientation, Stop.
(3) Otherwise, take a big vertex $v: d_{\vec{G}}^{-}(v)>m(v)$.
(9) Let $X$ be the set of vertices $u$ from which there exists a path $P_{u}$ to $v$.
(5) Take a small vertex $u \in X: d_{\vec{G}}^{-}(u)<m(u)$.
(0) Let $\vec{G}^{\prime}$ be obtained from $\vec{G}$ by reorienting $P_{u}$. Go to Step 2 .
(- This algorithm finds an m-orientation in polynomial time.

## In-degree constrained orientation : Algorithm

## Algorithm 2

(1) Take an arbitrary orientation $\vec{G}$ of $G$.
(2) If $d_{\vec{G}}^{-}(v) \leq m(v) \forall v$, then it is an m-orientation, Stop.
(3) Otherwise, take a big vertex $v: d_{\vec{G}}^{-}(v)>m(v)$.
(9) Let $X$ be the set of vertices $u$ from which there exists a path $P_{u}$ to $v$.
(3) Take a small vertex $u \in X: d_{\vec{G}}^{-}(u)<m(u)$.
(0) Let $\vec{G}^{\prime}$ be obtained from $\vec{G}$ by reorienting $P_{u}$. Go to Step 2 .
(1) This algorithm finds an m-orientation in polynomial time.

$$
\left(0 \leq \sum_{w \in V}\left|d_{\vec{G}}^{-}(w)-m(w)\right| \leq 2|E| .\right)
$$

## In-degree constrained orientation : Algorithm

## Algorithm 2

(1) Take an arbitrary orientation $\vec{G}$ of $G$.
(2) If $d_{\vec{G}}^{-}(v) \leq m(v) \forall v$, then it is an m-orientation, Stop.
(3) Otherwise, take a big vertex $v: d_{\vec{G}}^{-}(v)>m(v)$.
(9) Let $X$ be the set of vertices $u$ from which there exists a path $P_{u}$ to $v$.
(5) Take a small vertex $u \in X: d_{\vec{G}}^{-}(u)<m(u)$.
(0) Let $\vec{G}^{\prime}$ be obtained from $\vec{G}$ by reorienting $P_{u}$. Go to Step 2 .
(- This algorithm finds an m-orientation in polynomial time.

## Sandwich problems

## Graph Sandwich Problem for Property

Instance : Given graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ with $E_{1} \subset E_{2}$. Question : Does there exist $E_{1} \subseteq E \subseteq E_{2}$ such that the graph $G=(V, E)$ satisfies property $\Pi$ ?

## Sandwich problems

## Graph Sandwich Problem for Property

Instance : Given graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ with $E_{1} \subset E_{2}$. Question: Does there exist $E_{1} \subseteq E \subseteq E_{2}$ such that the graph $G=(V, E)$ satisfies property П?

## Golumbic, Kaplan, Shamir '95

- Split graphs (in P), [V=C+I]
- Cographs (in P), [no induced $P_{4}$ ]
- Eulerian graphs,
- Comparability graphs (NP-complete), [has a transitive orientation]
- Permutation graphs (NP-complete), [intersection graph of the chords of a permutation diagram]
- Interval graphs (NP-complete). [intersection graph of a family of intervals on the real line]


## Degree Constrained Sandwich Problems

## UNDIRECTED CASE

$G_{1}, G_{2}$ undirected graphs, $\Pi=\left\{d_{G}(v)=m(v) \forall v \in V\right\}\left(m: V \rightarrow \mathbb{Z}_{+}\right)$.

## Degree Constrained Sandwich Problems

## UNDIRECTED CASE

$G_{1}, G_{2}$ undirected graphs, $\Pi=\left\{d_{G}(v)=m(v) \forall v \in V\right\}\left(m: V \rightarrow \mathbb{Z}_{+}\right)$.

## Remark

It is equivalent to the $f$-factor problem. The answer is YES if and only if there exists an $\left(m(v)-d_{G_{1}}(v)\right)$-factor in the graph $G_{0}=\left(V, E_{2} \backslash E_{1}\right)$.

## Degree Constrained Sandwich Problems

## Undirected CAse

$G_{1}, G_{2}$ undirected graphs, $\Pi=\left\{d_{G}(v)=m(v) \forall v \in V\right\}\left(m: V \rightarrow \mathbb{Z}_{+}\right)$.

## Remark

It is equivalent to the $f$-factor problem. The answer is YES if and only if there exists an $\left(m(v)-d_{G_{1}}(v)\right)$-factor in the graph $G_{0}=\left(V, E_{2} \backslash E_{1}\right)$.

## DIRECTED CASE

$D_{1}, D_{2}$ directed graphs and $\Pi=\left\{d_{D}^{-}(v)=m(v) \forall v \in V\right\}\left(m: V \rightarrow \mathbb{Z}_{+}\right)$.

## Degree Constrained Sandwich Problems

## UNDIRECTED CASE

$G_{1}, G_{2}$ undirected graphs, $\Pi=\left\{d_{G}(v)=m(v) \forall v \in V\right\}\left(m: V \rightarrow \mathbb{Z}_{+}\right)$.

## Remark

It is equivalent to the $f$-factor problem. The answer is YES if and only if there exists an $\left(m(v)-d_{G_{1}}(v)\right)$-factor in the graph $G_{0}=\left(V, E_{2} \backslash E_{1}\right)$.

## Directed case

$D_{1}, D_{2}$ directed graphs and $\Pi=\left\{d_{D}^{-}(v)=m(v) \forall v \in V\right\}\left(m: V \rightarrow \mathbb{Z}_{+}\right)$.

## Exercise

The answer is YES if and only if $d_{D_{2}}^{-}(v) \geq m(v) \geq d_{D_{1}}^{-}(v) \forall v \in V$.

## m-orientation Sandwich Problem 1

## Undirected Graphs : <br> $G_{1}, G_{2}$ undirected graphs, $\Pi=G$ has an $m$-orientation $\left(m: V \rightarrow \mathbb{Z}_{+}\right)$.

## m-orientation Sandwich Problem 1

## m-Orientation Sandwich Problem for Undirected GRaphs :

Instance: Given undirected graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ with $E_{1} \subseteq E_{2}$ and a non-negative integer vector $m$ on $V$. Question : Does there exist a sandwich graph $G=(V, E)\left(E_{1} \subseteq E \subseteq E_{2}\right)$ that has an orientation $\vec{G}$ whose in-degree vector is $m$ that is $d_{\vec{G}}^{-}(v)=m(v) \forall v \in V$ ?

## m-orientation Sandwich Problem 1

## m-Orientation Sandwich Problem for Undirected GRAPHS :

Instance: Given undirected graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ with $E_{1} \subseteq E_{2}$ and a non-negative integer vector $m$ on $V$.
Question : Does there exist a sandwich graph $G=(V, E)\left(E_{1} \subseteq E \subseteq E_{2}\right)$ that has an orientation $\vec{G}$ whose in-degree vector is $m$ that is $d_{\vec{G}}^{-}(v)=m(v) \forall v \in V ?$

## Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is YES if and only if $i_{E_{1}}(X) \leq m(X) \leq e_{E_{2}}(X) \forall X \subseteq V$.

## m-orientation Sandwich Problem 1

## m-Orientation Sandwich Problem for Undirected GRAPHS :

Instance: Given undirected graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ with $E_{1} \subseteq E_{2}$ and a non-negative integer vector $m$ on $V$.
Question : Does there exist a sandwich graph $G=(V, E)\left(E_{1} \subseteq E \subseteq E_{2}\right)$ that has an orientation $\vec{G}$ whose in-degree vector is $m$ that is $d_{\vec{G}}^{-}(v)=m(v) \forall v \in V ?$

## Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is YES if and only if $i_{E_{1}}(X) \leq m(X) \leq e_{E_{2}}(X) \forall X \subseteq V$.

## Remark

$E_{1}=E_{2}$ : equivalent to Hakimi's Theorem.

## Proof

## Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is YES if and only if $i_{E_{1}}(X) \leq m(X) \leq e_{E_{2}}(X) \forall X \subseteq V$.
(1) Necessity : if sandwich graph $G$ that has an m-orientation exists
(1) Each edge that contributes to $i_{E_{1}}(X)$ must contribute to $m(X)$ and
(2) only the edges that contributes to $e_{E_{2}}(X)$ may contribute to $m(X)$.

Sufficiency

## Proof

## Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is YES if and only if $i_{E_{1}}(X) \leq m(X) \leq e_{E_{2}}(X) \forall X \subseteq V$.
(1) Necessity: if sandwich graph $G$ that has an m-orientation exists
(1) Each edge that contributes to $i_{E_{1}}(X)$ must contribute to $m(X)$ and
(2) Sufficiency

## Proof

## Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is YES if and only if $i_{E_{1}}(X) \leq m(X) \leq e_{E_{2}}(X) \forall X \subseteq V$.
(1) Necessity: if sandwich graph $G$ that has an m-orientation exists
(1) Each edge that contributes to $i_{E_{1}}(X)$ must contribute to $m(X)$ and
(2) only the edges that contributes to $e_{E_{2}}(X)$ may contribute to $m(X)$.
(2) Sufficiency

## Proof

## Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is YES if and only if $i_{E_{1}}(X) \leq m(X) \leq e_{E_{2}}(X) \forall X \subseteq V$.
(1) Necessity : if sandwich graph $G$ that has an $m$-orientation exists
(1) Each edge that contributes to $i_{E_{1}}(X)$ must contribute to $m(X)$ and
(2) only the edges that contributes to $e_{E_{2}}(X)$ may contribute to $m(X)$.
(2) Sufficiency:


[^0]
## Proof

## Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is Yes if and only if $i_{E_{1}}(X) \leq m(X) \leq e_{E_{2}}(X) \forall X \subseteq V$.
(1) Necessity : if sandwich graph $G$ that has an $m$-orientation exists
(1) Each edge that contributes to $i_{E_{1}}(X)$ must contribute to $m(X)$ and
(2) only the edges that contributes to $e_{E_{2}}(X)$ may contribute to $m(X)$.
(3) Sufficiency:
(1) Let $\mathcal{M}=\left\{F \subseteq E_{2}: m(X) \geq i_{F}(X) \forall X \subseteq V\right\}$.
 an $m$-orientation

## Proof

## Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is Yes if and only if $i_{E_{1}}(X) \leq m(X) \leq e_{E_{2}}(X) \forall X \subseteq V$.
(1) Necessity : if sandwich graph $G$ that has an $m$-orientation exists
(1) Each edge that contributes to $i_{E_{1}}(X)$ must contribute to $m(X)$ and
(2) only the edges that contributes to $e_{E_{2}}(X)$ may contribute to $m(X)$.
(2) Sufficiency:
(1) Let $\mathcal{M}=\left\{F \subseteq E_{2}: m(X) \geq i_{F}(X) \forall X \subseteq V\right\}$.
(2) $\mathcal{M}$ is a matroid of rank $\min \left\{m(V(F))+\left|E_{2} \backslash F\right|: F \subseteq E_{2}\right\}$.

(5) By 3 and 4 , there exists $E \in \mathcal{M}$ that contains $E_{1}$, of size $m(V)$ (6) is a sandwich graph that has, by Hakimi's Theo rem, an $m$-orientation

## Proof

## Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is YES if and only if $i_{E_{1}}(X) \leq m(X) \leq e_{E_{2}}(X) \forall X \subseteq V$.
(1) Necessity: if sandwich graph $G$ that has an m-orientation exists
(1) Each edge that contributes to $i_{E_{1}}(X)$ must contribute to $m(X)$ and
(2) only the edges that contributes to $e_{E_{2}}(X)$ may contribute to $m(X)$.
(2) Sufficiency:
(1) Let $\mathcal{M}=\left\{F \subseteq E_{2}: m(X) \geq i_{F}(X) \forall X \subseteq V\right\}$.
(2) $\mathcal{M}$ is a matroid of rank $\min \left\{m(V(F))+\left|E_{2} \backslash F\right|: F \subseteq E_{2}\right\}$.
(3) By $i_{E_{1}}(X) \leq m(X) \forall X \subseteq V, E_{1} \in \mathcal{M}$.
(9) For all $F \subseteq E_{2}$, by $m(X) \leq e_{E_{2}}(X) \forall X \subseteq V$, applied for $V \backslash V(F)$, and (3) By 3 and 4 , there exists $E \in \mathcal{M}$ that contains $E_{1}$, of size $m(V)$.
(7) By $5, G=(V, E)$ is a sandwich graph that has, by Hakimi's Theorem, an $m$-orientation.

## Proof

## Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is YES if and only if $i_{E_{1}}(X) \leq m(X) \leq e_{E_{2}}(X) \forall X \subseteq V$.
(1) Necessity: if sandwich graph $G$ that has an m-orientation exists
(1) Each edge that contributes to $i_{E_{1}}(X)$ must contribute to $m(X)$ and
(2) only the edges that contributes to $e_{E_{2}}(X)$ may contribute to $m(X)$.
(2) Sufficiency:
(1) Let $\mathcal{M}=\left\{F \subseteq E_{2}: m(X) \geq i_{F}(X) \forall X \subseteq V\right\}$.
(2) $\mathcal{M}$ is a matroid of rank $\min \left\{m(V(F))+\left|E_{2} \backslash F\right|: F \subseteq E_{2}\right\}$.
(3) By $i_{E_{1}}(X) \leq m(X) \forall X \subseteq V, E_{1} \in \mathcal{M}$.
(1) For all $F \subseteq E_{2}$, by $m(X) \leq e_{E_{2}}(X) \forall X \subseteq V$, applied for $V \backslash V(F)$, and by 2 , rank of $\mathcal{M}$ is $\geq m(V)$.
(3) By 3 and 4 , there exists $E$
(6) By $5, G=(V, E)$ is a sandwich graph that has, by Hakimi's Theorem, an $m$-orientation

## Proof

## Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is YES if and only if $i_{E_{1}}(X) \leq m(X) \leq e_{E_{2}}(X) \forall X \subseteq V$.
(1) Necessity: if sandwich graph $G$ that has an m-orientation exists
(1) Each edge that contributes to $i_{E_{1}}(X)$ must contribute to $m(X)$ and
(2) only the edges that contributes to $e_{E_{2}}(X)$ may contribute to $m(X)$.
(2) Sufficiency:
(1) Let $\mathcal{M}=\left\{F \subseteq E_{2}: m(X) \geq i_{F}(X) \forall X \subseteq V\right\}$.
(2) $\mathcal{M}$ is a matroid of rank $\min \left\{m(V(F))+\left|E_{2} \backslash F\right|: F \subseteq E_{2}\right\}$.
(3) By $i_{E_{1}}(X) \leq m(X) \forall X \subseteq V, E_{1} \in \mathcal{M}$.
(1) For all $F \subseteq E_{2}$, by $m(X) \leq e_{E_{2}}(X) \forall X \subseteq V$, applied for $V \backslash V(F)$, and by 2 , rank of $\mathcal{M}$ is $\geq m(V)$.
(3) By 3 and 4, there exists $E \in \mathcal{M}$ that contains $E_{1}$, of size $m(V)$. an $m$-orientation

## Proof

## Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is YES if and only if $i_{E_{1}}(X) \leq m(X) \leq e_{E_{2}}(X) \forall X \subseteq V$.
(1) Necessity: if sandwich graph $G$ that has an m-orientation exists
(1) Each edge that contributes to $i_{E_{1}}(X)$ must contribute to $m(X)$ and
(2) only the edges that contributes to $e_{E_{2}}(X)$ may contribute to $m(X)$.
(2) Sufficiency:
(1) Let $\mathcal{M}=\left\{F \subseteq E_{2}: m(X) \geq i_{F}(X) \forall X \subseteq V\right\}$.
(2) $\mathcal{M}$ is a matroid of rank $\min \left\{m(V(F))+\left|E_{2} \backslash F\right|: F \subseteq E_{2}\right\}$.
(3) By $i_{E_{1}}(X) \leq m(X) \forall X \subseteq V, E_{1} \in \mathcal{M}$.
(1) For all $F \subseteq E_{2}$, by $m(X) \leq e_{E_{2}}(X) \forall X \subseteq V$, applied for $V \backslash V(F)$, and by 2 , rank of $\mathcal{M}$ is $\geq m(V)$.
(0) By 3 and 4, there exists $E \in \mathcal{M}$ that contains $E_{1}$, of size $m(V)$.
(0) By $5, G=(V, E)$ is a sandwich graph that has, by Hakimi's Theorem, an $m$-orientation.

## Algorithmic aspects

## Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is YES if and only if $i_{E_{1}}(X) \leq m(X) \leq e_{E_{2}}(X) \forall X \subseteq V$.

## Algorithmic aspects

## Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is YES if and only if $i_{E_{1}}(X) \leq m(X) \leq e_{E_{2}}(X) \forall X \subseteq V$.
(1) Decide: The answer is Yes if and only if both submodular functions $b_{1}(X)=m(X)-i_{E_{1}}(X)$ and $b_{2}(X)=e_{E_{2}}(X)-m(X)$ have minimum value 0 .
Submodular function minimization is polynomial (Schrijver; Fleicher, Fujishige, Iwata'2000).
(2) Find: By the previous matroid property, greedy algorithm finds the sandwich graph $G$, and as seen, the $m$-orientation of $G$ is easy to find

## Algorithmic aspects

## Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is YES if and only if $i_{E_{1}}(X) \leq m(X) \leq e_{E_{2}}(X) \forall X \subseteq V$.
(1) Decide: The answer is Yes if and only if both submodular functions $b_{1}(X)=m(X)-i_{E_{1}}(X)$ and $b_{2}(X)=e_{E_{2}}(X)-m(X)$ have minimum value 0 .
Submodular function minimization is polynomial (Schrijver; Fleicher, Fujishige, Iwata'2000).
(2) Find: By the previous matroid property, greedy algorithm finds the sandwich graph $G$, and as seen, the $m$-orientation of $G$ is easy to find.

## m-orientation Sandwich Problem 2

## Mixed Graphs :

$G_{1}, G_{2}$ mixed graphs, $\Pi=G$ has an $m$-orientation $\left(m: V \rightarrow \mathbb{Z}_{+}\right)$.

## m-orientation Sandwich Problem 2

## m-orientation Sandwich Problem for Mixed Graphs :

Instance : Given mixed graphs $G_{1}=\left(V, E_{1} \cup A_{1}\right)$ and $G_{2}=\left(V, E_{2} \cup A_{2}\right)$ with $E_{1} \subseteq E_{2}, A_{1} \subseteq A_{2}$ and a non-negative integer vector $m$ on $V$. Question: Does there exist a sandwich mixed graph $G=(V, E \cup A)$ with $E_{1} \subseteq E \subseteq E_{2}$ and $A_{1} \subseteq A \subseteq A_{2}$ that has an orientation $\vec{G}=(V, \vec{E} \cup A)$ whose in-degree vector is $m$ that is $d_{\vec{G}}^{-}(v)=m(v) \forall v \in V$ ?

## m-orientation Sandwich Problem 2

## m-orientation Sandwich Problem for Mixed Graphs :

Instance : Given mixed graphs $G_{1}=\left(V, E_{1} \cup A_{1}\right)$ and $G_{2}=\left(V, E_{2} \cup A_{2}\right)$ with $E_{1} \subseteq E_{2}, A_{1} \subseteq A_{2}$ and a non-negative integer vector $m$ on $V$. Question: Does there exist a sandwich mixed graph $G=(V, E \cup A)$ with $E_{1} \subseteq E \subseteq E_{2}$ and $A_{1} \subseteq A \subseteq A_{2}$ that has an orientation $\vec{G}=(V, \vec{E} \cup A)$ whose in-degree vector is $m$ that is $d_{\vec{G}}^{-}(v)=m(v) \forall v \in V$ ?

## Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is Yes if and only if $i_{E_{1}}(X)+\sum_{v \in X} d_{A_{1}}^{-}(v) \leq m(X) \leq e_{E_{2}}(X)+\sum_{v \in X} d_{A_{2}}^{-}(v) \forall X \subseteq V$.

## m-orientation Sandwich Problem 2

## m-orientation Sandwich Problem for Mixed Graphs :

Instance : Given mixed graphs $G_{1}=\left(V, E_{1} \cup A_{1}\right)$ and $G_{2}=\left(V, E_{2} \cup A_{2}\right)$
with $E_{1} \subseteq E_{2}, A_{1} \subseteq A_{2}$ and a non-negative integer vector $m$ on $V$.
Question : Does there exist a sandwich mixed graph $G=(V, E \cup A)$ with $E_{1} \subseteq E \subseteq E_{2}$ and $A_{1} \subseteq A \subseteq A_{2}$ that has an orientation $\vec{G}=(V, \vec{E} \cup A)$ whose in-degree vector is $m$ that is $d_{\vec{G}}^{-}(v)=m(v) \forall v \in V$ ?

## Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is Yes if and only if $i_{E_{1}}(X)+\sum_{v \in X} d_{A_{1}}^{-}(v) \leq m(X) \leq e_{E_{2}}(X)+\sum_{v \in X} d_{A_{2}}^{-}(v) \forall X \subseteq V$.

## Special cases

(1) $E_{2}=\emptyset$ : result on the In-degree Constrained Sandwich Problem.
(2) $A_{2}=\emptyset$ : result on m-orient. Sandwich Problem for Undirected Graphs.

## Proof

(1) Suppose that $E_{1} \subseteq E \subseteq E_{2}$ has been choosen and oriented with in-degree vector $m_{1}$.
(2) Then the problem is reduced to the Dir. Degree Const. Sandw. PROBLEM with $m_{2}(v)=m(v)-m_{1}(v) \forall v \in V$ for $A_{1} \subseteq A_{2}$,
(3) which has a solution if and only if $d_{\Lambda}^{-}(v) \leq m_{2}(v) \leq d_{\Lambda_{2}}^{-}(v) \forall v \in V$
(9) or equivalently
(3) The problem is reduced to the $m_{1}$-ORIENTATION SANDWICH Problem for Undirected Graphs for $E_{1} \subseteq E_{2}$,
(0) which has a solution iff (2) $i_{E_{1}}(X)$
(1) The Mixed m-orient. Sandwich Problem has an Yes answer if and only if there exists a function $m_{1}: V \rightarrow \mathbb{Z}$ satisfying (1) and (2).
(8) By the Generalized Polymatroid Intersection Theorem, applied for $p_{1}(X)=\sum_{v \in X}\left(m(v)-d_{A_{2}}^{-}(v)\right), b_{1}(X)=\sum_{v \in X}\left(m(v)-d_{A_{1}}^{-}(v)\right)$, $p_{2}(X)=i_{E_{1}}(X), b_{2}(X)=e_{E_{2}}(X)$, we are done.

## Proof

(1) Suppose that $E_{1} \subseteq E \subseteq E_{2}$ has been choosen and oriented with in-degree vector $m_{1}$.
(c) Then the problem is reduced to the Dir. Degree Const. Sandw. Problem with $m_{2}(v)=m(v)-m_{1}(v) \forall v \in V$ for $A_{1} \subseteq A_{2}$,
(O) which has a solution if and only if $d_{A_{1}}^{-}(v) \leq m_{2}(v) \leq d_{A_{2}}^{-}(v) \forall v \in V$.
(1) or equivalently

- The problem is reduced to the $m_{1}$-orientation Sandwich Problem for Undirected Graphs for $E_{1} \subseteq E_{2}$,
© which has a solution iff (2) and only if there exists a function $m_{1}: V \rightarrow \mathbb{Z}$ satisfying (1) and (2).
(O) By the Generalized Polymatroid Intersection Theorem, applied for



## Proof

(1) Suppose that $E_{1} \subseteq E \subseteq E_{2}$ has been choosen and oriented with in-degree vector $m_{1}$.
(2) Then the problem is reduced to the Dir. Degree Const. Sandw. Problem with $m_{2}(v)=m(v)-m_{1}(v) \forall v \in V$ for $A_{1} \subseteq A_{2}$,
(3) which has a solution if and only if $d_{A_{1}}^{-}(v) \leq m_{2}(v) \leq d_{A_{2}}^{-}(v) \forall v \in V$.
(3) or equivalently
(3) The problem is reduced to the $m_{1}$-ORIENTATION SANDWICH Problem for Undirected Graphs for $E_{1} \subseteq E_{2}$,
(1) which has a solution iff (2) $i_{E_{1}}(X)$
(1) Th and only if there exists a function $m_{1}$
() By the Generalized Polymatroid Intersection Theorem, applied for


## Proof

(1) Suppose that $E_{1} \subseteq E \subseteq E_{2}$ has been choosen and oriented with in-degree vector $m_{1}$.
(2) Then the problem is reduced to the Dir. Degree Const. Sandw. PROBLEM with $m_{2}(v)=m(v)-m_{1}(v) \forall v \in V$ for $A_{1} \subseteq A_{2}$,
(3) which has a solution if and only if $d_{A_{1}}^{-}(v) \leq m_{2}(v) \leq d_{A_{2}}^{-}(v) \forall v \in V$.
(9) or equivalently (1) $m(v)-d_{A_{2}}^{-}(v) \leq m_{1}(v) \leq m(v)-d_{A_{1}}^{-}(v) \forall v \in V$.
(3) The problem is reduced to the $m_{1}$-ORIENTATION SANDWich Problem for Undirected Graphs for $E_{1} \subseteq E_{2}$,
(0) which has a solution iff (2)
(1) and only if there exists a function $m_{1}$
(B) By the Generalized Polymatroid Intersection Theorem, applied for

## Proof

(1) Suppose that $E_{1} \subseteq E \subseteq E_{2}$ has been choosen and oriented with in-degree vector $m_{1}$.
(2) Then the problem is reduced to the Dir. Degree Const. Sandw. Problem with $m_{2}(v)=m(v)-m_{1}(v) \forall v \in V$ for $A_{1} \subseteq A_{2}$,
(3) which has a solution if and only if $d_{A_{1}}^{-}(v) \leq m_{2}(v) \leq d_{A_{2}}^{-}(v) \forall v \in V$.
(9) or equivalently (1) $m(v)-d_{A_{2}}^{-}(v) \leq m_{1}(v) \leq m(v)-d_{A_{1}}^{-}(v) \forall v \in V$.
(3) The problem is reduced to the $m_{1}$-ORIENTATION SANDWICH Problem for Undirected Graphs for $E_{1} \subseteq E_{2}$,
(1) which has a solution iff (2) $i_{E_{1}}(X)$
(1) and only if there exists a function $m_{1}$
(8) By the Generalized Polymatroid Intersection Theorem, applied for

## Proof

(1) Suppose that $E_{1} \subseteq E \subseteq E_{2}$ has been choosen and oriented with in-degree vector $m_{1}$.
(2) Then the problem is reduced to the Dir. Degree Const. Sandw. Problem with $m_{2}(v)=m(v)-m_{1}(v) \forall v \in V$ for $A_{1} \subseteq A_{2}$,
(3) which has a solution if and only if $d_{A_{1}}^{-}(v) \leq m_{2}(v) \leq d_{A_{2}}^{-}(v) \forall v \in V$.
(9) or equivalently (1) $m(v)-d_{A_{2}}^{-}(v) \leq m_{1}(v) \leq m(v)-d_{A_{1}}^{-}(v) \forall v \in V$.
(6) The problem is reduced to the $m_{1}$-Orientation Sandwich Problem for Undirected Graphs for $E_{1} \subseteq E_{2}$,
(0) which has a solution iff $(2) i_{E_{1}}(X) \leq m_{1}(X) \leq e_{E_{2}}(X) \forall X \subseteq V$.
(1) and only if there exists a function $m_{1}$


## Proof

(1) Suppose that $E_{1} \subseteq E \subseteq E_{2}$ has been choosen and oriented with in-degree vector $m_{1}$.
(2) Then the problem is reduced to the Dir. Degree Const. Sandw. Problem with $m_{2}(v)=m(v)-m_{1}(v) \forall v \in V$ for $A_{1} \subseteq A_{2}$,
(0) which has a solution if and only if $d_{A_{1}}^{-}(v) \leq m_{2}(v) \leq d_{A_{2}}^{-}(v) \forall v \in V$.
(1) or equivalently (1) $m(v)-d_{A_{2}}^{-}(v) \leq m_{1}(v) \leq m(v)-d_{A_{1}}^{-}(v) \forall v \in V$.

- The problem is reduced to the $m_{1}$-orientation Sandwich Problem for Undirected Graphs for $E_{1} \subseteq E_{2}$,
(0) which has a solution iff $(2) i_{E_{1}}(X) \leq m_{1}(X) \leq e_{E_{2}}(X) \forall X \subseteq V$.
(1) The Mixed m-orient. Sandwich Problem has an Yes answer if and only if there exists a function $m_{1}: V \rightarrow \mathbb{Z}$ satisfying (1) and (2).
© By the Generalized Polymatroid Intersection Theorem, applied for


## Proof

(1) Suppose that $E_{1} \subseteq E \subseteq E_{2}$ has been choosen and oriented with in-degree vector $m_{1}$.
(2) Then the problem is reduced to the Dir. Degree Const. Sandw. Problem with $m_{2}(v)=m(v)-m_{1}(v) \forall v \in V$ for $A_{1} \subseteq A_{2}$,
(0) which has a solution if and only if $d_{A_{1}}^{-}(v) \leq m_{2}(v) \leq d_{A_{2}}^{-}(v) \forall v \in V$.
(1) or equivalently (1) $m(v)-d_{A_{2}}^{-}(v) \leq m_{1}(v) \leq m(v)-d_{A_{1}}^{-}(v) \forall v \in V$.

- The problem is reduced to the $m_{1}$-orientation Sandwich Problem for Undirected Graphs for $E_{1} \subseteq E_{2}$,
(0) which has a solution iff $(2) i_{E_{1}}(X) \leq m_{1}(X) \leq e_{E_{2}}(X) \forall X \subseteq V$.
(1) The Mixed m-orient. Sandwich Problem has an Yes answer if and only if there exists a function $m_{1}: V \rightarrow \mathbb{Z}$ satisfying (1) and (2).
(3) By the Generalized Polymatroid Intersection Theorem, applied for $p_{1}(X)=\sum_{v \in X}\left(m(v)-d_{A_{2}}^{-}(v)\right), b_{1}(X)=\sum_{v \in X}\left(m(v)-d_{A_{1}}^{-}(v)\right)$, $p_{2}(X)=i_{E_{1}}(X), b_{2}(X)=e_{E_{2}}(X)$, we are done.


## Algorithmic aspects

## Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is Yes if and only if $i_{E_{1}}(X)+\sum_{v \in X} d_{A_{1}}^{-}(v) \leq m(X) \leq e_{E_{2}}(X)+\sum_{v \in X} d_{A_{2}}^{-}(v) \forall X \subseteq V$.

## Algorithmic aspects

## Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is YES if and only if $i_{E_{1}}(X)+\sum_{v \in X} d_{A_{1}}^{-}(v) \leq m(X) \leq e_{E_{2}}(X)+\sum_{v \in X} d_{A_{2}}^{-}(v) \forall X \subseteq V$.
(1) Decide: The answer is Yes if and only if both submodular functions $b_{1}^{*}(X)=b_{1}(X)-p_{2}(X)$ and $b_{2}^{*}(X)=b_{2}(X)-p_{1}(X)$ have minimum value 0 . Submodular function minimization is polynomial.
(2) Find

A) whose in-degree vector is $m$.

## Algorithmic aspects

## Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is YES if and only if $i_{E_{1}}(X)+\sum_{v \in X} d_{A_{1}}^{-}(v) \leq m(X) \leq e_{E_{2}}(X)+\sum_{v \in X} d_{A_{2}}^{-}(v) \forall X \subseteq V$.
(1) Decide: The answer is Yes if and only if both submodular functions $b_{1}^{*}(X)=b_{1}(X)-p_{2}(X)$ and $b_{2}^{*}(X)=b_{2}(X)-p_{1}(X)$ have minimum value 0 . Submodular function minimization is polynomial.
(2) Find: $\vec{G}=(V, \vec{E} \cup A)$ whose in-degree vector is $m$.
$g$-polymatroid, hence an integer vector $m_{1}$ can be found in $R$ by greedy algorithm.
(2) $\vec{E}: m_{1}$-ORIENTATION SANDWICH PROBLEM FOR UNDIRECTED
(3) A : DIR. DEGREE CONST. SANDW. PROBLEM with $m_{2}=m-m_{1}$ for

## Algorithmic aspects

## Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is YES if and only if $i_{E_{1}}(X)+\sum_{v \in X} d_{A_{1}}^{-}(v) \leq m(X) \leq e_{E_{2}}(X)+\sum_{v \in X} d_{A_{2}}^{-}(v) \forall X \subseteq V$.
(1) Decide: The answer is Yes if and only if both submodular functions $b_{1}^{*}(X)=b_{1}(X)-p_{2}(X)$ and $b_{2}^{*}(X)=b_{2}(X)-p_{1}(X)$ have minimum value 0 . Submodular function minimization is polynomial.
(2) Find: $\vec{G}=(V, \vec{E} \cup A)$ whose in-degree vector is $m$.
(1) $m_{1}: Q\left(p_{1}, b_{1}\right)$ is a box, so $R=Q\left(p_{1}, b_{1}\right) \cap Q\left(p_{2}, b_{2}\right)$ is a $g$-polymatroid, hence an integer vector $m_{1}$ can be found in $R$ by greedy algorithm.
(2) E: $m_{1}$-orientation Sandwich Problem for Undirected GRaPHS for $E_{1} \subseteq E_{2}$,
(3) A : Dir. Degree Const. Sandw. Problem with $m_{2}=m-m_{1}$ for

## Algorithmic aspects

## Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is YES if and only if $i_{E_{1}}(X)+\sum_{v \in X} d_{A_{1}}^{-}(v) \leq m(X) \leq e_{E_{2}}(X)+\sum_{v \in X} d_{A_{2}}^{-}(v) \forall X \subseteq V$.
(1) Decide: The answer is Yes if and only if both submodular functions $b_{1}^{*}(X)=b_{1}(X)-p_{2}(X)$ and $b_{2}^{*}(X)=b_{2}(X)-p_{1}(X)$ have minimum value 0 . Submodular function minimization is polynomial.
(2) Find: $\vec{G}=(V, \vec{E} \cup A)$ whose in-degree vector is $m$.
(1) $m_{1}: Q\left(p_{1}, b_{1}\right)$ is a box, so $R=Q\left(p_{1}, b_{1}\right) \cap Q\left(p_{2}, b_{2}\right)$ is a $g$-polymatroid, hence an integer vector $m_{1}$ can be found in $R$ by greedy algorithm.
(3) $\vec{E}: m_{1}$-Orientation Sandwich Problem for Undirected Graphs for $E_{1} \subseteq E_{2}$,
(3) A : Dir. Degree Const. Sandw. Problem with $m_{2}=m-m_{1}$ for

## Algorithmic aspects

## Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is YES if and only if $i_{E_{1}}(X)+\sum_{v \in X} d_{A_{1}}^{-}(v) \leq m(X) \leq e_{E_{2}}(X)+\sum_{v \in X} d_{A_{2}}^{-}(v) \forall X \subseteq V$.
(1) Decide: The answer is Yes if and only if both submodular functions $b_{1}^{*}(X)=b_{1}(X)-p_{2}(X)$ and $b_{2}^{*}(X)=b_{2}(X)-p_{1}(X)$ have minimum value 0 . Submodular function minimization is polynomial.
(2) Find: $\vec{G}=(V, \vec{E} \cup A)$ whose in-degree vector is $m$.
(1) $m_{1}: Q\left(p_{1}, b_{1}\right)$ is a box, so $R=Q\left(p_{1}, b_{1}\right) \cap Q\left(p_{2}, b_{2}\right)$ is a $g$-polymatroid, hence an integer vector $m_{1}$ can be found in $R$ by greedy algorithm.
(3) $\vec{E}: m_{1}$-Orientation Sandwich Problem for Undirected Graphs for $E_{1} \subseteq E_{2}$,
(3) A : Dir. Degree Const. Sandw. Problem with $m_{2}=m-m_{1}$ for $A_{1} \subseteq A_{2}$.

## Example



## Strongly connected $m$-orientation Sandwich Problem

## Strongly connected m-ORIENTATION SANDWich Problem :

$G_{1}, G_{2}$ undirected graphs, $\Pi=G$ has an $m$-orientation that is strongly connected $\left(m: V \rightarrow \mathbb{Z}_{+}\right)$.

## Strongly connected $m$-orientation Sandwich Problem

## Strongly connected m-ORIENTATION SANDWich Problem : $G_{1}, G_{2}$ undirected graphs, $\Pi=G$ has an $m$-orientation that is strongly connected $\left(m: V \rightarrow \mathbb{Z}_{+}\right)$.

## Remark

It is NP-complete.

## Strongly connected m-orientation Sandwich Problem

## Strongly connected m-orientation Sandwich Problem : $G_{1}, G_{2}$ undirected graphs, $\Pi=G$ has an $m$-orientation that is strongly connected $\left(m: V \rightarrow \mathbb{Z}_{+}\right)$.

## Remark

It is NP-complete. The special case $E_{1}=\emptyset, m(v)=1 \forall v \in V$ is equivalent to decide if $G_{2}$ has a Hamiltonian cycle.


Thank you for your attention!


[^0]:    an $m$-orientation

