Sandwich problems on orientations

Zoltán Szigeti

Laboratoire G-SCOP INP Grenoble, France

27 janvier 2011

Joint work with Olivier de Gevigney, Sulamita Klein, Viet Hang Nguyen

Definitions

In-degree constrained orientation

Sandwich problems

Z. Szigeti (G-SCOP, Grenoble)

-

э

Definitions

- Graphs
- Ø Functions
- Olyhedra
- In-degree constrained orientation

Sandwich problems

э

Definitions

- Graphs
- Ø Functions
- Olyhedra
- In-degree constrained orientation
 - Characterization
 - Applications
 - Algorithm
- Sandwich problems

э

Definitions

- Graphs
- Ø Functions
- Olyhedra
- In-degree constrained orientation
 - Characterization
 - Applications
 - Algorithm
- Sandwich problems
 - Degree constrained
 - In-degree constrained orientation

Definitions

- Graphs
- Ø Functions
- Olyhedra
- In-degree constrained orientation
 - Characterization
 - Applications
 - Algorithm
- Sandwich problems
 - Degree constrained
 - In-degree constrained orientation
 - Undirected graphs
 - Ø Mixed graphs

3

• Given an undirected graph G and a set X of vertices of G,

- $d_G(X)$ = number of edges of G entering X,
- $i_G(X)$ = number of edges of G in X,
- $e_G(X)$ = number of edges of G incident to X.

• Given a directed graph D and a set X of vertices of D,

- $d_D^-(X) =$ number of arcs of D entering X.
- d⁺_D(X) = number of arcs of D leaving X

- Given an undirected graph G and a set X of vertices of G,
 - $d_G(X)$ = number of edges of G entering X,
 - $i_G(X)$ = number of edges of G in X,
 - $e_G(X)$ = number of edges of G incident to X.

• Given a directed graph D and a set X of vertices of D,

- $d_D^-(X) =$ number of arcs of D entering X.
- d⁺_D(X) = number of arcs of D leaving X

• Given an undirected graph G and a set X of vertices of G,

- $d_G(X)$ = number of edges of G entering X,
- $i_G(X)$ = number of edges of G in X,
- $e_G(X)$ = number of edges of G incident to X.

• Given a directed graph D and a set X of vertices of D,

• $d_D^-(X) =$ number of arcs of D entering X.

d⁺_D(X) = number of arcs of D leaving X

Z. Szigeti (G-SCOP, Grenoble)

- Given an undirected graph G and a set X of vertices of G,
 - $d_G(X)$ = number of edges of G entering X,
 - $i_G(X)$ = number of edges of G in X,
 - $e_G(X)$ = number of edges of G incident to X.
- Given a directed graph D and a set X of vertices of D,
 - $d_D^-(X) =$ number of arcs of D entering X. $d_D^+(X) =$ number of arcs of D leaving X.

- Given an undirected graph G and a set X of vertices of G,
 - $d_G(X)$ = number of edges of G entering X,
 - $i_G(X)$ = number of edges of G in X,
 - $e_G(X)$ = number of edges of G incident to X.

• Given a directed graph D and a set X of vertices of D,

d⁻_D(X) = number of arcs of D entering X,
 d⁺_D(X) = number of arcs of D leaving X.

- Given an undirected graph G and a set X of vertices of G,
 - $d_G(X)$ = number of edges of G entering X,
 - $i_G(X)$ = number of edges of G in X,
 - $e_G(X)$ = number of edges of G incident to X.

• Given a directed graph D and a set X of vertices of D,

• $d_D^-(X) =$ number of arcs of D entering X,

• $d_D^+(X) =$ number of arcs of D leaving X.

Z. Szigeti (G-SCOP, Grenoble)

- Given an undirected graph G and a set X of vertices of G,
 - $d_G(X)$ = number of edges of G entering X,
 - $i_G(X)$ = number of edges of G in X,
 - $e_G(X)$ = number of edges of G incident to X.
- Given a directed graph D and a set X of vertices of D,
 - $d_D^-(X) =$ number of arcs of D entering X,
 - $d_D^+(X) =$ number of arcs of D leaving X.

Definition

• A set function b on V is submodular if for all $X, Y \subset V$,

$b(X) + b(Y) \ge b(X \cap Y) + b(X \cup Y).$

• The function b is called supermodular if -b is submodular.

• The function *b* is called **modular** if *b* is submodular and supermodular.

Definition

• A set function b on V is submodular if for all $X, Y \subset V$,

 $b(X) + b(Y) \ge b(X \cap Y) + b(X \cup Y).$

• The function b is called supermodular if -b is submodular.

The function *b* is called modular if *b* is submodular and supermodular.

Definition

• A set function b on V is submodular if for all $X, Y \subset V$,

 $b(X) + b(Y) \ge b(X \cap Y) + b(X \cup Y).$

- The function b is called supermodular if -b is submodular.
- The function *b* is called modular if *b* is submodular and supermodular.

Definition

• A set function b on V is submodular if for all $X, Y \subset V$,

 $b(X) + b(Y) \ge b(X \cap Y) + b(X \cup Y).$

- The function b is called supermodular if -b is submodular.
- The function *b* is called modular if *b* is submodular and supermodular.

Examples

- Submodular functions :
 - the degree function d_G(Z) of an undirected graph G,
 the function e_G(Z),
- Supermodular function :
 - the function $i_G(Z)$.
- Modular function :

Definition

• A set function b on V is submodular if for all $X, Y \subset V$,

 $b(X) + b(Y) \ge b(X \cap Y) + b(X \cup Y).$

- The function b is called supermodular if -b is submodular.
- The function *b* is called modular if *b* is submodular and supermodular.

Examples

- Submodular functions :
 - the degree function $d_G(Z)$ of an undirected graph G,
 - the function $e_G(Z)$
- Supermodular function :
 - the function $i_G(Z)$.
- Modular function :

Definition

• A set function b on V is submodular if for all $X, Y \subset V$,

 $b(X) + b(Y) \ge b(X \cap Y) + b(X \cup Y).$

- The function b is called supermodular if -b is submodular.
- The function *b* is called modular if *b* is submodular and supermodular.

Examples

- Submodular functions :
 - the degree function $d_G(Z)$ of an undirected graph G,
 - the function $e_G(Z)$,
- Supermodular function :
 - the function $i_G(Z)$.
- Modular function :

Definition

• A set function b on V is submodular if for all $X, Y \subset V$,

 $b(X) + b(Y) \ge b(X \cap Y) + b(X \cup Y).$

- The function b is called supermodular if -b is submodular.
- The function *b* is called modular if *b* is submodular and supermodular.

Examples

- Submodular functions :
 - the degree function $d_G(Z)$ of an undirected graph G,
 - the function $e_G(Z)$,
- Supermodular function :
 - the function $i_G(Z)$.
- Modular function :

Definition

• A set function b on V is submodular if for all $X, Y \subset V$,

 $b(X) + b(Y) \ge b(X \cap Y) + b(X \cup Y).$

- The function b is called supermodular if -b is submodular.
- The function *b* is called modular if *b* is submodular and supermodular.

Examples

- Submodular functions :
 - the degree function $d_G(Z)$ of an undirected graph G,
 - the function e_G(Z),
- Supermodular function :
 - the function $i_G(Z)$.
- Modular function :
 - the function $m(X) = \sum_{x \in X} m(x)$.

Matroids

Definition

A set system M = (V, M) is called a matroid if M satisfies :

Ø ∈ M,
if F ∈ M and F' ⊆ F, then F' ∈ M,
if F, F' ∈ M and |F| > |F'|, then ∃ f ∈ F \ F' : F' ∪ f ∈ M.

The rank of M is the maximum size of a set in M.

Z. Szigeti (G-SCOP, Grenoble)

Matroids

Definition

A set system M = (V, M) is called a matroid if M satisfies :

- 2 if $F \in \mathcal{M}$ and $F' \subseteq F$, then $F' \in \mathcal{M}$,
- $\textbf{ o if } F, F' \in \mathcal{M} \text{ and } |F| > |F'|, \text{ then } \exists f \in F \setminus F' : F' \cup f \in \mathcal{M}.$

The rank of M is the maximum size of a set in \mathcal{M} .

Examples

- Forests of a graph,
- 2 Linearly independent vectors of a vector space.

Matroids

Definition

A set system M = (V, M) is called a matroid if M satisfies :

- $\textcircled{0} \ \emptyset \in \mathcal{M},$
- 2 if $F \in \mathcal{M}$ and $F' \subseteq F$, then $F' \in \mathcal{M}$,
- $\textbf{ o if } F, F' \in \mathcal{M} \text{ and } |F| > |F'|, \text{ then } \exists f \in F \setminus F' : F' \cup f \in \mathcal{M}.$

The rank of M is the maximum size of a set in \mathcal{M} .

Algorithmic aspects

- **Q** Matroid is given by an oracle that answers if $F \in \mathcal{M}$.
- **Q** Greedy algorithm finds a set of M of maximum size,
- more generally, given a matroid M, F₁ ∈ M and |F₁| ≤ k ≤ rank of M, it finds F ∈ M that contains F₁ and that has size k.

Definition

• A pair (p, b) of set functions on V is a strong pair if

- *p* is supermodular,
- b is submodular,
- they are compliant : for all $X, Y \subset V$,

 $p(X) - p(X \setminus Y) \leq b(Y) - b(Y \setminus X).$

2 If (p, b) is a strong pair then the polyhedron $Q(p, b) = \{z \in \mathbb{R}^V : p(X) \le z(X) \le b(X) \ \forall X \subseteq b(X) \ \forall X \subseteq b(X) \ \forall X \in b($

Definition

• A pair (p, b) of set functions on V is a strong pair if

- p is supermodular,
- b is submodular,
- they are compliant : for all $X, Y \subset V$,

 $p(X) - p(X \setminus Y) \leq b(Y) - b(Y \setminus X).$

2 If (p, b) is a strong pair then the polyhedron

 $Q(p,b) = \{z \in \mathbb{R}^V : p(X) \le z(X) \le b(X) \ \forall X \subseteq V\}$

is called a generalized polymatroid.

Definition

• A pair (p, b) of set functions on V is a strong pair if

- p is supermodular,
- b is submodular,
- they are compliant : for all $X, Y \subset V$,

 $p(X) - p(X \setminus Y) \leq b(Y) - b(Y \setminus X).$

2 If (p, b) is a strong pair then the polyhedron

 $Q(p,b) = \{z \in \mathbb{R}^V : p(X) \le z(X) \le b(X) \ \forall X \subseteq V\}$

is called a generalized polymatroid.

Remarks

() A pair (m_1, m_2) of modular functions is a strong pair if and only if

 $m_1(v) \leq m_2(v) \ \forall v \in V.$

② The pair (i_G, e_G) is a strong pair.

Z. Szigeti (G-SCOP, Grenoble)

Sandwich problems on orientations

Definition

• A pair (p, b) of set functions on V is a strong pair if

- p is supermodular,
- b is submodular,
- they are compliant : for all $X, Y \subset V$,

 $p(X) - p(X \setminus Y) \leq b(Y) - b(Y \setminus X).$

2 If (p, b) is a strong pair then the polyhedron

 $Q(p,b) = \{z \in \mathbb{R}^V : p(X) \le z(X) \le b(X) \ \forall X \subseteq V\}$

is called a generalized polymatroid.

Remarks

• A pair (m_1, m_2) of modular functions is a strong pair if and only if

 $m_1(v) \leq m_2(v) \ \forall v \in V.$

The pair (i_G, e_G) is a strong pair

Z. Szigeti (G-SCOP, Grenoble)

Definition

• A pair (p, b) of set functions on V is a strong pair if

- p is supermodular,
- b is submodular,
- they are compliant : for all $X, Y \subset V$,

 $p(X) - p(X \setminus Y) \leq b(Y) - b(Y \setminus X).$

2 If (p, b) is a strong pair then the polyhedron

 $Q(p,b) = \{z \in \mathbb{R}^V : p(X) \le z(X) \le b(X) \ \forall X \subseteq V\}$

is called a generalized polymatroid.

Remarks

• A pair (m_1, m_2) of modular functions is a strong pair if and only if

 $m_1(v) \leq m_2(v) \ \forall v \in V.$

Output: The pair (i_G, e_G) is a strong pair.

$$Q(p,b) = \{z \in \mathbb{R}^V : p(X) \le z(X) \le b(X) \ \forall X \subseteq V\}$$

Theorem (Frank, Tardos '88)

• The g-polymatroid Q(p, b) is

② The intersection of two g-polymatroids $Q(p_1,b_1)$ and $Q(p_2,b_2)$ is

$$Q(p,b) = \{z \in \mathbb{R}^V : p(X) \le z(X) \le b(X) \ \forall X \subseteq V\}$$

- The g-polymatroid Q(p, b) is
 - non-empty,
 - 2 an integral polyhedron if p and b are integral functions.
- ② The intersection of two g-polymatroids $Q(p_1, b_1)$ and $Q(p_2, b_2)$ is

$$Q(p,b) = \{z \in \mathbb{R}^V : p(X) \le z(X) \le b(X) \ \forall X \subseteq V\}$$

- The g-polymatroid Q(p, b) is
 - non-empty,
 - **2** an integral polyhedron if *p* and *b* are integral functions.
- ② The intersection of two g-polymatroids $Q(p_1, b_1)$ and $Q(p_2, b_2)$ is

$$Q(p,b) = \{z \in \mathbb{R}^V : p(X) \le z(X) \le b(X) \ \forall X \subseteq V\}$$

- The g-polymatroid Q(p, b) is
 - non-empty,
 - **2** an integral polyhedron if *p* and *b* are integral functions.
- **2** The intersection of two g-polymatroids $Q(p_1, b_1)$ and $Q(p_2, b_2)$ is

$$Q(p,b) = \{z \in \mathbb{R}^V : p(X) \le z(X) \le b(X) \ \forall X \subseteq V\}$$

- The g-polymatroid Q(p, b) is
 - non-empty,
 - **2** an integral polyhedron if *p* and *b* are integral functions.
- **2** The intersection of two g-polymatroids $Q(p_1, b_1)$ and $Q(p_2, b_2)$ is
 - **1** non-empty if and only if $p_1 \leq b_2$ and $p_2 \leq b_1$,
 - ② an integral polyhedron if p_1, p_2 and b_1, b_2 are integral functions.

$$Q(p,b) = \{z \in \mathbb{R}^V : p(X) \le z(X) \le b(X) \ \forall X \subseteq V\}$$

- The g-polymatroid Q(p, b) is
 - non-empty,
 - **2** an integral polyhedron if *p* and *b* are integral functions.
- **2** The intersection of two g-polymatroids $Q(p_1, b_1)$ and $Q(p_2, b_2)$ is
 - **1** non-empty if and only if $p_1 \leq b_2$ and $p_2 \leq b_1$,
 - **2** an integral polyhedron if p_1, p_2 and b_1, b_2 are integral functions.

In-degree constrained orientation : Characterization

m-ORIENTATION PROBLEM

Instance : Given a graph
$$G = (V, E)$$
 and $m : V \to \mathbb{Z}_+$.

Z. Szigeti (G-SCOP, Grenoble)
*m***-ORIENTATION** PROBLEM

Instance : Given a graph G = (V, E) and $m : V \to \mathbb{Z}_+$. *Question* : Does there exist an orientation \vec{G} whose in-degree vector is m that is $d_{\vec{G}}^-(v) = m(v) \ \forall v \in V$?

m-ORIENTATION PROBLEM

Instance : Given a graph G = (V, E) and $m : V \to \mathbb{Z}_+$. Question : Does there exist an orientation \vec{G} whose in-degree vector is m that is $d_{\vec{G}}(v) = m(v) \ \forall v \in V$?

Theorem (Hakimi'65)

The answer is YES if and only if $m(X) \ge i_G(X) \ \forall X \subseteq V, m(V) = |E|$.

Applications

• Eulerian orientation of an undirected graph (Euler),

- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- *f*-factor in a bipartite graph (Ore, Tutte).

Applications

• Eulerian orientation of an undirected graph (Euler),

- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- *f*-factor in a bipartite graph (Ore, Tutte).

Z. Szigeti (G-SCOP, Grenoble)

Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- *f*-factor in a bipartite graph (Ore, Tutte).

 $G=(V,E\cup \pmb{A})$

Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- *f*-factor in a bipartite graph (Ore, Tutte).

Z. Szigeti (G-SCOP, Grenoble)

27 janvier 2011

9 / 21

Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),

• *f*-factor in a bipartite graph (Ore, Tutte).

Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),

• *f*-factor in a bipartite graph (Ore, Tutte).

Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),

• *f*-factor in a bipartite graph (Ore, Tutte).

Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- *f*-factor in a bipartite graph (Ore, Tutte).

Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- *f*-factor in a bipartite graph (Ore, Tutte).

Applications

- Eulerian orientation of an undirected graph (Euler),
- Eulerian orientation of a mixed graph (Ford-Fulkerson),
- Perfect matching in a bipartite graph (Hall, Frobenius),
- *f*-factor in a bipartite graph (Ore, Tutte).

The in-degree constrained orientation problem is in P because it is equivalent to the f-factor problem in a bipartite graph.

The in-degree constrained orientation problem is in P because it is equivalent to the f-factor problem in a bipartite graph.

The in-degree constrained orientation problem is in P because it is equivalent to the f-factor problem in a bipartite graph.

10 / 21

The in-degree constrained orientation problem is in P because it is equivalent to the f-factor problem in a bipartite graph.

10 / 21

The in-degree constrained orientation problem is in P because it is equivalent to the f-factor problem in a bipartite graph.

- Take an arbitrary orientation \vec{G} of G.
- 3 If $d_{\vec{c}}(v) \leq m(v) \ \forall v$, then it is an *m*-orientation, Stop.
- Otherwise, take a big vertex $v : d_{\vec{G}}(v) > m(v)$.
- Let X be the set of vertices u from which there exists a path P_u to v.
- **③** Take a small vertex $u \in X : d^{-}_{\vec{G}}(u) < m(u)$.
- Let \vec{G}' be obtained from \vec{G} by reorienting P_u . Go to Step 2.
- This algorithm finds an *m*-orientation in polynomial time.

- Take an arbitrary orientation \vec{G} of G.
- 2 If $d_{\vec{c}}^{-}(v) \leq m(v) \ \forall v$, then it is an *m*-orientation, Stop.
- 3 Otherwise, take a big vertex $v : d_{\vec{c}}^{-}(v) > m(v)$.
- Let X be the set of vertices u from which there exists a path P_u to v.
- Take a small vertex $u \in X : d^{-}_{\vec{G}}(u) < m(u)$.
- Let \vec{G}' be obtained from \vec{G} by reorienting P_u . Go to Step 2.
- This algorithm finds an *m*-orientation in polynomial time.

- Take an arbitrary orientation \vec{G} of G.
- If $d^-_{\vec{G}}(v) \leq m(v)$ ∀v, then it is an *m*-orientation, Stop.
 (Indeed, $|A| = \sum_{v \in V} d^-_{\vec{G}}(v) \leq \sum_{v \in V} m(v) = m(V) = |E| = |A|.)$
- **(3)** Otherwise, take a big vertex $v : d_{\vec{c}}(v) > m(v)$.
- Iter X be the set of vertices u from which there exists a path P_u to v.
- **(**) Take a small vertex $u \in X : d^{-}_{\vec{G}}(u) < m(u)$.
- Let \vec{G}' be obtained from \vec{G} by reorienting P_u . Go to Step 2.
- This algorithm finds an *m*-orientation in polynomial time.

- Take an arbitrary orientation \vec{G} of G.
- 2 If $d_{\vec{c}}^{-}(v) \leq m(v) \ \forall v$, then it is an *m*-orientation, Stop.
- Otherwise, take a big vertex $v : d_{\vec{c}}^{-}(v) > m(v)$.
- Let X be the set of vertices u from which there exists a path P_u to v.
- **(3)** Take a small vertex $u \in X : d^{-}_{\vec{G}}(u) < m(u)$.
- Let \vec{G}' be obtained from \vec{G} by reorienting P_u . Go to Step 2.
- This algorithm finds an *m*-orientation in polynomial time.

- Take an arbitrary orientation \vec{G} of G.
- 2 If $d_{\vec{c}}^{-}(v) \leq m(v) \ \forall v$, then it is an *m*-orientation, Stop.
- Otherwise, take a big vertex $v : d_{\vec{c}}^{-}(v) > m(v)$.
- Let X be the set of vertices u from which there exists a path P_u to v.
- **(3)** Take a small vertex $u \in X : d^{-}_{\vec{G}}(u) < m(u)$.
- Let \vec{G}' be obtained from \vec{G} by reorienting P_u . Go to Step 2.
- This algorithm finds an *m*-orientation in polynomial time.

- Take an arbitrary orientation \vec{G} of G.
- 2 If $d_{\vec{c}}^{-}(v) \leq m(v) \ \forall v$, then it is an *m*-orientation, Stop.
- Otherwise, take a big vertex $v : d_{\vec{c}}^{-}(v) > m(v)$.
- **(3)** Let X be the set of vertices u from which there exists a path P_u to v.
- So Take a small vertex $u \in X : d_{\vec{G}}^{-}(u) < m(u)$.
- Let G' be obtained from G by reorienting P_u. Go to Step 2.
 This algorithm finds an *m*-orientation in polynomial time.

- Take an arbitrary orientation \vec{G} of G.
- 2 If $d_{\vec{c}}^{-}(v) \leq m(v) \ \forall v$, then it is an *m*-orientation, Stop.
- Otherwise, take a big vertex $v : d_{\vec{c}}(v) > m(v)$.
- **(3)** Let X be the set of vertices u from which there exists a path P_u to v.
- Take a small vertex $u \in X$: $d_{\vec{G}}^-(u) < m(u)$. (It exists because $\sum_{x \in X} m(x) = m(X) \ge i_G(X) = i_G(X) + d_{\vec{C}}^-(X) = \sum_{x \in X} d_{\vec{C}}^-(x)$.)
- Let \vec{G}' be obtained from \vec{G} by reorienting P_u . Go to Step 2.
- This algorithm finds an *m*-orientation in polynomial time.

- Take an arbitrary orientation \vec{G} of G.
- 2 If $d_{\vec{c}}^{-}(v) \leq m(v) \ \forall v$, then it is an *m*-orientation, Stop.
- Otherwise, take a big vertex $v : d_{\vec{c}}^{-}(v) > m(v)$.
- **(3)** Let X be the set of vertices u from which there exists a path P_u to v.
- **3** Take a small vertex $u \in X : d^{-}_{\vec{G}}(u) < m(u)$.
- Let \vec{G}' be obtained from \vec{G} by reorienting P_u . Go to Step 2.

This algorithm finds an *m*-orientation in polynomial time.

- Take an arbitrary orientation \vec{G} of G.
- 2 If $d_{\vec{c}}^{-}(v) \leq m(v) \ \forall v$, then it is an *m*-orientation, Stop.
- Otherwise, take a big vertex $v : d_{\vec{c}}^{-}(v) > m(v)$.
- **(3)** Let X be the set of vertices u from which there exists a path P_u to v.
- Take a small vertex $u \in X : d_{\vec{G}}^{-}(u) < m(u)$.
- Let \vec{G}' be obtained from \vec{G} by reorienting P_u . Go to Step 2. (It is better : $\sum_{w \in V} |d_{\vec{G}'}(w) - m(w)| = \sum_{w \in V} |d_{\vec{G}}(w) - m(w)| - 2.$)

This algorithm finds an *m*-orientation in polynomial time.

- Take an arbitrary orientation \vec{G} of G.
- 2 If $d_{\vec{c}}^{-}(v) \leq m(v) \ \forall v$, then it is an *m*-orientation, Stop.
- Otherwise, take a big vertex $v : d_{\vec{c}}^{-}(v) > m(v)$.
- **(3)** Let X be the set of vertices u from which there exists a path P_u to v.
- **3** Take a small vertex $u \in X : d^{-}_{\vec{G}}(u) < m(u)$.
- Let \vec{G}' be obtained from \vec{G} by reorienting P_u . Go to Step 2.
- This algorithm finds an *m*-orientation in polynomial time.

- Take an arbitrary orientation \vec{G} of G.
- 2 If $d_{\vec{c}}^{-}(v) \leq m(v) \ \forall v$, then it is an *m*-orientation, Stop.
- Otherwise, take a big vertex $v : d_{\vec{c}}(v) > m(v)$.
- **(3)** Let X be the set of vertices u from which there exists a path P_u to v.
- So Take a small vertex $u \in X : d^{-}_{\vec{G}}(u) < m(u)$.
- Let \vec{G}' be obtained from \vec{G} by reorienting P_u . Go to Step 2.
- This algorithm finds an *m*-orientation in polynomial time. $(0 \le \sum_{w \in V} |d_{\vec{G}}^{-}(w) - m(w)| \le 2|E|.)$

- Take an arbitrary orientation \vec{G} of G.
- 2 If $d_{\vec{c}}^{-}(v) \leq m(v) \ \forall v$, then it is an *m*-orientation, Stop.
- Otherwise, take a big vertex $v : d_{\vec{c}}^{-}(v) > m(v)$.
- **(3)** Let X be the set of vertices u from which there exists a path P_u to v.
- **3** Take a small vertex $u \in X : d^{-}_{\vec{G}}(u) < m(u)$.
- Let \vec{G}' be obtained from \vec{G} by reorienting P_u . Go to Step 2.
- This algorithm finds an *m*-orientation in polynomial time.

GRAPH SANDWICH PROBLEM FOR PROPERTY \square

Instance : Given graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ with $E_1 \subset E_2$. Question : Does there exist $E_1 \subseteq E \subseteq E_2$ such that the graph G = (V, E) satisfies property Π ?

GRAPH SANDWICH PROBLEM FOR PROPERTY \square

Instance : Given graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ with $E_1 \subset E_2$. Question : Does there exist $E_1 \subseteq E \subseteq E_2$ such that the graph G = (V, E) satisfies property Π ?

Golumbic, Kaplan, Shamir '95

- Split graphs (in P), [V=C+I]
- Cographs (in P), [no induced P₄]
- Eulerian graphs,
- Comparability graphs (NP-complete), [has a transitive orientation]
- Permutation graphs (NP-complete), [intersection graph of the chords of a permutation diagram]
- Interval graphs (NP-complete). [intersection graph of a family of intervals on the real line]

Degree Constrained Sandwich Problems

UNDIRECTED CASE

$$G_1, G_2$$
 undirected graphs, $\Pi = \{ d_G(v) = m(v) \ \forall v \in V \} \ (m : V \to \mathbb{Z}_+).$

э

Degree Constrained Sandwich Problems

UNDIRECTED CASE

 G_1, G_2 undirected graphs, $\Pi = \{ d_G(v) = m(v) \ \forall v \in V \} \ (m : V \to \mathbb{Z}_+).$

Remark

It is equivalent to the *f*-factor problem. The answer is YES if and only if there exists an $(m(v) - d_{G_1}(v))$ -factor in the graph $G_0 = (V, E_2 \setminus E_1)$.

UNDIRECTED CASE

 G_1, G_2 undirected graphs, $\Pi = \{ d_G(v) = m(v) \ \forall v \in V \} \ (m : V \to \mathbb{Z}_+).$

Remark

It is equivalent to the *f*-factor problem. The answer is YES if and only if there exists an $(m(v) - d_{G_1}(v))$ -factor in the graph $G_0 = (V, E_2 \setminus E_1)$.

DIRECTED CASE

 D_1, D_2 directed graphs and $\Pi = \{d_D^-(v) = m(v) \ \forall v \in V\} \ (m : V \to \mathbb{Z}_+).$

UNDIRECTED CASE

 G_1, G_2 undirected graphs, $\Pi = \{ d_G(v) = m(v) \ \forall v \in V \} \ (m : V \to \mathbb{Z}_+).$

Remark

It is equivalent to the *f*-factor problem. The answer is YES if and only if there exists an $(m(v) - d_{G_1}(v))$ -factor in the graph $G_0 = (V, E_2 \setminus E_1)$.

DIRECTED CASE

 D_1, D_2 directed graphs and $\Pi = \{ d_D^-(v) = m(v) \ \forall v \in V \} \ (m : V \to \mathbb{Z}_+).$

Exercise

The answer is YES if and only if $d_{D_2}^-(v) \ge m(v) \ge d_{D_1}^-(v) \ \forall v \in V$.

Z. Szigeti (G-SCOP, Grenoble)

・ロト ・ 同ト ・ ヨト ・ ヨト - -

m-orientation Sandwich Problem 1

UNDIRECTED GRAPHS :

 G_1, G_2 undirected graphs, $\Pi = G$ has an *m*-orientation $(m : V \to \mathbb{Z}_+)$.
m-orientation Sandwich Problem for Undirected Graphs :

Instance : Given undirected graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ with $E_1 \subseteq E_2$ and a non-negative integer vector m on V. Question : Does there exist a sandwich graph G = (V, E) $(E_1 \subseteq E \subseteq E_2)$ that has an orientation \vec{G} whose in-degree vector is m that is $d_{\vec{G}}^-(v) = m(v) \ \forall v \in V$?

m-orientation Sandwich Problem for Undirected Graphs :

Instance : Given undirected graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ with $E_1 \subseteq E_2$ and a non-negative integer vector m on V. Question : Does there exist a sandwich graph G = (V, E) $(E_1 \subseteq E \subseteq E_2)$ that has an orientation \vec{G} whose in-degree vector is m that is $d_{\vec{G}}^-(v) = m(v) \ \forall v \in V$?

Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is YES if and only if $i_{E_1}(X) \leq m(X) \leq e_{E_2}(X) \ \forall X \subseteq V$.

m-orientation Sandwich Problem for Undirected Graphs :

Instance : Given undirected graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ with $E_1 \subseteq E_2$ and a non-negative integer vector m on V. Question : Does there exist a sandwich graph G = (V, E) $(E_1 \subseteq E \subseteq E_2)$ that has an orientation \vec{G} whose in-degree vector is m that is $d_{\vec{G}}^-(v) = m(v) \ \forall v \in V$?

Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is YES if and only if $i_{E_1}(X) \leq m(X) \leq e_{E_2}(X) \ \forall X \subseteq V$.

Remark

 $E_1 = E_2$: equivalent to Hakimi's Theorem.

The answer is YES if and only if $i_{E_1}(X) \leq m(X) \leq e_{E_2}(X) \ \forall X \subseteq V$.

- Necessity : if sandwich graph G that has an *m*-orientation exists
 - Each edge that contributes to $i_{E_1}(X)$ must contribute to m(X) and • only the edges that contributes to $e_{E_2}(X)$ may contribute to m(X).

2 Sufficiency :

- Let $\mathcal{M} = \{F \subseteq E_2 : m(X) \ge i_F(X) \ \forall X \subseteq V\}.$
- $\bigcirc \ \mathcal{M} \text{ is a matroid of rank min} \{ m(V(F)) + |E_2 \setminus F| \ : F \subseteq E_2 \}.$
- By $i_{E_1}(X) \leq m(X) \ \forall X \subseteq V, E_1 \in \mathcal{M}$.
- For all F ⊆ E₂, by m(X) ≤ e_{E₂}(X) ∀X ⊆ V, applied for V \ V(F), and by 2, rank of M is ≥ m(V).
- **O** By 3 and 4, there exists $E \in \mathcal{M}$ that contains E_1 , of size m(V).
- By 5, G = (V, E) is a sandwich graph that has, by Hakimi's Theorem, an m-orientation.

The answer is YES if and only if $i_{E_1}(X) \leq m(X) \leq e_{E_2}(X) \ \forall X \subseteq V$.

- Necessity : if sandwich graph G that has an m-orientation exists
 - Each edge that contributes to $i_{E_1}(X)$ must contribute to m(X) and
 - only the edges that contributes to $e_{E_2}(X)$ may contribute to m(X). Sufficiency :
 - Let $\mathcal{M} = \{F \subseteq E_2 : m(X) \ge i_F(X) \ \forall X \subseteq V\}.$
 - $\bigcirc \ \mathcal{M} \text{ is a matroid of rank min} \{ m(V(F)) + |E_2 \setminus F| \ : F \subseteq E_2 \}.$

 - For all F ⊆ E₂, by m(X) ≤ e_{E₂}(X) ∀X ⊆ V, applied for V \ V(F), and by 2, rank of M is ≥ m(V).
 - **O** By 3 and 4, there exists $E \in \mathcal{M}$ that contains E_1 , of size m(V).
 - By 5, G = (V, E) is a sandwich graph that has, by Hakimi's Theorem, an m-orientation.

(日) (同) (三) (三)

The answer is YES if and only if $i_{E_1}(X) \leq m(X) \leq e_{E_2}(X) \ \forall X \subseteq V$.

- Necessity : if sandwich graph G that has an *m*-orientation exists
 - Each edge that contributes to $i_{E_1}(X)$ must contribute to m(X) and
 - only the edges that contributes to $e_{E_2}(X)$ may contribute to m(X). Sufficiency :
 - Let $\mathcal{M} = \{F \subseteq E_2 : m(X) \ge i_F(X) \ \forall X \subseteq V\}.$
 - $oldsymbol{ ilde{O}}$ \mathcal{M} is a matroid of rank min $\{m(V(F))+|E_2\setminus F|~:F\subseteq E_2\}.$
 - By $i_{E_1}(X) \leq m(X) \ \forall X \subseteq V, E_1 \in \mathcal{M}.$
 - For all F ⊆ E₂, by m(X) ≤ e_{E₂}(X) ∀X ⊆ V, applied for V \ V(F), and by 2, rank of M is ≥ m(V).
 - **O** By 3 and 4, there exists $E \in \mathcal{M}$ that contains E_1 , of size m(V).
 - By 5, G = (V, E) is a sandwich graph that has, by Hakimi's Theorem, an m-orientation.

・ロト ・同ト ・ヨト ・ヨト

The answer is YES if and only if $i_{E_1}(X) \leq m(X) \leq e_{E_2}(X) \ \forall X \subseteq V$.

- Necessity : if sandwich graph G that has an *m*-orientation exists
 - Each edge that contributes to $i_{E_1}(X)$ must contribute to m(X) and
 - **2** only the edges that contributes to $e_{E_2}(X)$ may contribute to m(X).
- **2** Sufficiency :
 - Let $\mathcal{M} = \{F \subseteq E_2 : m(X) \ge i_F(X) \ \forall X \subseteq V\}.$

 - **3** By $i_{E_1}(X) \leq m(X) \ \forall X \subseteq V, \ E_1 \in \mathcal{M}.$
 - **③** For all $F \subseteq E_2$, by $m(X) \le e_{E_2}(X)$ ∀ $X \subseteq V$, applied for $V \setminus V(F)$, and by 2, rank of \mathcal{M} is $\ge m(V)$.
 - **③** By 3 and 4, there exists $\boldsymbol{E} \in \mathcal{M}$ that contains E_1 , of size m(V).
 - **()** By 5, G = (V, E) is a sandwich graph that has, by Hakimi's Theorem, an *m*-orientation.

3

The answer is YES if and only if $i_{E_1}(X) \leq m(X) \leq e_{E_2}(X) \ \forall X \subseteq V$.

- Necessity : if sandwich graph G that has an *m*-orientation exists
 - Each edge that contributes to $i_{E_1}(X)$ must contribute to m(X) and
 - **2** only the edges that contributes to $e_{E_2}(X)$ may contribute to m(X).
- **2** Sufficiency :
 - Let $\mathcal{M} = \{F \subseteq E_2 : m(X) \ge i_F(X) \ \forall X \subseteq V\}.$
 - ② \mathcal{M} is a matroid of rank min{ $m(V(F)) + |E_2 \setminus F|$: $F \subseteq E_2$ }.
 - 3 By $i_{E_1}(X) \leq m(X) \ \forall X \subseteq V, \ E_1 \in \mathcal{M}.$
 - **③** For all $F \subseteq E_2$, by $m(X) \le e_{E_2}(X)$ ∀ $X \subseteq V$, applied for $V \setminus V(F)$, and by 2, rank of \mathcal{M} is $\ge m(V)$.
 - **③** By 3 and 4, there exists $\boldsymbol{E} \in \mathcal{M}$ that contains E_1 , of size m(V).
 - **()** By 5, G = (V, E) is a sandwich graph that has, by Hakimi's Theorem, an *m*-orientation.

3

The answer is YES if and only if $i_{E_1}(X) \leq m(X) \leq e_{E_2}(X) \ \forall X \subseteq V$.

- Necessity : if sandwich graph G that has an *m*-orientation exists
 - Each edge that contributes to $i_{E_1}(X)$ must contribute to m(X) and
 - **2** only the edges that contributes to $e_{E_2}(X)$ may contribute to m(X).
- Sufficiency :
 - Let $\mathcal{M} = \{F \subseteq E_2 : m(X) \ge i_F(X) \ \forall X \subseteq V\}.$
 - \mathcal{M} is a matroid of rank min $\{m(V(F)) + |E_2 \setminus F| : F \subseteq E_2\}$.
 - **3** By $i_{E_1}(X) \leq m(X) \ \forall X \subseteq V, \ E_1 \in \mathcal{M}.$
 - **③** For all $F \subseteq E_2$, by $m(X) \le e_{E_2}(X)$ ∀ $X \subseteq V$, applied for $V \setminus V(F)$, and by 2, rank of \mathcal{M} is $\ge m(V)$.
 - **③** By 3 and 4, there exists $\boldsymbol{E} \in \mathcal{M}$ that contains E_1 , of size m(V).
 - **()** By 5, G = (V, E) is a sandwich graph that has, by Hakimi's Theorem, an *m*-orientation.

3

The answer is YES if and only if $i_{E_1}(X) \leq m(X) \leq e_{E_2}(X) \ \forall X \subseteq V$.

- Necessity : if sandwich graph G that has an *m*-orientation exists
 - Each edge that contributes to $i_{E_1}(X)$ must contribute to m(X) and
 - **2** only the edges that contributes to $e_{E_2}(X)$ may contribute to m(X).
- Sufficiency :
 - Let $\mathcal{M} = \{F \subseteq E_2 : m(X) \ge i_F(X) \ \forall X \subseteq V\}.$

 - For all $F \subseteq E_2$, by $m(X) \leq e_{E_2}(X) \ \forall X \subseteq V$, applied for $V \setminus V(F)$, and by 2, rank of \mathcal{M} is $\geq m(V)$.
 - **3** By 3 and 4, there exists $\boldsymbol{E} \in \mathcal{M}$ that contains E_1 , of size m(V).
 - **()** By 5, G = (V, E) is a sandwich graph that has, by Hakimi's Theorem, an *m*-orientation.

3

The answer is YES if and only if $i_{E_1}(X) \leq m(X) \leq e_{E_2}(X) \ \forall X \subseteq V$.

- Necessity : if sandwich graph G that has an *m*-orientation exists
 - Each edge that contributes to $i_{E_1}(X)$ must contribute to m(X) and
 - **2** only the edges that contributes to $e_{E_2}(X)$ may contribute to m(X).
- Sufficiency :
 - Let $\mathcal{M} = \{F \subseteq E_2 : m(X) \ge i_F(X) \ \forall X \subseteq V\}.$

 - For all F ⊆ E₂, by m(X) ≤ e_{E2}(X) ∀X ⊆ V, applied for V \ V(F), and by 2, rank of M is ≥ m(V).
 - **3** By 3 and 4, there exists $E \in M$ that contains E_1 , of size m(V).
 - By 5, G = (V, E) is a sandwich graph that has, by Hakimi's Theorem, an *m*-orientation.

3

イロト イポト イヨト イヨト

The answer is YES if and only if $i_{E_1}(X) \leq m(X) \leq e_{E_2}(X) \ \forall X \subseteq V$.

- Necessity : if sandwich graph G that has an *m*-orientation exists
 - Each edge that contributes to $i_{E_1}(X)$ must contribute to m(X) and
 - **2** only the edges that contributes to $e_{E_2}(X)$ may contribute to m(X).
- Sufficiency :
 - Let $\mathcal{M} = \{F \subseteq E_2 : m(X) \ge i_F(X) \ \forall X \subseteq V\}.$
 - \mathcal{M} is a matroid of rank min $\{m(V(F)) + |E_2 \setminus F| : F \subseteq E_2\}$.

 - For all $F \subseteq E_2$, by $m(X) \le e_{E_2}(X) \ \forall X \subseteq V$, applied for $V \setminus V(F)$, and by 2, rank of \mathcal{M} is $\ge m(V)$.
 - **3** By 3 and 4, there exists $E \in M$ that contains E_1 , of size m(V).

() By 5, G = (V, E) is a sandwich graph that has, by Hakimi's Theorem, an *m*-orientation.

3

(日) (同) (三) (三)

The answer is YES if and only if $i_{E_1}(X) \leq m(X) \leq e_{E_2}(X) \ \forall X \subseteq V$.

- Necessity : if sandwich graph G that has an *m*-orientation exists
 - Each edge that contributes to $i_{E_1}(X)$ must contribute to m(X) and
 - **2** only the edges that contributes to $e_{E_2}(X)$ may contribute to m(X).
- Sufficiency :
 - Let $\mathcal{M} = \{F \subseteq E_2 : m(X) \ge i_F(X) \ \forall X \subseteq V\}.$
 - \mathcal{M} is a matroid of rank min $\{m(V(F)) + |E_2 \setminus F| : F \subseteq E_2\}$.

 - For all F ⊆ E₂, by m(X) ≤ e_{E₂}(X) ∀X ⊆ V, applied for V \ V(F), and by 2, rank of M is ≥ m(V).
 - **3** By 3 and 4, there exists $E \in M$ that contains E_1 , of size m(V).
 - **3** By 5, G = (V, E) is a sandwich graph that has, by Hakimi's Theorem, an *m*-orientation.

3

・ロト ・同ト ・ヨト ・ヨト

The answer is YES if and only if $i_{E_1}(X) \leq m(X) \leq e_{E_2}(X) \ \forall X \subseteq V$.

The answer is YES if and only if $i_{E_1}(X) \leq m(X) \leq e_{E_2}(X) \ \forall X \subseteq V$.

Decide : The answer is YES if and only if both submodular functions $b_1(X) = m(X) - i_{E_1}(X)$ and $b_2(X) = e_{E_2}(X) - m(X)$ have minimum value 0.

Submodular function minimization is polynomial (Schrijver; Fleicher, Fujishige, Iwata'2000).

Find : By the previous matroid property, greedy algorithm finds the sandwich graph G, and as seen, the *m*-orientation of G is easy to find.

The answer is YES if and only if $i_{E_1}(X) \leq m(X) \leq e_{E_2}(X) \ \forall X \subseteq V$.

• Decide : The answer is YES if and only if both submodular functions $b_1(X) = m(X) - i_{E_1}(X)$ and $b_2(X) = e_{E_2}(X) - m(X)$ have minimum value 0.

Submodular function minimization is polynomial (Schrijver; Fleicher, Fujishige, Iwata'2000).

Find : By the previous matroid property, greedy algorithm finds the sandwich graph *G*, and as seen, the *m*-orientation of *G* is easy to find.

m-orientation Sandwich Problem 2

MIXED GRAPHS :

 G_1, G_2 mixed graphs, $\Pi = G$ has an *m*-orientation ($m : V \to \mathbb{Z}_+$).

3

m-orientation Sandwich Problem for Mixed Graphs :

Instance : Given mixed graphs $G_1 = (V, E_1 \cup A_1)$ and $G_2 = (V, E_2 \cup A_2)$ with $E_1 \subseteq E_2$, $A_1 \subseteq A_2$ and a non-negative integer vector m on V. Question : Does there exist a sandwich mixed graph $G = (V, E \cup A)$ with $E_1 \subseteq E \subseteq E_2$ and $A_1 \subseteq A \subseteq A_2$ that has an orientation $\vec{G} = (V, \vec{E} \cup A)$ whose in-degree vector is m that is $d_{\vec{c}}(v) = m(v) \ \forall v \in V$?

m-orientation Sandwich Problem for Mixed Graphs :

Instance : Given mixed graphs $G_1 = (V, E_1 \cup A_1)$ and $G_2 = (V, E_2 \cup A_2)$ with $E_1 \subseteq E_2$, $A_1 \subseteq A_2$ and a non-negative integer vector m on V. Question : Does there exist a sandwich mixed graph $G = (V, E \cup A)$ with $E_1 \subseteq E \subseteq E_2$ and $A_1 \subseteq A \subseteq A_2$ that has an orientation $\vec{G} = (V, \vec{E} \cup A)$ whose in-degree vector is m that is $d_{\vec{c}}(v) = m(v) \ \forall v \in V$?

Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is YES if and only if $i_{E_1}(X) + \sum_{v \in X} d_{A_1}^-(v) \le m(X) \le e_{E_2}(X) + \sum_{v \in X} d_{A_2}^-(v) \ \forall X \subseteq V.$

m-orientation Sandwich Problem for Mixed Graphs :

Instance : Given mixed graphs $G_1 = (V, E_1 \cup A_1)$ and $G_2 = (V, E_2 \cup A_2)$ with $E_1 \subseteq E_2$, $A_1 \subseteq A_2$ and a non-negative integer vector m on V. Question : Does there exist a sandwich mixed graph $G = (V, E \cup A)$ with $E_1 \subseteq E \subseteq E_2$ and $A_1 \subseteq A \subseteq A_2$ that has an orientation $\vec{G} = (V, \vec{E} \cup A)$ whose in-degree vector is m that is $d_{\vec{c}}(v) = m(v) \ \forall v \in V$?

Theorem (de Gevigney, Klein, Nguyen, Szigeti 2010)

The answer is YES if and only if $i_{E_1}(X) + \sum_{v \in X} d_{A_1}^-(v) \le m(X) \le e_{E_2}(X) + \sum_{v \in X} d_{A_2}^-(v) \ \forall X \subseteq V.$

Special cases

Q $E_2 = \emptyset$: result on the In-degree Constrained Sandwich Problem.

2 $A_2 = \emptyset$: result on *m*-orient. Sandwich Problem for Undirected Graphs.

- Suppose that $E_1 \subseteq E \subseteq E_2$ has been choosen and oriented with in-degree vector m_1 .
- **2** Then the problem is reduced to the DIR. DEGREE CONST. SANDW. PROBLEM with $m_2(v) = m(v) - m_1(v) \ \forall v \in V$ for $A_1 \subseteq A_2$,
- ③ which has a solution if and only if $d^-_{A_1}(v) \leq m_2(v) \leq d^-_{A_2}(v) \; \forall v \in V.$
- 3 or equivalently (1) $m(v) d_{A_2}^-(v) \le m_1(v) \le m(v) d_{A_1}^-(v) \ \forall v \in V.$
- **3** The problem is reduced to the m_1 -ORIENTATION SANDWICH PROBLEM FOR UNDIRECTED GRAPHS for $E_1 \subseteq E_2$,
- which has a solution iff (2) $i_{E_1}(X) \le m_1(X) \le e_{E_2}(X) \ \forall X \subseteq V$.
- **②** The MIXED *m*-ORIENT. SANDWICH PROBLEM has an YES answer if and only if there exists a function $m_1 : V \to \mathbb{Z}$ satisfying (1) and (2).
- **3** By the Generalized Polymatroid Intersection Theorem, applied for $p_1(X) = \sum_{v \in X} (m(v) d_{A_2}^-(v)), b_1(X) = \sum_{v \in X} (m(v) d_{A_1}^-(v)), p_2(X) = i_{E_1}(X), b_2(X) = e_{E_2}(X), \text{ we are done.}$

- Suppose that E₁ ⊆ E ⊆ E₂ has been choosen and oriented with in-degree vector m₁.
- **2** Then the problem is reduced to the DIR. DEGREE CONST. SANDW. PROBLEM with $m_2(v) = m(v) m_1(v) \ \forall v \in V$ for $A_1 \subseteq A_2$,
- 3 which has a solution if and only if $d^-_{A_1}(v) \le m_2(v) \le d^-_{A_2}(v) \; \forall v \in V.$
- 3 or equivalently (1) $m(v) d_{A_2}^-(v) \le m_1(v) \le m(v) d_{A_1}^-(v) \ \forall v \in V.$
- **(3)** The problem is reduced to the m_1 -ORIENTATION SANDWICH PROBLEM FOR UNDIRECTED GRAPHS for $E_1 \subseteq E_2$,
- which has a solution iff (2) $i_{E_1}(X) \leq m_1(X) \leq e_{E_2}(X) \ \forall X \subseteq V$.
- **②** The MIXED *m*-ORIENT. SANDWICH PROBLEM has an YES answer if and only if there exists a function $m_1 : V \to \mathbb{Z}$ satisfying (1) and (2).
- **3** By the Generalized Polymatroid Intersection Theorem, applied for $p_1(X) = \sum_{v \in X} (m(v) d_{A_2}^-(v)), b_1(X) = \sum_{v \in X} (m(v) d_{A_1}^-(v)), p_2(X) = i_{E_1}(X), b_2(X) = e_{E_2}(X), \text{ we are done.}$

- Suppose that E₁ ⊆ E ⊆ E₂ has been choosen and oriented with in-degree vector m₁.
- **2** Then the problem is reduced to the DIR. DEGREE CONST. SANDW. PROBLEM with $m_2(v) = m(v) m_1(v) \ \forall v \in V$ for $A_1 \subseteq A_2$,
- **3** which has a solution if and only if $d_{A_1}^-(v) \le m_2(v) \le d_{A_2}^-(v) \ \forall v \in V$.
- 3 or equivalently (1) $m(v) d_{A_2}^-(v) \le m_1(v) \le m(v) d_{A_1}^-(v) \ \forall v \in V.$
- **3** The problem is reduced to the m_1 -ORIENTATION SANDWICH PROBLEM FOR UNDIRECTED GRAPHS for $E_1 \subseteq E_2$,
- which has a solution iff (2) $i_{E_1}(X) \le m_1(X) \le e_{E_2}(X) \ \forall X \subseteq V.$
- **②** The MIXED *m*-ORIENT. SANDWICH PROBLEM has an YES answer if and only if there exists a function $m_1 : V \to \mathbb{Z}$ satisfying (1) and (2).
- **3** By the Generalized Polymatroid Intersection Theorem, applied for $p_1(X) = \sum_{v \in X} (m(v) d_{A_2}^-(v)), b_1(X) = \sum_{v \in X} (m(v) d_{A_1}^-(v)), p_2(X) = i_{E_1}(X), b_2(X) = e_{E_2}(X), \text{ we are done.}$

- Suppose that E₁ ⊆ E ⊆ E₂ has been choosen and oriented with in-degree vector m₁.
- **2** Then the problem is reduced to the DIR. DEGREE CONST. SANDW. PROBLEM with $m_2(v) = m(v) m_1(v) \ \forall v \in V$ for $A_1 \subseteq A_2$,
- **3** which has a solution if and only if $d_{A_1}^-(v) \le m_2(v) \le d_{A_2}^-(v) \ \forall v \in V$.
- or equivalently (1) $m(v) d_{A_2}^-(v) \le m_1(v) \le m(v) d_{A_1}^-(v) \ \forall v \in V.$
- **3** The problem is reduced to the m_1 -ORIENTATION SANDWICH PROBLEM FOR UNDIRECTED GRAPHS for $E_1 \subseteq E_2$,
- which has a solution iff (2) $i_{E_1}(X) \le m_1(X) \le e_{E_2}(X) \ \forall X \subseteq V$.
- **②** The MIXED *m*-ORIENT. SANDWICH PROBLEM has an YES answer if and only if there exists a function $m_1 : V \to \mathbb{Z}$ satisfying (1) and (2).
- **3** By the Generalized Polymatroid Intersection Theorem, applied for $p_1(X) = \sum_{v \in X} (m(v) d_{A_2}^-(v)), b_1(X) = \sum_{v \in X} (m(v) d_{A_1}^-(v)), p_2(X) = i_{E_1}(X), b_2(X) = e_{E_2}(X), \text{ we are done.}$

- Suppose that E₁ ⊆ E ⊆ E₂ has been choosen and oriented with in-degree vector m₁.
- **2** Then the problem is reduced to the DIR. DEGREE CONST. SANDW. PROBLEM with $m_2(v) = m(v) m_1(v) \ \forall v \in V$ for $A_1 \subseteq A_2$,
- **3** which has a solution if and only if $d_{A_1}^-(v) \le m_2(v) \le d_{A_2}^-(v) \ \forall v \in V$.
- or equivalently (1) $m(v) d_{A_2}^-(v) \le m_1(v) \le m(v) d_{A_1}^-(v) \ \forall v \in V.$
- The problem is reduced to the m_1 -ORIENTATION SANDWICH PROBLEM FOR UNDIRECTED GRAPHS for $E_1 \subseteq E_2$,
- **()** which has a solution iff (2) $i_{E_1}(X) \leq m_1(X) \leq e_{E_2}(X) \ \forall X \subseteq V$.
- **②** The MIXED *m*-ORIENT. SANDWICH PROBLEM has an YES answer if and only if there exists a function $m_1 : V \to \mathbb{Z}$ satisfying (1) and (2).
- **3** By the Generalized Polymatroid Intersection Theorem, applied for $p_1(X) = \sum_{v \in X} (m(v) d_{A_2}^-(v)), b_1(X) = \sum_{v \in X} (m(v) d_{A_1}^-(v)), p_2(X) = i_{E_1}(X), b_2(X) = e_{E_2}(X), \text{ we are done.}$

- Suppose that E₁ ⊆ E ⊆ E₂ has been choosen and oriented with in-degree vector m₁.
- **2** Then the problem is reduced to the DIR. DEGREE CONST. SANDW. PROBLEM with $m_2(v) = m(v) m_1(v) \ \forall v \in V$ for $A_1 \subseteq A_2$,
- **3** which has a solution if and only if $d_{A_1}^-(v) \le m_2(v) \le d_{A_2}^-(v) \ \forall v \in V$.
- or equivalently (1) $m(v) d_{A_2}^-(v) \le m_1(v) \le m(v) d_{A_1}^-(v) \ \forall v \in V.$
- The problem is reduced to the m_1 -ORIENTATION SANDWICH PROBLEM FOR UNDIRECTED GRAPHS for $E_1 \subseteq E_2$,
- which has a solution iff (2) $i_{E_1}(X) \leq m_1(X) \leq e_{E_2}(X) \ \forall X \subseteq V$.
- ② The MIXED *m*-ORIENT. SANDWICH PROBLEM has an YES answer if and only if there exists a function $m_1 : V \to \mathbb{Z}$ satisfying (1) and (2).
- **3** By the Generalized Polymatroid Intersection Theorem, applied for $p_1(X) = \sum_{v \in X} (m(v) d_{A_2}^-(v)), b_1(X) = \sum_{v \in X} (m(v) d_{A_1}^-(v)), p_2(X) = i_{E_1}(X), b_2(X) = e_{E_2}(X), \text{ we are done.}$

- Suppose that E₁ ⊆ E ⊆ E₂ has been choosen and oriented with in-degree vector m₁.
- **2** Then the problem is reduced to the DIR. DEGREE CONST. SANDW. PROBLEM with $m_2(v) = m(v) m_1(v) \ \forall v \in V$ for $A_1 \subseteq A_2$,
- **3** which has a solution if and only if $d_{A_1}^-(v) \le m_2(v) \le d_{A_2}^-(v) \ \forall v \in V$.
- or equivalently (1) $m(v) d_{A_2}^-(v) \le m_1(v) \le m(v) d_{A_1}^-(v) \ \forall v \in V.$
- The problem is reduced to the m_1 -ORIENTATION SANDWICH PROBLEM FOR UNDIRECTED GRAPHS for $E_1 \subseteq E_2$,
- which has a solution iff (2) $i_{E_1}(X) \leq m_1(X) \leq e_{E_2}(X) \ \forall X \subseteq V$.
- The MIXED *m*-ORIENT. SANDWICH PROBLEM has an YES answer if and only if there exists a function $m_1 : V \to \mathbb{Z}$ satisfying (1) and (2).

3 By the Generalized Polymatroid Intersection Theorem, applied for $p_1(X) = \sum_{v \in X} (m(v) - d_{A_2}^-(v)), b_1(X) = \sum_{v \in X} (m(v) - d_{A_1}^-(v)), p_2(X) = i_{E_1}(X), b_2(X) = e_{E_2}(X), \text{ we are done.}$

- Suppose that E₁ ⊆ E ⊆ E₂ has been choosen and oriented with in-degree vector m₁.
- **2** Then the problem is reduced to the DIR. DEGREE CONST. SANDW. PROBLEM with $m_2(v) = m(v) m_1(v) \ \forall v \in V$ for $A_1 \subseteq A_2$,
- 3 which has a solution if and only if $d_{A_1}^-(v) \le m_2(v) \le d_{A_2}^-(v) \ \forall v \in V$.
- or equivalently (1) $m(v) d_{A_2}^-(v) \le m_1(v) \le m(v) d_{A_1}^-(v) \ \forall v \in V.$
- The problem is reduced to the m_1 -ORIENTATION SANDWICH PROBLEM FOR UNDIRECTED GRAPHS for $E_1 \subseteq E_2$,
- which has a solution iff (2) $i_{E_1}(X) \leq m_1(X) \leq e_{E_2}(X) \ \forall X \subseteq V$.
- The MIXED *m*-ORIENT. SANDWICH PROBLEM has an YES answer if and only if there exists a function *m*₁ : *V* → Z satisfying (1) and (2).
- Observe the Generalized Polymatroid Intersection Theorem, applied for $p_1(X) = \sum_{v \in X} (m(v) - d_{A_2}^-(v)), b_1(X) = \sum_{v \in X} (m(v) - d_{A_1}^-(v)),$ $p_2(X) = i_{E_1}(X), b_2(X) = e_{E_2}(X),$ we are done.

The answer is YES if and only if $i_{E_1}(X) + \sum_{v \in X} d_{A_1}^-(v) \le m(X) \le e_{E_2}(X) + \sum_{v \in X} d_{A_2}^-(v) \ \forall X \subseteq V.$

The answer is YES if and only if $i_{E_1}(X) + \sum_{v \in X} d_{A_1}^-(v) \le m(X) \le e_{E_2}(X) + \sum_{v \in X} d_{A_2}^-(v) \ \forall X \subseteq V.$

- Decide : The answer is YES if and only if both submodular functions $b_1^*(X) = b_1(X) p_2(X)$ and $b_2^*(X) = b_2(X) p_1(X)$ have minimum value 0. Submodular function minimization is polynomial.
- **2** Find : $\vec{G} = (V, \vec{E} \cup A)$ whose in-degree vector is *m*.
 - *m*₁: *Q*(*p*₁, *b*₁) is a box, so *R* = *Q*(*p*₁, *b*₁) ∩ *Q*(*p*₂, *b*₂) is a *g*-polymatroid, hence an integer vector *m*₁ can be found in *R* by greedy algorithm.
 - **○** \tilde{E} : m_1 -orientation Sandwich Problem for Undirected Graphs for $E_1 \subseteq E_2$,
 - A: Dir. Degree Const. Sandw. Problem with $m_2 = m m_1$ for $A_1 \subseteq A_2$.

《口》 《聞》 《臣》 《臣》

The answer is YES if and only if $i_{E_1}(X) + \sum_{v \in X} d_{A_1}^-(v) \le m(X) \le e_{E_2}(X) + \sum_{v \in X} d_{A_2}^-(v) \ \forall X \subseteq V.$

• Decide : The answer is YES if and only if both submodular functions $b_1^*(X) = b_1(X) - p_2(X)$ and $b_2^*(X) = b_2(X) - p_1(X)$ have minimum value 0. Submodular function minimization is polynomial.

2 Find : $\vec{G} = (V, \vec{E} \cup A)$ whose in-degree vector is *m*.

- m₁: Q(p₁, b₁) is a box, so R = Q(p₁, b₁) ∩ Q(p₂, b₂) is a g-polymatroid, hence an integer vector m₁ can be found in R by greedy algorithm.
- ② \vec{E} : *m*₁-ORIENTATION SANDWICH PROBLEM FOR UNDIRECTED GRAPHS for *E*₁ ⊆ *E*₂,
- ◎ A : Dir. Degree Const. Sandw. Problem with $m_2 = m m_1$ for $A_1 \subseteq A_2$.

The answer is YES if and only if $i_{E_1}(X) + \sum_{v \in X} d_{A_1}^-(v) \le m(X) \le e_{E_2}(X) + \sum_{v \in X} d_{A_2}^-(v) \ \forall X \subseteq V.$

- Decide : The answer is YES if and only if both submodular functions $b_1^*(X) = b_1(X) p_2(X)$ and $b_2^*(X) = b_2(X) p_1(X)$ have minimum value 0. Submodular function minimization is polynomial.
- **2** Find : $\vec{G} = (V, \vec{E} \cup A)$ whose in-degree vector is *m*.
 - $m_1 : Q(p_1, b_1)$ is a box, so $R = Q(p_1, b_1) \cap Q(p_2, b_2)$ is a *g*-polymatroid, hence an integer vector m_1 can be found in *R* by greedy algorithm.
 - ② \vec{E} : *m*₁-ORIENTATION SANDWICH PROBLEM FOR UNDIRECTED GRAPHS for *E*₁ ⊆ *E*₂,
 - ◎ A : DIR. DEGREE CONST. SANDW. PROBLEM with $m_2 = m m_1$ for $A_1 \subseteq A_2$.

・ロト ・ 同ト ・ ヨト ・ ヨト - -

The answer is YES if and only if $i_{\tau}(X) + \sum_{x \in T} d^{-}(x) \le m(X) \le e_{\tau}(X) + \sum_{x \in T} d^{-}(x)$

 $i_{E_1}(X) + \sum_{v \in X} d_{A_1}^-(v) \le m(X) \le e_{E_2}(X) + \sum_{v \in X} d_{A_2}^-(v) \ \forall X \subseteq V.$

- Decide : The answer is YES if and only if both submodular functions $b_1^*(X) = b_1(X) p_2(X)$ and $b_2^*(X) = b_2(X) p_1(X)$ have minimum value 0. Submodular function minimization is polynomial.
- **2** Find : $\vec{G} = (V, \vec{E} \cup A)$ whose in-degree vector is *m*.
 - $m_1 : Q(p_1, b_1)$ is a box, so $R = Q(p_1, b_1) \cap Q(p_2, b_2)$ is a *g*-polymatroid, hence an integer vector m_1 can be found in *R* by greedy algorithm.
 - ② \vec{E} : *m*₁-ORIENTATION SANDWICH PROBLEM FOR UNDIRECTED GRAPHS for *E*₁ ⊆ *E*₂,
 - A: DIR. DEGREE CONST. SANDW. PROBLEM with $m_2 = m m_1$ for $A_1 \subseteq A_2$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The answer is YES if and only if $i_{E_1}(X) + \sum_{v \in X} d_{A_1}^-(v) \le m(X) \le e_{E_2}(X) + \sum_{v \in X} d_{A_2}^-(v) \ \forall X \subseteq V.$

- Decide : The answer is YES if and only if both submodular functions $b_1^*(X) = b_1(X) p_2(X)$ and $b_2^*(X) = b_2(X) p_1(X)$ have minimum value 0. Submodular function minimization is polynomial.
- **2** Find : $\vec{G} = (V, \vec{E} \cup A)$ whose in-degree vector is *m*.
 - m_1 : $Q(p_1, b_1)$ is a box, so $R = Q(p_1, b_1) \cap Q(p_2, b_2)$ is a *g*-polymatroid, hence an integer vector m_1 can be found in R by greedy algorithm.
 - ② \vec{E} : *m*₁-ORIENTATION SANDWICH PROBLEM FOR UNDIRECTED GRAPHS for *E*₁ ⊆ *E*₂,
 - ③ A : DIR. DEGREE CONST. SANDW. PROBLEM with $m_2 = m m_1$ for $A_1 \subseteq A_2$.

(4月) (4日) (4日)

Example

Z. Szigeti (G-SCOP, Grenoble)

æ

A B > A B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Example

æ

A B > A B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Z. Szigeti (G-SCOP, Grenoble)

æ

Z. Szigeti (G-SCOP, Grenoble)

æ

Z. Szigeti (G-SCOP, Grenoble)

æ

Z. Szigeti (G-SCOP, Grenoble)

< ∃⇒ 27 janvier 2<u>011</u> 19 / 21

æ

Z. Szigeti (G-SCOP, Grenoble)

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

æ

Z. Szigeti (G-SCOP, Grenoble)

æ

Strongly connected *m*-orientation Sandwich Problem

Strongly connected m-orientation Sandwich Problem :

 G_1, G_2 undirected graphs, $\Pi = G$ has an *m*-orientation that is strongly connected (*m* : $V \to \mathbb{Z}_+$).

Strongly connected *m*-orientation Sandwich Problem

Strongly connected m-orientation Sandwich Problem :

 G_1, G_2 undirected graphs, $\Pi = G$ has an *m*-orientation that is strongly connected ($m : V \to \mathbb{Z}_+$).

Remark

It is NP-complete.

Z. Szigeti (G-SCOP, Grenoble)

Strongly connected *m*-orientation Sandwich Problem

Strongly connected m-orientation Sandwich Problem :

 G_1, G_2 undirected graphs, $\Pi = G$ has an *m*-orientation that is strongly connected (*m* : $V \to \mathbb{Z}_+$).

Remark

It is NP-complete. The special case $E_1 = \emptyset$, $m(v) = 1 \ \forall v \in V$ is equivalent to decide if G_2 has a Hamiltonian cycle.

Thank you for your attention !

< 67 ▶

э