Edge-connectivity augmentation of graphs over symmetric parity families

Zoltán Szigeti
Laboratoire G-SCOP
INP Grenoble, France
27 octobre 2010

Outline

(1) Edge-connectivity
(2) T-cuts
(3) Symmetric parity families

Outline

(1) Edge-connectivity
(1) Definitions
(2) Cut equivalent trees
(3) Edge-connectivity augmentation
(2) T-cuts
(3) Symmetric parity families

Outline

(1) Edge-connectivity
(1) Definitions
(2) Cut equivalent trees
(3) Edge-connectivity augmentation
(2) T-cuts
(1) Definitions
(2) Minimum T-cut
(3) Augmentation of minimum T-cut
(3) Symmetric parity families

Outline

(1) Edge-connectivity
(1) Definitions
(2) Cut equivalent trees
(3) Edge-connectivity augmentation
(2) T-cuts
(1) Definitions
(2) Minimum T-cut
(3) Augmentation of minimum T-cut
(3) Symmetric parity families
(1) Definition, Examples
(2) Minimum cut over a symmetric parity family
(3) Augmentation of minimum cut over a symmetric parity family

Definitions

Global edge-connectivity

Given a graph $G=(V, E)$ and an integer k, G is called k-edge-connected if each cut contains at least k edges.

Definitions

Global edge-connectivity

Given a graph $G=(V, E)$ and an integer k, G is called k-edge-connected if each cut contains at least k edges.

Local edge-connectivity

Given a graph $G=(V, E)$ and $u, v \in V$, the local edge-connectivity $\lambda_{G}(u, v)$ is defined as the minimum cardinality of a cut separating u and v.

Cut equivalent tree

Theorem (Gomory-Hu)

For every graph $G=(V, E)$, we can find, in polynomial time, a tree $H=\left(V, E^{\prime}\right)$ and a weight function $c: E^{\prime} \rightarrow \mathbb{Z}$ such that for all $u, v \in V$
(1) the local edge-connectivity $\lambda_{G}(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,
(2) if e achives this minimum, then the fundamental cut of $\mathrm{H}-\mathrm{e}$ provides a minimum cut of G separating u and v.

Cut equivalent tree

Theorem (Gomory-Hu)

For every graph $G=(V, E)$, we can find, in polynomial time, a tree $H=\left(V, E^{\prime}\right)$ and a weight function $c: E^{\prime} \rightarrow \mathbb{Z}$ such that for all $u, v \in V$
(1) the local edge-connectivity $\lambda_{G}(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,
(2) if e achives this minimum, then the fundamental cut of $\mathrm{H}-\mathrm{e}$ provides a minimum cut of G separating u and v.

Graph $G=(V, E)$

Cut equivalent tree $H=\left(V, E^{\prime}\right)$

Cut equivalent tree

Theorem (Gomory-Hu)

For every graph $G=(V, E)$, we can find, in polynomial time, a tree $H=\left(V, E^{\prime}\right)$ and a weight function $c: E^{\prime} \rightarrow \mathbb{Z}$ such that for all $u, v \in V$
(1) the local edge-connectivity $\lambda_{G}(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,
(2) if e achives this minimum, then the fundamental cut of $\mathrm{H}-\mathrm{e}$ provides a minimum cut of G separating u and v.

Graph $G=(V, E)$

Cut equivalent tree $H=\left(V, E^{\prime}\right)$

Cut equivalent tree

Theorem (Gomory-Hu)

For every graph $G=(V, E)$, we can find, in polynomial time, a tree $H=\left(V, E^{\prime}\right)$ and a weight function $c: E^{\prime} \rightarrow \mathbb{Z}$ such that for all $u, v \in V$
(1) the local edge-connectivity $\lambda_{G}(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,
(2) if e achives this minimum, then the fundamental cut of $\mathrm{H}-\mathrm{e}$ provides a minimum cut of G separating u and v.

Graph $G=(V, E)$

Cut equivalent tree $H=\left(V, E^{\prime}\right)$

Cut equivalent tree

Theorem (Gomory-Hu)

For every graph $G=(V, E)$, we can find, in polynomial time, a tree $H=\left(V, E^{\prime}\right)$ and a weight function $c: E^{\prime} \rightarrow \mathbb{Z}$ such that for all $u, v \in V$
(1) the local edge-connectivity $\lambda_{G}(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,
(2) if e achives this minimum, then the fundamental cut of $\mathrm{H}-\mathrm{e}$ provides a minimum cut of G separating u and v.

Graph $G=(V, E)$

Cut equivalent tree $H=\left(V, E^{\prime}\right)$

Cut equivalent tree

Theorem (Gomory-Hu)

For every graph $G=(V, E)$, we can find, in polynomial time, a tree $H=\left(V, E^{\prime}\right)$ and a weight function $c: E^{\prime} \rightarrow \mathbb{Z}$ such that for all $u, v \in V$
(1) the local edge-connectivity $\lambda_{G}(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,
(2) if e achives this minimum, then the fundamental cut of $\mathrm{H}-\mathrm{e}$ provides a minimum cut of G separating u and v.

Graph $G=(V, E)$

Cut equivalent tree $H=\left(V, E^{\prime}\right)$

Cut equivalent tree

Theorem (Gomory-Hu)

For every graph $G=(V, E)$, we can find, in polynomial time, a tree $H=\left(V, E^{\prime}\right)$ and a weight function $c: E^{\prime} \rightarrow \mathbb{Z}$ such that for all $u, v \in V$
(1) the local edge-connectivity $\lambda_{G}(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,
(2) if e achives this minimum, then the fundamental cut of $\mathrm{H}-e$ provides a minimum cut of G separating u and v.

Graph $G=(V, E)$

Cut equivalent tree $H=\left(V, E^{\prime}\right)$

Cut equivalent tree

Theorem (Gomory-Hu)

For every graph $G=(V, E)$, we can find, in polynomial time, a tree $H=\left(V, E^{\prime}\right)$ and a weight function $c: E^{\prime} \rightarrow \mathbb{Z}$ such that for all $u, v \in V$
(1) the local edge-connectivity $\lambda_{G}(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,
(2) if e achives this minimum, then the fundamental cut of $\mathrm{H}-e$ provides a minimum cut of G separating u and v.

Graph $G=(V, E)$

Cut equivalent tree $H=\left(V, E^{\prime}\right)$

Cut equivalent tree

Theorem (Gomory-Hu)

For every graph $G=(V, E)$, we can find, in polynomial time, a tree $H=\left(V, E^{\prime}\right)$ and a weight function $c: E^{\prime} \rightarrow \mathbb{Z}$ such that for all $u, v \in V$
(1) the local edge-connectivity $\lambda_{G}(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,
(2) if e achives this minimum, then the fundamental cut of $\mathrm{H}-e$ provides a minimum cut of G separating u and v.

Graph $G=(V, E)$

Cut equivalent tree $H=\left(V, E^{\prime}\right)$

Cut equivalent tree

Theorem (Gomory-Hu)

For every graph $G=(V, E)$, we can find, in polynomial time, a tree $H=\left(V, E^{\prime}\right)$ and a weight function $c: E^{\prime} \rightarrow \mathbb{Z}$ such that for all $u, v \in V$
(1) the local edge-connectivity $\lambda_{G}(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,
(2) if e achives this minimum, then the fundamental cut of $\mathrm{H}-e$ provides a minimum cut of G separating u and v.

Graph $G=(V, E)$

Cut equivalent tree $H=\left(V, E^{\prime}\right)$

Cut equivalent tree

Theorem (Gomory-Hu)

For every graph $G=(V, E)$, we can find, in polynomial time, a tree $H=\left(V, E^{\prime}\right)$ and a weight function $c: E^{\prime} \rightarrow \mathbb{Z}$ such that for all $u, v \in V$
(1) the local edge-connectivity $\lambda_{G}(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,
(2) if e achives this minimum, then the fundamental cut of $\mathrm{H}-e$ provides a minimum cut of G separating u and v.

Graph $G=(V, E)$

Cut equivalent tree $H=\left(V, E^{\prime}\right)$

Cut equivalent tree

Theorem (Gomory-Hu)

For every graph $G=(V, E)$, we can find, in polynomial time, a tree $H=\left(V, E^{\prime}\right)$ and a weight function $c: E^{\prime} \rightarrow \mathbb{Z}$ such that for all $u, v \in V$
(1) the local edge-connectivity $\lambda_{G}(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,
(2) if e achives this minimum, then the fundamental cut of $\mathrm{H}-e$ provides a minimum cut of G separating u and v.

Graph $G=(V, E)$

Cut equivalent tree $H=\left(V, E^{\prime}\right)$

Edge-Connectivity Augmentation

Global edge-connectivity augmentation of a graph

Given a graph $G=(V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

Graph $G, k=4$

Edge-Connectivity Augmentation

Global edge-connectivity augmentation of a graph

Given a graph $G=(V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

Graph $G, k=4$

Edge-Connectivity Augmentation

Global edge-connectivity augmentation of a graph

Given a graph $G=(V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

Graph $G, k=4$

Edge-Connectivity Augmentation

Global edge-connectivity augmentation of a graph

Given a graph $G=(V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

Graph $G, k=4$

Edge-Connectivity Augmentation

Global edge-connectivity augmentation of a graph

Given a graph $G=(V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

Graph $G, k=4$

Edge-Connectivity Augmentation

Global edge-connectivity augmentation of a graph

Given a graph $G=(V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?
(1) Minimax theorem (Watanabe, Nakamura)
(2) Polynomially solvable (Cai, Sun)

$$
\text { Opt } \geq\left\lceil\frac{5}{2}\right\rceil=3
$$

Edge-Connectivity Augmentation

Global edge-connectivity augmentation of a graph

Given a graph $G=(V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?
(1) Minimax theorem (Watanabe, Nakamura)

Graph $G+F$ is 4-edge-connected and $|F|=3$

Edge-Connectivity Augmentation

Global edge-connectivity augmentation of a graph

Given a graph $G=(V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?
(1) Minimax theorem (Watanabe, Nakamura)

Opt $=\left\lceil\frac{1}{2}\right.$ maximum deficiency of a subpartition of $\left.V\right\rceil$

Edge-Connectivity Augmentation

Global edge-connectivity augmentation of a graph

Given a graph $G=(V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?
(1) Minimax theorem (Watanabe, Nakamura)
(2) Polynomially solvable (Cai, Sun)

General method

Frank's algorithm

(1) Minimal extension,

(2) Complete splitting off.

General method

Frank's algorithm

(1) Minimal extension,
> (i) Add a new vertex s,

> Add a minimum number of new edges incident to s to satisfy the edgeconnectivity requirements,
> (iii) If the degree of s is odd, then add an arbitrary edge incident to s.
(2) Complete splitting off.

General method

Frank's algorithm

(1) Minimal extension,
(i) Add a new vertex s,
(ii) Add a minimum number of new edges incident to s to satisfy the edgeconnectivity requirements,
(iii) If the degree of s is odd, then add an arbitrary edge incident to s.
(2) Complete splitting off.

General method

Frank's algorithm

(1) Minimal extension,
(i) Add a new vertex s,
(ii) Add a minimum number of new edges incident to s to satisfy the edgeconnectivity requirements,
(iii) If the degree of s is odd, then add an arbitrary edge incident to s.
(2) Complete splitting off.

General method

Frank's algorithm

(1) Minimal extension,
(i) Add a new vertex s,
(ii) Add a minimum number of new edges incident to s to satisfy the edgeconnectivity requirements,
(iii) If the degree of s is odd, then add an arbitrary edge incident to s.
(2) Complete splitting off.

Minimal extension

Definition

(1) A function p on 2^{V} is called skew-supermodular if at least one of following inequalities hold for all $X, Y \subseteq V$:

$$
\begin{aligned}
& p(X)+p(Y) \leq p(X \cap Y)+p(X \cup Y) \\
& p(X)+p(Y) \leq p(X-Y)+p(Y-X)
\end{aligned}
$$

(2) A graph H covers a function p on 2^{V} if each cut $\delta_{H}(X)$ contains at least $p(X)$ edges.

Minimal extension

Definition

(1) A function p on 2^{V} is called skew-supermodular if at least one of following inequalities hold for all $X, Y \subseteq V$:

$$
\begin{aligned}
& p(X)+p(Y) \leq p(X \cap Y)+p(X \cup Y) \\
& p(X)+p(Y) \leq p(X-Y)+p(Y-X) .
\end{aligned}
$$

(2) A graph H covers a function p on 2^{V} if each cut $\delta_{H}(X)$ contains at least $p(X)$ edges.

Minimal extension

Definition

(1) A function p on 2^{V} is called skew-supermodular if at least one of following inequalities hold for all $X, Y \subseteq V$:

$$
\begin{aligned}
& p(X)+p(Y) \leq p(X \cap Y)+p(X \cup Y) \\
& p(X)+p(Y) \leq p(X-Y)+p(Y-X)
\end{aligned}
$$

(2) A graph H covers a function p on 2^{V} if each cut $\delta_{H}(X)$ contains at least $p(X)$ edges.

Theorem (Frank)

Let $p: 2^{V} \rightarrow \mathbb{Z} \cup\{-\infty\}$ be a symmetric skew-supermodular function.
The minimum number of edges in an extension of the edgeless graph on V covering p equals the maximum p-value of a subpartition of V. (2) An optimal extension can be found in polynomial time in the special cases mentioned in this talk.

Minimal extension

Definition

(1) A function p on 2^{V} is called skew-supermodular if at least one of following inequalities hold for all $X, Y \subseteq V$:

$$
\begin{aligned}
& p(X)+p(Y) \leq p(X \cap Y)+p(X \cup Y) \\
& p(X)+p(Y) \leq p(X-Y)+p(Y-X)
\end{aligned}
$$

(2) A graph H covers a function p on 2^{V} if each cut $\delta_{H}(X)$ contains at least $p(X)$ edges.

Theorem (Frank)

Let $p: 2^{V} \rightarrow \mathbb{Z} \cup\{-\infty\}$ be a symmetric skew-supermodular function.
(1) The minimum number of edges in an extension of the edgeless graph on V covering p equals the maximum p-value of a subpartition of V.
(2) An optimal extension can be found in polynomial time in the special
cases mentioned in this talk.

Minimal extension

Definition

(1) A function p on 2^{V} is called skew-supermodular if at least one of following inequalities hold for all $X, Y \subseteq V$:

$$
\begin{aligned}
& p(X)+p(Y) \leq p(X \cap Y)+p(X \cup Y) \\
& p(X)+p(Y) \leq p(X-Y)+p(Y-X)
\end{aligned}
$$

(2) A graph H covers a function p on 2^{V} if each cut $\delta_{H}(X)$ contains at least $p(X)$ edges.

Theorem (Frank)

Let $p: 2^{V} \rightarrow \mathbb{Z} \cup\{-\infty\}$ be a symmetric skew-supermodular function.
(1) The minimum number of edges in an extension of the edgeless graph on V covering p equals the maximum p-value of a subpartition of V.
(2) An optimal extension can be found in polynomial time in the special cases mentioned in this talk.

Complete splitting off

Definitions

Complete splitting off

Definitions

Theorem (Mader)
Let $G^{\prime}=(V+s, E)$ be a graph so that $d(s)$ is even and no cut edge is incident to s.
(1) Then there exists a complete splitting off at s that preserves the local edge-connectivity between all pairs of vertices in V.
(2) Such a complete snlitting off can be found in nolynomial time.

Complete splitting off

Definitions

Theorem (Mader)

Let $G^{\prime}=(V+s, E)$ be a graph so that $d(s)$ is even and no cut edge is incident to s.
(1) Then there exists a complete splitting off at s that preserves the local edge-connectivity between all pairs of vertices in V.
(2) Such a complete splitting off can be found in polynomial time.

Complete splitting off

Definitions

Theorem (Mader)

Let $G^{\prime}=(V+s, E)$ be a graph so that $d(s)$ is even and no cut edge is incident to s.
(1) Then there exists a complete splitting off at s that preserves the local edge-connectivity between all pairs of vertices in V.
(2) Such a complete splitting off can be found in polynomial time.

Positive Results

Global edge-connnectivity augmentation of a graph

(1) Extension works (Frank),
$p(X)=k-d_{G}(X)$ is skew-supermodular,
(2) Splitting off works (Mader),
(3) proving min-max theorem of Watanabe, Nakamura.

Positive Results

Global edge-connnectivity augmentation of a graph

(1) Extension works (Frank),
$p(X)=k-d_{G}(X)$ is skew-supermodular,
(2) Splitting off works (Mader),
(3) proving min-max theorem of Watanabe, Nakamura.

Positive Results

Global edge-connnectivity augmentation of a graph

(1) Extension works (Frank),
$p(X)=k-d_{G}(X)$ is skew-supermodular,
(2) Splitting off works (Mader),
(3) proving min-max theorem of Watanabe, Nakamura.

Positive Results

Global edge-connnectivity augmentation of a graph

(1) Extension works (Frank),
$p(X)=k-d_{G}(X)$ is skew-supermodular,
(2) Splitting off works (Mader),
(3) proving min-max theorem of Watanabe, Nakamura.

Local edge-connnectivity augmentation of a graph
Given a graph $G=(V, E)$ and a symmetric function $r: V \times V \rightarrow \mathbb{Z}_{+}$, what is the minimum number of new edges F such that

$$
\lambda_{G+F}(u, v) \geq r(u, v) \forall(u, v) \in V \times V ?
$$

(1) Extension works (Frank),
$p(X)=\max \{r(u, v): u \in X, v \notin X\}-d_{G}(X)$ is skew-supermodular,
(2) Splitting off works (Mader),
(3) proving min-max theorem of Frank.

Positive Results

Global edge-connnectivity augmentation of a graph

(1) Extension works (Frank),
$p(X)=k-d_{G}(X)$ is skew-supermodular,
(2) Splitting off works (Mader),
(3) proving min-max theorem of Watanabe, Nakamura.

Local edge-connnectivity augmentation of a graph
Given a graph $G=(V, E)$ and a symmetric function $r: V \times V \rightarrow \mathbb{Z}_{+}$, what is the minimum number of new edges F such that

$$
\lambda_{G+F}(u, v) \geq r(u, v) \forall(u, v) \in V \times V ?
$$

(1) Extension works (Frank),
$p(X)=\max \{r(u, v): u \in X, v \notin X\}-d_{G}(X)$ is skew-supermodular,
(2) Splitting off works (Mader),
(3) proving min-max theorem of Frank.

Positive Results

Global edge-connnectivity augmentation of a graph

(1) Extension works (Frank),
$p(X)=k-d_{G}(X)$ is skew-supermodular,
(2) Splitting off works (Mader),
(3) proving min-max theorem of Watanabe, Nakamura.

Local edge-connnectivity augmentation of a graph
Given a graph $G=(V, E)$ and a symmetric function $r: V \times V \rightarrow \mathbb{Z}_{+}$, what is the minimum number of new edges F such that

$$
\lambda_{G+F}(u, v) \geq r(u, v) \forall(u, v) \in V \times V ?
$$

(1) Extension works (Frank),
$p(X)=\max \{r(u, v): u \in X, v \notin X\}-d_{G}(X)$ is skew-supermodular,
(2) Splitting off works (Mader),
(3) proving min-max theorem of Frank.

Positive Results

Global edge-connnectivity augmentation of a graph

(1) Extension works (Frank),
$p(X)=k-d_{G}(X)$ is skew-supermodular,
(2) Splitting off works (Mader),
(3) proving min-max theorem of Watanabe, Nakamura.

Local edge-connnectivity augmentation of a graph
Given a graph $G=(V, E)$ and a symmetric function $r: V \times V \rightarrow \mathbb{Z}_{+}$, what is the minimum number of new edges F such that

$$
\lambda_{G+F}(u, v) \geq r(u, v) \forall(u, v) \in V \times V ?
$$

(1) Extension works (Frank),
$p(X)=\max \{r(u, v): u \in X, v \notin X\}-d_{G}(X)$ is skew-supermodular,
(2) Splitting off works (Mader),
(3) proving min-max theorem of Frank.

Negative Result

Minimum Cover of a Symmetric Skew-Supermodular Function by a Graph

Instance : $p: 2^{V} \rightarrow \mathbb{Z}$ symmetric skew-supermodular, $\gamma \in \mathbb{Z}^{+}$.
Question : Does there exist a graph H on V with at most γ edges that covers p that is $d_{H}(X) \geq p(X) \forall X \subset V$?

Negative Result

Minimum Cover of a Symmetric Skew-Supermodular Function by a Graph

Instance : $p: 2^{V} \rightarrow \mathbb{Z}$ symmetric skew-supermodular, $\gamma \in \mathbb{Z}^{+}$.
Question : Does there exist a graph H on V with at most γ edges that covers p that is $d_{H}(X) \geq p(X) \forall X \subset V$?

Theorem (Z. Király, Z. Nutov)

The above problem is NP-complete.

T-cut, T-join

Definitions

Given a connected graph $G=(V, E)$ and $T \subseteq V$ with $|T|$ even.
(1) A subset X of V is called T-odd if $|X \cap T|$ is odd.
(2) A cut $\delta(X)$ is called T-cut if X is T-odd.
(3) A subset F of E is called T-join if $T=\left\{v \in V: d_{F}(v)\right.$ is odd $\}$. Examples

T-cut, T-join

Definitions

Given a connected graph $G=(V, E)$ and $T \subseteq V$ with $|T|$ even.
(1) A subset X of V is called T-odd if $|X \cap T|$ is odd.
(2) A cut $\delta(X)$ is called T-cut if X is T-odd.
(3) A subset F of E is called T-join if $T=\left\{v \in V: d_{F}(v)\right.$ is odd $\}$.

T-cut, T-join

Definitions

Given a connected graph $G=(V, E)$ and $T \subseteq V$ with $|T|$ even.
(1) A subset X of V is called T-odd if $|X \cap T|$ is odd.
(2) A cut $\delta(X)$ is called T-cut if X is T-odd.
(3) A subset F of E is called T-join if $T=\left\{v \in V: d_{F}(v)\right.$ is odd $\}$

T-cut, T-join

Definitions

Given a connected graph $G=(V, E)$ and $T \subseteq V$ with $|T|$ even.
(1) A subset X of V is called T-odd if $|X \cap T|$ is odd.
(2) A cut $\delta(X)$ is called T-cut if X is T-odd.
(3) A subset F of E is called T-join if $T=\left\{v \in V: d_{F}(v)\right.$ is odd $\}$.

T-cut, T-join

Definitions

Given a connected graph $G=(V, E)$ and $T \subseteq V$ with $|T|$ even.
(1) A subset X of V is called T-odd if $|X \cap T|$ is odd.
(2) A cut $\delta(X)$ is called T-cut if X is T-odd.
(0) A subset F of E is called T-join if $T=\left\{v \in V: d_{F}(v)\right.$ is odd $\}$. Examples :
(a) $T=\{u, v\}$: a (u, v)-path is a T-join.
(b) $T=V:$ a perfect matching is a T-join.

T-cut, T-join

Definitions

Given a connected graph $G=(V, E)$ and $T \subseteq V$ with $|T|$ even.
(1) A subset X of V is called T-odd if $|X \cap T|$ is odd.
(2) A cut $\delta(X)$ is called T-cut if X is T-odd.
(0) A subset F of E is called T-join if $T=\left\{v \in V: d_{F}(v)\right.$ is odd $\}$.

Examples :

(a) $T=\{u, v\}:$ a (u, v)-path is a T-join.

T-cut, T-join

Definitions

Given a connected graph $G=(V, E)$ and $T \subseteq V$ with $|T|$ even.
(1) A subset X of V is called T-odd if $|X \cap T|$ is odd.
(2) A cut $\delta(X)$ is called T-cut if X is T-odd.
(0) A subset F of E is called T-join if $T=\left\{v \in V: d_{F}(v)\right.$ is odd $\}$.

Examples:

(a) $T=\{u, v\}:$ a (u, v)-path is a T-join.
(b) $T=V$: a perfect matching is a T-join.

T-cut, T-join

Definitions

Given a connected graph $G=(V, E)$ and $T \subseteq V$ with $|T|$ even.
(1) A subset X of V is called T-odd if $|X \cap T|$ is odd.
(2) A cut $\delta(X)$ is called T-cut if X is T-odd.
(3) A subset F of E is called T-join if $T=\left\{v \in V: d_{F}(v)\right.$ is odd $\}$.

Examples:
(a) $T=\{u, v\}:$ a (u, v)-path is a T-join.
(b) $T=V$: a perfect matching is a T-join.

Properties

T-odd
(2) A T-join and a T-cut always have an edge in common.

T-cut, T-join

Definitions

Given a connected graph $G=(V, E)$ and $T \subseteq V$ with $|T|$ even.
(1) A subset X of V is called T-odd if $|X \cap T|$ is odd.
(2) A cut $\delta(X)$ is called T-cut if X is T-odd.
(3) A subset F of E is called T-join if $T=\left\{v \in V: d_{F}(v)\right.$ is odd $\}$.

Examples:
(a) $T=\{u, v\}:$ a (u, v)-path is a T-join.
(b) $T=V$: a perfect matching is a T-join.

Properties

(1) If X, Y are T-odd, then either $X \cap Y, X \cup Y$ or $X-Y, Y-X$ are T-odd.
(2) A T-join and a T-cut always have an edge in common.

T-cut, T-join

Definitions

Given a connected graph $G=(V, E)$ and $T \subseteq V$ with $|T|$ even.
(1) A subset X of V is called T-odd if $|X \cap T|$ is odd.
(2) A cut $\delta(X)$ is called T-cut if X is T-odd.
(3) A subset F of E is called T-join if $T=\left\{v \in V: d_{F}(v)\right.$ is odd $\}$. Examples:
(a) $T=\{u, v\}:$ a (u, v)-path is a T-join.
(b) $T=V$: a perfect matching is a T-join.

Properties

(1) If X, Y are T-odd, then either $X \cap Y, X \cup Y$ or $X-Y, Y-X$ are T-odd.
(2) A T-join and a T-cut always have an edge in common.

How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join of G can be found in polynomial time using
(1) shortest paths algorithm (Dijkstra) and
(2) minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T

How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join of G can be found in polynomial time using
(1) shortest paths algorithm (Dijkstra) and
(2) minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T

How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join of G can be found in polynomial time using
(1) shortest paths algorithm (Dijkstra) and
(2) minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T

How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join of G can be found in polynomial time using
(1) shortest paths algorithm (Dijkstra) and
(2) minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T

How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join of G can be found in polynomial time using
(1) shortest paths algorithm (Dijkstra) and
(2) minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T

How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join of G can be found in polynomial time using
(1) shortest paths algorithm (Dijkstra) and
(2) minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T

How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join of G can be found in polynomial time using
(1) shortest paths algorithm (Dijkstra) and
(2) minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T

How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join of G can be found in polynomial time using
(1) shortest paths algorithm (Dijkstra) and
(2) minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T

How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join of G can be found in polynomial time using
(1) shortest paths algorithm (Dijkstra) and
(2) minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T

How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join of G can be found in polynomial time using
(1) shortest paths algorithm (Dijkstra) and
(2) minimum weight perfect matching algorithm (Edmonds).

Graph G and minimum T-join

How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut of G can be found in polynomial time
(1) using a cut equivalent tree H of G;
(2) taking the set $J(H)$ edges e of H for which the two connected components of $H-e$ are T-odd,
(3) taking the minimum value $c\left(e^{*}\right)$ of an edge of $J(H)$,
(9) taking the cut of G defined by the fundamental cut of $\mathrm{H}-e^{*}$

Graph G and vertex set T

How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut of G can be found in polynomial time
(1) using a cut equivalent tree H of G;
(2) taking the set $J(H)$ edges e of H for which the two connected components of $\mathrm{H}-\mathrm{e}$ are T-odd,
(3) taking the minimum value $c\left(e^{*}\right)$ of an edge of $J(H)$,
(9) taking the cut of G defined by the fundamental cut of $\mathrm{H}-e^{*}$

Graph G and vertex set T

Cut equivalent tree H

How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut of G can be found in polynomial time
(1) using a cut equivalent tree H of G;
(2) taking the set $J(H)$ edges e of H for which the two connected components of $H-e$ are T-odd,
(3) taking the minimum value $c\left(e^{*}\right)$ of an edge of $J(H)$,
(9) taking the cut of G defined by the fundamental cut of $\mathrm{H}-e^{*}$.

Graph G and vertex set T

Cut equivalent tree H

How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut of G can be found in polynomial time
(1) using a cut equivalent tree H of G;
(2) taking the set $J(H)$ edges e of H for which the two connected components of $H-e$ are T-odd,
(3) taking the minimum value $c\left(e^{*}\right)$ of an edge of $J(H)$,
(9) taking the cut of G defined by the fundamental cut of $\mathrm{H}-e^{*}$.

Graph G and vertex set T

Cut equivalent tree H

How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut of G can be found in polynomial time
(1) using a cut equivalent tree H of G;
(2) taking the set $J(H)$ edges e of H for which the two connected components of $H-e$ are T-odd,
(3) taking the minimum value $c\left(e^{*}\right)$ of an edge of $J(H)$,
(9) taking the cut of G defined by the fundamental cut of $\mathrm{H}-e^{*}$

Graph G and vertex set T

Cut equivalent tree H

How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut of G can be found in polynomial time
(1) using a cut equivalent tree H of G;
(2) taking the set $J(H)$ edges e of H for which the two connected components of $H-e$ are T-odd,
(3) taking the minimum value $c\left(e^{*}\right)$ of an edge of $J(H)$,
(9) taking the cut of G defined by the fundamental cut of $\mathrm{H}-e^{*}$.

Graph G and vertex set T

Cut equivalent tree H

How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut of G can be found in polynomial time
(1) using a cut equivalent tree H of G;
(2) taking the set $J(H)$ edges e of H for which the two connected components of $H-e$ are T-odd,
(3) taking the minimum value $c\left(e^{*}\right)$ of an edge of $J(H)$,
(9) taking the cut of G defined by the fundamental cut of $\mathrm{H}-e^{*}$.

Graph G and vertex set T

Cut equivalent tree H

How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut of G can be found in polynomial time
(1) using a cut equivalent tree H of G;
(2) taking the set $J(H)$ edges e of H for which the two connected components of $H-e$ are T-odd,
(3) taking the minimum value $c\left(e^{*}\right)$ of an edge of $J(H)$,
(9) taking the cut of G defined by the fundamental cut of $\mathrm{H}-e^{*}$.

Graph G and vertex set T

Cut equivalent tree H

How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut of G can be found in polynomial time
(1) using a cut equivalent tree H of G;
(2) taking the set $J(H)$ edges e of H for which the two connected components of $H-e$ are T-odd,
(3) taking the minimum value $c\left(e^{*}\right)$ of an edge of $J(H)$,
(9) taking the cut of G defined by the fundamental cut of $\mathrm{H}-e^{*}$

Graph G and vertex set T

Cut equivalent tree H and edge set $J(H)$

How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut of G can be found in polynomial time
(1) using a cut equivalent tree H of G;
(2) taking the set $J(H)$ edges e of H for which the two connected components of $H-e$ are T-odd,
(3) taking the minimum value $c\left(e^{*}\right)$ of an edge of $J(H)$,
(9) taking the cut of G defined by the fundamental cut of $H-e^{*}$.

Graph G and vertex set T

Cut equivalent tree H

How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut of G can be found in polynomial time
(1) using a cut equivalent tree H of G;
(2) taking the set $J(H)$ edges e of H for which the two connected components of $H-e$ are T-odd,
(3) taking the minimum value $c\left(e^{*}\right)$ of an edge of $J(H)$,
(9) taking the cut of G defined by the fundamental cut of $H-e^{*}$.

Graph G and vertex set T

Cut equivalent tree H

How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut of G can be found in polynomial time
(1) using a cut equivalent tree H of G;
(2) taking the set $J(H)$ edges e of H for which the two connected components of $H-e$ are T-odd,
(3) taking the minimum value $c\left(e^{*}\right)$ of an edge of $J(H)$,
(9) taking the cut of G defined by the fundamental cut of $H-e^{*}$.

Minimum T-cut in G

Cut equivalent tree H

Proof

Lemma

For any T-cut $\delta(X)$ there exist $x \in X, y \notin X$ such that $\lambda_{G}(x, y) \geq c\left(e^{*}\right)$.

Proof

Lemma

For any T-cut $\delta(X)$ there exist $x \in X, y \notin X$ such that $\lambda_{G}(x, y) \geq c\left(e^{*}\right)$.

Proof: $J(H)$ is a T-join so there exists $x y \in J(H) \cap \delta_{H}(X)$ and

$$
\lambda_{G}(x, y)=c(x y) \geq c\left(e^{*}\right)
$$

Proof

Lemma

For any T-cut $\delta(X)$ there exist $x \in X, y \notin X$ such that $\lambda_{G}(x, y) \geq c\left(e^{*}\right)$.

Proof: $J(H)$ is a T-join so there exists $x y \in J(H) \cap \delta_{H}(X)$ and

$$
\lambda_{G}(x, y)=c(x y) \geq c\left(e^{*}\right)
$$

Correctness of Padberg-Rao's algorithm

Let $\delta(X)$ be a minimum T-cut and $\delta(Y)$ the T-cut defined by e^{*}. By the lemma, there exist $x \in X, y \notin X$ such that $\lambda_{G}(x, y) \geq c\left(e^{*}\right)$. Then

$$
c\left(e^{*}\right)=d(Y) \geq d(X) \geq \lambda_{G}(x, y) \geq c\left(e^{*}\right) .
$$

Proof

Lemma

For any T-cut $\delta(X)$ there exist $x \in X, y \notin X$ such that $\lambda_{G}(x, y) \geq c\left(e^{*}\right)$.

Proof: $J(H)$ is a T-join so there exists $x y \in J(H) \cap \delta_{H}(X)$ and

$$
\lambda_{G}(x, y)=c(x y) \geq c\left(e^{*}\right)
$$

Correctness of Padberg-Rao's algorithm

Let $\delta(X)$ be a minimum T-cut and $\delta(Y)$ the T-cut defined by e^{*}. By the lemma, there exist $x \in X, y \notin X$ such that $\lambda_{G}(x, y) \geq c\left(e^{*}\right)$. Then

$$
c\left(e^{*}\right)=d(Y) \geq d(X) \geq \lambda_{G}(x, y) \geq c\left(e^{*}\right)
$$

Proof

Lemma

For any T-cut $\delta(X)$ there exist $x \in X, y \notin X$ such that $\lambda_{G}(x, y) \geq c\left(e^{*}\right)$.

Proof: $J(H)$ is a T-join so there exists $x y \in J(H) \cap \delta_{H}(X)$ and

$$
\lambda_{G}(x, y)=c(x y) \geq c\left(e^{*}\right)
$$

Correctness of Padberg-Rao's algorithm

Let $\delta(X)$ be a minimum T-cut and $\delta(Y)$ the T-cut defined by e^{*}. By the lemma, there exist $x \in X, y \notin X$ such that $\lambda_{G}(x, y) \geq c\left(e^{*}\right)$. Then

$$
c\left(e^{*}\right)=d(Y) \geq d(X) \geq \lambda_{G}(x, y) \geq c\left(e^{*}\right) .
$$

Proof

Lemma

For any T-cut $\delta(X)$ there exist $x \in X, y \notin X$ such that $\lambda_{G}(x, y) \geq c\left(e^{*}\right)$.

Proof: $J(H)$ is a T-join so there exists $x y \in J(H) \cap \delta_{H}(X)$ and

$$
\lambda_{G}(x, y)=c(x y) \geq c\left(e^{*}\right)
$$

Correctness of Padberg-Rao's algorithm

Let $\delta(X)$ be a minimum T-cut and $\delta(Y)$ the T-cut defined by e^{*}. By the lemma, there exist $x \in X, y \notin X$ such that $\lambda_{G}(x, y) \geq c\left(e^{*}\right)$. Then

$$
c\left(e^{*}\right)=d(Y) \geq d(X) \geq \lambda_{G}(x, y) \geq c\left(e^{*}\right) .
$$

Proof

Lemma

For any T-cut $\delta(X)$ there exist $x \in X, y \notin X$ such that $\lambda_{G}(x, y) \geq c\left(e^{*}\right)$.

Proof: $J(H)$ is a T-join so there exists $x y \in J(H) \cap \delta_{H}(X)$ and

$$
\lambda_{G}(x, y)=c(x y) \geq c\left(e^{*}\right)
$$

Correctness of Padberg-Rao's algorithm

Let $\delta(X)$ be a minimum T-cut and $\delta(Y)$ the T-cut defined by e^{*}. By the lemma, there exist $x \in X, y \notin X$ such that $\lambda_{G}(x, y) \geq c\left(e^{*}\right)$. Then

$$
c\left(e^{*}\right)=d(Y) \geq d(X) \geq \lambda_{G}(x, y) \geq c\left(e^{*}\right)
$$

How to augment a minimum T-cut?

Theorem (Szigeti)

Given a connected graph $G=(V, E), T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\left\lceil\frac{1}{2}\right.$ maximum p^{\prime}-value of a subpartition of $\left.V\right\rceil$. An optimal augmentation can be found in polynomial time using

(1) Frank's minimal extension and

(2) Mader's complete splitting off.

Proof

(1) works because $p^{\prime}(X)=k-d_{G}(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular
(2) works because for all T-odd sets, $d_{G^{\prime}}(X) \geq k$ and, by the above lemma, $k \leq \lambda_{G^{\prime}}(x, y)=\lambda_{G^{\prime \prime}}(x, y) \leq d_{G^{\prime \prime}}(X)$.

How to augment a minimum T-cut?

Theorem (Szigeti)

Given a connected graph $G=(V, E), T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\left\lceil\frac{1}{2}\right.$ maximum p^{\prime}-value of a subpartition of $\left.V\right\rceil$. An optimal augmentation can be found in polynomial time using
(1) Frank's minimal extension and
(2) Mader's complete splitting off.

Proof

(1) works because $p^{\prime}(X)=k-d_{G}(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular
(2) works because for all T-odd sets, $d_{G^{\prime}}(X) \geq k$ and, by the above lemma, $k \leq \lambda_{G^{\prime}}(x, y)=\lambda_{G^{\prime \prime}}(x, y) \leq d_{G^{\prime \prime}}(X)$.

How to augment a minimum T-cut?

Theorem (Szigeti)

Given a connected graph $G=(V, E), T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\left\lceil\frac{1}{2}\right.$ maximum p^{\prime}-value of a subpartition of $\left.V\right\rceil$. An optimal augmentation can be found in polynomial time using
(1) Frank's minimal extension and
(2) Mader's complete splitting off.

Proof

(1) works because $p^{\prime}(X)=k-d_{G}(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular
(2) works because for all T-odd sets, $d_{G^{\prime}}(X) \geq k$ and, by the above lemma, $k \leq \lambda_{G^{\prime}}(x, y)=\lambda_{G^{\prime \prime}}(x, y) \leq d_{G^{\prime \prime}}(X)$.

How to augment a minimum T-cut?

Theorem (Szigeti)

Given a connected graph $G=(V, E), T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\left\lceil\frac{1}{2}\right.$ maximum p^{\prime}-value of a subpartition of $\left.V\right\rceil$. An optimal augmentation can be found in polynomial time using
(1) Frank's minimal extension and

Mader's complete splitting off.

Proof

(1) works because $p^{\prime}(X)=k-d_{G}(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular
(i) $k-d_{G}(X)$ satisfies both inequalities,
(2) works because for all T-odd sets, $d_{G^{\prime}}(X) \geq k$ and, by the above lemma, $k \leq \lambda_{G^{\prime}}(x, y)=\lambda_{G^{\prime \prime}}(x, y) \leq d_{G^{\prime \prime}}(X)$.

How to augment a minimum T-cut ?

Theorem (Szigeti)

Given a connected graph $G=(V, E), T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\left\lceil\frac{1}{2}\right.$ maximum p^{\prime}-value of a subpartition of $\left.V\right\rceil$. An optimal augmentation can be found in polynomial time using
(1) Frank's minimal extension and

Mader's complete splitting off.

Proof

(1) works because $p^{\prime}(X)=k-d_{G}(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular
(i) $k-d_{G}(X)$ satisfies both inequalities,
(ii) X, Y are T-odd \Longrightarrow either $X \cap Y, X \cup Y$ or $X-Y, Y-X$ are T-odd.
(2) works because for all T-odd sets, $d_{G^{\prime}}(X) \geq k$ and, by the above lemma, $k \leq \lambda_{G^{\prime}}(x, y)=\lambda_{G^{\prime \prime}}(x, y) \leq d_{G^{\prime \prime}}(X)$.

How to augment a minimum T-cut ?

Theorem (Szigeti)

Given a connected graph $G=(V, E), T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\left\lceil\frac{1}{2}\right.$ maximum p^{\prime}-value of a subpartition of $\left.V\right\rceil$. An optimal augmentation can be found in polynomial time using
(1) Frank's minimal extension and
(2) Mader's complete splitting off.

Proof

(1) works because $p^{\prime}(X)=k-d_{G}(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular
(i) $k-d_{G}(X)$ satisfies both inequalities,
(ii) X, Y are T-odd \Longrightarrow either $X \cap Y, X \cup Y$ or $X-Y, Y-X$ are T-odd.
(2) works because for all T-odd sets, $d_{G^{\prime}}(X) \geq k$ and, by the above lemma, $k \leq \lambda_{G^{\prime}}(x, y)=\lambda_{G^{\prime \prime}}(x, y) \leq d_{G^{\prime \prime}}(X)$.

How to augment a minimum T-cut ?

Theorem (Szigeti)

Given a connected graph $G=(V, E), T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\left\lceil\frac{1}{2}\right.$ maximum p^{\prime}-value of a subpartition of $\left.V\right\rceil$. An optimal augmentation can be found in polynomial time using
(1) Frank's minimal extension and
(2) Mader's complete splitting off.

Proof

(1) works because $p^{\prime}(X)=k-d_{G}(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular
(i) $k-d_{G}(X)$ satisfies both inequalities,
(ii) X, Y are T-odd \Longrightarrow either $X \cap Y, X \cup Y$ or $X-Y, Y-X$ are T-odd.
(2) works because for all T-odd sets, $d_{G^{\prime}}(X) \geq k$ and, by the above lemma, $k \leq \lambda_{G^{\prime}}(x, y)=\lambda_{G^{\prime \prime}}(x, y) \leq d_{G^{\prime \prime}}(X)$.

How to augment a minimum T-cut?

Theorem (Szigeti)

Given a connected graph $G=(V, E), T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\left\lceil\frac{1}{2}\right.$ maximum p^{\prime}-value of a subpartition of $\left.V\right\rceil$. An optimal augmentation can be found in polynomial time using
(1) Frank's minimal extension and
(2) Mader's complete splitting off.

Graph G, vertex set T and $k=4$

How to augment a minimum T-cut?

Theorem (Szigeti)

Given a connected graph $G=(V, E), T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\left\lceil\frac{1}{2}\right.$ maximum p^{\prime}-value of a subpartition of $\left.V\right\rceil$. An optimal augmentation can be found in polynomial time using
(1) Frank's minimal extension and
(2) Mader's complete splitting off.

Minimum T-cut in $G+F$ is 4

Definition : symmetric parity family

Definition

A family \mathcal{F} of subsets of V is called symmetric parity family if

(2) if $A \in \mathcal{F}$, then $V-A \in \mathcal{F}$,
(3) if $A, B \notin \mathcal{F}$ and $A \cap B=\emptyset$, then $A \cup B \notin \mathcal{F}$.

Definition : symmetric parity family

Definition

A family \mathcal{F} of subsets of V is called symmetric parity family if
(1) $\emptyset, V \notin \mathcal{F}$,
(2) if $A \in \mathcal{F}$, then $V-A \in \mathcal{F}$,
(3) if $A, B \notin \mathcal{F}$ and $A \cap B=\emptyset$, then $A \cup B \notin \mathcal{F}$.

Definition : symmetric parity family

Definition

A family \mathcal{F} of subsets of V is called symmetric parity family if
(1) $\emptyset, V \notin \mathcal{F}$,
(2) if $A \in \mathcal{F}$, then $V-A \in \mathcal{F}$,
\square

Definition : symmetric parity family

Definition

A family \mathcal{F} of subsets of V is called symmetric parity family if
(1) $\emptyset, V \notin \mathcal{F}$,
(2) if $A \in \mathcal{F}$, then $V-A \in \mathcal{F}$,
(3) if $A, B \notin \mathcal{F}$ and $A \cap B=\emptyset$, then $A \cup B \notin \mathcal{F}$.

Definition : symmetric parity family

Definition

A family \mathcal{F} of subsets of V is called symmetric parity family if
(1) $\emptyset, V \notin \mathcal{F}$,
(2) if $A \in \mathcal{F}$, then $V-A \in \mathcal{F}$,
(3) if $A, B \notin \mathcal{F}$ and $A \cap B=\emptyset$, then $A \cup B \notin \mathcal{F}$.

Examples

\square

Definition : symmetric parity family

Definition

A family \mathcal{F} of subsets of V is called symmetric parity family if
(1) $\emptyset, V \notin \mathcal{F}$,
(2) if $A \in \mathcal{F}$, then $V-A \in \mathcal{F}$,
(3) if $A, B \notin \mathcal{F}$ and $A \cap B=\emptyset$, then $A \cup B \notin \mathcal{F}$.

Examples

(1) $\mathcal{F}:=2^{V}-\{\emptyset, V\}$
(2) $\mathcal{F}:=\{X \subset V: X$ is T-odd $\}$ where $T \subseteq V$ with $|T|$ even.

Definition : symmetric parity family

Definition

A family \mathcal{F} of subsets of V is called symmetric parity family if
(1) $\emptyset, V \notin \mathcal{F}$,
(2) if $A \in \mathcal{F}$, then $V-A \in \mathcal{F}$,
(3) if $A, B \notin \mathcal{F}$ and $A \cap B=\emptyset$, then $A \cup B \notin \mathcal{F}$.

Examples

(1) $\mathcal{F}:=2^{V}-\{\emptyset, V\}$
(2) $\mathcal{F}:=\{X \subset V: X$ is T-odd $\}$ where $T \subseteq V$ with $|T|$ even.

Definition : symmetric parity family

Definition

A family \mathcal{F} of subsets of V is called symmetric parity family if
(1) $\emptyset, V \notin \mathcal{F}$,
(2) if $A \in \mathcal{F}$, then $V-A \in \mathcal{F}$,
(3) if $A, B \notin \mathcal{F}$ and $A \cap B=\emptyset$, then $A \cup B \notin \mathcal{F}$.

Examples

(1) $\mathcal{F}:=2^{V}-\{\emptyset, V\}$
(2) $\mathcal{F}:=\{X \subset V: X$ is T-odd $\}$ where $T \subseteq V$ with $|T|$ even.

Property

(1) If X, Y are in \mathcal{F}, then either $X \cap Y, X \cup Y$ or $X-Y, Y-X$ are in \mathcal{F}.

Definition : symmetric parity family

Definition

A family \mathcal{F} of subsets of V is called symmetric parity family if
(1) $\emptyset, V \notin \mathcal{F}$,
(2) if $A \in \mathcal{F}$, then $V-A \in \mathcal{F}$,
(3) if $A, B \notin \mathcal{F}$ and $A \cap B=\emptyset$, then $A \cup B \notin \mathcal{F}$.

Examples

(1) $\mathcal{F}:=2^{V}-\{\emptyset, V\}$
(2) $\mathcal{F}:=\{X \subset V: X$ is T-odd $\}$ where $T \subseteq V$ with $|T|$ even.

Property

(1) If X, Y are in \mathcal{F}, then either $X \cap Y, X \cup Y$ or $X-Y, Y-X$ are in \mathcal{F}.

How to find a minimum \mathcal{F}-cut?

Theorem (Goemans-Ramakrishnan)

Given a connected graph G and a symmetric parity family \mathcal{F}, a minimum cut of G over \mathcal{F}, (a minimum \mathcal{F}-cut) can be found in polynomial time © using a cut equivalent tree H of G,
(2) taking the set $J(H)$ edges e of H for which the two connected components of $H-e$ are in \mathcal{F},
(3) taking the minimum value $c\left(e^{*}\right)$ of an edge of $J(H)$,
(9) taking the cut of G defined by the fundamental cut of $\mathrm{H}-e^{*}$

How to find a minimum \mathcal{F}-cut?

Theorem (Goemans-Ramakrishnan)

Given a connected graph G and a symmetric parity family \mathcal{F}, a minimum cut of G over \mathcal{F}, (a minimum \mathcal{F}-cut) can be found in polynomial time
(1) using a cut equivalent tree H of G,
(2) taking the set $J(H)$ edges e of H for which the two connected components of $H-e$ are in \mathcal{F},
(3) taking the minimum value $c\left(e^{*}\right)$ of an edge of $J(H)$,
(9) taking the cut of G defined by the fundamental cut of $H-e^{*}$.

Proof

Lemma

For any $A \in \mathcal{F}$ there exists an edge $x y \in \delta_{J(H)}(A)$, and hence $\lambda_{G}(x, y)=c(x y) \geq c\left(e^{*}\right)$.

Proof

Lemma

For any $A \in \mathcal{F}$ there exists an edge $x y \in \delta_{J(H)}(A)$, and hence $\lambda_{G}(x, y)=c(x y) \geq c\left(e^{*}\right)$.

Proof :
(1) Let $H\left[A_{1}\right], \ldots, H\left[A_{k}\right]$ be the connected components of $H[A]$.
(2) Since $A \in \mathcal{F}$ and $\bigcup A_{i}=A, \exists i: A_{i} \in \mathcal{F}$ by (iii)
(3) Let $H\left[B_{1}\right], \ldots, H\left[B_{1}\right]$ be the connected components of $H-A_{i}$
(9) Since $V-A_{i} \in \mathcal{F}$ by (ii) and $\bigcup B_{j}=V-A_{i}, \exists j: B_{j} \in \mathcal{F}$ by (iii).
(3) H is a tree, $H\left[A_{i}\right]$ is connected, $H\left[B_{j}\right]$ is a connected component of $H-A_{i}$, so there exists exactly one edge $e \in H$ between A_{i} and B_{j}
(c) Then $e \in J(H)$ and e enters A.

Proof

Lemma

For any $A \in \mathcal{F}$ there exists an edge $x y \in \delta_{J(H)}(A)$, and hence $\lambda_{G}(x, y)=c(x y) \geq c\left(e^{*}\right)$.

Proof :
(1) Let $H\left[A_{1}\right], \ldots, H\left[A_{k}\right]$ be the connected components of $H[A]$.
(2) Since $A \in \mathcal{F}$ and $\bigcup A_{i}=A, \exists i: A_{i} \in \mathcal{F}$ by (iii)
(3) Let $H\left[B_{1}\right], \ldots, H\left[B_{1}\right]$ be the connected components of $H-A_{i}$
(9) Since $V-A_{i} \in \mathcal{F}$ by (ii) and $\bigcup B_{i}=V-A_{i}, \exists j: B_{i} \in \mathcal{F}$ by (ii).
(3) H is a tree, $H\left[A_{i}\right]$ is connected, $H\left[B_{j}\right]$ is a connected component of $H-A_{i}$, so there exists exactly one edge $e \in H$ between A_{i} and B_{j}
(0) Then $e \in J(H)$ and e enters A.

Proof

Lemma

For any $A \in \mathcal{F}$ there exists an edge $x y \in \delta_{J(H)}(A)$, and hence $\lambda_{G}(x, y)=c(x y) \geq c\left(e^{*}\right)$.

Proof :

(1) Let $H\left[A_{1}\right], \ldots, H\left[A_{k}\right]$ be the connected components of $H[A]$.
(2) Since $A \in \mathcal{F}$ and $\bigcup A_{i}=A, \exists i: A_{i} \in \mathcal{F}$ by (iii).
(3) Let $H\left[B_{1}\right], \ldots, H\left[B_{1}\right]$ be the connected components of $H-A_{i}$
(9) Since $V-A_{i} \in \mathcal{F}$ by (ii) and $\bigcup B_{j}=V-A_{i}, \exists j: B_{j} \in \mathcal{F}$ by (iii)
(6) H is a tree. $H\left[A_{i}\right]$ is connected. $H\left[B_{j}\right]$ is a connected component of $H-A_{i}$, so there exists exactly one edge $e \in H$ between A_{i} and B_{j}
(0) Then $e \in J(H)$ and e enters A.

Proof

Lemma

For any $A \in \mathcal{F}$ there exists an edge $x y \in \delta_{J(H)}(A)$, and hence $\lambda_{G}(x, y)=c(x y) \geq c\left(e^{*}\right)$.

Proof :

(1) Let $H\left[A_{1}\right], \ldots, H\left[A_{k}\right]$ be the connected components of $H[A]$.
(2) Since $A \in \mathcal{F}$ and $\bigcup A_{i}=A, \exists i: A_{i} \in \mathcal{F}$ by (iii).
(3) Let $H\left[B_{1}\right], \ldots, H\left[B_{l}\right]$ be the connected components of $H-A_{i}$.
(9) Since $V-A_{i} \in \mathcal{F}$ by (ii) and $\bigcup B_{j}=V-A_{i}, \exists j: B_{j} \in \mathcal{F}$ by (iii).
(6) H is a tree, $H\left[A_{i}\right]$ is connected, $H\left[B_{j}\right]$ is a connected component of $H-A_{i}$, so there exists exactly one edge $e \in H$ between A_{i} and B_{j}
(0) Then $e \in J(H)$ and e enters A.

Proof

Lemma

For any $A \in \mathcal{F}$ there exists an edge $x y \in \delta_{J(H)}(A)$, and hence $\lambda_{G}(x, y)=c(x y) \geq c\left(e^{*}\right)$.

Proof :

(1) Let $H\left[A_{1}\right], \ldots, H\left[A_{k}\right]$ be the connected components of $H[A]$.
(2) Since $A \in \mathcal{F}$ and $\bigcup A_{i}=A, \exists i: A_{i} \in \mathcal{F}$ by (iii).
(3) Let $H\left[B_{1}\right], \ldots, H\left[B_{l}\right]$ be the connected components of $H-A_{i}$.
(9) Since $V-A_{i} \in \mathcal{F}$ by (ii) and $\bigcup B_{j}=V-A_{i}, \exists j: B_{j} \in \mathcal{F}$ by (iii).
(3) H is a tree, $H\left[A_{i}\right]$ is connected, $H\left[B_{j}\right]$ is a connected component of $H-A_{i}$, so there exists exactly one edge $e \in H$ between A_{i} and B_{j}.

(0) Then $e \in J(H)$ and e enters A.

Proof

Lemma

For any $A \in \mathcal{F}$ there exists an edge $x y \in \delta_{J(H)}(A)$, and hence $\lambda_{G}(x, y)=c(x y) \geq c\left(e^{*}\right)$.

Proof :

(1) Let $H\left[A_{1}\right], \ldots, H\left[A_{k}\right]$ be the connected components of $H[A]$.
(2) Since $A \in \mathcal{F}$ and $\bigcup A_{i}=A, \exists i: A_{i} \in \mathcal{F}$ by (iii).
(3) Let $H\left[B_{1}\right], \ldots, H\left[B_{l}\right]$ be the connected components of $H-A_{i}$.
(9) Since $V-A_{i} \in \mathcal{F}$ by (ii) and $\bigcup B_{j}=V-A_{i}, \exists j: B_{j} \in \mathcal{F}$ by (iii).
(3) H is a tree, $H\left[A_{i}\right]$ is connected, $H\left[B_{j}\right]$ is a connected component of $H-A_{i}$, so there exists exactly one edge $e \in H$ between A_{i} and B_{j}.

Proof

Lemma

For any $A \in \mathcal{F}$ there exists an edge $x y \in \delta_{J(H)}(A)$, and hence $\lambda_{G}(x, y)=c(x y) \geq c\left(e^{*}\right)$.

Proof :

(1) Let $H\left[A_{1}\right], \ldots, H\left[A_{k}\right]$ be the connected components of $H[A]$.
(2) Since $A \in \mathcal{F}$ and $\bigcup A_{i}=A, \exists i: A_{i} \in \mathcal{F}$ by (iii).
(3) Let $H\left[B_{1}\right], \ldots, H\left[B_{l}\right]$ be the connected components of $H-A_{i}$.
(9) Since $V-A_{i} \in \mathcal{F}$ by (ii) and $\bigcup B_{j}=V-A_{i}, \exists j: B_{j} \in \mathcal{F}$ by (iii).
(3) H is a tree, $H\left[A_{i}\right]$ is connected, $H\left[B_{j}\right]$ is a connected component of $H-A_{i}$, so there exists exactly one edge $e \in H$ between A_{i} and B_{j}.
(0) Then $e \in J(H)$ and e enters A.

Proof

Lemma

For any $A \in \mathcal{F}$ there exists an edge $x y \in \delta_{J(H)}(A)$, and hence $\lambda_{G}(x, y)=c(x y) \geq c\left(e^{*}\right)$.

Correctness of Goemans-Ramakrishnan's algorithm

The same proof works as for Padberg-Rao's algorithm.

How to augment a minimum \mathcal{F}-cut ?

Theorem (Szigeti)

Given a connected graph G, a symmetric parity family \mathcal{F} and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each \mathcal{F}-cut is of size at least k equals $\left\lceil\frac{1}{2}\right.$ maximum p^{*}-value of a subpartition of $V\rceil$. An optimal augmentation can be found in polynomial time using
(1) Frank's minimal extension and
(2) Mader's complete splitting off.

Proof

(1) works because $p^{*}(X)=k-d_{G}(X)$ if $X \in \mathcal{F}$ and $-\infty$ otherwise is symmetric skew-supermodular
(i) $k-d_{G}(X)$ satisfies both inequalities,
(ii) If $X, Y \in \mathcal{F}$, then either $X \cap Y, X \cup Y \in \mathcal{F}$ or $X-Y, Y-X \in \mathcal{F}$.
(2) works because for all $X \in \mathcal{F}, d_{G^{\prime}}(X) \geq k$ and, by the above lemma, $k \leq \lambda_{G^{\prime}}(x, y)=\lambda_{G^{\prime \prime}}(x, y) \leq d_{G^{\prime \prime}}(X)$.

Conclusion

(1) Special cases:
(1) Global edge-connectivity augmentation (Watanabe, Nakamura)
(2) Minimum T-cut augmentation

A Aew polynomial special case of the NP-complete problem Minimum Cover of a Symmetric Skew-Supermodular Function by a Graph

Conclusion

(1) Special cases:
(1) Global edge-connectivity augmentation (Watanabe, Nakamura)
(2) Minimum T-cut augmentation
(2) A new polynomial special case of the NP-complete problem Minimum Cover of a Symmetric Skew-Supermodular Function by a Graph

Conclusion

(1) Special cases:
(1) Global edge-connectivity augmentation (Watanabe, Nakamura)
(2) Minimum T-cut augmentation
(2) A new polynomial special case of the NP-complete problem Minimum Cover of a Symmetric Skew-Supermodular Function by a Graph

Conclusion

(1) Special cases:
(1) Global edge-connectivity augmentation (Watanabe, Nakamura)
(2) Minimum T-cut augmentation
(2) A new polynomial special case of the NP-complete problem Minimum Cover of a Symmetric Skew-Supermodular Function by a Graph

