Edge-connectivity augmentation of graphs over symmetric parity families

Zoltán Szigeti

Laboratoire G-SCOP INP Grenoble, France

27 octobre 2010

Edge-connectivity

T-cuts

Symmetric parity families

- Edge-connectivity
 - Definitions
 - Out equivalent trees
 - § Edge-connectivity augmentation
- T-cuts

Symmetric parity families

- Edge-connectivity
 - Definitions
 - Cut equivalent trees
 - § Edge-connectivity augmentation
- T-cuts
 - Definitions
 - Minimum T-cut
 - Section Augmentation of minimum T-cut
- Symmetric parity families

- Edge-connectivity
 - Definitions
 - Out equivalent trees
 - 3 Edge-connectivity augmentation
- T-cuts
 - Openitions
 - Minimum T-cut
 - 3 Augmentation of minimum T-cut
- Symmetric parity families
 - Definition, Examples
 - Minimum cut over a symmetric parity family
 - Augmentation of minimum cut over a symmetric parity family

Definitions

Global edge-connectivity

Given a graph G = (V, E) and an integer k, G is called k-edge-connected if each cut contains at least k edges.

Definitions

Global edge-connectivity

Given a graph G = (V, E) and an integer k, G is called k-edge-connected if each cut contains at least k edges.

Local edge-connectivity

Given a graph G = (V, E) and $u, v \in V$, the local edge-connectivity $\lambda_G(u, v)$ is defined as the minimum cardinality of a cut separating u and v.

Theorem (Gomory-Hu)

- ① the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value c(e) of the edges e of the unique (u, v)-path in H,
- ② if e achives this minimum, then the fundamental cut of H-e provides a minimum cut of G separating u and v.

Theorem (Gomory-Hu)

- the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value c(e) of the edges e of the unique (u, v)-path in H,

Cut equivalent tree H = (V, E')

Theorem (Gomory-Hu)

- the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value c(e) of the edges e of the unique (u, v)-path in H,
- ② if e achives this minimum, then the fundamental cut of $H \epsilon$ provides a minimum cut of G separating u and v.

Graph G = (V, E)

Cut equivalent tree H = (V, E')

Theorem (Gomory-Hu)

- the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value c(e) of the edges e of the unique (u, v)-path in H,
- ② if e achives this minimum, then the fundamental cut of $H \epsilon$ provides a minimum cut of G separating u and v.

Graph G = (V, E)

Cut equivalent tree H = (V, E')

Theorem (Gomory-Hu)

- the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value c(e) of the edges e of the unique (u, v)-path in H,

Cut equivalent tree H = (V, E')

Theorem (Gomory-Hu)

- the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value c(e) of the edges e of the unique (u, v)-path in H,
- ② if e achives this minimum, then the fundamental cut of H − e provides a minimum cut of G separating u and v.

Theorem (Gomory-Hu)

- the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value c(e) of the edges e of the unique (u, v)-path in H,
- \odot if e achives this minimum, then the fundamental cut of H e provides a minimum cut of G separating u and v.

Graph G = (V, E)

Cut equivalent tree H = (V, E')

Theorem (Gomory-Hu)

- the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value c(e) of the edges e of the unique (u, v)-path in H,
- \odot if e achives this minimum, then the fundamental cut of H e provides a minimum cut of G separating u and v.

Graph G = (V, E)

Cut equivalent tree H = (V, E')

Theorem (Gomory-Hu)

- the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value c(e) of the edges e of the unique (u, v)-path in H,
- \odot if e achives this minimum, then the fundamental cut of H e provides a minimum cut of G separating u and v.

Cut equivalent tree H = (V, E')

Theorem (Gomory-Hu)

- the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value c(e) of the edges e of the unique (u, v)-path in H,
- \odot if e achives this minimum, then the fundamental cut of H e provides a minimum cut of G separating u and v.

Graph G = (V, E)

Cut equivalent tree H = (V, E')

Theorem (Gomory-Hu)

- the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value c(e) of the edges e of the unique (u, v)-path in H,
- \odot if e achives this minimum, then the fundamental cut of H e provides a minimum cut of G separating u and v.

Cut equivalent tree H = (V, E')

Theorem (Gomory-Hu)

- the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value c(e) of the edges e of the unique (u, v)-path in H,
- ② if e achives this minimum, then the fundamental cut of H e provides a minimum cut of G separating u and v.

Cut equivalent tree H = (V, E')

Global edge-connectivity augmentation of a graph

- Minimax theorem (Watanabe, Nakamura)
- 2 Polynomially solvable (Cai, Sun)

Graph G, k = 4

Global edge-connectivity augmentation of a graph

Given a graph G = (V, E) and an integer $k \ge 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

- Minimax theorem (Watanabe, Nakamura)
- Polynomially solvable (Cai, Sun)

Graph G, k = 4

Global edge-connectivity augmentation of a graph

Given a graph G = (V, E) and an integer $k \ge 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

- Minimax theorem (Watanabe, Nakamura
- 2 Polynomially solvable (Cai, Sun)

Graph G, k = 4

Global edge-connectivity augmentation of a graph

Given a graph G = (V, E) and an integer $k \ge 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

- Minimax theorem (Watanabe, Nakamura)
- Polynomially solvable (Cai, Sun)

Graph G, k = 4

Global edge-connectivity augmentation of a graph

- Minimax theorem (Watanabe, Nakamura)
- 2 Polynomially solvable (Cai, Sun)

Graph G, k = 4

Global edge-connectivity augmentation of a graph

- Minimax theorem (Watanabe, Nakamura
- Polynomially solvable (Cai, Sun)

$$\mathsf{Opt} \geq \lceil \tfrac{5}{2} \rceil = 3$$

Global edge-connectivity augmentation of a graph

- Minimax theorem (Watanabe, Nakamura
- 2 Polynomially solvable (Cai, Sun)

Graph G + F is 4-edge-connected and |F| = 3

Global edge-connectivity augmentation of a graph

Given a graph G = (V, E) and an integer $k \ge 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

- Minimax theorem (Watanabe, Nakamura)
- Polynomially solvable (Cai, Sun)

Opt= $\lceil \frac{1}{2}$ maximum deficiency of a subpartition of $V \rceil$

Global edge-connectivity augmentation of a graph

- Minimax theorem (Watanabe, Nakamura)
- Polynomially solvable (Cai, Sun)

- Minimal extension,
 - (i) Add a new vertex s.
 - (ii) Add a minimum number of new edges incident to s to satisfy the edge connectivity requirements.
 - (iii) If the degree of s is odd, then add an arbitrary edge incident to s
- 2 Complete splitting off.

- Minimal extension,
 - (i) Add a new vertex s,
 - (ii) Add a minimum number of new edges incident to s to satisfy the edgeconnectivity requirements,
 - (iii) If the degree of s is odd, then add an arbitrary edge incident to s.
- Complete splitting off.

- Minimal extension,
 - (i) Add a new vertex s,
 - (ii) Add a minimum number of new edges incident to s to satisfy the edgeconnectivity requirements.
 - (iii) If the degree of s is odd, then add an arbitrary edge incident to s.
- 2 Complete splitting off.

- Minimal extension,
 - (i) Add a new vertex s,
 - (ii) Add a minimum number of new edges incident to s to satisfy the edgeconnectivity requirements,
 - (iii) If the degree of s is odd, then add an arbitrary edge incident to s.
- 2 Complete splitting off.

- Minimal extension,
 - (i) Add a new vertex s,
 - (ii) Add a minimum number of new edges incident to s to satisfy the edgeconnectivity requirements,
 - (iii) If the degree of s is odd, then add an arbitrary edge incident to s.
- 2 Complete splitting off.

Minimal extension

Definition

• A function p on 2^V is called skew-supermodular if at least one of following inequalities hold for all $X, Y \subseteq V$:

$$p(X) + p(Y) \le p(X \cap Y) + p(X \cup Y),$$

$$p(X) + p(Y) \le p(X - Y) + p(Y - X).$$

② A graph H covers a function p on 2^V if each cut $\delta_H(X)$ contains at least p(X) edges.

Minimal extension

Definition

• A function p on 2^V is called skew-supermodular if at least one of following inequalities hold for all $X, Y \subseteq V$:

$$p(X) + p(Y) \le p(X \cap Y) + p(X \cup Y),$$

$$p(X) + p(Y) \le p(X - Y) + p(Y - X).$$

② A graph H covers a function p on 2^V if each cut $\delta_H(X)$ contains at least p(X) edges.

Minimal extension

Definition

1 A function p on 2^V is called skew-supermodular if at least one of following inequalities hold for all $X, Y \subseteq V$:

$$p(X) + p(Y) \le p(X \cap Y) + p(X \cup Y),$$

$$p(X) + p(Y) \le p(X - Y) + p(Y - X).$$

② A graph H covers a function p on 2^V if each cut $\delta_H(X)$ contains at least p(X) edges.

Theorem (Frank)

Let $p: 2^V \to \mathbb{Z} \cup \{-\infty\}$ be a symmetric skew-supermodular function.

- The minimum number of edges in an extension of the edgeless graph on V covering p equals the maximum p-value of a subpartition of V.
- ② An optimal extension can be found in polynomial time in the special cases mentioned in this talk.

Minimal extension

Definition

1 A function p on 2^V is called skew-supermodular if at least one of following inequalities hold for all $X, Y \subseteq V$:

$$p(X) + p(Y) \le p(X \cap Y) + p(X \cup Y),$$

$$p(X) + p(Y) \le p(X - Y) + p(Y - X).$$

② A graph H covers a function p on 2^V if each cut $\delta_H(X)$ contains at least p(X) edges.

Theorem (Frank)

Let $p: 2^V \to \mathbb{Z} \cup \{-\infty\}$ be a symmetric skew-supermodular function.

- The minimum number of edges in an extension of the edgeless graph on V covering p equals the maximum p-value of a subpartition of V.
- ② An optimal extension can be found in polynomial time in the special cases mentioned in this talk.

Minimal extension

Definition

1 A function p on 2^V is called skew-supermodular if at least one of following inequalities hold for all $X, Y \subseteq V$:

$$p(X) + p(Y) \le p(X \cap Y) + p(X \cup Y),$$

$$p(X) + p(Y) \le p(X - Y) + p(Y - X).$$

② A graph H covers a function p on 2^V if each cut $\delta_H(X)$ contains at least p(X) edges.

Theorem (Frank)

Let $p: 2^V \to \mathbb{Z} \cup \{-\infty\}$ be a symmetric skew-supermodular function.

- The minimum number of edges in an extension of the edgeless graph on V covering p equals the maximum p-value of a subpartition of V.
- ② An optimal extension can be found in polynomial time in the special cases mentioned in this talk.

Definitions

Theorem (Mader)

Let G' = (V + s, E) be a graph so that d(s) is even and no cut edge is incident to s.

- Then there exists a complete splitting off at s that preserves the local edge-connectivity between all pairs of vertices in V.
- 2 Such a complete splitting off can be found in polynomial time.

Definitions

Theorem (Mader)

Let G' = (V + s, E) be a graph so that d(s) is even and no cut edge is incident to s.

- Then there exists a complete splitting off at s that preserves the local edge-connectivity between all pairs of vertices in V.
- 2 Such a complete splitting off can be found in polynomial time.

Definitions

Theorem (Mader)

Let G' = (V + s, E) be a graph so that d(s) is even and no cut edge is incident to s.

- Then there exists a complete splitting off at s that preserves the local edge-connectivity between all pairs of vertices in V.
- 2 Such a complete splitting off can be found in polynomial time.

Global edge-connnectivity augmentation of a graph

- Extension works (Frank), $p(X) = k - d_G(X)$ is skew-supermodular,
- 2 Splitting off works (Mader),
- proving min-max theorem of Watanabe, Nakamura

Global edge-connnectivity augmentation of a graph

- Extension works (Frank), $p(X) = k - d_G(X)$ is skew-supermodular,
- 2 Splitting off works (Mader),
- Opening min-max theorem of Watanabe, Nakamura.

Global edge-connnectivity augmentation of a graph

- Extension works (Frank), $p(X) = k - d_G(X)$ is skew-supermodular,
- 2 Splitting off works (Mader),
- proving min-max theorem of Watanabe, Nakamura.

Global edge-connnectivity augmentation of a graph

- Extension works (Frank), $p(X) = k - d_G(X)$ is skew-supermodular,
- Splitting off works (Mader),
- 3 proving min-max theorem of Watanabe, Nakamura.

Local edge-connnectivity augmentation of a graph

$$\lambda_{G+F}(u,v) \geq r(u,v) \ \forall (u,v) \in V \times V$$
?

- ① Extension works (Frank), $p(X) = \max\{r(u, v) : u \in X, v \notin X\} d_G(X)$ is skew-supermodular,
- Splitting off works (Mader),
- g proving min-max theorem of Frank.

Global edge-connnectivity augmentation of a graph

- Extension works (Frank), $p(X) = k - d_G(X)$ is skew-supermodular,
- Splitting off works (Mader),
- 3 proving min-max theorem of Watanabe, Nakamura.

Local edge-connnectivity augmentation of a graph

$$\lambda_{G+F}(u,v) \geq r(u,v) \ \forall (u,v) \in V \times V?$$

- Extension works (Frank), $p(X) = \max\{r(u, v) : u \in X, v \notin X\} d_G(X)$ is skew-supermodular,
- 2 Splitting off works (Mader),
- g proving min-max theorem of Frank.

Global edge-connnectivity augmentation of a graph

- Extension works (Frank), $p(X) = k - d_G(X)$ is skew-supermodular,
- Splitting off works (Mader),
- 3 proving min-max theorem of Watanabe, Nakamura.

Local edge-connnectivity augmentation of a graph

$$\lambda_{G+F}(u,v) \geq r(u,v) \ \forall (u,v) \in V \times V?$$

- Extension works (Frank), $p(X) = \max\{r(u, v) : u \in X, v \notin X\} d_G(X)$ is skew-supermodular,
- Splitting off works (Mader),
- proving min-max theorem of Frank.

Global edge-connnectivity augmentation of a graph

- Extension works (Frank), $p(X) = k - d_G(X)$ is skew-supermodular,
- Splitting off works (Mader),
- 3 proving min-max theorem of Watanabe, Nakamura.

Local edge-connnectivity augmentation of a graph

$$\lambda_{G+F}(u,v) \geq r(u,v) \ \forall (u,v) \in V \times V?$$

- Extension works (Frank), $p(X) = \max\{r(u, v) : u \in X, v \notin X\} d_G(X)$ is skew-supermodular,
- 2 Splitting off works (Mader),
- 3 proving min-max theorem of Frank.

Negative Result

MINIMUM COVER OF A SYMMETRIC SKEW-SUPERMODULAR FUNCTION BY A GRAPH

Instance : $p: 2^V \to \mathbb{Z}$ symmetric skew-supermodular, $\gamma \in \mathbb{Z}^+$.

 $\mathit{Question}$: Does there exist a graph H on V with at most γ edges that

covers p that is $d_H(X) \ge p(X) \ \forall X \subset V$?

Negative Result

MINIMUM COVER OF A SYMMETRIC SKEW-SUPERMODULAR FUNCTION BY A GRAPH

Instance : $p: 2^V \to \mathbb{Z}$ symmetric skew-supermodular, $\gamma \in \mathbb{Z}^+$.

 $\textit{Question}: \mathsf{Does}$ there exist a graph H on V with at most γ edges that

covers p that is $d_H(X) \ge p(X) \ \forall X \subset V$?

Theorem (Z. Király, Z. Nutov)

The above problem is NP-complete.

Definitions

- ① A subset X of V is called T-odd if $|X \cap T|$ is odd.
- ② A cut $\delta(X)$ is called T-cut if X is T-odd.
- **3** A subset F of E is called T-join if $T = \{v \in V : d_F(v) \text{ is odd}\}$. Examples :
 - (a) $T = \{u, v\}$: a (u, v)-path is a T-join. (b) T = V: a perfect matching is a T-join.

Definitions

- **1** A subset X of V is called T-odd if $|X \cap T|$ is odd.
- ② A cut $\delta(X)$ is called T-cut if X is T-odd.
- **3** A subset F of E is called T-join if $T = \{v \in V : d_F(v) \text{ is odd}\}$. Examples :
 - (a) $T = \{u, v\}$: a (u, v)-path is a T-join. (b) T = V: a perfect matching is a T-join.

Definitions

Given a connected graph G = (V, E) and $T \subseteq V$ with |T| even.

- **1** A subset X of V is called T-odd if $|X \cap T|$ is odd.
- ② A cut $\delta(X)$ is called T-cut if X is T-odd.
- **3** A subset F of E is called T-join if $T = \{v \in V : d_F(v) \text{ is odd}\}$. Examples :
 - (a) $T = \{u, v\}$: a (u, v)-path is a T-join.

(ロ) (部) (注) (注) 注 り(()

Definitions

- **1** A subset X of V is called T-odd if $|X \cap T|$ is odd.
- 2 A cut $\delta(X)$ is called T-cut if X is T-odd.
- **3** A subset F of E is called T-join if $T = \{v \in V : d_F(v) \text{ is odd}\}$.

Definitions

- **1** A subset X of V is called T-odd if $|X \cap T|$ is odd.
- ② A cut $\delta(X)$ is called T-cut if X is T-odd.
- **3** A subset F of E is called T-join if $T = \{v \in V : d_F(v) \text{ is odd}\}$. Examples :
 - (a) $T = \{u, v\}$: a (u, v)-path is a T-join.
 - (b) T = V: a perfect matching is a T-join.

Definitions

- **1** A subset X of V is called T-odd if $|X \cap T|$ is odd.
- ② A cut $\delta(X)$ is called T-cut if X is T-odd.
- **3** A subset F of E is called T-join if $T = \{v \in V : d_F(v) \text{ is odd}\}.$
 - Examples:
 - (a) $T = \{u, v\}$: a (u, v)-path is a T-join.
 - (b) T = V: a perfect matching is a T-join.

Definitions

Given a connected graph G = (V, E) and $T \subseteq V$ with |T| even.

- **1** A subset X of V is called T-odd if $|X \cap T|$ is odd.
- ② A cut $\delta(X)$ is called T-cut if X is T-odd.
- **3** A subset F of E is called T-join if $T = \{v \in V : d_F(v) \text{ is odd}\}.$

Examples:

- (a) $T = \{u, v\}$: a (u, v)-path is a T-join.
- (b) T = V: a perfect matching is a T-join.

Definitions

Given a connected graph G = (V, E) and $T \subseteq V$ with |T| even.

- **1** A subset X of V is called T-odd if $|X \cap T|$ is odd.
- ② A cut $\delta(X)$ is called T-cut if X is T-odd.
- **3** A subset F of E is called T-join if $T = \{v \in V : d_F(v) \text{ is odd}\}.$

Examples:

- (a) $T = \{u, v\}$: a (u, v)-path is a T-join.
- (b) T = V: a perfect matching is a T-join.

Properties

- ① If X, Y are T-odd, then either $X \cap Y, X \cup Y$ or X Y, Y X are T-odd.
- ② A *T*-join and a *T*-cut always have an edge in common.

Definitions

Given a connected graph G = (V, E) and $T \subseteq V$ with |T| even.

- **1** A subset X of V is called T-odd if $|X \cap T|$ is odd.
- ② A cut $\delta(X)$ is called T-cut if X is T-odd.
- **3** A subset F of E is called T-join if $T = \{v \in V : d_F(v) \text{ is odd}\}.$

Examples:

- (a) $T = \{u, v\}$: a (u, v)-path is a T-join.
- (b) T = V: a perfect matching is a T-join.

Properties

- If X, Y are T-odd, then either $X \cap Y, X \cup Y$ or X Y, Y X are T-odd.
- \bigcirc A T-join and a T-cut always have an edge in common.

Definitions

Given a connected graph G = (V, E) and $T \subseteq V$ with |T| even.

- **1** A subset X of V is called T-odd if $|X \cap T|$ is odd.
- ② A cut $\delta(X)$ is called T-cut if X is T-odd.
- **3** A subset F of E is called T-join if $T = \{v \in V : d_F(v) \text{ is odd}\}.$

Examples:

- (a) $T = \{u, v\}$: a (u, v)-path is a T-join.
- (b) T = V: a perfect matching is a T-join.

Properties

- ① If X, Y are T-odd, then either $X \cap Y, X \cup Y$ or X Y, Y X are T-odd.
- ② A T-join and a T-cut always have an edge in common.

Theorem (Edmonds-Johnson)

- shortest paths algorithm (Dijkstra) and
- 2 minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T

Theorem (Edmonds-Johnson)

- shortest paths algorithm (Dijkstra) and
- 2 minimum weight perfect matching algorithm (Edmonds)

Graph G and vertex set T

Theorem (Edmonds-Johnson)

- shortest paths algorithm (Dijkstra) and
- 2 minimum weight perfect matching algorithm (Edmonds)

Graph G and vertex set T

Theorem (Edmonds-Johnson)

- shortest paths algorithm (Dijkstra) and
- 2 minimum weight perfect matching algorithm (Edmonds)

Graph G and vertex set T

Theorem (Edmonds-Johnson)

- shortest paths algorithm (Dijkstra) and
- 2 minimum weight perfect matching algorithm (Edmonds)

Graph G and vertex set T

Theorem (Edmonds-Johnson)

- shortest paths algorithm (Dijkstra) and
- 2 minimum weight perfect matching algorithm (Edmonds)

Graph G and vertex set T

Theorem (Edmonds-Johnson)

- shortest paths algorithm (Dijkstra) and
- 2 minimum weight perfect matching algorithm (Edmonds)

Graph G and vertex set T

Theorem (Edmonds-Johnson)

- shortest paths algorithm (Dijkstra) and
- 2 minimum weight perfect matching algorithm (Edmonds)

Graph G and vertex set T

Theorem (Edmonds-Johnson)

- shortest paths algorithm (Dijkstra) and
- 2 minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T

Theorem (Edmonds-Johnson)

- shortest paths algorithm (Dijkstra) and
- minimum weight perfect matching algorithm (Edmonds).

Graph G and minimum T-join

How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut of G can be found in polynomial time

- using a cut equivalent tree H of G;
- 2 taking the set J(H) edges e of H for which the two connected components of H-e are T-odd,
- 3 taking the minimum value $c(e^*)$ of an edge of J(H),
- ① taking the cut of G defined by the fundamental cut of $H e^*$.

Graph G and vertex set T

Theorem (Padberg-Rao)

- using a cut equivalent tree H of G;
- 2 taking the set J(H) edges e of H for which the two connected components of H e are T-odd,
- **1** taking the minimum value $c(e^*)$ of an edge of J(H),
- ullet taking the cut of G defined by the fundamental cut of $H-e^*$.

Graph G and vertex set T

Cut equivalent tree H

Theorem (Padberg-Rao)

- using a cut equivalent tree H of G;
- 2 taking the set J(H) edges e of H for which the two connected components of H e are T-odd,
- 3 taking the minimum value $c(e^*)$ of an edge of J(H),
- taking the cut of G defined by the fundamental cut of $H e^*$.

Graph G and vertex set T

Cut equivalent tree H

Theorem (Padberg-Rao)

- using a cut equivalent tree H of G;
- 2 taking the set J(H) edges e of H for which the two connected components of H e are T-odd,
- 3 taking the minimum value $c(e^*)$ of an edge of J(H),
- ① taking the cut of G defined by the fundamental cut of $H e^*$.

Graph G and vertex set T

Cut equivalent tree H

Theorem (Padberg-Rao)

- using a cut equivalent tree H of G;
- 2 taking the set J(H) edges e of H for which the two connected components of H e are T-odd,
- 3 taking the minimum value $c(e^*)$ of an edge of J(H),
- taking the cut of G defined by the fundamental cut of $H e^*$.

Graph G and vertex set T

Cut equivalent tree H

Theorem (Padberg-Rao)

- using a cut equivalent tree H of G;
- 2 taking the set J(H) edges e of H for which the two connected components of H e are T-odd,
- 3 taking the minimum value $c(e^*)$ of an edge of J(H),
- taking the cut of G defined by the fundamental cut of $H e^*$.

Graph G and vertex set T

Cut equivalent tree H

Theorem (Padberg-Rao)

- using a cut equivalent tree H of G;
- 2 taking the set J(H) edges e of H for which the two connected components of H e are T-odd,
- 3 taking the minimum value $c(e^*)$ of an edge of J(H),
- ① taking the cut of G defined by the fundamental cut of $H e^*$.

Graph G and vertex set T

Cut equivalent tree H

Theorem (Padberg-Rao)

- using a cut equivalent tree H of G;
- 2 taking the set J(H) edges e of H for which the two connected components of H e are T-odd,
- 3 taking the minimum value $c(e^*)$ of an edge of J(H),
- ullet taking the cut of G defined by the fundamental cut of $H-e^*$.

Graph G and vertex set T

Cut equivalent tree H

Theorem (Padberg-Rao)

- using a cut equivalent tree H of G;
- 2 taking the set J(H) edges e of H for which the two connected components of H e are T-odd,
- **1** taking the minimum value $c(e^*)$ of an edge of J(H),
- ullet taking the cut of G defined by the fundamental cut of $H-e^*$.

Graph G and vertex set T

Cut equivalent tree H and edge set J(H)

Theorem (Padberg-Rao)

- using a cut equivalent tree H of G;
- 2 taking the set J(H) edges e of H for which the two connected components of H e are T-odd,
- 3 taking the minimum value $c(e^*)$ of an edge of J(H),
- ullet taking the cut of G defined by the fundamental cut of $H-e^*$.

Graph G and vertex set T

Cut equivalent tree H

Theorem (Padberg-Rao)

- using a cut equivalent tree H of G;
- 2 taking the set J(H) edges e of H for which the two connected components of H e are T-odd,
- **3** taking the minimum value $c(e^*)$ of an edge of J(H),
- ullet taking the cut of G defined by the fundamental cut of $H-e^*$.

Graph G and vertex set T

Cut equivalent tree H

Theorem (Padberg-Rao)

- using a cut equivalent tree H of G;
- taking the set J(H) edges e of H for which the two connected components of H − e are T-odd,
- **3** taking the minimum value $c(e^*)$ of an edge of J(H),
- ullet taking the cut of G defined by the fundamental cut of $H-e^*$.

Minimum T-cut in G

Cut equivalent tree H

Lemma

For any T-cut $\delta(X)$ there exist $x \in X, y \notin X$ such that $\lambda_G(x,y) \geq c(e^*)$.

Lemma

For any T-cut $\delta(X)$ there exist $x \in X, y \notin X$ such that $\lambda_G(x,y) \geq c(e^*)$.

Proof : J(H) is a T-join so there exists $xy \in J(H) \cap \delta_H(X)$ and $\lambda_G(x,y) = c(xy) \ge c(e^*)$.

Lemma

For any T-cut $\delta(X)$ there exist $x \in X, y \notin X$ such that $\lambda_G(x,y) \geq c(e^*)$.

Proof : J(H) is a T-join so there exists $xy \in J(H) \cap \delta_H(X)$ and $\lambda_G(x,y) = c(xy) \ge c(e^*)$.

Correctness of Padberg-Rao's algorithm

Let $\delta(X)$ be a minimum T-cut and $\delta(Y)$ the T-cut defined by e^* . By the lemma, there exist $x \in X, y \notin X$ such that $\lambda_G(x,y) \geq c(e^*)$. Then

$$c(e^*) = d(Y) \ge d(X) \ge \lambda_G(x, y) \ge c(e^*).$$

Lemma

For any T-cut $\delta(X)$ there exist $x \in X, y \notin X$ such that $\lambda_G(x,y) \geq c(e^*)$.

Proof : J(H) is a T-join so there exists $xy \in J(H) \cap \delta_H(X)$ and $\lambda_G(x,y) = c(xy) \ge c(e^*)$.

Correctness of Padberg-Rao's algorithm

Let $\delta(X)$ be a minimum T-cut and $\delta(Y)$ the T-cut defined by e^* . By the lemma, there exist $x \in X, y \notin X$ such that $\lambda_G(x, y) \geq c(e^*)$. Then

$$c(e^*) = d(Y) \ge d(X) \ge \lambda_G(x, y) \ge c(e^*).$$

Lemma

For any T-cut $\delta(X)$ there exist $x \in X, y \notin X$ such that $\lambda_G(x,y) \geq c(e^*)$.

Proof : J(H) is a T-join so there exists $xy \in J(H) \cap \delta_H(X)$ and $\lambda_G(x,y) = c(xy) \ge c(e^*)$.

Correctness of Padberg-Rao's algorithm

Let $\delta(X)$ be a minimum T-cut and $\delta(Y)$ the T-cut defined by e^* . By the lemma, there exist $x \in X, y \notin X$ such that $\lambda_G(x,y) \geq c(e^*)$. Then

$$c(e^*) = d(Y) \ge d(X) \ge \lambda_G(x, y) \ge c(e^*).$$

Lemma

For any T-cut $\delta(X)$ there exist $x \in X, y \notin X$ such that $\lambda_G(x,y) \geq c(e^*)$.

Proof : J(H) is a T-join so there exists $xy \in J(H) \cap \delta_H(X)$ and $\lambda_G(x,y) = c(xy) \ge c(e^*)$.

Correctness of Padberg-Rao's algorithm

Let $\delta(X)$ be a minimum T-cut and $\delta(Y)$ the T-cut defined by e^* . By the lemma, there exist $x \in X, y \notin X$ such that $\lambda_G(x, y) \geq c(e^*)$. Then

$$c(e^*) = d(Y) \ge d(X) \ge \lambda_G(x, y) \ge c(e^*).$$

Lemma

For any T-cut $\delta(X)$ there exist $x \in X, y \notin X$ such that $\lambda_G(x,y) \geq c(e^*)$.

Proof : J(H) is a T-join so there exists $xy \in J(H) \cap \delta_H(X)$ and $\lambda_G(x,y) = c(xy) \ge c(e^*)$.

Correctness of Padberg-Rao's algorithm

Let $\delta(X)$ be a minimum T-cut and $\delta(Y)$ the T-cut defined by e^* . By the lemma, there exist $x \in X, y \notin X$ such that $\lambda_G(x, y) \geq c(e^*)$. Then

$$c(e^*) = d(Y) \ge d(X) \ge \lambda_G(x, y) \ge c(e^*).$$

Theorem (Szigeti)

Given a connected graph $G=(V,E), T\subseteq V$ and $k\in\mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\lceil \frac{1}{2} \rceil$ maximum p'-value of a subpartition of $V \rceil$. An optimal augmentation can be found in polynomial time using

- 1 Frank's minimal extension and
- 2 Mader's complete splitting off.

- works because $p'(X) = k d_G(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular
 - (i) $k d_G(X)$ satisfies both inequalities, (ii) X, Y are T-odd \Longrightarrow either $X \cap Y, X \cup Y$ or X - Y, Y - X are T-odd.
- ② works because for all T-odd sets, $d_{G'}(X) \ge k$ and, by the above lemma, $k \le \lambda_{G'}(x, y) = \lambda_{G''}(x, y) \le d_{G''}(X)$.

Theorem (Szigeti)

Given a connected graph $G=(V,E), T\subseteq V$ and $k\in\mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\lceil \frac{1}{2} \rceil$ maximum p'-value of a subpartition of $V \rceil$. An optimal augmentation can be found in polynomial time using

- 1 Frank's minimal extension and
- 2 Mader's complete splitting off.

- ① works because $p'(X) = k d_G(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular
 - (i) $k d_G(X)$ satisfies both inequalities, (ii) X, Y are T-odd \Longrightarrow either $X \cap Y, X \cup Y$ or X - Y, Y - X are T-odd.
- ② works because for all T-odd sets, $d_{G'}(X) \ge k$ and, by the above lemma, $k \le \lambda_{G'}(x,y) = \lambda_{G''}(x,y) \le d_{G''}(X)$.

Theorem (Szigeti)

Given a connected graph $G=(V,E), T\subseteq V$ and $k\in\mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\lceil \frac{1}{2} \rceil$ maximum p'-value of a subpartition of $V \rceil$. An optimal augmentation can be found in polynomial time using

- 1 Frank's minimal extension and
- 2 Mader's complete splitting off.

- works because $p'(X) = k d_G(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular
 - (i) $k d_G(X)$ satisfies both inequalities,
 - (ii) X, Y are T-odd \Longrightarrow either $X \cap Y, X \cup Y$ or X Y, Y X are T-odd.
- works because for all T-odd sets, $d_{G'}(X) \ge k$ and, by the above lemma, $k \le \lambda_{G'}(x,y) = \lambda_{G''}(x,y) \le d_{G''}(X)$.

Theorem (Szigeti)

Given a connected graph $G=(V,E), T\subseteq V$ and $k\in\mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\lceil \frac{1}{2} \rceil$ maximum p'-value of a subpartition of $V \rceil$. An optimal augmentation can be found in polynomial time using

- Frank's minimal extension and
- 2 Mader's complete splitting off.

- works because $p'(X) = k d_G(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular
 - (i) $k d_G(X)$ satisfies both inequalities,
 - (ii) X, Y are T-odd \Longrightarrow either $X \cap Y, X \cup Y$ or X Y, Y X are T-odd.
- works because for all T-odd sets, $d_{G'}(X) \ge k$ and, by the above lemma, $k \le \lambda_{G'}(x,y) = \lambda_{G''}(x,y) \le d_{G''}(X)$.

Theorem (Szigeti)

Given a connected graph $G=(V,E), T\subseteq V$ and $k\in\mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\lceil \frac{1}{2} \rceil$ maximum p'-value of a subpartition of $V \rceil$. An optimal augmentation can be found in polynomial time using

- 1 Frank's minimal extension and
- Mader's complete splitting off.

- works because $p'(X) = k d_G(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular
 - (i) $k d_G(X)$ satisfies both inequalities,
 - (ii) X, Y are T-odd \Longrightarrow either $X \cap Y, X \cup Y$ or X Y, Y X are T-odd.
- works because for all T-odd sets, $d_{G'}(X) \ge k$ and, by the above lemma, $k \le \lambda_{G'}(x,y) = \lambda_{G''}(x,y) \le d_{G''}(X)$.

Theorem (Szigeti)

Given a connected graph $G=(V,E), T\subseteq V$ and $k\in\mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\lceil \frac{1}{2} \rceil$ maximum p'-value of a subpartition of $V \rceil$. An optimal augmentation can be found in polynomial time using

- 1 Frank's minimal extension and
- Mader's complete splitting off.

- works because $p'(X) = k d_G(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular
 - (i) $k d_G(X)$ satisfies both inequalities,
 - (ii) X, Y are T-odd \Longrightarrow either $X \cap Y, X \cup Y$ or X Y, Y X are T-odd.
- works because for all T-odd sets, $d_{G'}(X) \ge k$ and, by the above lemma, $k \le \lambda_{G'}(x,y) = \lambda_{G''}(x,y) \le d_{G''}(X)$.

Theorem (Szigeti)

Given a connected graph $G=(V,E), T\subseteq V$ and $k\in\mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\lceil \frac{1}{2} \rceil$ maximum p'-value of a subpartition of $V \rceil$. An optimal augmentation can be found in polynomial time using

- Frank's minimal extension and
- Mader's complete splitting off.

- works because $p'(X) = k d_G(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular
 - (i) $k d_G(X)$ satisfies both inequalities,
 - (ii) X, Y are T-odd \Longrightarrow either $X \cap Y, X \cup Y$ or X Y, Y X are T-odd.
- works because for all T-odd sets, $d_{G'}(X) \ge k$ and, by the above lemma, $k < \lambda_{G'}(x, y) = \lambda_{G''}(x, y) < d_{G''}(X)$.

Theorem (Szigeti)

Given a connected graph $G=(V,E), T\subseteq V$ and $k\in\mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\lceil \frac{1}{2} \rceil$ maximum p'-value of a subpartition of $V \rceil$. An optimal augmentation can be found in polynomial time using

- Frank's minimal extension and
- Mader's complete splitting off.

Graph G, vertex set T and k = 4

Theorem (Szigeti)

Given a connected graph $G=(V,E), T\subseteq V$ and $k\in\mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\lceil \frac{1}{2} \rceil$ maximum p'-value of a subpartition of $V \rceil$. An optimal augmentation can be found in polynomial time using

- Frank's minimal extension and
- 2 Mader's complete splitting off.

Minimum T-cut in G + F is 4

Definition

A family ${\mathcal F}$ of subsets of V is called symmetric parity family if

- \bigcirc \emptyset , $V \notin \mathcal{F}$,
- ② if $A \in \mathcal{F}$, then $V A \in \mathcal{F}$,
- \bigcirc if $A, B \notin \mathcal{F}$ and $A \cap B = \emptyset$, then $A \cup B \notin \mathcal{F}$.

Definition

A family ${\mathcal F}$ of subsets of V is called symmetric parity family if

- 0 \emptyset , $V \notin \mathcal{F}$,
- ② if $A \in \mathcal{F}$, then $V A \in \mathcal{F}$,
- \bigcirc if $A, B \notin \mathcal{F}$ and $A \cap B = \emptyset$, then $A \cup B \notin \mathcal{F}$.

Definition

A family ${\mathcal F}$ of subsets of V is called symmetric parity family if

- 0 \emptyset , $V \notin \mathcal{F}$,
- ② if $A \in \mathcal{F}$, then $V A \in \mathcal{F}$,
- ③ if $A, B \notin \mathcal{F}$ and $A \cap B = \emptyset$, then $A \cup B \notin \mathcal{F}$.

Definition

A family $\mathcal F$ of subsets of V is called symmetric parity family if

- \bigcirc \emptyset , $V \notin \mathcal{F}$,
- 2 if $A \in \mathcal{F}$, then $V A \in \mathcal{F}$,
- **3** if $A, B \notin \mathcal{F}$ and $A \cap B = \emptyset$, then $A \cup B \notin \mathcal{F}$.

Definition

A family $\mathcal F$ of subsets of V is called symmetric parity family if

- \bigcirc \emptyset , $V \notin \mathcal{F}$,
- ② if $A \in \mathcal{F}$, then $V A \in \mathcal{F}$,
- **3** if $A, B \notin \mathcal{F}$ and $A \cap B = \emptyset$, then $A \cup B \notin \mathcal{F}$.

Examples

- **1** $\mathcal{F} := 2^V \{\emptyset, V\}$
- ② $\mathcal{F} := \{X \subset V : X \text{ is } T\text{-odd}\}$ where $T \subseteq V$ with |T| even.

Definition

A family $\mathcal F$ of subsets of V is called symmetric parity family if

- \bigcirc \emptyset , $V \notin \mathcal{F}$,
- \bigcirc if $A \in \mathcal{F}$, then $V A \in \mathcal{F}$,
- **3** if $A, B \notin \mathcal{F}$ and $A \cap B = \emptyset$, then $A \cup B \notin \mathcal{F}$.

Examples

- **1** $\mathcal{F} := 2^V \{\emptyset, V\}$
- ② $\mathcal{F} := \{X \subset V : X \text{ is } T\text{-odd}\} \text{ where } T \subseteq V \text{ with } |T| \text{ even.}$

Definition

A family $\mathcal F$ of subsets of V is called symmetric parity family if

- 0 \emptyset , $V \notin \mathcal{F}$,
- 2 if $A \in \mathcal{F}$, then $V A \in \mathcal{F}$,
- **3** if $A, B \notin \mathcal{F}$ and $A \cap B = \emptyset$, then $A \cup B \notin \mathcal{F}$.

Examples

- **1** $\mathcal{F} := 2^V \{\emptyset, V\}$
- ② $\mathcal{F} := \{X \subset V : X \text{ is } T\text{-odd}\}$ where $T \subseteq V$ with |T| even.

Definition

A family $\mathcal F$ of subsets of V is called symmetric parity family if

- \emptyset , $V \notin \mathcal{F}$,
- $\mathbf{2}$ if $A \in \mathcal{F}$, then $V A \in \mathcal{F}$,
- **3** if $A, B \notin \mathcal{F}$ and $A \cap B = \emptyset$, then $A \cup B \notin \mathcal{F}$.

Examples

- **1** $\mathcal{F} := 2^V \{\emptyset, V\}$
- ② $\mathcal{F} := \{X \subset V : X \text{ is } T\text{-odd}\} \text{ where } T \subseteq V \text{ with } |T| \text{ even.}$

Property

① If X, Y are in \mathcal{F} , then either $X \cap Y, X \cup Y$ or X - Y, Y - X are in \mathcal{F}

Definition

A family $\mathcal F$ of subsets of V is called symmetric parity family if

- \bigcirc \emptyset , $V \notin \mathcal{F}$,
- ② if $A \in \mathcal{F}$, then $V A \in \mathcal{F}$,
- **3** if $A, B \notin \mathcal{F}$ and $A \cap B = \emptyset$, then $A \cup B \notin \mathcal{F}$.

Examples

- **1** $\mathcal{F} := 2^V \{\emptyset, V\}$
- ② $\mathcal{F} := \{X \subset V : X \text{ is } T\text{-odd}\} \text{ where } T \subseteq V \text{ with } |T| \text{ even.}$

Property

① If X, Y are in \mathcal{F} , then either $X \cap Y, X \cup Y$ or X - Y, Y - X are in \mathcal{F} .

How to find a minimum \mathcal{F} -cut?

Theorem (Goemans-Ramakrishnan)

Given a connected graph G and a symmetric parity family \mathcal{F} , a minimum cut of G over \mathcal{F} , (a minimum \mathcal{F} -cut) can be found in polynomial time

- using a cut equivalent tree H of G,
- 2 taking the set J(H) edges e of H for which the two connected components of H-e are in \mathcal{F} ,
- taking the minimum value c(e*) of an edge of J(H).
- ① taking the cut of G defined by the fundamental cut of $H e^*$.

How to find a minimum \mathcal{F} -cut?

Theorem (Goemans-Ramakrishnan)

Given a connected graph G and a symmetric parity family \mathcal{F} , a minimum cut of G over \mathcal{F} , (a minimum \mathcal{F} -cut) can be found in polynomial time

- using a cut equivalent tree H of G,
- taking the set J(H) edges e of H for which the two connected components of H − e are in F,
- **3** taking the minimum value $c(e^*)$ of an edge of J(H),
- taking the cut of G defined by the fundamental cut of $H e^*$.

Lemma

For any $A \in \mathcal{F}$ there exists an edge $xy \in \delta_{J(H)}(A)$, and hence $\lambda_G(x,y) = c(xy) \ge c(e^*)$.

Lemma

For any $A \in \mathcal{F}$ there exists an edge $xy \in \delta_{J(H)}(A)$, and hence $\lambda_G(x,y) = c(xy) \ge c(e^*)$.

- ① Let $H[A_1], \ldots, H[A_k]$ be the connected components of H[A].
- ② Since $A \in \mathcal{F}$ and $\bigcup A_i = A$, $\exists i : A_i \in \mathcal{F}$ by (iii).
- 3 Let $H[B_1], \ldots, H[B_l]$ be the connected components of $H A_i$.
- ① Since $V A_i \in \mathcal{F}$ by (ii) and $\bigcup B_j = V A_i$, $\exists j : B_j \in \mathcal{F}$ by (iii).
- **③** *H* is a tree, $H[A_i]$ is connected, $H[B_j]$ is a connected component of $H A_i$, so there exists exactly one edge e ∈ H between A_i and B_j .
- **1** Then $e \in J(H)$ and e enters A.

Lemma

For any $A \in \mathcal{F}$ there exists an edge $xy \in \delta_{J(H)}(A)$, and hence $\lambda_G(x,y) = c(xy) \ge c(e^*)$.

- **1** Let $H[A_1], \ldots, H[A_k]$ be the connected components of H[A].
- ② Since $A \in \mathcal{F}$ and $\bigcup A_i = A$, $\exists i : A_i \in \mathcal{F}$ by (iii).
- 3 Let $H[B_1], \ldots, H[B_l]$ be the connected components of $H A_i$.
- **③** Since $V A_i \in \mathcal{F}$ by (ii) and $\bigcup B_j = V A_i$, $\exists j : B_j \in \mathcal{F}$ by (iii).
- **⑤** *H* is a tree, $H[A_i]$ is connected, $H[B_j]$ is a connected component of $H A_i$, so there exists exactly one edge e ∈ H between A_i and B_j .
- **1** Then $e \in J(H)$ and e enters A.

Lemma

For any $A \in \mathcal{F}$ there exists an edge $xy \in \delta_{J(H)}(A)$, and hence $\lambda_G(x,y) = c(xy) \ge c(e^*)$.

- ① Let $H[A_1], \ldots, H[A_k]$ be the connected components of H[A].
- ② Since $A \in \mathcal{F}$ and $\bigcup A_i = A$, $\exists i : A_i \in \mathcal{F}$ by (iii).
- 3 Let $H[B_1], \ldots, H[B_l]$ be the connected components of $H A_i$.
- **③** Since $V A_i \in \mathcal{F}$ by (ii) and $\bigcup B_j = V A_i$, $\exists j : B_j \in \mathcal{F}$ by (iii).
- **③** *H* is a tree, $H[A_i]$ is connected, $H[B_j]$ is a connected component of $H A_i$, so there exists exactly one edge e ∈ H between A_i and B_j .
- **1** Then $e \in J(H)$ and e enters A.

Lemma

For any $A \in \mathcal{F}$ there exists an edge $xy \in \delta_{J(H)}(A)$, and hence $\lambda_G(x,y) = c(xy) \ge c(e^*)$.

- ① Let $H[A_1], \ldots, H[A_k]$ be the connected components of H[A].
- ② Since $A \in \mathcal{F}$ and $\bigcup A_i = A$, $\exists i : A_i \in \mathcal{F}$ by (iii).
- **3** Let $H[B_1], \ldots, H[B_l]$ be the connected components of $H A_i$.
- ① Since $V A_i \in \mathcal{F}$ by (ii) and $\bigcup B_j = V A_i$, $\exists j : B_j \in \mathcal{F}$ by (iii).
- ⑤ H is a tree, $H[A_i]$ is connected, $H[B_j]$ is a connected component of $H A_i$, so there exists exactly one edge e ∈ H between A_i and B_j .
- **1** Then $e \in J(H)$ and e enters A.

Lemma

For any $A \in \mathcal{F}$ there exists an edge $xy \in \delta_{J(H)}(A)$, and hence $\lambda_G(x,y) = c(xy) \ge c(e^*)$.

- ① Let $H[A_1], \ldots, H[A_k]$ be the connected components of H[A].
- ② Since $A \in \mathcal{F}$ and $\bigcup A_i = A$, $\exists i : A_i \in \mathcal{F}$ by (iii).
- **3** Let $H[B_1], \ldots, H[B_l]$ be the connected components of $H A_i$.
- **③** Since $V A_i \in \mathcal{F}$ by (ii) and $\bigcup B_j = V A_i$, $\exists j : B_j \in \mathcal{F}$ by (iii).
- **③** *H* is a tree, $H[A_i]$ is connected, $H[B_j]$ is a connected component of $H A_i$, so there exists exactly one edge e ∈ H between A_i and B_j .
- Then $e \in J(H)$ and e enters A.

Lemma

For any $A \in \mathcal{F}$ there exists an edge $xy \in \delta_{J(H)}(A)$, and hence $\lambda_G(x,y) = c(xy) \ge c(e^*)$.

- ① Let $H[A_1], \ldots, H[A_k]$ be the connected components of H[A].
- ② Since $A \in \mathcal{F}$ and $\bigcup A_i = A$, $\exists i : A_i \in \mathcal{F}$ by (iii).
- **3** Let $H[B_1], \ldots, H[B_l]$ be the connected components of $H A_i$.
- **③** Since $V A_i \in \mathcal{F}$ by (ii) and $\bigcup B_j = V A_i$, $\exists j : B_j \in \mathcal{F}$ by (iii).
- **⑤** H is a tree, $H[A_i]$ is connected, $H[B_j]$ is a connected component of $H A_i$, so there exists exactly one edge e ∈ H between A_i and B_j .
- Then $e \in J(H)$ and e enters A.

Lemma

For any $A \in \mathcal{F}$ there exists an edge $xy \in \delta_{J(H)}(A)$, and hence $\lambda_G(x,y) = c(xy) \ge c(e^*)$.

- ① Let $H[A_1], \ldots, H[A_k]$ be the connected components of H[A].
- ② Since $A \in \mathcal{F}$ and $\bigcup A_i = A$, $\exists i : A_i \in \mathcal{F}$ by (iii).
- **3** Let $H[B_1], \ldots, H[B_l]$ be the connected components of $H A_i$.
- **③** Since $V A_i \in \mathcal{F}$ by (ii) and $\bigcup B_j = V A_i$, $\exists j : B_j \in \mathcal{F}$ by (iii).
- **⑤** H is a tree, $H[A_i]$ is connected, $H[B_j]$ is a connected component of $H A_i$, so there exists exactly one edge e ∈ H between A_i and B_j .
- **1** Then $e \in J(H)$ and e enters A.

Lemma

For any $A \in \mathcal{F}$ there exists an edge $xy \in \delta_{J(H)}(A)$, and hence $\lambda_G(x,y) = c(xy) \geq c(e^*)$.

Correctness of Goemans-Ramakrishnan's algorithm

The same proof works as for Padberg-Rao's algorithm.

How to augment a minimum \mathcal{F} -cut?

Theorem (Szigeti)

Given a connected graph G, a symmetric parity family $\mathcal F$ and $k\in\mathbb Z$, the minimum number of edges whose addition results in a graph so that each $\mathcal F$ -cut is of size at least k equals $\lceil \frac 12 \rceil$ maximum p^* -value of a subpartition of $V \rceil$. An optimal augmentation can be found in polynomial time using

- 1 Frank's minimal extension and
- Mader's complete splitting off.

- works because $p^*(X) = k d_G(X)$ if $X \in \mathcal{F}$ and $-\infty$ otherwise is symmetric skew-supermodular
 - (i) $k d_G(X)$ satisfies both inequalities,
 - (ii) If $X, Y \in \mathcal{F}$, then either $X \cap Y, X \cup Y \in \mathcal{F}$ or $X Y, Y X \in \mathcal{F}$.
- **2** works because for all $X \in \mathcal{F}$, $d_{G'}(X) \ge k$ and, by the above lemma, $k \le \lambda_{G'}(x, y) = \lambda_{G''}(x, y) \le d_{G''}(X)$.

- Special cases :
 - Global edge-connectivity augmentation (Watanabe, Nakamura)
 - Minimum T-cut augmentation
- A new polynomial special case of the NP-complete problem MINIMUM COVER OF A SYMMETRIC SKEW-SUPERMODULAR FUNCTION BY A GRAPH

- Special cases :
 - Global edge-connectivity augmentation (Watanabe, Nakamura)
 - Minimum T-cut augmentation
- ② A new polynomial special case of the NP-complete problem
 MINIMUM COVER OF A SYMMETRIC SKEW-SUPERMODULAR
 FUNCTION BY A GRAPH

- Special cases :
 - Global edge-connectivity augmentation (Watanabe, Nakamura)
 - Minimum T-cut augmentation
- A new polynomial special case of the NP-complete problem MINIMUM COVER OF A SYMMETRIC SKEW-SUPERMODULAR FUNCTION BY A GRAPH

- Special cases :
 - Global edge-connectivity augmentation (Watanabe, Nakamura)
 - Minimum T-cut augmentation
- ② A new polynomial special case of the NP-complete problem
 MINIMUM COVER OF A SYMMETRIC SKEW-SUPERMODULAR
 FUNCTION BY A GRAPH