Edge-connectivity augmentation of graphs over symmetric parity families

Zoltán Szigeti

Laboratoire G-SCOP
INP Grenoble, France

27 octobre 2010
Outline

1. Edge-connectivity
2. T-cuts
3. Symmetric parity families
Outline

1. Edge-connectivity
 1. Definitions
 2. Cut equivalent trees
 3. Edge-connectivity augmentation

2. T-cuts

3. Symmetric parity families
Outline

Edge-connectivity
1. Definitions
2. Cut equivalent trees
3. Edge-connectivity augmentation

T-cuts
1. Definitions
2. Minimum T-cut
3. Augmentation of minimum T-cut

Symmetric parity families
Outline

1. Edge-connectivity
 1. Definitions
 2. Cut equivalent trees
 3. Edge-connectivity augmentation

2. T-cuts
 1. Definitions
 2. Minimum T-cut
 3. Augmentation of minimum T-cut

3. Symmetric parity families
 1. Definition, Examples
 2. Minimum cut over a symmetric parity family
 3. Augmentation of minimum cut over a symmetric parity family
Global edge-connectivity

Given a graph $G = (V, E)$ and an integer k, G is called k-edge-connected if each cut contains at least k edges.
Definitions

Global edge-connectivity

Given a graph $G = (V, E)$ and an integer k, G is called k-edge-connected if each cut contains at least k edges.

Local edge-connectivity

Given a graph $G = (V, E)$ and $u, v \in V$, the local edge-connectivity $\lambda_G(u, v)$ is defined as the minimum cardinality of a cut separating u and v.

![Diagram of a graph illustrating global and local edge-connectivity.](null)
Theorem (Gomory-Hu)

For every graph $G = (V, E)$, we can find, in polynomial time, a tree $H = (V, E')$ and a weight function $c : E' \rightarrow \mathbb{Z}$ such that for all $u, v \in V$

1. the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,

2. if e achieves this minimum, then the fundamental cut of $H - e$ provides a minimum cut of G separating u and v.
Theorem (Gomory-Hu)

For every graph $G = (V, E)$, we can find, in polynomial time, a tree $H = (V, E')$ and a weight function $c : E' \rightarrow \mathbb{Z}$ such that for all $u, v \in V$

1. the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,

2. if e achieves this minimum, then the fundamental cut of $H - e$ provides a minimum cut of G separating u and v.

Graph $G = (V, E)$

Cut equivalent tree $H = (V, E')$
Theorem (Gomory-Hu)

For every graph $G = (V, E)$, we can find, in polynomial time, a tree $H = (V, E')$ and a weight function $c : E' \to \mathbb{Z}$ such that for all $u, v \in V$

1. the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,

2. if each achieves this minimum, then the fundamental cut of $H - e$ provides a minimum cut of G separating u and v.

\[\begin{align*}
\text{Graph } G &= (V, E) \\
\text{Cut equivalent tree } H &= (V, E')
\end{align*} \]
Theorem (Gomory-Hu)

For every graph $G = (V, E)$, we can find, in polynomial time, a tree $H = (V, E')$ and a weight function $c : E' \to \mathbb{Z}$ such that for all $u, v \in V$

1. the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,

2. if e achieves this minimum, then the fundamental cut of $H - e$ provides a minimum cut of G separating u and v.

Graph $G = (V, E)$

Cut equivalent tree $H = (V, E')$
Theorem (Gomory-Hu)

For every graph $G = (V, E)$, we can find, in polynomial time, a tree $H = (V, E')$ and a weight function $c : E' \rightarrow \mathbb{Z}$ such that for all $u, v \in V$

1. the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,

2. if e achieves this minimum, then the fundamental cut of $H - e$ provides a minimum cut of G separating u and v.

Graph $G = (V, E)$

Cut equivalent tree $H = (V, E')$
Theorem (Gomory-Hu)

For every graph $G = (V, E)$, we can find, in polynomial time, a tree $H = (V, E')$ and a weight function $c : E' \rightarrow \mathbb{Z}$ such that for all $u, v \in V$

1. the local edge-connectivity λ^G_{uv} is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,

2. if e achieves this minimum, then the fundamental cut of $H - e$ provides a minimum cut of G separating u and v.

Graph $G = (V, E)$

Cut equivalent tree $H = (V, E')$
Theorem (Gomory-Hu)

For every graph \(G = (V, E) \), we can find, in \textit{polynomial} time, a \textit{tree} \(H = (V, E') \) and a \textit{weight function} \(c : E' \rightarrow \mathbb{Z} \) such that for all \(u, v \in V \):

1. the local edge-connectivity \(\lambda_G(u, v) \) is equal to the minimum value \(c(e) \) of the edges \(e \) of the unique \((u, v)\)-path in \(H \),
2. if \(e \) achieves this minimum, then the \textit{fundamental cut} of \(H - e \) provides a \textit{minimum cut} of \(G \) separating \(u \) and \(v \).
Theorem (Gomory-Hu)

For every graph $G = (V, E)$, we can find, in polynomial time, a tree $H = (V, E')$ and a weight function $c : E' \to \mathbb{Z}$ such that for all $u, v \in V$

1. the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,

2. if e achieves this minimum, then the fundamental cut of $H - e$ provides a minimum cut of G separating u and v.

Graph $G = (V, E)$

Cut equivalent tree $H = (V, E')$
Theorem (Gomory-Hu)

For every graph \(G = (V, E) \), we can find, in polynomial time, a tree \(H = (V, E') \) and a weight function \(c : E' \rightarrow \mathbb{Z} \) such that for all \(u, v \in V \):

1. the local edge-connectivity \(\lambda_G(u, v) \) is equal to the minimum value \(c(e) \) of the edges \(e \) of the unique \((u, v)\)-path in \(H \),
2. if \(e \) achieves this minimum, then the fundamental cut of \(H - e \) provides a minimum cut of \(G \) separating \(u \) and \(v \).
Theorem (Gomory-Hu)

For every graph $G = (V, E)$, we can find, in polynomial time, a tree $H = (V, E')$ and a weight function $c : E' \to \mathbb{Z}$ such that for all $u, v \in V$

1. the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,

2. if e achieves this minimum, then the fundamental cut of $H - e$ provides a minimum cut of G separating u and v.

Graph $G = (V, E)$

Cut equivalent tree $H = (V, E')$
Theorem (Gomory-Hu)

For every graph $G = (V, E)$, we can find, in polynomial time, a tree $H = (V, E')$ and a weight function $c : E' \rightarrow \mathbb{Z}$ such that for all $u, v \in V$

1. the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,

2. if e achieves this minimum, then the fundamental cut of $H - e$ provides a minimum cut of G separating u and v.

Graph $G = (V, E)$

Cut equivalent tree $H = (V, E')$
Theorem (Gomory-Hu)

For every graph $G = (V, E)$, we can find, in polynomial time, a tree $H = (V, E')$ and a weight function $c : E' \rightarrow \mathbb{Z}$ such that for all $u, v \in V$

1. the local edge-connectivity $\lambda_G(u, v)$ is equal to the minimum value $c(e)$ of the edges e of the unique (u, v)-path in H,

2. if e achieves this minimum, then the fundamental cut of $H - e$ provides a minimum cut of G separating u and v.

Graph $G = (V, E)$

Cut equivalent tree $H = (V, E')$
Global edge-connectivity augmentation of a graph

Given a graph $G = (V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

1. Minimax theorem (Watanabe, Nakamura)
2. Polynomially solvable (Cai, Sun)

Graph $G, k = 4$
Global edge-connectivity augmentation of a graph

Given a graph $G = (V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

1. Minimax theorem (Watanabe, Nakamura)
2. Polynomially solvable (Cai, Sun)

Graph $G, k = 4$
Global edge-connectivity augmentation of a graph

Given a graph $G = (V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

- Minimax theorem (Watanabe, Nakamura)
- Polynomially solvable (Cai, Sun)

Graph $G, k = 4$
Global edge-connectivity augmentation of a graph

Given a graph $G = (V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

1. Minimax theorem (Watanabe, Nakamura)
2. Polynomially solvable (Cai, Sun)

Graph G, $k = 4$
Given a graph $G = (V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

1. Minimax theorem (Watanabe, Nakamura)
2. Polynomially solvable (Cai, Sun)

Graph $G, k = 4$
Global edge-connectivity augmentation of a graph

Given a graph $G = (V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

1. Minimax theorem (Watanabe, Nakamura)
2. Polynomially solvable (Cai, Sun)

$$\text{Opt} \geq \left\lceil \frac{5}{2} \right\rceil = 3$$
Global edge-connectivity augmentation of a graph

Given a graph $G = (V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

1. Minimax theorem (Watanabe, Nakamura)
2. Polynomials solvable (Cai, Sun)

Graph $G + F$ is 4-edge-connected and $|F| = 3$
Global edge-connectivity augmentation of a graph

Given a graph $G = (V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

1. Minimax theorem (Watanabe, Nakamura)
2. Polynomially solvable (Cai, Sun)

$$\text{Opt} = \lceil \frac{1}{2} \text{maximum deficiency of a subpartition of } V \rceil$$
Global edge-connectivity augmentation of a graph

Given a graph $G = (V, E)$ and an integer $k \geq 2$, what is the minimum number of new edges whose addition results in a k-edge-connected graph?

1. Minimax theorem (Watanabe, Nakamura)
2. Polynomially solvable (Cai, Sun)
Frank’s algorithm

1. Minimal extension,
 (i) Add a new vertex \(s \),
 (ii) Add a minimum number of new edges incident to \(s \) to satisfy the edge-connectivity requirements,
 (iii) If the degree of \(s \) is odd, then add an arbitrary edge incident to \(s \).

2. Complete splitting off.

\[
G = (V, E) \quad \text{Minimal Extension} \quad G' \ k\text{-e-c in } V \quad \text{Complete Splitting off} \quad G'' \ k\text{-e-c}
\]
Frank’s algorithm

1. **Minimal extension,**
 - (i) Add a new vertex s,
 - (ii) Add a minimum number of new edges incident to s to satisfy the edge-connectivity requirements,
 - (iii) If the degree of s is odd, then add an arbitrary edge incident to s.

2. **Complete splitting off.**

$G = (V, E)$

$G' \ k$-e-c in V

$G'' \ k$-e-c
General method

Frank’s algorithm

1. Minimal extension,
 (i) Add a new vertex s,
 (ii) Add a minimum number of new edges incident to s to satisfy the edge-connectivity requirements,
 (iii) If the degree of s is odd, then add an arbitrary edge incident to s.

2. Complete splitting off.

\[G = (V, E) \] \hspace{1cm} \text{Minimal Extension} \hspace{1cm} G' \text{ k-e-c in } V \hspace{1cm} \text{Complete Splitting off} \hspace{1cm} G'' \text{ k-e-c} \]
General method

Frank’s algorithm

1. Minimal extension,
 (i) Add a new vertex s,
 (ii) Add a minimum number of new edges incident to s to satisfy the edge-connectivity requirements,
 (iii) If the degree of s is odd, then add an arbitrary edge incident to s.

2. Complete splitting off.

$G = (V, E)$

$G' \text{ k-e-c in } V$

$G'' \text{ k-e-c}$
General method

Frank’s algorithm

1. Minimal extension,
 (i) Add a new vertex s,
 (ii) Add a minimum number of new edges incident to s to satisfy the edge-connectivity requirements,
 (iii) If the degree of s is odd, then add an arbitrary edge incident to s.

2. Complete splitting off.

$G = (V, E)$

$G' \ k$-e-c in V

$G'' \ k$-e-c
A function p on 2^V is called **skew-supermodular** if at least one of the following inequalities hold for all $X, Y \subseteq V$:

$$p(X) + p(Y) \leq p(X \cap Y) + p(X \cup Y),$$

$$p(X) + p(Y) \leq p(X - Y) + p(Y - X).$$

A graph H covers a function p on 2^V if each cut $\delta_H(X)$ contains at least $p(X)$ edges.
A function p on 2^V is called **skew-supermodular** if at least one of the following inequalities hold for all $X, Y \subseteq V$:

\begin{align*}
p(X) + p(Y) &\leq p(X \cap Y) + p(X \cup Y), \\
p(X) + p(Y) &\leq p(X - Y) + p(Y - X).
\end{align*}

A graph H covers a function p on 2^V if each cut $\delta_H(X)$ contains at least $p(X)$ edges.
Minimal extension

Definition

1. A function \(p \) on \(2^V \) is called **skew-supermodular** if at least one of following inequalities hold for all \(X, Y \subseteq V \):
 \[
 p(X) + p(Y) \leq p(X \cap Y) + p(X \cup Y),
 p(X) + p(Y) \leq p(X - Y) + p(Y - X).
 \]

2. A graph \(H \) **covers** a function \(p \) on \(2^V \) if each cut \(\delta_H(X) \) contains at least \(p(X) \) edges.

Theorem (Frank)

Let \(p : 2^V \to \mathbb{Z} \cup \{-\infty\} \) be a symmetric skew-supermodular function.

1. The minimum number of edges in an extension of the edgeless graph on \(V \) covering \(p \) equals the maximum \(p \)-value of a subpartition of \(V \).

2. An optimal extension can be found in polynomial time in the special cases mentioned in this talk.
Definition

1. A function p on 2^V is called **skew-supermodular** if at least one of the following inequalities hold for all $X, Y \subseteq V$:

 \[
 p(X) + p(Y) \leq p(X \cap Y) + p(X \cup Y),
 \]

 \[
 p(X) + p(Y) \leq p(X - Y) + p(Y - X).
 \]

2. A graph H **covers** a function p on 2^V if each cut $\delta_H(X)$ contains at least $p(X)$ edges.

Theorem (Frank)

Let $p : 2^V \rightarrow \mathbb{Z} \cup \{-\infty\}$ be a symmetric skew-supermodular function.

1. The minimum number of edges in an **extension** of the edgeless graph on V covering p equals the maximum p-value of a subpartition of V.

2. An optimal extension can be found in polynomial time in the special cases mentioned in this talk.
A function p on 2^V is called **skew-supermodular** if at least one of the following inequalities hold for all $X, Y \subseteq V$:

$$p(X) + p(Y) \leq p(X \cap Y) + p(X \cup Y),$$

$$p(X) + p(Y) \leq p(X - Y) + p(Y - X).$$

A graph H covers a function p on 2^V if each cut $\delta_H(X)$ contains at least $p(X)$ edges.

Theorem (Frank)

Let $p : 2^V \to \mathbb{Z} \cup \{-\infty\}$ be a symmetric skew-supermodular function.

1. The minimum number of edges in an extension of the edgeless graph on V covering p equals the maximum p-value of a subpartition of V.
2. An optimal extension can be found in polynomial time in the special cases mentioned in this talk.
Complete splitting off

Definitions

\[G' \quad \xrightarrow{\text{Splitting off}} \quad G'_{uv} \quad \xrightarrow{\text{Complete splitting off}} \quad G'' \]
Theorem (Mader)

Let $G' = (V + s, E)$ be a graph so that $d(s)$ is even and no cut edge is incident to s.

1. Then there exists a complete splitting off at s that preserves the local edge-connectivity between all pairs of vertices in V.
2. Such a complete splitting off can be found in polynomial time.
Theorem (Mader)

Let $G' = (V + s, E)$ be a graph so that $d(s)$ is even and no cut edge is incident to s.

1. Then there exists a **complete splitting off** at s that preserves the local edge-connectivity between all pairs of vertices in V.

2. Such a complete splitting off can be found in polynomial time.
Theorem (Mader)

Let $G' = (V + s, E)$ be a graph so that $d(s)$ is even and no cut edge is incident to s.

1. Then there exists a complete splitting off at s that preserves the local edge-connectivity between all pairs of vertices in V.

2. Such a complete splitting off can be found in polynomial time.
Positive Results

Global edge-connectivity augmentation of a graph

1. Extension works (Frank), $p(X) = k - d_G(X)$ is skew-supermodular,
2. Splitting off works (Mader),
3. proving min-max theorem of Watanabe, Nakamura.
Positive Results

Global edge-connectivity augmentation of a graph

1. Extension works (Frank),
 \[p(X) = k - d_G(X) \] is skew-supermodular,

2. Splitting off works (Mader),

3. proving min-max theorem of Watanabe, Nakamura.
Global edge-connectivity augmentation of a graph

1. Extension works (Frank),
 \(p(X) = k - d_G(X) \) is skew-supermodular,
2. Splitting off works (Mader),
3. proving min-max theorem of Watanabe, Nakamura.
Positive Results

Global edge-connectivity augmentation of a graph

1. Extension works (Frank),

 \[p(X) = k - d_G(X) \]

 is skew-supermodular,

2. Splitting off works (Mader),

3. proving min-max theorem of Watanabe, Nakamura.

Local edge-connectivity augmentation of a graph

Given a graph \(G = (V, E) \) and a symmetric function \(r : V \times V \rightarrow \mathbb{Z}_+ \), what is the minimum number of new edges \(F \) such that

\[
\lambda_{G+F}(u, v) \geq r(u, v) \quad \forall (u, v) \in V \times V?
\]

1. Extension works (Frank),

 \[p(X) = \max \{ r(u, v) : u \in X, v \notin X \} - d_G(X) \]

 is skew-supermodular,

2. Splitting off works (Mader),

3. proving min-max theorem of Frank.
Positive Results

Global edge-connectivity augmentation of a graph

1. Extension works (Frank),

 \[p(X) = k - d_G(X) \] is skew-supermodular,

2. Splitting off works (Mader),

3. proving min-max theorem of Watanabe, Nakamura.

Local edge-connectivity augmentation of a graph

Given a graph \(G = (V, E) \) and a symmetric function \(r : V \times V \rightarrow \mathbb{Z}_+ \), what is the minimum number of new edges \(F \) such that

\[
\lambda_{G+F}(u, v) \geq r(u, v) \quad \forall (u, v) \in V \times V
\]

1. Extension works (Frank),

 \[p(X) = \max\{r(u, v) : u \in X, v \notin X\} - d_G(X) \] is skew-supermodular,

2. Splitting off works (Mader),

3. proving min-max theorem of Frank.
Positive Results

Global edge-connectivity augmentation of a graph

1. Extension works (Frank),
 \[p(X) = k - d_G(X) \] is skew-supermodular,
2. Splitting off works (Mader),
3. proving min-max theorem of Watanabe, Nakamura.

Local edge-connectivity augmentation of a graph

Given a graph \(G = (V, E) \) and a symmetric function \(r : V \times V \to \mathbb{Z}_+ \), what is the minimum number of new edges \(F \) such that
\[
\lambda_{G+F}(u, v) \geq r(u, v) \quad \forall (u, v) \in V \times V
\]

1. Extension works (Frank),
 \[p(X) = \max\{r(u, v) : u \in X, v \notin X\} - d_G(X) \] is skew-supermodular,
2. Splitting off works (Mader),
3. proving min-max theorem of Frank.
Positive Results

Global edge-connectivity augmentation of a graph

1. Extension works (Frank),
 \[p(X) = k - d_G(X) \text{ is skew-supermodular}, \]
2. Splitting off works (Mader),
3. proving min-max theorem of Watanabe, Nakamura.

Local edge-connectivity augmentation of a graph

Given a graph \(G = (V, E) \) and a symmetric function \(r : V \times V \to \mathbb{Z}_+ \), what is the minimum number of new edges \(F \) such that

\[\lambda_{G+F}(u, v) \geq r(u, v) \quad \forall (u, v) \in V \times V. \]

1. Extension works (Frank),
 \[p(X) = \max\{r(u, v) : u \in X, v \notin X\} - d_G(X) \text{ is skew-supermodular}, \]
2. Splitting off works (Mader),
3. proving min-max theorem of Frank.
Minimum Cover of a Symmetric Skew-Supermodular Function by a Graph

Instance: \(p : 2^V \rightarrow \mathbb{Z} \) symmetric skew-supermodular, \(\gamma \in \mathbb{Z}^+ \).

Question: Does there exist a graph \(H \) on \(V \) with at most \(\gamma \) edges that covers \(p \) that is \(d_H(X) \geq p(X) \quad \forall X \subseteq V \)?
Negative Result

Minimum Cover of a Symmetric Skew-Supermodular Function by a Graph

Instance: $p : 2^V \to \mathbb{Z}$ symmetric skew-supermodular, $\gamma \in \mathbb{Z}^+$.

Question: Does there exist a graph H on V with at most γ edges that covers p that is $d_H(X) \geq p(X) \ \forall X \subset V$?

Theorem (Z. Király, Z. Nutov)

The above problem is NP-complete.
Definitions

Given a connected graph $G = (V, E)$ and $T \subseteq V$ with $|T|$ even.

1. A subset X of V is called **T-odd** if $|X \cap T|$ is odd.
2. A cut $\delta(X)$ is called **T-cut** if X is T-odd.
3. A subset F of E is called **T-join** if $T = \{v \in V : d_F(v) \text{ is odd}\}$.

Examples:

(a) $T = \{u, v\}$: a (u, v)-path is a T-join.
(b) $T = V$: a perfect matching is a T-join.
Definitions

Given a connected graph $G = (V, E)$ and $T \subseteq V$ with $|T|$ even.

1. A subset X of V is called T-odd if $|X \cap T|$ is odd.
2. A cut $\delta(X)$ is called T-cut if X is T-odd.
3. A subset F of E is called T-join if $T = \{v \in V : d_F(v) \text{ is odd}\}$.

Examples:
(a) $T = \{u, v\}$: a (u, v)-path is a T-join.
(b) $T = V$: a perfect matching is a T-join.
T-cut, T-join

Definitions

Given a connected graph $G = (V, E)$ and $T \subseteq V$ with $|T|$ even.

1. A subset X of V is called T-odd if $|X \cap T|$ is odd.
2. A cut $\delta(X)$ is called T-cut if X is T-odd.
3. A subset F of E is called T-join if $T = \{v \in V : d_F(v) \text{ is odd}\}$.

Examples:

(a) $T = \{u, v\}$: a (u, v)-path is a T-join.
(b) $T = V$: a perfect matching is a T-join.
Definitions

Given a connected graph $G = (V, E)$ and $T \subseteq V$ with $|T|$ even.

1. A subset X of V is called T-odd if $|X \cap T|$ is odd.
2. A cut $\delta(X)$ is called T-cut if X is T-odd.
3. A subset F of E is called T-join if $T = \{v \in V : d_F(v) \text{ is odd}\}$.

Examples:
(a) $T = \{u, v\}$: a (u, v)-path is a T-join.
(b) $T = V$: a perfect matching is a T-join.
T-cut, T-join

Definitions

Given a connected graph $G = (V, E)$ and $T \subseteq V$ with $|T|$ even.

1. A subset X of V is called T-odd if $|X \cap T|$ is odd.
2. A cut $\delta(X)$ is called T-cut if X is T-odd.
3. A subset F of E is called T-join if $T = \{v \in V : d_F(v) \text{ is odd}\}$.

Examples:

(a) $T = \{u, v\}$: a (u, v)-path is a T-join.
(b) $T = V$: a perfect matching is a T-join.
Definitions

Given a connected graph $G = (V, E)$ and $T \subseteq V$ with $|T|$ even.

1. A subset X of V is called T-odd if $|X \cap T|$ is odd.
2. A cut $\delta(X)$ is called T-cut if X is T-odd.
3. A subset F of E is called T-join if $T = \{v \in V : d_F(v) \text{ is odd}\}$.

Examples:

(a) $T = \{u, v\}$: a (u, v)-path is a T-join.
(b) $T = V$: a perfect matching is a T-join.
Definitions

Given a connected graph $G = (V, E)$ and $T \subseteq V$ with $|T|$ even.

1. A subset X of V is called T-odd if $|X \cap T|$ is odd.

2. A cut $\delta(X)$ is called T-cut if X is T-odd.

3. A subset F of E is called T-join if $T = \{v \in V : d_F(v) \text{ is odd}\}$.

Examples:
(a) $T = \{u, v\}$: a (u, v)-path is a T-join.
(b) $T = V$: a perfect matching is a T-join.
Definitions

Given a connected graph \(G = (V, E) \) and \(T \subseteq V \) with \(|T| \) even.

1. A subset \(X \) of \(V \) is called \(T \)-odd if \(|X \cap T| \) is odd.
2. A cut \(\delta(X) \) is called \(T \)-cut if \(X \) is \(T \)-odd.
3. A subset \(F \) of \(E \) is called \(T \)-join if \(T = \{ v \in V : d_F(v) \text{ is odd} \} \).

Examples:
(a) \(T = \{ u, v \} : \) a \((u, v) \)-path is a \(T \)-join.
(b) \(T = V : \) a perfect matching is a \(T \)-join.

Properties

1. If \(X, Y \) are \(T \)-odd, then either \(X \cap Y, X \cup Y \) or \(X - Y, Y - X \) are \(T \)-odd.
2. A \(T \)-join and a \(T \)-cut always have an edge in common.
Definitions

Given a connected graph $G = (V, E)$ and $T \subseteq V$ with $|T|$ even.

1. A subset X of V is called T-odd if $|X \cap T|$ is odd.
2. A cut $\delta(X)$ is called T-cut if X is T-odd.
3. A subset F of E is called T-join if $T = \{v \in V : d_F(v) \text{ is odd}\}$.

Examples:

(a) $T = \{u, v\}$: a (u, v)-path is a T-join.
(b) $T = V$: a perfect matching is a T-join.

Properties

1. If X, Y are T-odd, then either $X \cap Y, X \cup Y$ or $X - Y, Y - X$ are T-odd.
2. A T-join and a T-cut always have an edge in common.
Definitions

Given a connected graph \(G = (V, E) \) and \(T \subseteq V \) with \(|T| \) even.

1. A subset \(X \) of \(V \) is called \(T \)-odd if \(|X \cap T| \) is odd.
2. A cut \(\delta(X) \) is called \(T \)-cut if \(X \) is \(T \)-odd.
3. A subset \(F \) of \(E \) is called \(T \)-join if \(T = \{v \in V : d_F(v) \text{ is odd}\} \).

Examples:
 (a) \(T = \{u, v\} \): a \((u, v)\)-path is a \(T \)-join.
 (b) \(T = V \): a perfect matching is a \(T \)-join.

Properties

1. If \(X, Y \) are \(T \)-odd, then either \(X \cap Y, X \cup Y \) or \(X - Y, Y - X \) are \(T \)-odd.
2. A \(T \)-join and a \(T \)-cut always have an edge in common.
Theorem (Edmonds-Johnson)

A minimum T-join of G can be found in polynomial time using

1. shortest paths algorithm (Dijkstra) and
2. minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T
How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join of G can be found in polynomial time using

1. shortest paths algorithm (Dijkstra) and
2. minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T
How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join of G can be found in *polynomial* time using

1. shortest paths algorithm (Dijkstra) and
2. minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T
How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join of G can be found in polynomial time using

1. shortest paths algorithm (Dijkstra) and
2. minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T
Theorem (Edmonds-Johnson)

A minimum T-join of G can be found in polynomial time using:

1. shortest paths algorithm (Dijkstra) and
2. minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T
How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join of G can be found in *polynomial* time using

1. shortest paths algorithm (Dijkstra) and
2. minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T
How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join of G can be found in *polynomial* time using

1. shortest paths algorithm (Dijkstra) and
2. minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T
How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join of G can be found in polynomial time using

1. shortest paths algorithm (Dijkstra) and
2. minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T
How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join of G can be found in *polynomial* time using

1. shortest paths algorithm (Dijkstra) and
2. minimum weight perfect matching algorithm (Edmonds).

Graph G and vertex set T
How to find a minimum T-join?

Theorem (Edmonds-Johnson)

A minimum T-join of G can be found in polynomial time using

1. shortest paths algorithm (Dijkstra) and
2. minimum weight perfect matching algorithm (Edmonds).

Graph G and minimum T-join

Z. Szigeti (G-SCOP, Grenoble)
How to find a minimum \(T \)-cut?

Theorem (Padberg-Rao)

A minimum \(T \)-cut of \(G \) can be found in *polynomial* time

1. using a cut equivalent tree \(H \) of \(G \);
2. taking the set \(J(H) \) edges \(e \) of \(H \) for which the two connected components of \(H - e \) are \(T \)-odd,
3. taking the minimum value \(c(e^*) \) of an edge of \(J(H) \),
4. taking the cut of \(G \) defined by the fundamental cut of \(H - e^* \).

Graph \(G \) and vertex set \(T \)
How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut of G can be found in *polynomial* time

1. using a cut equivalent tree H of G;
2. taking the set $J(H)$ edges e of H for which the two connected components of $H - e$ are T-odd,
3. taking the minimum value $c(e^*)$ of an edge of $J(H)$,
4. taking the cut of G defined by the fundamental cut of $H - e^*$.

Graph G and vertex set T

Cut equivalent tree H
How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut of G can be found in polynomial time

1. using a cut equivalent tree H of G;
2. taking the set $J(H)$ edges e of H for which the two connected components of $H - e$ are T-odd,
3. taking the minimum value $c(e^*)$ of an edge of $J(H)$,
4. taking the cut of G defined by the fundamental cut of $H - e^*$.

Graph G and vertex set T

Cut equivalent tree H
How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut of G can be found in polynomial time

1. using a cut equivalent tree H of G;
2. taking the set $J(H)$ edges e of H for which the two connected components of $H - e$ are T-odd,
3. taking the minimum value $c(e^*)$ of an edge of $J(H)$,
4. taking the cut of G defined by the fundamental cut of $H - e^*$.

Graph G and vertex set T

Cut equivalent tree H
How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut of G can be found in polynomial time

1. using a cut equivalent tree H of G
2. taking the set $J(H)$ edges e of H for which the two connected components of $H - e$ are T-odd,
3. taking the minimum value $c(e^*)$ of an edge of $J(H)$,
4. taking the cut of G defined by the fundamental cut of $H - e^*$.

Graph G and vertex set T

Cut equivalent tree H
How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut of G can be found in **polynomial** time

1. using a cut equivalent tree H of G;
2. taking the set $J(H)$ edges e of H for which the two connected components of $H - e$ are T-odd,
3. taking the minimum value $c(e^*)$ of an edge of $J(H)$,
4. taking the cut of G defined by the fundamental cut of $H - e^*$.

![Graph G and vertex set T](image1)

![Cut equivalent tree H](image2)
How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut of G can be found in polynomial time

1. **using a cut equivalent tree H of G;**
2. **taking the set $J(H)$ edges e of H for which the two connected components of $H - e$ are T-odd,**
3. **taking the minimum value $c(e^*)$ of an edge of $J(H),**
4. **taking the cut of G defined by the fundamental cut of $H - e^*.**

Graph G and vertex set T

Cut equivalent tree H
How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut of G can be found in *polynomial* time

1. using a cut equivalent tree H of G;
2. taking the set $J(H)$ edges e of H for which the two connected components of $H - e$ are T-odd,
3. taking the minimum value $c(e^*)$ of an edge of $J(H)$,
4. taking the cut of G defined by the fundamental cut of $H - e^*$.

Graph G and vertex set T

Cut equivalent tree H
How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut of G can be found in *polynomial* time

1. using a cut equivalent tree H of G;
2. taking the set $J(H)$ edges e of H for which the two connected components of $H - e$ are T-odd,
3. taking the minimum value $c(e^*)$ of an edge of $J(H)$,
4. taking the cut of G defined by the fundamental cut of $H - e^*$.

Graph G and vertex set T

Cut equivalent tree H and edge set $J(H)$.

Z. Szigeti (G-SCOP, Grenoble)
How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut of G can be found in polynomial time

1. using a cut equivalent tree H of G;
2. taking the set $J(H)$ edges e of H for which the two connected components of $H - e$ are T-odd,
3. taking the minimum value $c(e^*)$ of an edge of $J(H)$,
4. taking the cut of G defined by the fundamental cut of $H - e^*$.

Graph G and vertex set T

Cut equivalent tree H
How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut of G can be found in polynomial time

1. using a cut equivalent tree H of G;
2. taking the set $J(H)$ edges e of H for which the two connected components of $H - e$ are T-odd,
3. taking the minimum value $c(e^*)$ of an edge of $J(H)$,
4. taking the cut of G defined by the fundamental cut of $H - e^*$.

Graph G and vertex set T

Cut equivalent tree H
How to find a minimum T-cut?

Theorem (Padberg-Rao)

A minimum T-cut of G can be found in polynomial time

1. using a cut equivalent tree H of G;
2. taking the set $J(H)$ edges e of H for which the two connected components of $H - e$ are T-odd,
3. taking the minimum value $c(e^*)$ of an edge of $J(H)$,
4. taking the cut of G defined by the fundamental cut of $H - e^*$.

Minimum T-cut in G

Cut equivalent tree H
Proof

Lemma

For any T-cut $\delta(X)$ there exist $x \in X, y \notin X$ such that $\lambda_G(x, y) \geq c(e^*)$.
Lemma

For any \(T \)-cut \(\delta(X) \) there exist \(x \in X, y \notin X \) such that \(\lambda_G(x, y) \geq c(e^*) \).

Proof : \(J(H) \) is a \(T \)-join so there exists \(xy \in J(H) \cap \delta_H(X) \) and \(\lambda_G(x, y) = c(xy) \geq c(e^*) \).
Proof

Lemma
For any T-cut $\delta(X)$ there exist $x \in X, y \notin X$ such that $\lambda_G(x, y) \geq c(e^*)$.

Proof : $J(H)$ is a T-join so there exists $xy \in J(H) \cap \delta_H(X)$ and $\lambda_G(x, y) = c(xy) \geq c(e^*)$.

Correctness of Padberg-Rao’s algorithm
Let $\delta(X)$ be a minimum T-cut and $\delta(Y)$ the T-cut defined by e^*. By the lemma, there exist $x \in X, y \notin X$ such that $\lambda_G(x, y) \geq c(e^*)$. Then

$$c(e^*) = d(Y) \geq d(X) \geq \lambda_G(x, y) \geq c(e^*).$$
Proof

Lemma
For any T-cut $\delta(X)$ there exist $x \in X, y \notin X$ such that $\lambda_G(x, y) \geq c(e^*)$.

Proof: $J(H)$ is a T-join so there exists $xy \in J(H) \cap \delta_H(X)$ and

$$\lambda_G(x, y) = c(xy) \geq c(e^*)$$

Correctness of Padberg-Rao’s algorithm

Let $\delta(X)$ be a minimum T-cut and $\delta(Y)$ the T-cut defined by e^*.
By the lemma, there exist $x \in X, y \notin X$ such that $\lambda_G(x, y) \geq c(e^*)$.
Then

$$c(e^*) = d(Y) \geq d(X) \geq \lambda_G(x, y) \geq c(e^*)$$
Proof

Lemma

For any T-cut $\delta(X)$ there exist $x \in X, y \notin X$ such that $\lambda_G(x, y) \geq c(e^*)$.

Proof: $J(H)$ is a T-join so there exists $xy \in J(H) \cap \delta_H(X)$ and $\lambda_G(x, y) = c(xy) \geq c(e^*)$.

Correctness of Padberg-Rao’s algorithm

Let $\delta(X)$ be a minimum T-cut and $\delta(Y)$ the T-cut defined by e^*. By the lemma, there exist $x \in X, y \notin X$ such that $\lambda_G(x, y) \geq c(e^*)$. Then

$$c(e^*) = d(Y) \geq d(X) \geq \lambda_G(x, y) \geq c(e^*).$$
Proof

Lemma

For any T-cut $\delta(X)$ there exist $x \in X, y \notin X$ such that $\lambda_G(x, y) \geq c(e^*)$.

Proof: $J(H)$ is a T-join so there exists $xy \in J(H) \cap \delta_H(X)$ and $\lambda_G(x, y) = c(xy) \geq c(e^*)$.

Correctness of Padberg-Rao’s algorithm

Let $\delta(X)$ be a minimum T-cut and $\delta(Y)$ the T-cut defined by e^*. By the lemma, there exist $x \in X, y \notin X$ such that $\lambda_G(x, y) \geq c(e^*)$. Then

$$c(e^*) = d(Y) \geq d(X) \geq \lambda_G(x, y) \geq c(e^*).$$
Proof

Lemma
For any T-cut $\delta(X)$ there exist $x \in X, y \notin X$ such that $\lambda_G(x, y) \geq c(e^*)$.

Proof: $J(H)$ is a T-join so there exists $xy \in J(H) \cap \delta_H(X)$ and $\lambda_G(x, y) = c(xy) \geq c(e^*)$.

Correctness of Padberg-Rao's algorithm
Let $\delta(X)$ be a minimum T-cut and $\delta(Y)$ the T-cut defined by e^*. By the lemma, there exist $x \in X, y \notin X$ such that $\lambda_G(x, y) \geq c(e^*)$. Then
\[
c(e^*) = d(Y) \geq d(X) \geq \lambda_G(x, y) \geq c(e^*).
\]
How to augment a minimum T-cut?

Theorem (Szigeti)

Given a connected graph $G = (V, E)$, $T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\lceil \frac{1}{2} \text{ maximum } p'-\text{value of a subpartition of } V \rceil$. An optimal augmentation can be found in **polynomial** time using

1. Frank’s minimal extension and
2. Mader’s complete splitting off.

Proof

1. works because $p'(X) = k - d_G(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular

 (i) $k - d_G(X)$ satisfies both inequalities,
 (ii) X, Y are T-odd \implies either $X \cap Y$, $X \cup Y$ or $X - Y$, $Y - X$ are T-odd.

2. works because for all T-odd sets, $d_{G'}(X) \geq k$ and, by the above lemma, $k \leq \lambda_{G'}(x, y) = \lambda_{G''}(x, y) \leq d_{G''}(X)$.

Z. Szigeti (G-SCOP, Grenoble)
How to augment a minimum T-cut?

Theorem (Szigeti)

Given a connected graph $G = (V, E)$, $T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\lceil \frac{1}{2} \text{ maximum } p'-\text{value of a subpartition of } V \rceil$. An optimal augmentation can be found in polynomial time using

1. Frank’s minimal extension and
2. Mader’s complete splitting off.

Proof

1. works because $p'(X) = k - d_G(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular

 (i) $k - d_G(X)$ satisfies both inequalities,
 (ii) X, Y are T-odd \implies either $X \cap Y, X \cup Y$ or $X - Y, Y - X$ are T-odd.

2. works because for all T-odd sets, $d_{G'}(X) \geq k$ and, by the above lemma, $k \leq \lambda_{G'}(x, y) = \lambda_{G''}(x, y) \leq d_{G''}(X)$.

Z. Szigeti (G-SCOP, Grenoble)
How to augment a minimum T-cut?

Theorem (Szigeti)

Given a connected graph $G = (V, E)$, $T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\lceil \frac{1}{2} \text{ maximum } p'\text{-value of a subpartition of } V \rceil$. An optimal augmentation can be found in polynomial time using

1. Frank’s minimal extension and
2. Mader’s complete splitting off.

Proof

1. works because $p'(X) = k - d_G(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular

 (i) $k - d_G(X)$ satisfies both inequalities,
 (ii) X, Y are T-odd \implies either $X \cap Y, X \cup Y$ or $X - Y, Y - X$ are T-odd.

2. works because for all T-odd sets, $d_G'(X) \geq k$ and, by the above lemma, $k \leq \lambda_G'(x, y) = \lambda_G''(x, y) \leq d_G''(X)$.
How to augment a minimum T-cut?

Theorem (Szigeti)

Given a connected graph $G = (V, E)$, $T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\lceil \frac{1}{2} \text{ maximum } p'\text{-value of a subpartition of } V \rceil$. An optimal augmentation can be found in polynomial time using

1. Frank’s minimal extension and
2. Mader’s complete splitting off.

Proof

1. works because $p'(X) = k - d_G(X)$ if X is T-odd and $-\infty$ otherwise. Is symmetric skew-supermodular

 (i) $k - d_G(X)$ satisfies both inequalities,
 (ii) X, Y are T-odd \implies either $X \cap Y, X \cup Y$ or $X - Y, Y - X$ are T-odd.

2. works because for all T-odd sets, $d_{G'}(X) \geq k$ and, by the above lemma, $k \leq \lambda_{G'}(x, y) = \lambda_{G''}(x, y) \leq d_{G''}(X)$.

How to augment a minimum T-cut?

Theorem (Szigeti)

Given a connected graph $G = (V, E)$, $T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\lceil \frac{1}{2} \text{ maximum } p'\text{-value of a subpartition of } V \rceil$. An optimal augmentation can be found in *polynomial* time using

1. Frank’s minimal extension and
2. Mader’s complete splitting off.

Proof

1. works because $p'(X) = k - d_G(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular

 (i) $k - d_G(X)$ satisfies both inequalities,

 (ii) X, Y are T-odd \implies either $X \cap Y, X \cup Y$ or $X - Y, Y - X$ are T-odd.

2. works because for all T-odd sets, $d_G'(X) \geq k$ and, by the above lemma, $k \leq \lambda_{G'}(x, y) = \lambda_{G''}(x, y) \leq d_{G''}(X)$.
How to augment a minimum T-cut?

Theorem (Szigeti)

Given a connected graph $G = (V, E)$, $T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\lceil \frac{1}{2} \text{ maximum } p' \text{-value of a subpartition of } V \rceil$.

An optimal augmentation can be found in *polynomial* time using

1. Frank’s minimal extension and
2. Mader’s complete splitting off.

Proof

1. works because $p'(X) = k - d_G(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular

 (i) $k - d_G(X)$ satisfies both inequalities,

 (ii) X, Y are T-odd \implies either $X \cap Y$, $X \cup Y$ or $X - Y$, $Y - X$ are T-odd.

2. works because for all T-odd sets, $d_{G'}(X) \geq k$ and, by the above lemma, $k \leq \lambda_{G'}(x, y) = \lambda_{G''}(x, y) \leq d_{G''}(X)$.

Z. Szigeti (G-SCOP, Grenoble)

Edge-connectivity augmentation

27 octobre 2010 15 / 20
How to augment a minimum T-cut?

Theorem (Szigeti)

Given a connected graph $G = (V, E)$, $T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\lceil \frac{1}{2} \text{ maximum } p'\text{-value of a subpartition of } V \rceil$.

An optimal augmentation can be found in polynomial time using

1. Frank’s minimal extension and
2. Mader’s complete splitting off.

Proof

1. works because $p'(X) = k - d_G(X)$ if X is T-odd and $-\infty$ otherwise is symmetric skew-supermodular

 (i) $k - d_G(X)$ satisfies both inequalities,
 (ii) X, Y are T-odd \iff either $X \cap Y, X \cup Y$ or $X - Y, Y - X$ are T-odd.

2. works because for all T-odd sets, $d_{G'}(X) \geq k$ and, by the above lemma, $k \leq \lambda_{G'}(x, y) = \lambda_{G''}(x, y) \leq d_{G''}(X)$.
How to augment a minimum T-cut?

Theorem (Szigeti)

Given a connected graph $G = (V, E)$, $T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\lceil \frac{1}{2} \text{ maximum } p'\text{-value of a subpartition of } V \rceil$.

An optimal augmentation can be found in polynomial time using

1. Frank’s minimal extension and
2. Mader’s complete splitting off.

Graph G, vertex set T and $k = 4$
How to augment a minimum T-cut?

Theorem (Szigeti)

Given a connected graph $G = (V, E)$, $T \subseteq V$ and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each T-cut is of size at least k is equal to $\lceil \frac{1}{2} \text{ maximum } p'-\text{value of a subpartition of } V \rceil$.

An optimal augmentation can be found in polynomial time using

1. Frank’s minimal extension and
2. Mader’s complete splitting off.

Minimum T-cut in $G + F$ is 4
Definition: symmetric parity family

A family \(\mathcal{F} \) of subsets of \(V \) is called symmetric parity family if

1. \(\emptyset, V \notin \mathcal{F} \),
2. if \(A \in \mathcal{F} \), then \(V - A \in \mathcal{F} \),
3. if \(A, B \notin \mathcal{F} \) and \(A \cap B = \emptyset \), then \(A \cup B \notin \mathcal{F} \).
Definition: symmetric parity family

A family \mathcal{F} of subsets of V is called symmetric parity family if

1. $\emptyset, V \notin \mathcal{F}$,
2. if $A \in \mathcal{F}$, then $V - A \in \mathcal{F}$,
3. if $A, B \notin \mathcal{F}$ and $A \cap B = \emptyset$, then $A \cup B \notin \mathcal{F}$.
Definition: symmetric parity family

A family \mathcal{F} of subsets of V is called symmetric parity family if

1. $\emptyset, V \notin \mathcal{F}$,
2. if $A \in \mathcal{F}$, then $V - A \in \mathcal{F}$,
3. if $A, B \notin \mathcal{F}$ and $A \cap B = \emptyset$, then $A \cup B \notin \mathcal{F}$.
Definition: symmetric parity family

A family \mathcal{F} of subsets of V is called symmetric parity family if

1. $\emptyset, V \notin \mathcal{F}$,
2. if $A \in \mathcal{F}$, then $V - A \in \mathcal{F}$,
3. if $A, B \notin \mathcal{F}$ and $A \cap B = \emptyset$, then $A \cup B \notin \mathcal{F}$.
Definition: symmetric parity family

A family \mathcal{F} of subsets of V is called symmetric parity family if

1. $\emptyset, V \notin \mathcal{F}$,
2. if $A \in \mathcal{F}$, then $V - A \in \mathcal{F}$,
3. if $A, B \notin \mathcal{F}$ and $A \cap B = \emptyset$, then $A \cup B \notin \mathcal{F}$.

Examples

1. $\mathcal{F} := 2^V - \{\emptyset, V\}$
2. $\mathcal{F} := \{X \subset V : X \text{ is } T\text{-odd}\}$ where $T \subseteq V$ with $|T|$ even.
Definition : symmetric parity family

A family \mathcal{F} of subsets of V is called symmetric parity family if

1. $\emptyset, V \notin \mathcal{F}$,
2. if $A \in \mathcal{F}$, then $V - A \in \mathcal{F}$,
3. if $A, B \notin \mathcal{F}$ and $A \cap B = \emptyset$, then $A \cup B \notin \mathcal{F}$.

Examples

1. $\mathcal{F} := 2^V - \{\emptyset, V\}$
2. $\mathcal{F} := \{X \subset V : X \text{ is } T\text{-odd}\}$ where $T \subseteq V$ with $|T|$ even.
Definition: symmetric parity family

A family \mathcal{F} of subsets of V is called symmetric parity family if

1. $\emptyset, V \notin \mathcal{F}$,
2. if $A \in \mathcal{F}$, then $V - A \in \mathcal{F}$,
3. if $A, B \notin \mathcal{F}$ and $A \cap B = \emptyset$, then $A \cup B \notin \mathcal{F}$.

Examples

1. $\mathcal{F} := 2^V - \{\emptyset, V\}$
2. $\mathcal{F} := \{X \subset V : X \text{ is } T-\text{odd}\}$ where $T \subseteq V$ with $|T|$ even.
Definition: symmetric parity family

A family F of subsets of V is called symmetric parity family if

1. $\emptyset, V \notin F$,
2. if $A \in F$, then $V - A \in F$,
3. if $A, B \notin F$ and $A \cap B = \emptyset$, then $A \cup B \notin F$.

Examples

1. $F := 2^V - \{\emptyset, V\}$
2. $F := \{X \subset V : X$ is T-odd$\}$ where $T \subseteq V$ with $|T|$ even.

Property

1. If X, Y are in F, then either $X \cap Y, X \cup Y$ or $X - Y, Y - X$ are in F.
Definition: symmetric parity family

A family \mathcal{F} of subsets of V is called symmetric parity family if

1. $\emptyset, V \notin \mathcal{F}$,
2. if $A \in \mathcal{F}$, then $V - A \in \mathcal{F}$,
3. if $A, B \notin \mathcal{F}$ and $A \cap B = \emptyset$, then $A \cup B \notin \mathcal{F}$.

Examples

1. $\mathcal{F} := 2^V - \{\emptyset, V\}$
2. $\mathcal{F} := \{X \subset V : X \text{ is } T\text{-odd}\}$ where $T \subseteq V$ with $|T|$ even.

Property

1. If X, Y are in \mathcal{F}, then either $X \cap Y, X \cup Y$ or $X - Y, Y - X$ are in \mathcal{F}.
How to find a minimum \mathcal{F}-cut?

Theorem (Goemans-Ramakrishnan)

Given a connected graph G and a symmetric parity family \mathcal{F}, a minimum cut of G over \mathcal{F}, (a minimum \mathcal{F}-cut) can be found in polynomial time

1. using a cut equivalent tree H of G,
2. taking the set $J(H)$ edges e of H for which the two connected components of $H - e$ are in \mathcal{F},
3. taking the minimum value $c(e^*)$ of an edge of $J(H)$,
4. taking the cut of G defined by the fundamental cut of $H - e^*$.
How to find a minimum \mathcal{F}-cut?

Theorem (Goemans-Ramakrishnan)

Given a connected graph G and a symmetric parity family \mathcal{F}, a minimum cut of G over \mathcal{F}, (a minimum \mathcal{F}-cut) can be found in polynomial time using a cut equivalent tree H of G,

1. taking the set $J(H)$ edges e of H for which the two connected components of $H - e$ are in \mathcal{F},
2. taking the minimum value $c(e^*)$ of an edge of $J(H)$,
3. taking the cut of G defined by the fundamental cut of $H - e^*$.

Z. Szigeti (G-SCOP, Grenoble)
Lemma

For any $A \in \mathcal{F}$ there exists an edge $xy \in \delta_{J(H)}(A)$, and hence

$$\lambda_G(x, y) = c(xy) \geq c(e^*)$$.
Proof

Lemma

For any $A \in \mathcal{F}$ there exists an edge $xy \in \delta_{J(H)}(A)$, and hence

$\lambda_{G}(x, y) = c(xy) \geq c(e^{*})$.

Proof:

1. Let $H[A_1], \ldots, H[A_k]$ be the connected components of $H[A]$.
2. Since $A \in \mathcal{F}$ and $\bigcup A_i = A$, $\exists i : A_i \in \mathcal{F}$ by (iii).
3. Let $H[B_1], \ldots, H[B_l]$ be the connected components of $H - A_i$.
4. Since $V - A_i \in \mathcal{F}$ by (ii) and $\bigcup B_j = V - A_i$, $\exists j : B_j \in \mathcal{F}$ by (iii).
5. H is a tree, $H[A_i]$ is connected, $H[B_j]$ is a connected component of $H - A_i$, so there exists exactly one edge $e \in H$ between A_i and B_j.
6. Then $e \in J(H)$ and e enters A.
Proof

Lemma

For any $A \in \mathcal{F}$ there exists an edge $xy \in \delta_{J(H)}(A)$, and hence $\lambda_G(x, y) = c(xy) \geq c(e^*)$.

Proof:

1. Let $H[A_1], \ldots, H[A_k]$ be the connected components of $H[A]$.
2. Since $A \in \mathcal{F}$ and $\bigcup A_i = A$, $\exists i : A_i \in \mathcal{F}$ by (iii).
3. Let $H[B_1], \ldots, H[B_l]$ be the connected components of $H - A_i$.
4. Since $V - A_i \in \mathcal{F}$ by (ii) and $\bigcup B_j = V - A_i$, $\exists j : B_j \in \mathcal{F}$ by (iii).
5. H is a tree, $H[A_i]$ is connected, $H[B_j]$ is a connected component of $H - A_i$, so there exists exactly one edge $e \in H$ between A_i and B_j.
6. Then $e \in J(H)$ and e enters A.
Proof

Lemma

For any $A \in \mathcal{F}$ there exists an edge $xy \in \delta_{J(H)}(A)$, and hence $\lambda_G(x, y) = c(xy) \geq c(e^*)$.

Proof:

1. Let $H[A_1], \ldots, H[A_k]$ be the connected components of $H[A]$.
2. Since $A \in \mathcal{F}$ and $\bigcup A_i = A$, $\exists i : A_i \in \mathcal{F}$ by (iii).
3. Let $H[B_1], \ldots, H[B_i]$ be the connected components of $H - A_i$.
4. Since $V - A_i \in \mathcal{F}$ by (ii) and $\bigcup B_j = V - A_i$, $\exists j : B_j \in \mathcal{F}$ by (iii).
5. H is a tree, $H[A_i]$ is connected, $H[B_j]$ is a connected component of $H - A_i$, so there exists exactly one edge $e \in H$ between A_i and B_j.
6. Then $e \in J(H)$ and e enters A.
Lemma

For any $A \in \mathcal{F}$ there exists an edge $xy \in \delta_{J(H)}(A)$, and hence $\lambda_G(x, y) = c(xy) \geq c(e^*)$.

Proof:

1. Let $H[A_1], \ldots, H[A_k]$ be the connected components of $H[A]$.
2. Since $A \in \mathcal{F}$ and $\bigcup A_i = A$, $\exists i : A_i \in \mathcal{F}$ by (iii).
3. Let $H[B_1], \ldots, H[B_l]$ be the connected components of $H - A_i$.
4. Since $V - A_i \in \mathcal{F}$ by (ii) and $\bigcup B_j = V - A_i$, $\exists j : B_j \in \mathcal{F}$ by (iii).
5. H is a tree, $H[A_i]$ is connected, $H[B_j]$ is a connected component of $H - A_i$, so there exists exactly one edge $e \in H$ between A_i and B_j.
6. Then $e \in J(H)$ and e enters A.
Lemma

For any \(A \in \mathcal{F} \) there exists an edge \(xy \in \delta_{J(H)}(A) \), and hence
\[
\lambda_G(x, y) = c(xy) \geq c(e^*).
\]

Proof:

1. Let \(H[A_1], \ldots, H[A_k] \) be the connected components of \(H[A] \).
2. Since \(A \in \mathcal{F} \) and \(\bigcup A_i = A \), \(\exists i : A_i \in \mathcal{F} \) by (iii).
3. Let \(H[B_1], \ldots, H[B_l] \) be the connected components of \(H - A_i \).
4. Since \(V - A_i \in \mathcal{F} \) by (ii) and \(\bigcup B_j = V - A_i \), \(\exists j : B_j \in \mathcal{F} \) by (iii).
5. \(H \) is a tree, \(H[A_i] \) is connected, \(H[B_j] \) is a connected component of \(H - A_i \), so there exists exactly one edge \(e \in H \) between \(A_i \) and \(B_j \).
6. Then \(e \in J(H) \) and \(e \) enters \(A \).
Lemma
For any $A \in \mathcal{F}$ there exists an edge $xy \in \delta_{J(H)}(A)$, and hence $\lambda_G(x, y) = c(xy) \geq c(e^*)$.

Proof:
1. Let $H[A_1], \ldots, H[A_k]$ be the connected components of $H[A]$.
2. Since $A \in \mathcal{F}$ and $\bigcup A_i = A$, $\exists i : A_i \in \mathcal{F}$ by (iii).
3. Let $H[B_1], \ldots, H[B_l]$ be the connected components of $H - A_i$.
4. Since $V - A_i \in \mathcal{F}$ by (ii) and $\bigcup B_j = V - A_i$, $\exists j : B_j \in \mathcal{F}$ by (iii).
5. H is a tree, $H[A_i]$ is connected, $H[B_j]$ is a connected component of $H - A_i$, so there exists exactly one edge $e \in H$ between A_i and B_j.
6. Then $e \in J(H)$ and e enters A.

Z. Szigeti (G-SCOP, Grenoble)
Proof

Lemma

For any \(A \in \mathcal{F} \) there exists an edge \(xy \in \delta_{J(H)}(A) \), and hence \(\lambda_G(x, y) = c(xy) \geq c(e^*) \).

Proof:

1. Let \(H[A_1], \ldots, H[A_k] \) be the connected components of \(H[A] \).
2. Since \(A \in \mathcal{F} \) and \(\bigcup A_i = A \), \(\exists i : A_i \in \mathcal{F} \) by (iii).
3. Let \(H[B_1], \ldots, H[B_l] \) be the connected components of \(H - A_i \).
4. Since \(V - A_i \in \mathcal{F} \) by (ii) and \(\bigcup B_j = V - A_i \), \(\exists j : B_j \in \mathcal{F} \) by (iii).
5. \(H \) is a tree, \(H[A_i] \) is connected, \(H[B_j] \) is a connected component of \(H - A_i \), so there exists exactly one edge \(e \in H \) between \(A_i \) and \(B_j \).
6. Then \(e \in J(H) \) and \(e \) enters \(A \).
Proof

Lemma

For any $A \in \mathcal{F}$ there exists an edge $xy \in \delta_{J(H)}(A)$, and hence $\lambda_G(x, y) = c(xy) \geq c(e^*)$.

Correctness of Goemans-Ramakrishnan’s algorithm

The same proof works as for Padberg-Rao’s algorithm.
Theorem (Szigeti)

Given a connected graph G, a symmetric parity family \mathcal{F} and $k \in \mathbb{Z}$, the minimum number of edges whose addition results in a graph so that each \mathcal{F}-cut is of size at least k equals $\left\lceil \frac{1}{2} \max p^*\text{-value of a subpartition of } V \right\rceil$. An optimal augmentation can be found in polynomial time using

1. Frank’s minimal extension and
2. Mader’s complete splitting off.

Proof

1. works because $p^*(X) = k - d_G(X)$ if $X \in \mathcal{F}$ and $-\infty$ otherwise is symmetric skew-supermodular

 (i) $k - d_G(X)$ satisfies both inequalities,
 (ii) If $X, Y \in \mathcal{F}$, then either $X \cap Y, X \cup Y \in \mathcal{F}$ or $X - Y, Y - X \in \mathcal{F}$.

2. works because for all $X \in \mathcal{F}$, $d_{G'}(X) \geq k$ and, by the above lemma, $k \leq \lambda_{G'}(x, y) = \lambda_{G''}(x, y) \leq d_{G''}(X)$.
Conclusion

1. Special cases:
 1. Global edge-connectivity augmentation (Watanabe, Nakamura)
 2. Minimum T-cut augmentation

2. A new \textit{polynomial} special case of the NP-complete problem
 \textbf{Minimum Cover of a Symmetric Skew-Supermodular Function by a Graph}
Conclusion

1. Special cases:
 1. Global edge-connectivity augmentation (Watanabe, Nakamura)
 2. Minimum T-cut augmentation

2. A new polynomial special case of the NP-complete problem
 Minimum Cover of a Symmetric Skew-Supermodular Function by a Graph
Conclusion

Special cases:
1. Global edge-connectivity augmentation (Watanabe, Nakamura)
2. Minimum T-cut augmentation

A new polynomial special case of the NP-complete problem
Minimum Cover of a Symmetric Skew-Supermodular Function by a Graph
Conclusion

Special cases:
1. Global edge-connectivity augmentation (Watanabe, Nakamura)
2. Minimum T-cut augmentation

A new polynomial special case of the NP-complete problem

Minimum Cover of a Symmetric Skew-Supermodular Function by a Graph