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Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

There exists a packing of k spanning trees in G ⇐⇒

G is k-partition-connected.
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Motivation 2 : Rigidity

Body-Bar Framework
Theorem (Tay 1984)

”Rigidity” of a Body-Bar Framework can

be characterized by the existence of a

spanning tree decomposition.

Body-Bar Framework
with Bar-Boundary Theorem (Katoh, Tanigawa 2012)

”Rigidity” of a Body-Bar Framework

with Bar-Boundary can be characterized

by the existence of a matroid-based

rooted-tree decomposition.
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Matroid-based rooted-graphs

Definition

A matroid-based rooted-graph is a quadruple (G ,M,S, π) :

1 G = (V ,E ) undirected graph,

2 M a matroid on a set S = {s1, . . . , st}.

3 π a placement of the elements of S at vertices of V .

π(s1)

π(s3)

π(s2)
G

M = U3,2

S = {s1, s2, s3}
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Definition

A matroid-based rooted-graph is a quadruple (G ,M,S, π) :

1 G = (V ,E ) undirected graph,

2 M a matroid on a set S = {s1, . . . , st}.

3 π a placement of the elements of S at vertices of V .

π(s1)

π(s3)

π(s2)
X

SX = {s1, s2}

Notation

SX = the elements of S placed at X (= π−1(X )).
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M-based packing of rooted-trees

Definition

A packing {T1, . . . ,T|S|} of rooted-trees is called M-based if

1 si is the root of Ti for every si ∈ S,

2 {si ∈ S : v ∈ V (Ti)} forms a base of M for every v ∈ V .
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M-based packing of arborescences

Definition

A packing {T1, . . . ,T|S|} of arborescences is called M-based if
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Proof of necessity

Let {T1, . . . ,T|S|} be a matroid-based packing of arborescences in
(D,M,S, π) and v ∈ X ⊆ V .

Let B = {si ∈ S : v ∈ V (Ti)}, B1 = B ∩ SX and B2 = B \ B1.

Since Sv ⊆ B1 ⊆ B is a base of M, π is M-independent.

Since, for each root si in B2, there exists an arc of Ti that enters X
and the arborescences are arc-disjoint,
ρD(X ) ≥ |B2| = |B| − |B1| = rM(S)− rM(B1) ≥ rM(S)− rM(SX )
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Orientation results

Theorem (Frank 1980)

Let G = (V ,E ) be an undirected graph and h : 2V → Z+ an intersecting

supermodular non-increasing set-function.

There is an orientation D of G s. t. ρD(X ) ≥ h(X ) ∀ ∅ 6= X ⊂ V

⇐⇒

eG (P) ≥
∑

X∈P h(X ) for every partition P of V .
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Plan executed

Theorem (Katoh, Tanigawa 2012)

There is a matroid-based packing of rooted-trees in (G ,M,S, π)
⇐⇒

π is M-independent and (G ,M,S, π) is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

There is a matroid-based packing of arborescences in (D,M,S, π)
⇐⇒

π is M-independent and (D,M,S, π) is rooted-connected.

Theorem (Frank 1980)

There is an orientation D of G s. t. (D,M,S, π) is rooted-connected
⇐⇒

(G ,M,S, π) is partition-connected.
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Definitions for the Proof

Definitions
1 A vertex set X is tight if ρD(X ) = rM(S)− rM(SX ).

2 A vertex set Y dominates a vertex set X if SX ⊆ SpanM(SY ).
(Note that domination is a transitive relation.)

3 An arc uv is good if v does not dominate u, otherwise it is bad.
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1 A vertex set X is tight if ρD(X ) = rM(S)− rM(SX ).

2 A vertex set Y dominates a vertex set X if SX ⊆ SpanM(SY ).
(Note that domination is a transitive relation.)

3 An arc uv is good if v does not dominate u, otherwise it is bad.

Remark

Only good arcs uv can be used in an arborescence rooted at u, since there
must exist s ∈ Su such that Sv ∪ s is independent in M.
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Proof of sufficiency : Case 1 (No good arc exists.)

Claim

Every vertex v of a tight set X containing only bad arcs dominates X .

Z. Szigeti (G-SCOP, Grenoble) On packing of arborescences November 2012 12 / 15



Proof of sufficiency : Case 1 (No good arc exists.)

Claim
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Proof
1 Let Y be the set of vertices from which v is reachable in D[X ].

2 v dominates Y : Since domination is transitive, v dominates each
vertex of Y and hence Y .

3 Y dominates X : Using that every arc of D that enters Y enters X .

Z. Szigeti (G-SCOP, Grenoble) On packing of arborescences November 2012 12 / 15



Proof of sufficiency : Case 1 (No good arc exists.)

Claim

Every vertex v of a tight set X containing only bad arcs dominates X .

Proof
1 Let Y be the set of vertices from which v is reachable in D[X ].

2 v dominates Y : Since domination is transitive, v dominates each
vertex of Y and hence Y .

3 Y dominates X : Using that every arc of D that enters Y enters X .

Z. Szigeti (G-SCOP, Grenoble) On packing of arborescences November 2012 12 / 15



Proof of sufficiency : Case 1 (No good arc exists.)

Claim

Every vertex v of a tight set X containing only bad arcs dominates X .

Proof
1 Let Y be the set of vertices from which v is reachable in D[X ].

2 v dominates Y : Since domination is transitive, v dominates each
vertex of Y and hence Y .

3 Y dominates X : Using that every arc of D that enters Y enters X .

Z. Szigeti (G-SCOP, Grenoble) On packing of arborescences November 2012 12 / 15



Proof of sufficiency : Case 1 (No good arc exists.)

Claim

Every vertex v of a tight set X containing only bad arcs dominates X .

Proof
1 Let Y be the set of vertices from which v is reachable in D[X ].

2 v dominates Y : Since domination is transitive, v dominates each
vertex of Y and hence Y .

3 Y dominates X : Using that every arc of D that enters Y enters X .

Z. Szigeti (G-SCOP, Grenoble) On packing of arborescences November 2012 12 / 15



Proof of sufficiency : Case 1 (No good arc exists.)

Claim

Every vertex v of a tight set X containing only bad arcs dominates X .

Proof
1 Let Y be the set of vertices from which v is reachable in D[X ].

2 v dominates Y : Since domination is transitive, v dominates each
vertex of Y and hence Y .

3 Y dominates X : Using that every arc of D that enters Y enters X .
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2 v dominates Y : Since domination is transitive, v dominates each
vertex of Y and hence Y .

3 Y dominates X : Using that every arc of D that enters Y enters X .

A matroid-based packing of arborescences in (D,M, S, π)

1 Take |Sv | times each vertex v .

2 Sv is a spanning set of M for all v ∈ V by Claim since V is tight,

3 Sv is independent in M for all v ∈ V since π is M-independent.
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Proof of sufficiency : Case 2 (Good arcs exist.)

Definition

For uv ∈ A, s ∈ Su, let

D ′ = D − uv ,

S′ = S ∪ s′,

π′|S = π; π(s′) = v ,

M′|S = M; s′ parallel to s.

π(s′)

π(s)
u

v

u

v

π(s)

in D in D ′
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M′|S = M; s′ parallel to s.

π(s′)

π(s)
u

v

u

v

π(s)

in D in D ′

Remarks
1 Packing containing uv in (D,M,S, π) ⇐⇒ Packing in (D ′,M′,S′, π′)

2 π′ is M′-independent ⇐⇒ π is M-independent and s /∈ Span(Sv)

3 (D ′,M′,S′, π′) is rooted-connected ⇐⇒ (D,M,S, π) is rooted-
connected and uv does not enter a tight set X that dominates u.
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Proof of sufficiency : Case 2 (Good arcs exist.)

Proof :
1 Wlog. each good arc uv enters a tight set X that dominates u.

2 Choose (uv ,X ) with X minimal.

3 X dominates u, v does not dominate u so v does not dominate X .

4 By Claim, there exists a good arc u′v ′ in D[X ].

5 u′v ′ enters a tight set Y that dominates u′.

6 u′v ′ enters the tight set X ∩ Y that dominates u′.

7 Contradiction.
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Thank you for your attention !
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