## On packing of arborescences

Zoltán Szigeti

Laboratoire G-SCOP INP Grenoble, France

November 2012

Joint work with : Olivier Durand de Gevigney and Viet Hang Nguyen (Grenoble)

### Motivations

- Undirected = Orientation + Directed
- Rigidity

### Results

- Undirected : Matroid-based packing of rooted-trees
- Directed : Matroid-based packing of arborescences
- Orientation : Supermodular function

### Proof

### Motivations

- Undirected = Orientation + Directed
- Rigidity

### Results

- Undirected : Matroid-based packing of rooted-trees
- Directed : Matroid-based packing of arborescences
- Orientation : Supermodular function

### Proof

### Motivations

- Undirected = Orientation + Directed
- Rigidity

## Results

- Undirected : Matroid-based packing of rooted-trees
- Directed : Matroid-based packing of arborescences
- Orientation : Supermodular function

### Proof

- Motivations
  - Undirected = Orientation + Directed
  - Rigidity
- Results
  - Undirected : Matroid-based packing of rooted-trees
  - Directed : Matroid-based packing of arborescences
  - Orientation : Supermodular function
- Proof

- Motivations
  - Undirected = Orientation + Directed
  - Rigidity
- Results
  - Undirected : Matroid-based packing of rooted-trees
  - Directed : Matroid-based packing of arborescences
  - Orientation : Supermodular function
- Proof

- Motivations
  - Undirected = Orientation + Directed
  - Rigidity
- Results
  - Undirected : Matroid-based packing of rooted-trees
  - Directed : Matroid-based packing of arborescences
  - Orientation : Supermodular function
- Proof

### Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

### Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- *G* is *k*-partition-connected.

### Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

### Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- *G* is *k*-partition-connected.

 $\iff \textit{for every partition } \mathcal{P} \textit{ of } V,$ 



### Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

 $\iff$  for every partition  $\mathcal{P}$  of V,  $e_{G}(\mathcal{P}) \geq k(|\mathcal{P}|-1)$ .



### Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

#### Theorem (Edmonds 1973)

- There exists a packing of k spanning s-arborescences in D
- D is k-rooted-connected for s.

### Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

#### Theorem (Edmonds 1973)

- There exists a packing of k spanning s-arborescences in D
- D is k-rooted-connected for s.

### Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

#### Theorem (Edmonds 1973)

- There exists a packing of k spanning s-arborescences in D
- D is k-rooted-connected for s.

### Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

#### Theorem (Edmonds 1973)

- There exists a packing of k spanning s-arborescences in D
- D is k-rooted-connected for s.  $\iff \rho_D(X) \ge k \quad \forall \ \emptyset \neq X \subseteq V \setminus \{s\}.$

## Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

#### Theorem (Edmonds 1973)

Let D be an directed graph, s a vertex of D and k a positive integer.

- There exists a packing of k spanning s-arborescences in D
- D is k-rooted-connected for s.

### Theorem (Frank 1978)

- There exists an orientation of G that is k-rooted-connected for s ⇐⇒
- G is k-partition-connected.

## Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

### Theorem (Edmonds 1973)

Let D be an directed graph, s a vertex of D and k a positive integer.

- There exists a packing of k spanning s-arborescences in D
- D is k-rooted-connected for s.

#### Theorem (Frank 1978)

Let G be an undirected graph, s a vertex of G and k a positive integer.

There exists an orientation of G that is k-rooted-connected for s ⇐⇒

#### • G is k-partition-connected.

Z. Szigeti (G-SCOP, Grenoble)

## Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

### Theorem (Edmonds 1973)

Let D be an directed graph, s a vertex of D and k a positive integer.

- There exists a packing of k spanning s-arborescences in D
- D is k-rooted-connected for s.

### Theorem (Frank 1978)

- There exists an orientation of G that is k-rooted-connected for s ⇐⇒
- G is k-partition-connected.

## Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

### Theorem (Edmonds 1973)

Let D be an directed graph, s a vertex of D and k a positive integer.

- There exists a packing of k spanning s-arborescences in D
- D is k-rooted-connected for s.

### Theorem (Frank 1978)

- There exists an orientation of G that is k-rooted-connected for s ⇐⇒
- G is k-partition-connected.

## Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

### Theorem (Edmonds 1973)

Let D be an directed graph, s a vertex of D and k a positive integer.

- There exists a packing of k spanning s-arborescences in D
- D is k-rooted-connected for s.

### Theorem (Frank 1978)

- There exists an orientation of G that is k-rooted-connected for s  $\iff$
- G is k-partition-connected.

## Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

### Theorem (Edmonds 1973)

Let D be an directed graph, s a vertex of D and k a positive integer.

- There exists a packing of k spanning s-arborescences in D
- D is k-rooted-connected for s.

#### Theorem (Frank 1978)

- There exists an orientation of G that is k-rooted-connected for s ⇐⇒
- G is k-partition-connected.

## Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

### Theorem (Edmonds 1973)

Let D be an directed graph, s a vertex of D and k a positive integer.

- There exists a packing of k spanning s-arborescences in D
- D is k-rooted-connected for s.

#### Theorem (Frank 1978)

- There exists an orientation of G that is k-rooted-connected for s ⇐⇒
- G is k-partition-connected.

## Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

### Theorem (Edmonds 1973)

Let D be an directed graph, s a vertex of D and k a positive integer.

- There exists a packing of k spanning s-arborescences in D
- D is k-rooted-connected for s.

### Theorem (Frank 1978)

- There exists an orientation of G that is k-rooted-connected for s ⇐⇒
- G is k-partition-connected.

## Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

### Theorem (Edmonds 1973)

Let D be an directed graph, s a vertex of D and k a positive integer.

- There exists a packing of k spanning s-arborescences in D
- D is k-rooted-connected for s.

#### Theorem (Frank 1978)

- There exists an orientation of G that is k-rooted-connected for s ⇐⇒
- G is k-partition-connected.

## Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

### Theorem (Edmonds 1973)

Let D be an directed graph, s a vertex of D and k a positive integer.

- There exists a packing of k spanning s-arborescences in D
- D is k-rooted-connected for s.

#### Theorem (Frank 1978)

- There exists an orientation of G that is k-rooted-connected for s ⇐⇒
- G is k-partition-connected.

## Motivation 2 : Rigidity



\_\_\_\_>

э



### Theorem (Tay 1984)

"Rigidity" of a Body-Bar Framework can be characterized by the existence of a spanning tree decomposition.



Body-Bar Framework with Bar-Boundary



### Theorem (Tay 1984)

"Rigidity" of a Body-Bar Framework can be characterized by the existence of a spanning tree decomposition.



### Theorem (Tay 1984)

"Rigidity" of a Body-Bar Framework can be characterized by the existence of a spanning tree decomposition.

Body-Bar Framework with Bar-Boundary



Theorem (Katoh, Tanigawa 2012)

"Rigidity" of a Body-Bar Framework with Bar-Boundary can be characterized by the existence of a matroid-based rooted-tree decomposition.

### Definition

A matroid-based rooted-graph is a quadruple  $(G, \mathcal{M}, S, \pi)$ :

- G = (V, E) undirected graph,
- $\textcircled{O} \ \mathcal{M} \text{ a matroid on a set } \verb|S] = \{ \mathsf{s}_1, \ldots, \mathsf{s}_t \}.$
- **③**  $\pi$  a placement of the elements of S at vertices of V.



### Definition

A matroid-based rooted-graph is a quadruple  $(G, \mathcal{M}, S, \pi)$ :

- G = (V, E) undirected graph,
- $\textcircled{O} \ \mathcal{M} \text{ a matroid on a set } \verb|S] = \{ \mathsf{s}_1, \ldots, \mathsf{s}_t \}.$
- **③**  $\pi$  a placement of the elements of S at vertices of V.



#### Notation

• 
$$S_X =$$
 the elements of S placed at  $X (= \pi^{-1}(X))$ .

Z. Szigeti (G-SCOP, Grenoble)

### Definition

## A packing $\{\mathit{T}_1,\ldots,\mathit{T}_{|\mathsf{S}|}\}$ of rooted-trees is called $\mathit{\mathcal{M}}\text{-based}$ if

- s<sub>i</sub> is the root of  $T_i$  for every  $s_i \in S$ ,
- 2  $\{s_i \in S : v \in V(T_i)\}$  forms a base of  $\mathcal{M}$  for every  $v \in V$ .



### Definition

A packing  $\{\mathit{T}_1,\ldots,\mathit{T}_{|\mathsf{S}|}\}$  of rooted-trees is called  $\mathit{\mathcal{M}}\text{-based}$  if

• s<sub>i</sub> is the root of  $T_i$  for every  $s_i \in S$ ,

2 { $s_i \in S : v \in V(T_i)$ } forms a base of  $\mathcal{M}$  for every  $v \in V$ .



### Definition

A packing  $\{T_1, \ldots, T_{|S|}\}$  of rooted-trees is called  $\mathcal{M}$ -based if

- s<sub>i</sub> is the root of  $T_i$  for every  $s_i \in S$ ,
- ② { $s_i \in S : v \in V(T_i)$ } forms a base of M for every  $v \in V$ .



### Definition

A packing  $\{\mathit{T}_1,\ldots,\mathit{T}_{|\mathsf{S}|}\}$  of rooted-trees is called  $\mathit{\mathcal{M}}\text{-based}$  if

**Q** s<sub>i</sub> is the root of 
$$T_i$$
 for every  $s_i \in S$ ,

② { $s_i \in S : v \in V(T_i)$ } forms a base of M for every  $v \in V$ .

### Definitions

•  $\pi$  is  $\mathcal{M}$ -independent if for every  $v \in V$ ,  $S_v$  is independent in  $\mathcal{M}$ .

 $(G, \mathcal{M}, \mathsf{S}, \pi)$  is partition-connected if for every partition  $\mathcal{P}$  of V,  $e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} (r_{\mathcal{M}}(\mathsf{S}) - r_{\mathcal{M}}(\mathsf{S}_X)).$
### Definition

A packing  $\{{\mathcal{T}}_1,\ldots,{\mathcal{T}}_{|{\mathsf{S}}|}\}$  of rooted-trees is called  ${\boldsymbol{\mathcal{M}}}\text{-based}$  if

• 
$$s_i$$
 is the root of  $T_i$  for every  $s_i \in S$ ,

② { $s_i \in S : v \in V(T_i)$ } forms a base of M for every  $v \in V$ .

### Definitions

*π* is *M*-independent if for every *v* ∈ *V*, S<sub>v</sub> is independent in *M*.
 (*G*, *M*, S, *π*) is partition-connected if for every partition *P* of *V*, *e<sub>G</sub>*(*P*) ≥ ∑<sub>X∈P</sub>(*r<sub>M</sub>*(S) − *r<sub>M</sub>*(S<sub>X</sub>)).

## Definition

A packing  $\{\textit{T}_1, \ldots, \textit{T}_{|\mathsf{S}|}\}$  of rooted-trees is called  $\textit{\mathcal{M}}\text{-based}$  if

**Q** s<sub>i</sub> is the root of 
$$T_i$$
 for every  $s_i \in S$ ,

② { $s_i \in S : v \in V(T_i)$ } forms a base of M for every  $v \in V$ .

### Definitions

*π* is *M*-independent if for every *v* ∈ *V*, S<sub>*v*</sub> is independent in *M*.
 (*G*, *M*, S, *π*) is partition-connected if for every partition *P* of *V*, *e*<sub>*G*</sub>(*P*) ≥ ∑<sub>*X*∈*P*</sub>(*r*<sub>*M*</sub>(S) − *r*<sub>*M*</sub>(S<sub>*X*</sub>)).

## Theorem (Katoh, Tanigawa 2012)

Let  $(G, \mathcal{M}, S, \pi)$  be a matroid-based rooted-graph.

- There is a matroid-based packing of rooted-trees in  $(G, \mathcal{M}, S, \pi) \iff$
- $\pi$  is  $\mathcal{M}$ -independent and  $(G, \mathcal{M}, S, \pi)$  is partition-connected.

## Definition

A packing  $\{\textit{T}_1, \ldots, \textit{T}_{|\mathsf{S}|}\}$  of rooted-trees is called  $\textit{\mathcal{M}}\text{-based}$  if

**Q** s<sub>i</sub> is the root of 
$$T_i$$
 for every  $s_i \in S$ ,

② { $s_i \in S : v \in V(T_i)$ } forms a base of M for every  $v \in V$ .

### Definitions

*π* is *M*-independent if for every *v* ∈ *V*, S<sub>*v*</sub> is independent in *M*.
 (*G*, *M*, S, *π*) is partition-connected if for every partition *P* of *V*, *e*<sub>*G*</sub>(*P*) ≥ ∑<sub>*X*∈*P*</sub>(*r*<sub>*M*</sub>(S) − *r*<sub>*M*</sub>(S<sub>*X*</sub>)).

## Theorem (Katoh, Tanigawa 2012)

Let  $(G, \mathcal{M}, S, \pi)$  be a matroid-based rooted-graph.

- There is a matroid-based packing of rooted-trees in  $(G, \mathcal{M}, S, \pi) \iff$
- $\pi$  is  $\mathcal{M}$ -independent and  $(G, \mathcal{M}, S, \pi)$  is partition-connected.

## Definition

A packing  $\{\textit{T}_1, \ldots, \textit{T}_{|\mathsf{S}|}\}$  of rooted-trees is called  $\textit{\mathcal{M}}\text{-based}$  if

**Q** s<sub>i</sub> is the root of 
$$T_i$$
 for every  $s_i \in S$ ,

② { $s_i \in S : v \in V(T_i)$ } forms a base of M for every  $v \in V$ .

### Definitions

*π* is *M*-independent if for every *v* ∈ *V*, S<sub>*v*</sub> is independent in *M*.
 (*G*, *M*, S, *π*) is partition-connected if for every partition *P* of *V*, *e*<sub>*G*</sub>(*P*) ≥ ∑<sub>*X*∈*P*</sub>(*r*<sub>*M*</sub>(S) − *r*<sub>*M*</sub>(S<sub>*X*</sub>)).

## Theorem (Katoh, Tanigawa 2012)

Let  $(G, \mathcal{M}, S, \pi)$  be a matroid-based rooted-graph.

- There is a matroid-based packing of rooted-trees in  $(G, \mathcal{M}, S, \pi) \iff$
- $\pi$  is *M*-independent and (*G*, *M*, *S*,  $\pi$ ) is partition-connected.

### Definition

# A packing $\{\mathit{T}_1,\ldots,\mathit{T}_{|\mathsf{S}|}\}$ of arborescences is called $\mathcal{M}\text{-based}$ if

- s<sub>i</sub> is the root of  $T_i$  for every  $s_i \in S$ ,
- ② { $s_i \in S : v \in V(T_i)$ } forms a base of M for every  $v \in V$ .



## Definition

A packing  $\{\mathit{T}_1,\ldots,\mathit{T}_{|\mathsf{S}|}\}$  of arborescences is called  $\mathcal{M}\text{-based}$  if

• s<sub>i</sub> is the root of  $T_i$  for every  $s_i \in S$ ,

2 { $s_i \in S : v \in V(T_i)$ } forms a base of  $\mathcal{M}$  for every  $v \in V$ .



# $\mathcal M\text{-}\mathsf{based}$ packing of arborescences

### Definition

A packing  $\{T_1, \ldots, T_{|S|}\}$  of arborescences is called  $\mathcal{M}$ -based if

- s<sub>i</sub> is the root of  $T_i$  for every  $s_i \in S$ ,
- ② { $s_i \in S : v \in V(T_i)$ } forms a base of M for every  $v \in V$ .



## Definition

A packing  $\{\mathit{T}_1,\ldots,\mathit{T}_{|\mathsf{S}|}\}$  of arborescences is called  $\mathcal{M}\text{-based}$  if

**1** s<sub>i</sub> is the root of 
$$T_i$$
 for every  $s_i \in S$ ,

② { $s_i \in S : v \in V(T_i)$ } forms a base of M for every  $v \in V$ .

## Definition

 $(D, \mathcal{M}, \mathsf{S}, \pi)$  is rooted-connected if for every  $\emptyset \neq X \subseteq V$ ,  $\rho_D(X) \ge r_{\mathcal{M}}(\mathsf{S}) - r_{\mathcal{M}}(\mathsf{S}_X).$ 

### Definition

A packing  $\{T_1, \ldots, T_{|\mathsf{S}|}\}$  of arborescences is called  $\mathcal{M}$ -based if

**Q** s<sub>i</sub> is the root of 
$$T_i$$
 for every  $s_i \in S$ ,

② { $s_i \in S : v \in V(T_i)$ } forms a base of M for every  $v \in V$ .

### Definition

 $(D, \mathcal{M}, \mathsf{S}, \pi)$  is rooted-connected if for every  $\emptyset \neq X \subseteq V$ ,  $\rho_D(X) \ge r_{\mathcal{M}}(\mathsf{S}) - r_{\mathcal{M}}(\mathsf{S}_X).$ 

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

Let  $(D, \mathcal{M}, S, \pi)$  be a matroid-based rooted-digraph.

• There is a matroid-based packing of arborescences in  $(D, \mathcal{M}, S, \pi)$ 

•  $\pi$  is  $\mathcal{M}$ -independent and  $(D, \mathcal{M}, S, \pi)$  is rooted-connected.

### Definition

A packing  $\{T_1, \ldots, T_{|\mathsf{S}|}\}$  of arborescences is called  $\mathcal{M}$ -based if

**Q** s<sub>i</sub> is the root of 
$$T_i$$
 for every  $s_i \in S$ ,

② { $s_i \in S : v \in V(T_i)$ } forms a base of M for every  $v \in V$ .

### Definition

 $(D, \mathcal{M}, \mathsf{S}, \pi)$  is rooted-connected if for every  $\emptyset \neq X \subseteq V$ ,  $\rho_D(X) \ge r_{\mathcal{M}}(\mathsf{S}) - r_{\mathcal{M}}(\mathsf{S}_X).$ 

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

Let  $(D, \mathcal{M}, S, \pi)$  be a matroid-based rooted-digraph.

• There is a matroid-based packing of arborescences in  $(D, \mathcal{M}, S, \pi)$ 



### Definition

A packing  $\{\mathit{T}_1,\ldots,\mathit{T}_{|\mathsf{S}|}\}$  of arborescences is called  $\mathcal{M}\text{-based}$  if

**Q** s<sub>i</sub> is the root of 
$$T_i$$
 for every  $s_i \in S$ ,

② { $s_i \in S : v \in V(T_i)$ } forms a base of M for every  $v \in V$ .

### Definition

 $(D, \mathcal{M}, \mathsf{S}, \pi)$  is rooted-connected if for every  $\emptyset \neq X \subseteq V$ ,  $\rho_D(X) \ge r_{\mathcal{M}}(\mathsf{S}) - r_{\mathcal{M}}(\mathsf{S}_X).$ 

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

Let  $(D, \mathcal{M}, S, \pi)$  be a matroid-based rooted-digraph.

• There is a matroid-based packing of arborescences in  $(D, \mathcal{M}, S, \pi)$ 

•  $\pi$  is *M*-independent and  $(D, \mathcal{M}, S, \pi)$  is rooted-connected.

- Let  $\{T_1, \ldots, T_{|S|}\}$  be a matroid-based packing of arborescences in  $(D, \mathcal{M}, S, \pi)$  and  $v \in X \subseteq V$ .
- Let  $B = \{s_i \in S : v \in V(T_i)\}$ ,  $B_1 = B \cap S_X$  and  $B_2 = B \setminus B_1$ .
- Since  $S_v \subseteq B_1 \subseteq B$  is a base of  $\mathcal{M}$ ,  $\pi$  is  $\mathcal{M}$ -independent.
- Since, for each root s<sub>i</sub> in B<sub>2</sub>, there exists an arc of T<sub>i</sub> that enters X and the arborescences are arc-disjoint,

   ρ<sub>D</sub>(X) ≥ |B<sub>2</sub>| = |B| |B<sub>1</sub>| = r<sub>M</sub>(S) r<sub>M</sub>(B<sub>1</sub>) ≥ r<sub>M</sub>(S) r<sub>M</sub>(S<sub>X</sub>) that is (D, M, S, π) is rooted-connected.

- Let {T<sub>1</sub>,..., T<sub>|S|</sub>} be a matroid-based packing of arborescences in (D, M, S, π) and v ∈ X ⊆ V.
- Let  $B = \{s_i \in S : v \in V(T_i)\}$ ,  $B_1 = B \cap S_X$  and  $B_2 = B \setminus B_1$ .
- Since  $S_v \subseteq B_1 \subseteq B$  is a base of  $\mathcal{M}$ ,  $\pi$  is  $\mathcal{M}$ -independent.
- Since, for each root s<sub>i</sub> in B<sub>2</sub>, there exists an arc of T<sub>i</sub> that enters X and the arborescences are arc-disjoint,

   ρ<sub>D</sub>(X) ≥ |B<sub>2</sub>| = |B| |B<sub>1</sub>| = r<sub>M</sub>(S) r<sub>M</sub>(B<sub>1</sub>) ≥ r<sub>M</sub>(S) r<sub>M</sub>(S<sub>X</sub>) that is (D, M, S, π) is rooted-connected.



- Let {T<sub>1</sub>,..., T<sub>|S|</sub>} be a matroid-based packing of arborescences in (D, M, S, π) and v ∈ X ⊆ V.
- Let  $B = \{s_i \in S : v \in V(T_i)\}$ ,  $B_1 = B \cap S_X$  and  $B_2 = B \setminus B_1$ .
- Since  $S_v \subseteq B_1 \subseteq B$  is a base of  $\mathcal{M}$ ,  $\pi$  is  $\mathcal{M}$ -independent.
- Since, for each root s<sub>i</sub> in B<sub>2</sub>, there exists an arc of T<sub>i</sub> that enters X and the arborescences are arc-disjoint,

   ρ<sub>D</sub>(X) ≥ |B<sub>2</sub>| = |B| |B<sub>1</sub>| = r<sub>M</sub>(S) r<sub>M</sub>(B<sub>1</sub>) ≥ r<sub>M</sub>(S) r<sub>M</sub>(S<sub>X</sub>) that is (D, M, S, π) is rooted-connected.



- Let {T<sub>1</sub>,..., T<sub>|S|</sub>} be a matroid-based packing of arborescences in (D, M, S, π) and v ∈ X ⊆ V.
- Let  $B = \{s_i \in S : v \in V(T_i)\}$ ,  $B_1 = B \cap S_X$  and  $B_2 = B \setminus B_1$ .
- Since  $S_v \subseteq B_1 \subseteq B$  is a base of  $\mathcal{M}$ ,  $\pi$  is  $\mathcal{M}$ -independent.
- Since, for each root  $s_i$  in  $B_2$ , there exists an arc of  $T_i$  that enters X and the arborescences are arc-disjoint,  $\rho_D(X) \ge |B_2| = |B| - |B_1| = r_M(S) - r_M(B_1) \ge r_M(S) - r_M(S_X)$  that is  $(D, \mathcal{M}, S, \pi)$  is rooted-connected.



Let G = (V, E) be an undirected graph and  $h : 2^V \to \mathbb{Z}_+$  an intersecting supermodular non-increasing set-function.

• There is an orientation D of G s. t.  $\rho_D(X) \ge h(X) \quad \forall \emptyset \neq X \subset V$ 

•  $e_G(\mathcal{P}) \ge \sum_{X \in \mathcal{P}} h(X)$  for every partition  $\mathcal{P}$  of V.

Let G = (V, E) be an undirected graph and  $h : 2^V \to \mathbb{Z}_+$  an intersecting supermodular non-increasing set-function.

• There is an orientation D of G s. t.  $\rho_D(X) \ge h(X) \quad \forall \emptyset \neq X \subset V$ 

#### $\iff$

•  $e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$  for every partition  $\mathcal{P}$  of V.

Let G = (V, E) be an undirected graph and  $h : 2^V \to \mathbb{Z}_+$  an intersecting supermodular non-increasing set-function.

• There is an orientation D of G s. t.  $\rho_D(X) \ge h(X) \quad \forall \emptyset \neq X \subset V$ 

 $\Leftrightarrow$ 

# • $e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$ for every partition $\mathcal{P}$ of V.

Let G = (V, E) be an undirected graph and  $h : 2^V \to \mathbb{Z}_+$  an intersecting supermodular non-increasing set-function.

• There is an orientation D of G s. t.  $\rho_D(X) \ge h(X) \quad \forall \ \emptyset \neq X \subset V$ 

 $\Leftrightarrow$ 

•  $e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$  for every partition  $\mathcal{P}$  of V.

Applying for  $h(X) = r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X)$  provides

Let G = (V, E) be an undirected graph and  $h : 2^V \to \mathbb{Z}_+$  an intersecting supermodular non-increasing set-function.

• There is an orientation D of G s. t.  $\rho_D(X) \ge h(X) \quad \forall \ \emptyset \neq X \subset V$ 

•  $e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$  for every partition  $\mathcal{P}$  of V.

Applying for  $h(X) = r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X)$  provides

#### Corollary

Let  $(G, \mathcal{M}, S, \pi)$  be a matroid-based rooted-graph.

• There is an orientation D of G s. t.  $(D, \mathcal{M}, S, \pi)$  is rooted-connected

## • $(G, \mathcal{M}, S, \pi)$ is partition-connected.

Z. Szigeti (G-SCOP, Grenoble)

On packing of arborescences

・ ( ) ・ ( ) ・ (

Let G = (V, E) be an undirected graph and  $h : 2^V \to \mathbb{Z}_+$  an intersecting supermodular non-increasing set-function.

• There is an orientation D of G s. t.  $\rho_D(X) \ge h(X) \quad \forall \ \emptyset \neq X \subset V$ 

•  $e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$  for every partition  $\mathcal{P}$  of V.

Applying for  $h(X) = r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X)$  provides

#### Corollary

Let  $(G, \mathcal{M}, S, \pi)$  be a matroid-based rooted-graph.

• There is an orientation D of G s. t.  $(D, \mathcal{M}, S, \pi)$  is rooted-connected

•  $(G, \mathcal{M}, S, \pi)$  is partition-connected.

・ ( ) ・ ( ) ・ (

Let G = (V, E) be an undirected graph and  $h : 2^V \to \mathbb{Z}_+$  an intersecting supermodular non-increasing set-function.

• There is an orientation D of G s. t.  $\rho_D(X) \ge h(X) \quad \forall \ \emptyset \neq X \subset V$ 

•  $e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$  for every partition  $\mathcal{P}$  of V.

Applying for  $h(X) = r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X)$  provides

#### Corollary

Let  $(G, \mathcal{M}, S, \pi)$  be a matroid-based rooted-graph.

- There is an orientation D of G s. t.  $(D, \mathcal{M}, S, \pi)$  is rooted-connected
- $(G, \mathcal{M}, S, \pi)$  is partition-connected.

・ ( ) ・ ( ) ・ (

# Theorem (Katoh, Tanigawa 2012)

• There is a matroid-based packing of rooted-trees in  $(G, \mathcal{M}, S, \pi)$ 

•  $\pi$  is  $\mathcal{M}$ -independent and  $(G, \mathcal{M}, S, \pi)$  is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

• There is a matroid-based packing of arborescences in  $(D, \mathcal{M}, S, \pi)$ 

•  $\pi$  is  $\mathcal{M}$ -independent and  $(D, \mathcal{M}, S, \pi)$  is rooted-connected.

 $\Leftrightarrow$ 

### Theorem (Frank 1980)

• 
$$(G, \mathcal{M}, \mathsf{S}, \pi)$$
 is partition-connected.

# Theorem (Katoh, Tanigawa 2012)

• There is a matroid-based packing of rooted-trees in  $(G, \mathcal{M}, S, \pi)$ 

•  $\pi$  is  $\mathcal{M}$ -independent and  $(G, \mathcal{M}, S, \pi)$  is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

• There is a matroid-based packing of arborescences in  $(D, \mathcal{M}, S, \pi)$ 

•  $\pi$  is  $\mathcal{M}$ -independent and  $(D, \mathcal{M}, S, \pi)$  is rooted-connected.

 $\Leftrightarrow$ 

### Theorem (Frank 1980)

• 
$$(G, \mathcal{M}, \mathsf{S}, \pi)$$
 is partition-connected.

# Theorem (Katoh, Tanigawa 2012)

• There is a matroid-based packing of rooted-trees in  $(G, \mathcal{M}, S, \pi)$ 

•  $\pi$  is  $\mathcal{M}$ -independent and  $(G, \mathcal{M}, S, \pi)$  is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

• There is a matroid-based packing of arborescences in  $(D, \mathcal{M}, S, \pi)$ 

•  $\pi$  is  $\mathcal{M}$ -independent and  $(D, \mathcal{M}, S, \pi)$  is rooted-connected.

 $\Leftrightarrow$ 

## Theorem (Frank 1980)

• 
$$(G, \mathcal{M}, \mathsf{S}, \pi)$$
 is partition-connected.

# Theorem (Katoh, Tanigawa 2012)

• There is a matroid-based packing of rooted-trees in  $(G, \mathcal{M}, S, \pi)$ 

•  $\pi$  is  $\mathcal{M}$ -independent and  $(G, \mathcal{M}, S, \pi)$  is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

• There is a matroid-based packing of arborescences in  $(D, \mathcal{M}, S, \pi)$ 

•  $\pi$  is  $\mathcal{M}$ -independent and  $(D, \mathcal{M}, S, \pi)$  is rooted-connected.

 $\Leftrightarrow$ 

### Theorem (Frank 1980)

• There is an orientation D of G s. t.  $(D, \mathcal{M}, S, \pi)$  is rooted-connected

## • $(G, \mathcal{M}, S, \pi)$ is partition-connected.

# Theorem (Katoh, Tanigawa 2012)

• There is a matroid-based packing of rooted-trees in  $(G, \mathcal{M}, S, \pi)$ 

•  $\pi$  is  $\mathcal{M}$ -independent and  $(G, \mathcal{M}, S, \pi)$  is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

• There is a matroid-based packing of arborescences in  $(D, \mathcal{M}, S, \pi)$ 

•  $\pi$  is  $\mathcal{M}$ -independent and  $(D, \mathcal{M}, S, \pi)$  is rooted-connected.

 $\Leftrightarrow$ 

### Theorem (Frank 1980)

• 
$$(G, \mathcal{M}, \mathsf{S}, \pi)$$
 is partition-connected.

# Theorem (Katoh, Tanigawa 2012)

• There is a matroid-based packing of rooted-trees in  $(G, \mathcal{M}, S, \pi)$ 

•  $\pi$  is  $\mathcal{M}$ -independent and  $(G, \mathcal{M}, S, \pi)$  is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

• There is a matroid-based packing of arborescences in  $(D, \mathcal{M}, S, \pi)$ 

•  $\pi$  is  $\mathcal{M}$ -independent and  $(D, \mathcal{M}, S, \pi)$  is rooted-connected.

 $\Leftrightarrow$ 

## Theorem (Frank 1980)

# Theorem (Katoh, Tanigawa 2012)

• There is a matroid-based packing of rooted-trees in  $(G, \mathcal{M}, S, \pi)$ 

•  $\pi$  is *M*-independent and (*G*, *M*, *S*,  $\pi$ ) is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

• There is a matroid-based packing of arborescences in  $(D, \mathcal{M}, S, \pi)$ 

•  $\pi$  is  $\mathcal{M}$ -independent and  $(D, \mathcal{M}, S, \pi)$  is rooted-connected.

 $\Leftrightarrow$ 

### Theorem (Frank 1980)

# Theorem (Katoh, Tanigawa 2012)

• There is a matroid-based packing of rooted-trees in  $(G, \mathcal{M}, S, \pi)$ 

•  $\pi$  is  $\mathcal{M}$ -independent and  $(G, \mathcal{M}, S, \pi)$  is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

• There is a matroid-based packing of arborescences in  $(D, \mathcal{M}, S, \pi)$ 

•  $\pi$  is  $\mathcal{M}$ -independent and  $(D, \mathcal{M}, S, \pi)$  is rooted-connected.

 $\Leftrightarrow$ 

## Theorem (Frank 1980)

• 
$$(G, \mathcal{M}, \mathsf{S}, \pi)$$
 is partition-connected.

# Theorem (Katoh, Tanigawa 2012)

• There is a matroid-based packing of rooted-trees in  $(G, \mathcal{M}, S, \pi)$ 

•  $\pi$  is  $\mathcal{M}$ -independent and  $(G, \mathcal{M}, S, \pi)$  is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

• There is a matroid-based packing of arborescences in  $(D, \mathcal{M}, S, \pi)$ 

•  $\pi$  is  $\mathcal{M}$ -independent and  $(D, \mathcal{M}, S, \pi)$  is rooted-connected.

 $\Leftrightarrow$ 

## Theorem (Frank 1980)

• 
$$(G, \mathcal{M}, \mathsf{S}, \pi)$$
 is partition-connected.

# Theorem (Katoh, Tanigawa 2012)

- There is a matroid-based packing of rooted-trees in  $(G, \mathcal{M}, S, \pi)$   $\iff$
- $\pi$  is  $\mathcal{M}$ -independent and  $(G, \mathcal{M}, S, \pi)$  is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

• There is a matroid-based packing of arborescences in  $(D, \mathcal{M}, S, \pi)$ 

•  $\pi$  is  $\mathcal{M}$ -independent and  $(D, \mathcal{M}, S, \pi)$  is rooted-connected.

 $\Leftrightarrow$ 

## Theorem (Frank 1980)

• 
$$(G, \mathcal{M}, \mathsf{S}, \pi)$$
 is partition-connected.

# Definitions for the Proof

#### Definitions

- A vertex set X is tight if  $\rho_D(X) = r_M(S) r_M(S_X)$ .
- ② A vertex set Y dominates a vertex set X if S<sub>X</sub> ⊆ Span<sub>M</sub>(S<sub>Y</sub>). (Note that domination is a transitive relation.)
- Solution An arc uv is good if v does not dominate u, otherwise it is bad.

# Definitions for the Proof

#### Definitions

- A vertex set X is tight if  $\rho_D(X) = r_M(S) r_M(S_X)$ .
- ② A vertex set Y dominates a vertex set X if S<sub>X</sub> ⊆ Span<sub>M</sub>(S<sub>Y</sub>). (Note that domination is a transitive relation.)
- Solution An arc uv is good if v does not dominate u, otherwise it is bad.

#### Remark

Only good arcs uv can be used in an arborescence rooted at u, since there must exist  $s \in S_u$  such that  $S_v \cup s$  is independent in  $\mathcal{M}$ .

# Proof of sufficiency : Case 1 (No good arc exists.)

#### Claim

Every vertex v of a tight set X containing only bad arcs dominates X.

# Proof of sufficiency : Case 1 (No good arc exists.)

#### Claim

Every vertex v of a tight set X containing only bad arcs dominates X.

### Proof

- ① Let Y be the set of vertices from which v is reachable in D[X].
- v dominates Y : Since domination is transitive, v dominates each vertex of Y and hence Y.
- **③** Y dominates X : Using that every arc of D that enters Y enters X.
### Claim

Every vertex v of a tight set X containing only bad arcs dominates X.

### Proof

## **Q** Let Y be the set of vertices from which v is reachable in D[X].

- v dominates Y : Since domination is transitive, v dominates each vertex of Y and hence Y.
- **3** Y dominates X : Using that every arc of D that enters Y enters X.

### Claim

Every vertex v of a tight set X containing only bad arcs dominates X.

### Proof

- **Q** Let Y be the set of vertices from which v is reachable in D[X].
- v dominates Y : Since domination is transitive, v dominates each vertex of Y and hence Y.
  - Y dominates X : Using that every arc of D that enters Y enters X.

### Claim

Every vertex v of a tight set X containing only bad arcs dominates X.

### Proof

- **Q** Let Y be the set of vertices from which v is reachable in D[X].
- v dominates Y : Since domination is transitive, v dominates each vertex of Y and hence Y.
- **3** Y dominates X : Using that every arc of D that enters Y enters X.

### Claim

Every vertex v of a tight set X containing only bad arcs dominates X.

### Proof

- **Q** Let Y be the set of vertices from which v is reachable in D[X].
- v dominates Y : Since domination is transitive, v dominates each vertex of Y and hence Y.
- **3** Y dominates X : Using that every arc of D that enters Y enters X.

 $r_{\mathcal{M}}(\mathsf{S}) - r_{\mathcal{M}}(\mathsf{S}_Y) \leq \rho(Y) \leq \rho(X) = r_{\mathcal{M}}(\mathsf{S}) - r_{\mathcal{M}}(\mathsf{S}_X) \leq r_{\mathcal{M}}(\mathsf{S}) - r_{\mathcal{M}}(\mathsf{S}_Y).$ 

## Claim

Every vertex v of a tight set X containing only bad arcs dominates X.

### Proof

- **Q** Let Y be the set of vertices from which v is reachable in D[X].
- v dominates Y : Since domination is transitive, v dominates each vertex of Y and hence Y.
- **3** Y dominates X : Using that every arc of D that enters Y enters X.

## A matroid-based packing of arborescences in $(D, \mathcal{M}, S, \pi)$

- **1** Take  $|S_v|$  times each vertex v.
- ②  $\mathsf{S}_{v}$  is a spanning set of  $\mathcal{M}$  for all  $v \in V$  by Claim since V is tight,
- **3**  $S_v$  is independent in  $\mathcal{M}$  for all  $v \in V$  since  $\pi$  is  $\mathcal{M}$ -independent.

<ロ> <同> <同> < 同> < 三> < 三>

## Claim

Every vertex v of a tight set X containing only bad arcs dominates X.

### Proof

- **Q** Let Y be the set of vertices from which v is reachable in D[X].
- v dominates Y : Since domination is transitive, v dominates each vertex of Y and hence Y.
- **3** Y dominates X : Using that every arc of D that enters Y enters X.

## A matroid-based packing of arborescences in $(D, \mathcal{M}, \mathsf{S}, \pi)$

- **1** Take  $|S_v|$  times each vertex v.
- ②  $\mathsf{S}_{v}$  is a spanning set of  $\mathcal{M}$  for all  $v \in V$  by Claim since V is tight,
- **3**  $S_v$  is independent in  $\mathcal{M}$  for all  $v \in V$  since  $\pi$  is  $\mathcal{M}$ -independent.

<ロ> <同> <同> < 同> < 三> < 三>

## Claim

Every vertex v of a tight set X containing only bad arcs dominates X.

## Proof

- **Q** Let Y be the set of vertices from which v is reachable in D[X].
- v dominates Y : Since domination is transitive, v dominates each vertex of Y and hence Y.
- **3** Y dominates X : Using that every arc of D that enters Y enters X.

## A matroid-based packing of arborescences in $(D, \mathcal{M}, S, \pi)$

- Take  $|S_v|$  times each vertex v.
- **2**  $S_v$  is a spanning set of  $\mathcal{M}$  for all  $v \in V$  by Claim since V is tight,
  - S<sub>v</sub> is independent in  $\mathcal{M}$  for all  $v \in V$  since  $\pi$  is  $\mathcal{M}$ -independent.

<ロ> <同> <同> < 同> < 三> < 三>

## Claim

Every vertex v of a tight set X containing only bad arcs dominates X.

### Proof

- **Q** Let Y be the set of vertices from which v is reachable in D[X].
- v dominates Y : Since domination is transitive, v dominates each vertex of Y and hence Y.
- **3** Y dominates X : Using that every arc of D that enters Y enters X.

## A matroid-based packing of arborescences in $(D, \mathcal{M}, S, \pi)$

- Take  $|S_v|$  times each vertex v.
- **2**  $S_v$  is a spanning set of  $\mathcal{M}$  for all  $v \in V$  by Claim since V is tight,
- **3**  $S_v$  is independent in  $\mathcal{M}$  for all  $v \in V$  since  $\pi$  is  $\mathcal{M}$ -independent.

(日) (同) (三) (三)

## Definition

For  $uv \in A$ ,  $s \in S_u$ , let

$$\begin{array}{rcl} D' &=& D-uv,\\ S' &=& S\cup s',\\ \pi'|S &=& \pi; \ \pi(s')=v,\\ \mathcal{M}'|S &=& \mathcal{M}; \ s' \text{ parallel to s.} \end{array}$$



### Definition

For  $uv \in A$ ,  $s \in S_u$ , let

 $\begin{array}{rcl} D' &=& D-uv,\\ \mathsf{S}' &=& \mathsf{S}\cup\mathsf{s}',\\ \pi'|\mathsf{S} &=& \pi; \ \pi(\mathsf{s}')=v,\\ \mathcal{M}'|\mathsf{S} &=& \mathcal{M}; \ \mathsf{s}' \text{ parallel to s.} \end{array}$ 



#### Remarks

- **①** Packing containing uv in  $(D, \mathcal{M}, \mathsf{S}, \pi) \iff$  Packing in  $(D', \mathcal{M}', \mathsf{S}', \pi')$
- ②  $\pi'$  is  $\mathcal{M}'$ -independent  $\Longleftrightarrow \pi$  is  $\mathcal{M}$ -independent and s  $otin \mathsf{Span}(\mathsf{S}_{\mathsf{v}})$
- ③ (D', M', S', π') is rooted-connected ↔ (D, M, S, π) is rooted-connected and uv does not enter a tight set X that dominates u

### Definition

For  $uv \in A$ ,  $s \in S_u$ , let

 $\begin{array}{rcl} D' &=& D-uv,\\ S' &=& S\cup s',\\ \pi'|S &=& \pi; \ \pi(s')=v,\\ \mathcal{M}'|S &=& \mathcal{M}; \ s' \text{ parallel to s.} \end{array}$ 



#### Remarks

**Q** Packing containing uv in  $(D, \mathcal{M}, S, \pi) \iff$  Packing in  $(D', \mathcal{M}', S', \pi')$ 

- ②  $\pi'$  is  $\mathcal{M}'$ -independent  $\Longleftrightarrow \pi$  is  $\mathcal{M}$ -independent and s  $otin \mathsf{Span}(\mathsf{S}_{\mathsf{v}})$
- ③ (D', M', S', π') is rooted-connected ↔ (D, M, S, π) is rooted-connected and uv does not enter a tight set X that dominates u

### Definition

For  $uv \in A$ ,  $s \in S_u$ , let

 $\begin{array}{rcl} D' &=& D-uv,\\ \mathsf{S}' &=& \mathsf{S}\cup\mathsf{s}',\\ \pi'|\mathsf{S} &=& \pi; \ \pi(\mathsf{s}')=v,\\ \mathcal{M}'|\mathsf{S} &=& \mathcal{M}; \ \mathsf{s}' \text{ parallel to s.} \end{array}$ 



#### Remarks

**1** Packing containing uv in  $(D, \mathcal{M}, S, \pi) \iff$  Packing in  $(D', \mathcal{M}', S', \pi')$ 

2  $\pi'$  is  $\mathcal{M}'$ -independent  $\iff \pi$  is  $\mathcal{M}$ -independent and s  $\notin Span(S_v)$ 

③ (D', M', S', π') is rooted-connected ↔ (D, M, S, π) is rooted-connected and uv does not enter a tight set X that dominates u

### Definition

For  $uv \in A$ ,  $s \in S_u$ , let

 $\begin{array}{rcl} D' &=& D-uv,\\ \mathsf{S}' &=& \mathsf{S}\cup\mathsf{s}',\\ \pi'|\mathsf{S} &=& \pi; \ \pi(\mathsf{s}')=v,\\ \mathcal{M}'|\mathsf{S} &=& \mathcal{M}; \ \mathsf{s}' \text{ parallel to s.} \end{array}$ 



#### Remarks

- **1** Packing containing uv in  $(D, \mathcal{M}, S, \pi) \iff$  Packing in  $(D', \mathcal{M}', S', \pi')$
- **2**  $\pi'$  is  $\mathcal{M}'$ -independent  $\iff \pi$  is  $\mathcal{M}$ -independent and s  $\notin Span(S_v)$
- **③**  $(D', \mathcal{M}', \mathsf{S}', \pi')$  is rooted-connected  $\iff (D, \mathcal{M}, \mathsf{S}, \pi)$  is rooted-connected and *uv* does not enter a tight set *X* that dominates *u*.

- **()** Wlog. each good arc uv enters a tight set X that dominates u.
- 2 Choose (uv, X) with X minimal.
- 3 X dominates u, v does not dominate u so v does not dominate X.
- By Claim, there exists a good arc u'v' in D[X].
- $\bigcirc$  u'v' enters a tight set Y that dominates u'.
- u'v' enters the tight set  $X \cap Y$  that dominates u'.
- Contradiction.

# Proof :

## **1** Wlog. each good arc uv enters a tight set X that dominates u.

- Choose (uv, X) with X minimal.
- X dominates u, v does not dominate u so v does not dominate X.
- By Claim, there exists a good arc u'v' in D[X].
- $\bigcirc$  u'v' enters a tight set Y that dominates u'.
- u'v' enters the tight set  $X \cap Y$  that dominates u'.
- Contradiction.

- **1** Wlog. each good arc uv enters a tight set X that dominates u.
- 2 Choose (uv, X) with X minimal.
- X dominates u, v does not dominate u so v does not dominate X.
- By Claim, there exists a good arc u'v' in D[X].
- $\bigcirc$  u'v' enters a tight set Y that dominates u'.
- u'v' enters the tight set  $X \cap Y$  that dominates u'.
- Contradiction.

- **1** Wlog. each good arc uv enters a tight set X that dominates u.
- 2 Choose (uv, X) with X minimal.
- S X dominates u, v does not dominate u so v does not dominate X.
- By Claim, there exists a good arc u'v' in D[X].
- $\bigcirc$  u'v' enters a tight set Y that dominates u'.
- u'v' enters the tight set  $X \cap Y$  that dominates u'.
- O Contradiction.

- **1** Wlog. each good arc uv enters a tight set X that dominates u.
- 2 Choose (uv, X) with X minimal.
- S X dominates u, v does not dominate u so v does not dominate X.
- **9** By Claim, there exists a good arc u'v' in D[X].
- 3 u'v' enters a tight set Y that dominates u'.
- u'v' enters the tight set  $X \cap Y$  that dominates u'.
- Contradiction.

## Proof :

- **1** Wlog. each good arc uv enters a tight set X that dominates u.
- 2 Choose (uv, X) with X minimal.
- S X dominates u, v does not dominate u so v does not dominate X.
- **③** By Claim, there exists a good arc u'v' in D[X].
- u'v' enters a tight set Y that dominates u'.
- u'v' enters the tight set  $X \cap Y$  that dominates u'.

Contradiction.

## Proof :

- **1** Wlog. each good arc uv enters a tight set X that dominates u.
- 2 Choose (uv, X) with X minimal.
- S X dominates u, v does not dominate u so v does not dominate X.
- **③** By Claim, there exists a good arc u'v' in D[X].
- u'v' enters a tight set Y that dominates u'.
- u'v' enters the tight set  $X \cap Y$  that dominates u'.

Contradiction.

- **1** Wlog. each good arc uv enters a tight set X that dominates u.
- 2 Choose (uv, X) with X minimal.
- S X dominates u, v does not dominate u so v does not dominate X.
- **③** By Claim, there exists a good arc u'v' in D[X].
- u'v' enters a tight set Y that dominates u'.
- u'v' enters the tight set  $X \cap Y$  that dominates u'.
- Ontradiction.

Thank you for your attention !

A.

э