On packing of arborescences

Zoltán Szigeti

Laboratoire G-SCOP
INP Grenoble, France

November 2012

Joint work with:
Olivier Durand de Gevigney and Viet Hang Nguyen (Grenoble)
Motivations
- Undirected = Orientation + Directed
- Rigidity

Results
- Undirected : Matroid-based packing of rooted-trees
- Directed : Matroid-based packing of arborescences
- Orientation : Supermodular function

Proof
Motivations

- Undirected = Orientation + Directed
- Rigidity

Results

- Undirected: Matroid-based packing of rooted-trees
- Directed: Matroid-based packing of arborescences
- Orientation: Supermodular function

Proof
Motivations
- Undirected = Orientation + Directed
- Rigidity

Results
- Undirected: Matroid-based packing of rooted-trees
- Directed: Matroid-based packing of arborescences
- Orientation: Supermodular function

Proof
Motivations
- Undirected = Orientation + Directed
- Rigidity

Results
- Undirected : Matroid-based packing of rooted-trees
- Directed : Matroid-based packing of arborescences
- Orientation : Supermodular function

Proof
Outline

- Motivations
 - Undirected = Orientation + Directed
 - Rigidity

- Results
 - Undirected: Matroid-based packing of rooted-trees
 - Directed: Matroid-based packing of arborescences
 - Orientation: Supermodular function

- Proof
Outline

- Motivations
 - Undirected = Orientation + Directed
 - Rigidity
- Results
 - Undirected : Matroid-based packing of rooted-trees
 - Directed : Matroid-based packing of arborescences
 - Orientation : Supermodular function
- Proof
Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G.
- G is k-partition-connected.

\[\iff \]
Motivation 1: Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.
- There exists a packing of k spanning trees in G
- G is k-partition-connected.
Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.
Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

\[
\iff \text{ for every partition } \mathcal{P} \text{ of } V,
\]

\[
\mathcal{P}
\]
Theorem (Tutte, Nash-Williams 1961)

Let \(G \) be an undirected graph and \(k \) a positive integer.

- There exists a packing of \(k \) spanning trees in \(G \) \(\iff \)
- \(G \) is \(k \)-partition-connected.

\[e_G(\mathcal{P}) \geq k(|\mathcal{P}| - 1). \]
Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.
- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be an directed graph, s a vertex of D and k a positive integer.
- There exists a packing of k spanning s-arborescences in D
- D is k-rooted-connected for s.
Motivation 1: Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)
Let G be an undirected graph and k a positive integer.
- There exists a packing of k spanning trees in G \iff G is k-partition-connected.

Theorem (Edmonds 1973)
Let D be a directed graph, s a vertex of D and k a positive integer.
- There exists a packing of k spanning s-arborescences in D \iff D is k-rooted-connected for s.
Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G if and only if G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, s a vertex of D and k a positive integer.

- There exists a packing of k spanning s-arborescences in D if and only if D is k-rooted-connected for s.

<table>
<thead>
<tr>
<th>Theorem (Tutte, Nash-Williams 1961)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let G be an undirected graph and k a positive integer.</td>
</tr>
<tr>
<td>- There exists a packing of k spanning trees in G (\iff)</td>
</tr>
<tr>
<td>- G is k-partition-connected.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Edmonds 1973)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let D be an directed graph, s a vertex of D and k a positive integer.</td>
</tr>
<tr>
<td>- There exists a packing of k spanning s-arborescences in D (\iff)</td>
</tr>
<tr>
<td>- D is k-rooted-connected for s. (\iff) $\rho_D(X) \geq k \quad \forall \emptyset \neq X \subseteq V \setminus {s}$.</td>
</tr>
</tbody>
</table>
Motivation 1: Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.
- There exists a packing of k spanning trees in G \iff G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, s a vertex of D and k a positive integer.
- There exists a packing of k spanning s-arborescences in D \iff D is k-rooted-connected for s.

Theorem (Frank 1978)

Let G be an undirected graph, s a vertex of G and k a positive integer.
- There exists an orientation of G that is k-rooted-connected for s \iff G is k-partition-connected.
Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.
- There exists a packing of k spanning trees in G \[\iff\]
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, s a vertex of D and k a positive integer.
- There exists a packing of k spanning s-arborescences in D \[\iff\]
- D is k-rooted-connected for s.

Theorem (Frank 1978)

Let G be an undirected graph, s a vertex of G and k a positive integer.
- There exists an orientation of G that is k-rooted-connected for s \[\iff\]
- G is k-partition-connected.
Motivation 1: Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.
- There exists a packing of k spanning trees in G \iff G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, s a vertex of D and k a positive integer.
- There exists a packing of k spanning s-arborescences in D \iff D is k-rooted-connected for s.

Theorem (Frank 1978)

Let G be an undirected graph, s a vertex of G and k a positive integer.
- There exists an orientation of G that is k-rooted-connected for s \iff G is k-partition-connected.
Motivation 1: Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)
Let G be an undirected graph and k a positive integer.
- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)
Let D be an directed graph, s a vertex of D and k a positive integer.
- There exists a packing of k spanning s-arborescences in D
- D is k-rooted-connected for s.

Theorem (Frank 1978)
Let G be an undirected graph, s a vertex of G and k a positive integer.
- There exists an orientation of G that is k-rooted-connected for s
- G is k-partition-connected.
Motivation 1: Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G \iff G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, s a vertex of D and k a positive integer.

- There exists a packing of k spanning s-arborescences in D \iff D is k-rooted-connected for s.

Theorem (Frank 1978)

Let G be an undirected graph, s a vertex of G and k a positive integer.

- There exists an orientation of G that is k-rooted-connected for s \iff G is k-partition-connected.
Motivation 1: Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G \iff G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be an directed graph, s a vertex of D and k a positive integer.

- There exists a packing of k spanning s-arborescences in D \iff D is k-rooted-connected for s.

Theorem (Frank 1978)

Let G be an undirected graph, s a vertex of G and k a positive integer.

- There exists an orientation of G that is k-rooted-connected for s \iff G is k-partition-connected.
Motivation 1: Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.
- There exists a packing of k spanning trees in G \(\iff\)
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, s a vertex of D and k a positive integer.
- There exists a packing of k spanning s-arborescences in D \(\iff\)
- D is k-rooted-connected for s.

Theorem (Frank 1978)

Let G be an undirected graph, s a vertex of G and k a positive integer.
- There exists an orientation of G that is k-rooted-connected for s \(\iff\)
- G is k-partition-connected.
<table>
<thead>
<tr>
<th>Theorem (Tutte, Nash-Williams 1961)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let G be an undirected graph and k a positive integer.</td>
</tr>
<tr>
<td>- There exists a packing of k spanning trees in G</td>
</tr>
<tr>
<td>- G is k-partition-connected.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Edmonds 1973)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let D be an directed graph, s a vertex of D and k a positive integer.</td>
</tr>
<tr>
<td>- There exists a packing of k spanning s-arborescences in D</td>
</tr>
<tr>
<td>- D is k-rooted-connected for s.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Frank 1978)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let G be an undirected graph, s a vertex of G and k a positive integer.</td>
</tr>
<tr>
<td>- There exists an orientation of G that is k-rooted-connected for s</td>
</tr>
<tr>
<td>- G is k-partition-connected.</td>
</tr>
</tbody>
</table>
Motivation 1: Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G \iff G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, s a vertex of D and k a positive integer.

- There exists a packing of k spanning s-arborescences in D \iff D is k-rooted-connected for s.

Theorem (Frank 1978)

Let G be an undirected graph, s a vertex of G and k a positive integer.

- There exists an orientation of G that is k-rooted-connected for s \iff G is k-partition-connected.
Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G \iff G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be an directed graph, s a vertex of D and k a positive integer.

- There exists a packing of k spanning s-arborescences in D \iff D is k-rooted-connected for s.

Theorem (Frank 1978)

Let G be an undirected graph, s a vertex of G and k a positive integer.

- There exists an orientation of G that is k-rooted-connected for s \iff G is k-partition-connected.
Body-Bar Framework
"Rigidity" of a Body-Bar Framework can be characterized by the existence of a spanning tree decomposition.
Motivation 2: Rigidity

Theorem (Tay 1984)

"Rigidity" of a Body-Bar Framework can be characterized by the existence of a spanning tree decomposition.
Theorem (Tay 1984)

"Rigidity" of a Body-Bar Framework can be characterized by the existence of a spanning tree decomposition.

Theorem (Katoh, Tanigawa 2012)

"Rigidity" of a Body-Bar Framework with Bar-Boundary can be characterized by the existence of a matroid-based rooted-tree decomposition.
Matroid-based rooted-graphs

Definition

A matroid-based rooted-graph is a quadruple (G, \mathcal{M}, S, π):

1. $G = (V, E)$ undirected graph,
2. \mathcal{M} a matroid on a set $S = \{s_1, \ldots, s_t\}$.
3. π a placement of the elements of S at vertices of V.

\[G = (V, E) \text{ undirected graph,} \]

\[\mathcal{M} \text{ a matroid on a set } S = \{s_1, \ldots, s_t\}. \]

\[\pi \text{ a placement of the elements of } S \text{ at vertices of } V. \]
A matroid-based rooted-graph is a quadruple \((G, \mathcal{M}, S, \pi)\) :

1. \(G = (V, E)\) undirected graph,
2. \(\mathcal{M}\) a matroid on a set \(S = \{s_1, \ldots, s_t\}\).
3. \(\pi\) a placement of the elements of \(S\) at vertices of \(V\).

Notation:

\(S_X = \{s_1, s_2\}\)
A packing \(\{ T_1, \ldots, T_{|S|} \} \) of rooted-trees is called \(\mathcal{M}\)-based if:

1. \(s_i \) is the root of \(T_i \) for every \(s_i \in S \),
2. \(\{ s_i \in S : v \in V(T_i) \} \) forms a base of \(\mathcal{M} \) for every \(v \in V \).
\(M \)-based packing of rooted-trees

Definition

A packing \(\{ T_1, \ldots, T_{|S|} \} \) of rooted-trees is called \(M \)-based if

1. \(s_i \) is the root of \(T_i \) for every \(s_i \in S \),
2. \(\{s_i \in S : v \in V(T_i)\} \) forms a base of \(M \) for every \(v \in V \).
\(M\)-based packing of rooted-trees

Definition

A packing \(\{T_1, \ldots, T_{|S|}\}\) of rooted-trees is called \(M\)-based if:

1. \(s_i\) is the root of \(T_i\) for every \(s_i \in S\),
2. \(\{s_i \in S : \nu \in V(T_i)\}\) forms a base of \(M\) for every \(\nu \in V\).

\[\pi(s_1) \quad \pi(s_2) \quad \pi(s_3)\]

\[T_1 \quad T_2 \quad T_3\]
A packing \(\{T_1, \ldots, T_{|S|}\} \) of rooted-trees is called \(\mathcal{M}\)-based if:

1. \(s_i \) is the root of \(T_i \) for every \(s_i \in S \),
2. \(\{s_i \in S : v \in V(T_i)\} \) forms a base of \(\mathcal{M} \) for every \(v \in V \).

\[\pi \text{ is } \mathcal{M} \text{-independent if for every } v \in V, S_v \text{ is independent in } \mathcal{M}. \]

\[(G, \mathcal{M}, S, \pi) \text{ is partition-connected if for every partition } \mathcal{P} \text{ of } V, \]
\[e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} (r_M(S) - r_M(S_X)). \]
Definition

A packing \(\{T_1, \ldots, T_{|S|}\} \) of rooted-trees is called \(\mathcal{M}\)-based if:

1. \(s_i \) is the root of \(T_i \) for every \(s_i \in S \),
2. \(\{s_i \in S : v \in V(T_i)\} \) forms a base of \(\mathcal{M} \) for every \(v \in V \).

Definitions

1. \(\pi \) is \(\mathcal{M}\)-independent if for every \(v \in V \), \(S_v \) is independent in \(\mathcal{M} \).
2. \((G, \mathcal{M}, S, \pi)\) is partition-connected if for every partition \(\mathcal{P} \) of \(V \),
 \[
 e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} (r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X)).
 \]
\(\mathcal{M}\)-based packing of rooted-trees

Definition

A packing \(\{T_1, \ldots, T_{|S|}\}\) of rooted-trees is called \(\mathcal{M}\)-based if

1. \(s_i\) is the root of \(T_i\) for every \(s_i \in S\),
2. \(\{s_i \in S : v \in V(T_i)\}\) forms a base of \(\mathcal{M}\) for every \(v \in V\).

Definitions

1. \(\pi\) is \(\mathcal{M}\)-independent if for every \(v \in V\), \(S_v\) is independent in \(\mathcal{M}\).
2. \((G, \mathcal{M}, S, \pi)\) is partition-connected if for every partition \(\mathcal{P}\) of \(V\),
\[e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} (r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X)).\]

Theorem (Katoh, Tanigawa 2012)

Let \((G, \mathcal{M}, S, \pi)\) be a matroid-based rooted-graph.

- There is a matroid-based packing of rooted-trees in \((G, \mathcal{M}, S, \pi)\) if and only if \(\pi\) is \(\mathcal{M}\)-independent and \((G, \mathcal{M}, S, \pi)\) is partition-connected.
Definition

A packing \(\{ T_1, \ldots, T_{|S|} \} \) of rooted-trees is called \(\mathcal{M} \)-based if

1. \(s_i \) is the root of \(T_i \) for every \(s_i \in S \),
2. \(\{ s_i \in S : v \in V(T_i) \} \) forms a base of \(\mathcal{M} \) for every \(v \in V \).

Definitions

1. \(\pi \) is \(\mathcal{M} \)-independent if for every \(v \in V \), \(S_v \) is independent in \(\mathcal{M} \).
2. \((G, \mathcal{M}, S, \pi)\) is partition-connected if for every partition \(\mathcal{P} \) of \(V \),
 \[e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} (r_M(S) - r_M(S_X)) \]

Theorem (Katoh, Tanigawa 2012)

Let \((G, \mathcal{M}, S, \pi)\) be a matroid-based rooted-graph.

- There is a matroid-based packing of rooted-trees in \((G, \mathcal{M}, S, \pi)\) \iff \(\pi \) is \(\mathcal{M} \)-independent and \((G, \mathcal{M}, S, \pi)\) is partition-connected.
Definition

A packing \(\{ T_1, \ldots, T_{|S|} \} \) of rooted-trees is called \(\mathcal{M}\)-based if

1. \(s_i \) is the root of \(T_i \) for every \(s_i \in S \),
2. \(\{ s_i \in S : v \in V(T_i) \} \) forms a base of \(\mathcal{M} \) for every \(v \in V \).

Definitions

1. \(\pi \) is \(\mathcal{M} \)-independent if for every \(v \in V \), \(S_v \) is independent in \(\mathcal{M} \).
2. \((G, \mathcal{M}, S, \pi) \) is partition-connected if for every partition \(\mathcal{P} \) of \(V \),
 \[e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} (r_M(S) - r_M(S_X)). \]

Theorem (Katoh, Tanigawa 2012)

Let \((G, \mathcal{M}, S, \pi) \) be a matroid-based rooted-graph.

- There is a matroid-based packing of rooted-trees in \((G, \mathcal{M}, S, \pi) \) \(\iff \)
- \(\pi \) is \(\mathcal{M} \)-independent and \((G, \mathcal{M}, S, \pi) \) is partition-connected.
Definition

A packing \(\{ T_1, \ldots, T_{|S|} \} \) of arborescences is called \(\mathcal{M} \)-based if:

1. \(s_i \) is the root of \(T_i \) for every \(s_i \in S \),
2. \(\{ s_i \in S : v \in V(T_i) \} \) forms a base of \(\mathcal{M} \) for every \(v \in V \).
\mathcal{M}-based packing of arborescences

Definition

A packing $\{T_1, \ldots, T_{|S|}\}$ of arborescences is called \mathcal{M}-based if

1. s_i is the root of T_i for every $s_i \in S$,
2. $\{s_i \in S : v \in V(T_i)\}$ forms a base of \mathcal{M} for every $v \in V$.

![Diagram of arborescences](image)
Definition

A packing \(\{ T_1, \ldots, T_{|S|} \} \) of arborescences is called \(\mathcal{M} \)-based if

1. \(s_i \) is the root of \(T_i \) for every \(s_i \in S \),
2. \(\{ s_i \in S : v \in V(T_i) \} \) forms a base of \(\mathcal{M} \) for every \(v \in V \).
Definition

A packing \(\{T_1, \ldots, T_{|S|}\} \) of arborescences is called \(\mathcal{M} \)-based if

1. \(s_i \) is the root of \(T_i \) for every \(s_i \in S \),
2. \(\{s_i \in S : v \in V(T_i)\} \) forms a base of \(\mathcal{M} \) for every \(v \in V \).

Definition

\((D, \mathcal{M}, S, \pi)\) is rooted-connected if for every \(\emptyset \neq X \subseteq V \),

\[\rho_D(X) \geq r_M(S) - r_M(S_X). \]
Definition

A packing \(\{T_1, \ldots, T_{|S|}\} \) of arborescences is called \(\mathcal{M}\)-based if

1. \(s_i \) is the root of \(T_i \) for every \(s_i \in S \),
2. \(\{s_i \in S : v \in V(T_i)\} \) forms a base of \(\mathcal{M} \) for every \(v \in V \).

Definition

\((D, \mathcal{M}, S, \pi)\) is **rooted-connected** if for every \(\emptyset \neq X \subseteq V \),

\[
\rho_D(X) \geq r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X).
\]

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

Let \((D, \mathcal{M}, S, \pi)\) be a matroid-based rooted-digraph.

- There is a matroid-based packing of arborescences in \((D, \mathcal{M}, S, \pi)\) if and only if \(\pi \) is \(\mathcal{M} \)-independent and \((D, \mathcal{M}, S, \pi)\) is rooted-connected.
A packing \(\{T_1, \ldots, T_{|S|}\} \) of arborescences is called \(\mathcal{M} \)-based if

1. \(s_i \) is the root of \(T_i \) for every \(s_i \in S \),
2. \(\{s_i \in S : v \in V(T_i)\} \) forms a base of \(\mathcal{M} \) for every \(v \in V \).

\((D, \mathcal{M}, S, \pi)\) is rooted-connected if for every \(\emptyset \neq X \subseteq V \),

\[\rho_D(X) \geq r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X). \]

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

Let \((D, \mathcal{M}, S, \pi)\) be a matroid-based rooted-digraph.

- There is a matroid-based packing of arborescences in \((D, \mathcal{M}, S, \pi)\)

\[\iff \]

- \(\pi \) is \(\mathcal{M} \)-independent and \((D, \mathcal{M}, S, \pi)\) is rooted-connected.
A packing \(\{ T_1, \ldots, T_{|S|} \} \) of arborescences is called \(\mathcal{M} \)-based if

1. \(s_i \) is the root of \(T_i \) for every \(s_i \in S \),
2. \(\{ s_i \in S : v \in V(T_i) \} \) forms a base of \(\mathcal{M} \) for every \(v \in V \).

\((D, \mathcal{M}, S, \pi)\) is rooted-connected if for every \(\emptyset \neq X \subseteq V \),
\[\rho_D(X) \geq r_\mathcal{M}(S) - r_\mathcal{M}(S_X) \]

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

Let \((D, \mathcal{M}, S, \pi)\) be a matroid-based rooted-digraph.

- There is a matroid-based packing of arborescences in \((D, \mathcal{M}, S, \pi)\)
- \(\pi \) is \(\mathcal{M} \)-independent and \((D, \mathcal{M}, S, \pi)\) is rooted-connected.
Proof of necessity

Let \(\{T_1, \ldots, T_{|S|}\} \) be a matroid-based packing of arborescences in
\((D, \mathcal{M}, S, \pi)\) and \(v \in X \subseteq V \).

Let \(B = \{s_i \in S : v \in V(T_i)\} \), \(B_1 = B \cap S \) and \(B_2 = B \setminus B_1 \).

Since \(S_v \subseteq B_1 \subseteq B \) is a base of \(\mathcal{M} \), \(\pi \) is \(\mathcal{M} \)-independent.

Since, for each root \(s_i \) in \(B_2 \), there exists an arc of \(T_i \) that enters \(X \) and the arborescences are arc-disjoint,

\[\rho_D(X) \geq |B_2| = |B| - |B_1| = r_M(S) - r_M(B_1) \geq r_M(S) - r_M(S \setminus X) \]

that is \((D, \mathcal{M}, S, \pi)\) is rooted-connected.
Proof of necessity

- Let \(\{T_1, \ldots, T_{|S|}\} \) be a matroid-based packing of arborescences in \((D, M, S, \pi)\) and \(v \in X \subseteq V \).
- Let \(B = \{s_i \in S : v \in V(T_i)\} \), \(B_1 = B \cap S_X \) and \(B_2 = B \setminus B_1 \).
- Since \(S_v \subseteq B_1 \subseteq B \) is a base of \(M \), \(\pi \) is \(M \)-independent.
- Since, for each root \(s_i \) in \(B_2 \), there exists an arc of \(T_i \) that enters \(X \) and the arborescences are arc-disjoint,\[\rho_D(X) \geq |B_2| = |B| - |B_1| = r_M(S) - r_M(B_1) \geq r_M(S) - r_M(S_X) \]
 that is \((D, M, S, \pi)\) is rooted-connected.
Proof of necessity

- Let \(\{T_1, \ldots, T_{|S|}\} \) be a matroid-based packing of arborescences in \((D, \mathcal{M}, S, \pi)\) and \(v \in X \subseteq V \).
- Let \(B = \{s_i \in S : v \in V(T_i)\} \), \(B_1 = B \cap S_X \) and \(B_2 = B \setminus B_1 \).
- Since \(S_v \subseteq B_1 \subseteq B \) is a base of \(\mathcal{M} \), \(\pi \) is \(\mathcal{M} \)-independent.
- Since, for each root \(s_i \) in \(B_2 \), there exists an arc of \(T_i \) that enters \(X \) and the arborescences are arc-disjoint, \(\rho_D(X) \geq |B_2| = |B| - |B_1| = r_M(S) - r_M(B_1) \geq r_M(S) - r_M(S_X) \) that is \((D, \mathcal{M}, S, \pi)\) is rooted-connected.

\[\pi(s_{|B_2|}) \]
\[\pi(s_1) \]
\[\pi(s_{|B_1|}) \]
\[\pi(s_2) \]
\[\pi(s_j) \]
\[\pi(s_\ell) \]
\[\pi(s|B_1|) \]
\[X \]
Proof of necessity

Let \(\{ T_1, \ldots, T_{|S|} \} \) be a matroid-based packing of arborescences in \((D, \mathcal{M}, S, \pi)\) and \(v \in X \subseteq V \).

Let \(B = \{ s_i \in S : v \in V(T_i) \} \), \(B_1 = B \cap S_X \) and \(B_2 = B \setminus B_1 \).

Since \(S_v \subseteq B_1 \subseteq B \) is a base of \(\mathcal{M} \), \(\pi \) is \(\mathcal{M} \)-independent.

Since, for each root \(s_i \) in \(B_2 \), there exists an arc of \(T_i \) that enters \(X \) and the arborescences are arc-disjoint, \(\rho_D(X) \geq |B_2| = |B| - |B_1| = r_M(S) - r_M(B_1) \geq r_M(S) - r_M(S_X) \) that is \((D, \mathcal{M}, S, \pi)\) is rooted-connected.
Theorem (Frank 1980)

Let $G = (V, E)$ be an undirected graph and $h : 2^V \rightarrow \mathbb{Z}_+$ an intersecting supermodular non-increasing set-function.

- There is an orientation D of G s.t. $\rho_D(X) \geq h(X)$ $\forall \emptyset \neq X \subset V$
- $e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$ for every partition \mathcal{P} of V.
Theorem (Frank 1980)

Let $G = (V, E)$ be an undirected graph and $h : 2^V \to \mathbb{Z}_+$ an intersecting supermodular non-increasing set-function.

- There is an orientation D of G s. t. $\rho_D(X) \geq h(X)$ $\forall \emptyset \neq X \subset V$

 \iff

- $e_G(P) \geq \sum_{X \in P} h(X)$ for every partition P of V.
Orientation results

Theorem (Frank 1980)

Let $G = (V, E)$ be an undirected graph and $h : 2^V \rightarrow \mathbb{Z}_+^+$ an intersecting supermodular non-increasing set-function.

- There is an orientation D of G s. t. $\rho_D(X) \geq h(X)$ $\forall \emptyset \neq X \subset V$

- $e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$ for every partition \mathcal{P} of V.

Z. Szigeti (G-SCOP, Grenoble)
On packing of arborescences
November 2012
Theorem (Frank 1980)

Let $G = (V, E)$ be an undirected graph and $h : 2^V \to \mathbb{Z}_+$ an intersecting supermodular non-increasing set-function.

- There is an orientation D of G s. t. $\rho_D(X) \geq h(X)$ $\forall \emptyset \neq X \subset V$

- $e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$ for every partition \mathcal{P} of V.

Applying for $h(X) = r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X)$ provides
Theorem (Frank 1980)

Let $G = (V, E)$ be an undirected graph and $h : 2^V \rightarrow \mathbb{Z}_+$ an intersecting supermodular non-increasing set-function.

- There is an orientation D of G s.t. $\rho_D(X) \geq h(X)$ $\forall \emptyset \neq X \subset V$

- $e_G(P) \geq \sum_{X \in P} h(X)$ for every partition P of V.

Applying for $h(X) = r_M(S) - r_M(S_X)$ provides

Corollary

Let (G, M, S, π) be a matroid-based rooted-graph.

- There is an orientation D of G s.t. (D, M, S, π) is rooted-connected

- (G, M, S, π) is partition-connected.
Theorem (Frank 1980)

Let $G = (V, E)$ be an undirected graph and $h : 2^V \to \mathbb{Z}_+$ an intersecting supermodular non-increasing set-function.

- There is an orientation D of G s.t. $\rho_D(X) \geq h(X)$ $\forall \emptyset \neq X \subset V$

- $e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$ for every partition \mathcal{P} of V.

Applying for $h(X) = r_M(S) - r_M(S_X)$ provides

Corollary

Let (G, M, S, π) be a matroid-based rooted-graph.

- There is an orientation D of G s.t. (D, M, S, π) is rooted-connected

- (G, M, S, π) is partition-connected.
Orientation results

Theorem (Frank 1980)

Let \(G = (V, E) \) be an undirected graph and \(h : 2^V \rightarrow \mathbb{Z}_+ \) an intersecting supermodular non-increasing set-function.

- There is an orientation \(D \) of \(G \) s. t. \(\rho_D(X) \geq h(X) \) \(\forall \emptyset \neq X \subset V \)
- \(e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X) \) for every partition \(\mathcal{P} \) of \(V \).

Applying for \(h(X) = r_M(S) - r_M(S_X) \) provides

Corollary

Let \((G, M, S, \pi)\) be a matroid-based rooted-graph.

- There is an orientation \(D \) of \(G \) s. t. \((D, M, S, \pi)\) is rooted-connected
- \((G, M, S, \pi)\) is partition-connected.
Theorem (Katoh, Tanigawa 2012)

There is a matroid-based packing of rooted-trees in (G, \mathcal{M}, S, π) if and only if π is \mathcal{M}-independent and (G, \mathcal{M}, S, π) is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

There is a matroid-based packing of arborescences in (D, \mathcal{M}, S, π) if and only if π is \mathcal{M}-independent and (D, \mathcal{M}, S, π) is rooted-connected.

Theorem (Frank 1980)

There is an orientation D of G such that (D, \mathcal{M}, S, π) is rooted-connected if and only if (G, \mathcal{M}, S, π) is partition-connected.
Plan executed

Theorem (Katoh, Tanigawa 2012)
- There is a matroid-based packing of rooted-trees in (G, M, S, π) if and only if π is M-independent and (G, M, S, π) is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)
- There is a matroid-based packing of arborescences in (D, M, S, π) if and only if π is M-independent and (D, M, S, π) is rooted-connected.

Theorem (Frank 1980)
- There is an orientation D of G such that (D, M, S, π) is rooted-connected if and only if (G, M, S, π) is partition-connected.
Theorem (Katoh, Tanigawa 2012)

- There is a matroid-based packing of rooted-trees in \((G, \mathcal{M}, S, \pi)\)

\[\iff \]

- \(\pi\) is \(\mathcal{M}\)-independent and \((G, \mathcal{M}, S, \pi)\) is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

- There is a matroid-based packing of arborescences in \((D, \mathcal{M}, S, \pi)\)

\[\iff \]

- \(\pi\) is \(\mathcal{M}\)-independent and \((D, \mathcal{M}, S, \pi)\) is rooted-connected.

Theorem (Frank 1980)

- There is an orientation \(D\) of \(G\) s. t. \((D, \mathcal{M}, S, \pi)\) is rooted-connected

\[\iff \]

- \((G, \mathcal{M}, S, \pi)\) is partition-connected.
Plan executed

Theorem (Katoh, Tanigawa 2012)

- There is a matroid-based packing of rooted-trees in (G, M, S, π)
 \iff

- π is M-independent and (G, M, S, π) is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

- There is a matroid-based packing of arborescences in (D, M, S, π)
 \iff

- π is M-independent and (D, M, S, π) is rooted-connected.

Theorem (Frank 1980)

- There is an orientation D of G s. t. (D, M, S, π) is rooted-connected
 \iff

- (G, M, S, π) is partition-connected.
Theorem (Katoh, Tanigawa 2012)

- There is a matroid-based packing of rooted-trees in \((G, \mathcal{M}, S, \pi)\)
 \iff
- \(\pi\) is \(\mathcal{M}\)-independent and \((G, \mathcal{M}, S, \pi)\) is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

- There is a matroid-based packing of arborescences in \((D, \mathcal{M}, S, \pi)\)
 \iff
- \(\pi\) is \(\mathcal{M}\)-independent and \((D, \mathcal{M}, S, \pi)\) is rooted-connected.

Theorem (Frank 1980)

- There is an orientation \(D\) of \(G\) s. t. \((D, \mathcal{M}, S, \pi)\) is rooted-connected
 \iff
- \((G, \mathcal{M}, S, \pi)\) is partition-connected.
Plan executed

Theorem (Katoh, Tanigawa 2012)

- There is a matroid-based packing of rooted-trees in \((G, \mathcal{M}, S, \pi)\) if and only if
 - \(\pi\) is \(\mathcal{M}\)-independent and
 - \((G, \mathcal{M}, S, \pi)\) is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

- There is a matroid-based packing of arborescences in \((D, \mathcal{M}, S, \pi)\) if and only if
 - \(\pi\) is \(\mathcal{M}\)-independent and
 - \((D, \mathcal{M}, S, \pi)\) is rooted-connected.

Theorem (Frank 1980)

- There is an orientation \(D\) of \(G\) s. t. \((D, \mathcal{M}, S, \pi)\) is rooted-connected if and only if
 - \((G, \mathcal{M}, S, \pi)\) is partition-connected.
Theorem (Katoh, Tanigawa 2012)

There is a matroid-based packing of rooted-trees in \((G, M, S, \pi)\) if and only if \(\pi\) is \(M\)-independent and \((G, M, S, \pi)\) is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

There is a matroid-based packing of arborescences in \((D, M, S, \pi)\) if and only if \(\pi\) is \(M\)-independent and \((D, M, S, \pi)\) is rooted-connected.

Theorem (Frank 1980)

There is an orientation \(D\) of \(G\) such that \((D, M, S, \pi)\) is rooted-connected if and only if \((G, M, S, \pi)\) is partition-connected.
Theorem (Katoh, Tanigawa 2012)

There is a matroid-based packing of rooted-trees in \((G, \mathcal{M}, S, \pi)\)
\[\iff\]
\(\pi\) is \(\mathcal{M}\)-independent and \((G, \mathcal{M}, S, \pi)\) is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

There is a matroid-based packing of arborescences in \((D, \mathcal{M}, S, \pi)\)
\[\iff\]
\(\pi\) is \(\mathcal{M}\)-independent and \((D, \mathcal{M}, S, \pi)\) is rooted-connected.

Theorem (Frank 1980)

There is an orientation \(D\) of \(G\) s. t. \((D, \mathcal{M}, S, \pi)\) is rooted-connected
\[\iff\]
\((G, \mathcal{M}, S, \pi)\) is partition-connected.
Theorem (Katoh, Tanigawa 2012)

There is a matroid-based packing of rooted-trees in \((G, \mathcal{M}, S, \pi)\)

\[\iff\]

\(\pi\) is \(\mathcal{M}\)-independent and \((G, \mathcal{M}, S, \pi)\) is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

There is a matroid-based packing of arborescences in \((D, \mathcal{M}, S, \pi)\)

\[\iff\]

\(\pi\) is \(\mathcal{M}\)-independent and \((D, \mathcal{M}, S, \pi)\) is rooted-connected.

Theorem (Frank 1980)

There is an orientation \(D\) of \(G\) s. t. \((D, \mathcal{M}, S, \pi)\) is rooted-connected

\[\iff\]

\((G, \mathcal{M}, S, \pi)\) is partition-connected.
Theorem (Katoh, Tanigawa 2012)

There is a matroid-based packing of rooted-trees in \((G, M, S, \pi)\)

\[\iff\]

\(\pi\) is \(M\)-independent and \((G, M, S, \pi)\) is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

There is a matroid-based packing of arborescences in \((D, M, S, \pi)\)

\[\iff\]

\(\pi\) is \(M\)-independent and \((D, M, S, \pi)\) is rooted-connected.

Theorem (Frank 1980)

There is an orientation \(D\) of \(G\) s. t. \((D, M, S, \pi)\) is rooted-connected

\[\iff\]

\((G, M, S, \pi)\) is partition-connected.
Definitions for the Proof

Definitions

1. A vertex set X is **tight** if $\rho_D(X) = r_M(S) - r_M(S_X)$.

2. A vertex set Y **dominates** a vertex set X if $S_X \subseteq \text{Span}_M(S_Y)$.
 (Note that domination is a transitive relation.)

3. An arc uv is **good** if v does not dominate u, otherwise it is **bad**.
Definitions for the Proof

Definitions

1. A vertex set X is **tight** if $\rho_D(X) = r_M(S) - r_M(S_X)$.

2. A vertex set Y **dominates** a vertex set X if $S_X \subseteq \text{Span}_M(S_Y)$.
 (Note that domination is a transitive relation.)

3. An arc uv is **good** if v does not dominate u, otherwise it is **bad**.

Remark

Only good arcs uv can be used in an arborescence rooted at u, since there must exist $s \in S_u$ such that $S_v \cup s$ is independent in M.
Proof of sufficiency: Case 1 (No good arc exists.)

Claim

Every vertex \(v \) of a tight set \(X \) containing only bad arcs dominates \(X \).
Proof of sufficiency: Case 1 (No good arc exists.)

Claim

Every vertex v of a tight set X containing only bad arcs dominates X.

Proof

1. Let Y be the set of vertices from which v is reachable in $D[X]$.
2. v dominates Y: Since domination is transitive, v dominates each vertex of Y and hence Y.
3. Y dominates X: Using that every arc of D that enters Y enters X.
Proof of sufficiency : Case 1 (No good arc exists.)

Claim
Every vertex v of a tight set X containing only bad arcs dominates X.

Proof
1. Let Y be the set of vertices from which v is reachable in $D[X]$.
2. v dominates Y : Since domination is transitive, v dominates each vertex of Y and hence Y.
3. Y dominates X : Using that every arc of D that enters Y enters X.
Proof of sufficiency : Case 1 (No good arc exists.)

Claim

Every vertex \(v \) of a tight set \(X \) containing only bad arcs dominates \(X \).

Proof

1. Let \(Y \) be the set of vertices from which \(v \) is reachable in \(D[X] \).
2. \(v \) dominates \(Y \) : Since domination is transitive, \(v \) dominates each vertex of \(Y \) and hence \(Y \).
3. \(Y \) dominates \(X \) : Using that every arc of \(D \) that enters \(Y \) enters \(X \).
Proof of sufficiency : Case 1 (No good arc exists.)

Claim

Every vertex \(v \) of a tight set \(X \) containing only bad arcs dominates \(X \).

Proof

1. Let \(Y \) be the set of vertices from which \(v \) is reachable in \(D[X] \).
2. \(v \) dominates \(Y \) : Since domination is transitive, \(v \) dominates each vertex of \(Y \) and hence \(Y \).
3. \(Y \) dominates \(X \) : Using that every arc of \(D \) that enters \(Y \) enters \(X \).
Proof of sufficiency: Case 1 (No good arc exists.)

Claim
Every vertex v of a tight set X containing only bad arcs dominates X.

Proof
1. Let Y be the set of vertices from which v is reachable in $D[X]$.
2. v dominates Y: Since domination is transitive, v dominates each vertex of Y and hence Y.
3. Y dominates X: Using that every arc of D that enters Y enters X.

$$r_M(S) - r_M(S_Y) \leq \rho(Y) \leq \rho(X) = r_M(S) - r_M(S_X) \leq r_M(S) - r_M(S_Y).$$
Proof of sufficiency: Case 1 (No good arc exists.)

Claim
Every vertex v of a tight set X containing only bad arcs dominates X.

Proof
1. Let Y be the set of vertices from which v is reachable in $D[X]$.
2. v dominates Y: Since domination is transitive, v dominates each vertex of Y and hence Y.
3. Y dominates X: Using that every arc of D that enters Y enters X.

A matroid-based packing of arborescences in (D, M, S, π)
1. Take $|S_v|$ times each vertex v.
2. S_v is a spanning set of M for all $v \in V$ by Claim since V is tight,
3. S_v is independent in M for all $v \in V$ since π is M-independent.
Proof of sufficiency : Case 1 (No good arc exists.)

Claim

Every vertex v of a tight set X containing only bad arcs dominates X.

Proof

1. Let Y be the set of vertices from which v is reachable in $D[X]$.

2. v dominates Y: Since domination is transitive, v dominates each vertex of Y and hence Y.

3. Y dominates X: Using that every arc of D that enters Y enters X.

A matroid-based packing of arborescences in (D, M, S, π)

1. Take $|S_v|$ times each vertex v.

2. S_v is a spanning set of M for all $v \in V$ by Claim since V is tight,

3. S_v is independent in M for all $v \in V$ since π is M-independent.
Proof of sufficiency: Case 1 (No good arc exists.)

Claim

Every vertex \(v \) of a tight set \(X \) containing only bad arcs dominates \(X \).

Proof

1. Let \(Y \) be the set of vertices from which \(v \) is reachable in \(D[X] \).
2. \(v \) dominates \(Y \): Since domination is transitive, \(v \) dominates each vertex of \(Y \) and hence \(Y \).
3. \(Y \) dominates \(X \): Using that every arc of \(D \) that enters \(Y \) enters \(X \).

A matroid-based packing of arborescences in \((D, M, S, \pi)\)

1. Take \(|S_v| \) times each vertex \(v \).
2. \(S_v \) is a spanning set of \(M \) for all \(v \in V \) by Claim since \(V \) is tight,
3. \(S_v \) is independent in \(M \) for all \(v \in V \) since \(\pi \) is \(M \)-independent.
Proof of sufficiency: Case 1 (No good arc exists.)

Claim
Every vertex v of a tight set X containing only bad arcs dominates X.

Proof

1. Let Y be the set of vertices from which v is reachable in $D[X]$.
2. v dominates Y: Since domination is transitive, v dominates each vertex of Y and hence Y.
3. Y dominates X: Using that every arc of D that enters Y enters X.

A matroid-based packing of arborescences in (D, M, S, π)

1. Take $|S_v|$ times each vertex v.
2. S_v is a spanning set of M for all $v \in V$ by Claim since V is tight,
3. S_v is independent in M for all $v \in V$ since π is M-independent.
Proof of sufficiency: Case 2 (Good arcs exist.)

Definition

For $uv \in A$, $s \in S_u$, let

- $D' = D - uv$,
- $S' = S \cup s'$,
- $\pi'|S = \pi; \pi(s') = v$,
- $\mathcal{M}'|S = \mathcal{M}$; s' parallel to s.

\[
\begin{align*}
D' &= D - uv, \\
S' &= S \cup s', \\
\pi'|S &= \pi; \pi(s') = v, \\
\mathcal{M}'|S &= \mathcal{M}; s' \parallel s.
\end{align*}
\]
Proof of sufficiency: Case 2 (Good arcs exist.)

Definition

For $uv \in A$, $s \in S_u$, let

$$ D' = D - uv, $$

$$ S' = S \cup s', $$

$$ \pi'|S = \pi; \quad \pi(s') = v, $$

$$ \mathcal{M}'|S = \mathcal{M}; \quad s' \parallel s. $$

Remarks

1. Packing containing uv in (D, \mathcal{M}, S, π) \iff Packing in $(D', \mathcal{M}', S', \pi')$

2. π' is \mathcal{M}'-independent \iff π is \mathcal{M}-independent and $s \notin \text{Span}(S_v)$

3. $(D', \mathcal{M}', S', \pi')$ is rooted-connected \iff (D, \mathcal{M}, S, π) is rooted-connected and uv does not enter a tight set X that dominates u.

Z. Szigeti (G-SCOP, Grenoble)
Proof of sufficiency: Case 2 (Good arcs exist.)

Definition
For $uv \in A$, $s \in S_u$, let

$$D' = D - uv,$$
$$S' = S \cup s',$$
$$\pi'|S = \pi; \ \pi(s') = v,$$
$$\mathcal{M}'|S = \mathcal{M}; \ s' \parallel s.$$

Remarks

1. Packing containing uv in $(D, \mathcal{M}, S, \pi) \iff$ Packing in $(D', \mathcal{M}', S', \pi')$
2. π' is \mathcal{M}'-independent \iff π is \mathcal{M}-independent and $s \notin \text{Span}(S_v)$
3. $(D', \mathcal{M}', S', \pi')$ is rooted-connected \iff (D, \mathcal{M}, S, π) is rooted-connected and uv does not enter a tight set X that dominates u.
Proof of sufficiency: Case 2 (Good arcs exist.)

Definition

For $uv \in A, s \in S_u$, let

$$
\begin{align*}
D' &= D - uv, \\
S' &= S \cup s', \\
\pi'|S &= \pi; \quad \pi(s') = v, \\
\mathcal{M}'|S &= \mathcal{M}; \quad s' \text{ parallel to } s.
\end{align*}
$$

Remarks

1. Packing containing uv in $(D, \mathcal{M}, S, \pi) \iff$ Packing in $(D', \mathcal{M}', S', \pi')$
2. π' is \mathcal{M}'-independent \iff π is \mathcal{M}-independent and $s \notin \text{Span}(S_v)$
3. $(D', \mathcal{M}', S', \pi')$ is rooted-connected \iff (D, \mathcal{M}, S, π) is rooted-connected and uv does not enter a tight set X that dominates u.

Z. Szigeti (G-SCOP, Grenoble)
On packing of arborescences
November 2012
Proof of sufficiency: Case 2 (Good arcs exist.)

Definition

For $uv \in A, s \in S_u$, let

- $D' = D - uv$,
- $S' = S \cup s'$,
- $\pi'|S = \pi; \pi(s') = v$,
- $\mathcal{M}'|S = \mathcal{M}; s'$ parallel to s.

Remarks

1. Packing containing uv in $(D, \mathcal{M}, S, \pi) \iff$ Packing in $(D', \mathcal{M}', S', \pi')$
2. π' is \mathcal{M}'-independent \iff π is \mathcal{M}-independent and $s \notin \text{Span}(S_v)$
3. $(D', \mathcal{M}', S', \pi')$ is rooted-connected \iff (D, \mathcal{M}, S, π) is rooted-connected and uv does not enter a tight set X that dominates u. Z. Szigeti (G-SCOP, Grenoble)
Proof of sufficiency : Case 2 (Good arcs exist.)

Proof:

1. Wlog. each good arc uv enters a tight set X that dominates u.
2. Choose (uv, X) with X minimal.
3. X dominates u, v does not dominate u so v does not dominate X.
4. By Claim, there exists a good arc $u'v'$ in $D[X]$.
5. $u'v'$ enters a tight set Y that dominates u'.
6. $u'v'$ enters the tight set $X \cap Y$ that dominates u'.
7. Contradiction.
Proof of sufficiency: Case 2 (Good arcs exist.)

Proof:

1. Wlog. each good arc uv enters a tight set X that dominates u.
2. Choose (uv, X) with X minimal.
3. X dominates u, v does not dominate u so v does not dominate X.
4. By Claim, there exists a good arc $u'v'$ in $D[X]$.
5. $u'v'$ enters a tight set Y that dominates u'.
6. $u'v'$ enters the tight set $X \cap Y$ that dominates u'.
7. Contradiction.
Proof of sufficiency: Case 2 (Good arcs exist.)

Proof:

1. Wlog. each good arc uv enters a tight set X that dominates u.
2. Choose (uv, X) with X minimal.
3. X dominates u, v does not dominate u so v does not dominate X.
4. By Claim, there exists a good arc $u'v'$ in $D[X]$.
5. $u'v'$ enters a tight set Y that dominates u'.
6. $u'v'$ enters the tight set $X \cap Y$ that dominates u'.
7. Contradiction.
Proof of sufficiency: Case 2 (Good arcs exist.)

Proof:

1. Wlog. each good arc uv enters a tight set X that dominates u.

2. Choose (uv, X) with X minimal.

3. X dominates u, v does not dominate u so v does not dominate X.

4. By Claim, there exists a good arc $u'v'$ in $D[X]$.

5. $u'v'$ enters a tight set Y that dominates u'.

6. $u'v'$ enters the tight set $X \cap Y$ that dominates u'.

7. Contradiction.
Proof of sufficiency: Case 2 (Good arcs exist.)

Proof:

1. Wlog. each good arc uv enters a tight set X that dominates u.
2. Choose (uv, X) with X minimal.
3. X dominates u, v does not dominate u so v does not dominate X.
4. By Claim, there exists a good arc $u'v'$ in $D[X]$.
5. $u'v'$ enters a tight set Y that dominates u'.
6. $u'v'$ enters the tight set $X \cap Y$ that dominates u'.
7. Contradiction.
Proof of sufficiency : Case 2 (Good arcs exist.)

Proof :

1. Wlog. each good arc \(uv \) enters a tight set \(X \) that dominates \(u \).
2. Choose \((uv, X) \) with \(X \) minimal.
3. \(X \) dominates \(u \), \(v \) does not dominate \(u \) so \(v \) does not dominate \(X \).
4. By Claim, there exists a good arc \(u'v' \) in \(D[X] \).
5. \(u'v' \) enters a tight set \(Y \) that dominates \(u' \).
6. \(u'v' \) enters the tight set \(X \cap Y \) that dominates \(u' \).
7. Contradiction.
Proof of sufficiency : Case 2 (Good arcs exist.)

Proof :

1. Wlog. each good arc uv enters a tight set X that dominates u.
2. Choose (uv, X) with X minimal.
3. X dominates u, v does not dominate u so v does not dominate X.
4. By Claim, there exists a good arc $u'v'$ in $D[X]$.
5. $u'v'$ enters a tight set Y that dominates u'.
6. $u'v'$ enters the tight set $X \cap Y$ that dominates u'.
7. Contradiction.
Proof of sufficiency: Case 2 (Good arcs exist.)

Proof:

1. Wlog. each good arc uv enters a tight set X that dominates u.
2. Choose (uv, X) with X minimal.
3. X dominates u, v does not dominate u so v does not dominate X.
4. By Claim, there exists a good arc $u'v'$ in $D[X]$.
5. $u'v'$ enters a tight set Y that dominates u'.
6. $u'v'$ enters the tight set $X \cap Y$ that dominates u'.
7. Contradiction.
Thank you for your attention!