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Motivation 2 : Rigidity

Body-Bar Framework

Theorem (Tay 1984)

"Rigidity” of a Body-Bar Framework can
be characterized by the existence of a
spanning tree decomposition.

Body-Bar Framework

with Bar-Boundary Theorem (Katoh, Tanigawa 2012)

"Rigidity” of a Body-Bar Framework
with Bar-Boundary can be characterized
by the existence of a matroid-based
rooted-tree decomposition.
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Matroid-based rooted-graphs

A matroid-based rooted-graph is a quadruple (G, M,S, ) :
© G = (V,E) undirected graph,
© M a matroid on a set S = {s1,...,S¢}.
© 1w a placement of the elements of S at vertices of V.

m(s1)

G m(s2
SE {51,52,53}
M= Us,
m(s3)
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Matroid-based rooted-graphs

A matroid-based rooted-graph is a quadruple (G, M,S, ) :
© G = (V,E) undirected graph,
© M a matroid on a set S = {s1,...,S¢}.
© 7 a placement of the elements of S at vertices of V.

X
Sx = {51752}

m(s2

m(s3)

o Sx = the elements of S placed at X (= 7—1(X)).
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(D, M, S, 7) is rooted-connected if for every ) # X C V
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Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

Let (D, M,S, ) be a matroid-based rooted-digraph.

@ There is a matroid-based packing of arborescences in (D, M, S, )
<~

® 7 is M-independent and (D, M, S, ) is rooted-connected.
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Proof of necessity

o Let {Ty,..., T|5|} be a matroid-based packing of arborescences in
(D,M,S,m)and ve X C V.
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Proof of necessity

o Let {Ty,..., Tis|} be a matroid-based packing of arborescences in
(D,M,S,m)and ve X C V.

o Let B={s;€S:veV(T;)}, Bi=BNSx and B, =B\ B;.

@ Since S, C B; C B is a base of M, 7 is M-independent.

@ Since, for each root s; in By, there exists an arc of T; that enters X

and the arborescences are arc-disjoint,
pp(X) = [Ba| = [B| — [B1| = ra(S) — rm(Bi) = raa(S) — raa(Sx)
that is (D, M, S, ) is rooted-connected.
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Orientation results

Theorem (Frank 1980)

Let G = (V, E) be an undirected graph and h: 2V — 7. an intersecting
supermodular non-increasing set-function.
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Applying for h(X) = rp(S) — ram(Sx) provides

Let (G, M,S, ) be a matroid-based rooted-graph.
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<

Z. Szigeti (G-SCOP, Grenoble) On packing of arborescences November 2012 9/15



Orientation results

Theorem (Frank 1980)

Let G = (V, E) be an undirected graph and h: 2Y — 7, an intersecting
supermodular non-increasing set-function.

@ There is an orientation D of G s. t. pp(X) > h(X) VO#XC V
<~

o eg(P) = > xep h(X) for every partition P of V.

Applying for h(X) = rp(S) — ram(Sx) provides

Let (G, M,S, ) be a matroid-based rooted-graph.

@ There is an orientation D of G s. t. (D, M, S, 7) is rooted-connected
<

e (G, M,S, ) is partition-connected.

Z. Szigeti (G-SCOP, Grenoble) On packing of arborescences November 2012 9/15



Plan executed

Theorem (Katoh, Tanigawa 2012)

@ There is a matroid-based packing of rooted-trees in (G, M,S, )
<

@ 7 is M-independent and (G, M,S, ) is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

@ There is a matroid-based packing of arborescences in (D, M, S, )
<~

@ 7 is M-independent and (D, M,S, ) is rooted-connected.

v

Theorem (Frank 1980)

@ There is an orientation D of G s. t. (D, M,S, ) is rooted-connected
<~

e (G, M,S, ) is partition-connected.

v

Z. Szigeti (G-SCOP, Grenoble) On packing of arborescences November 2012 10 / 15



Plan executed

Theorem (Katoh, Tanigawa 2012)

@ There is a matroid-based packing of rooted-trees in (G, M,S, )
<

® 7 is M-independent and (G, M,S, ) is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

@ There is a matroid-based packing of arborescences in (D, M, S, )
<~

@ 7 is M-independent and (D, M,S, ) is rooted-connected.

v

Theorem (Frank 1980)

@ There is an orientation D of G s. t. (D, M,S, ) is rooted-connected
<~

e (G, M,S, ) is partition-connected.

v

Z. Szigeti (G-SCOP, Grenoble) On packing of arborescences November 2012 10 / 15



Plan executed

Theorem (Katoh, Tanigawa 2012)

@ There is a matroid-based packing of rooted-trees in (G, M,S, )
<

® m is M-independent and (G, M,S, ) is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

@ There is a matroid-based packing of arborescences in (D, M, S, )
<~

@ 7 is M-independent and (D, M,S, ) is rooted-connected.

v

Theorem (Frank 1980)

@ There is an orientation D of G s. t. (D, M,S, ) is rooted-connected
<~

e (G, M,S, ) is partition-connected.

v

Z. Szigeti (G-SCOP, Grenoble) On packing of arborescences November 2012 10 / 15



Plan executed

Theorem (Katoh, Tanigawa 2012)

@ There is a matroid-based packing of rooted-trees in (G, M,S, )
<

@ 7 is M-independent and (G, M,S, ) is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

@ There is a matroid-based packing of arborescences in (D, M, S, )
<~

@ 7 is M-independent and (D, M,S, ) is rooted-connected.

v

Theorem (Frank 1980)

@ There is an orientation D of G s. t. (D, M,S, ) is rooted-connected
<~

o (G, M,S, ) is partition-connected.

v

Z. Szigeti (G-SCOP, Grenoble) On packing of arborescences November 2012 10 / 15



Plan executed

Theorem (Katoh, Tanigawa 2012)

@ There is a matroid-based packing of rooted-trees in (G, M,S, )
<

@ 7 is M-independent and (G, M,S, ) is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

@ There is a matroid-based packing of arborescences in (D, M, S, )
<~

@ 7 is M-independent and (D, M,S, ) is rooted-connected.

v

Theorem (Frank 1980)

@ There is an orientation D of G s. t. (D, M, S, ) is rooted-connected
<~

e (G, M,S, ) is partition-connected.

v

Z. Szigeti (G-SCOP, Grenoble) On packing of arborescences November 2012 10 / 15



Plan executed

Theorem (Katoh, Tanigawa 2012)

@ There is a matroid-based packing of rooted-trees in (G, M,S, )
<

@ 7 is M-independent and (G, M,S, ) is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

@ There is a matroid-based packing of arborescences in (D, M, S, )
<~

® 7 is M-independent and (D, M,S, ) is rooted-connected.

v

Theorem (Frank 1980)

@ There is an orientation D of G s. t. (D, M,S, ) is rooted-connected
<~

e (G, M,S, ) is partition-connected.

v

Z. Szigeti (G-SCOP, Grenoble) On packing of arborescences November 2012 10 / 15



Plan executed

Theorem (Katoh, Tanigawa 2012)

@ There is a matroid-based packing of rooted-trees in (G, M,S, )
<

@ 7 is M-independent and (G, M,S, ) is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

@ There is a matroid-based packing of arborescences in (D, M, S, )
<~

® 7 is M-independent and (D, M,S, ) is rooted-connected.

v

Theorem (Frank 1980)

@ There is an orientation D of G s. t. (D, M,S, ) is rooted-connected
<~

e (G, M,S, ) is partition-connected.

v

Z. Szigeti (G-SCOP, Grenoble) On packing of arborescences November 2012 10 / 15



Plan executed

Theorem (Katoh, Tanigawa 2012)

@ There is a matroid-based packing of rooted-trees in (G, M,S, )
<

@ 7 is M-independent and (G, M,S, ) is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

@ There is a matroid-based packing of arborescences in (D, M, S, )
<~

® 7 is M-independent and (D, M,S, ) is rooted-connected.

v

Theorem (Frank 1980)

@ There is an orientation D of G s. t. (D, M,S, ) is rooted-connected
<~

e (G, M,S, ) is partition-connected.

v

Z. Szigeti (G-SCOP, Grenoble) On packing of arborescences November 2012 10 / 15



Plan executed

Theorem (Katoh, Tanigawa 2012)

@ There is a matroid-based packing of rooted-trees in (G, M,S, )
<

@ 7 is M-independent and (G, M,S, ) is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

@ There is a matroid-based packing of arborescences in (D, M, S, )
<~

@ 7 is M-independent and (D, M,S, ) is rooted-connected.

v

Theorem (Frank 1980)

@ There is an orientation D of G s. t. (D, M,S, ) is rooted-connected
<~

e (G, M,S, ) is partition-connected.

v

Z. Szigeti (G-SCOP, Grenoble) On packing of arborescences November 2012 10 / 15



Plan executed

Theorem (Katoh, Tanigawa 2012)

@ There is a matroid-based packing of rooted-trees in (G, M, S, )
<~

@ 7 is M-independent and (G, M,S, ) is partition-connected.

Theorem (O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti 2012)

@ There is a matroid-based packing of arborescences in (D, M, S, )
<~

@ 7 is M-independent and (D, M,S, ) is rooted-connected.

v

Theorem (Frank 1980)

@ There is an orientation D of G s. t. (D, M,S, ) is rooted-connected
<~

e (G, M,S, ) is partition-connected.

v

Z. Szigeti (G-SCOP, Grenoble) On packing of arborescences November 2012 10 / 15



Definitions for the Proof

Definitions

O A vertex set X is tight if pp(X) = rpm(S) — ra(Sx)-

O A vertex set Y dominates a vertex set X if Sx C Span (Sy).
(Note that domination is a transitive relation.)

© An arc uv is good if v does not dominate u, otherwise it is bad.
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Definitions for the Proof

O A vertex set X is tight if pp(X) = rpm(S) — ra(Sx)-

O A vertex set Y dominates a vertex set X if Sx C Span (Sy).
(Note that domination is a transitive relation.)

© An arc uv is good if v does not dominate u, otherwise it is bad.

Only good arcs uv can be used in an arborescence rooted at u, since there
must exist s € S, such that S, Us is independent in M.
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Proof of sufficiency : Case 1 (No good arc exists.)

Every vertex v of a tight set X containing only bad arcs dominates X. l
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Every vertex v of a tight set X containing only bad arcs dominates X.

O Let Y be the set of vertices from which v is reachable in D[X].

@ v dominates Y : Since domination is transitive, v dominates each
vertex of Y and hence Y.

© Y dominates X : Using that every arc of D that enters Y enters X.

rm(S) = rm(Sy) < p(Y) < p(X) = rm(S) = rm(Sx) < rm(S) — rm(Sy).
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Proof of sufficiency : Case 1 (No good arc exists.)

Every vertex v of a tight set X containing only bad arcs dominates X.

O Let Y be the set of vertices from which v is reachable in D[X].

@ v dominates Y : Since domination is transitive, v dominates each
vertex of Y and hence Y.

© Y dominates X : Using that every arc of D that enters Y enters X.

A matroid-based packing of arborescences in (D, M, S, )

©Q Take |S,| times each vertex v.
© S, is a spanning set of M for all v € V by Claim since V is tight,
© S, is independent in M for all v € V since 7 is M-independent.
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Proof of sufficiency : Case 2 (Good arcs exist.)

For uv € A,s € S, let

.
.\I M
v
n(s)
u

D' = D — uv,
S = Su¥d,
7TI’S - 7T(S/) =v, in D in D’

M'|S = M; & parallel to s.
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For uv € A,s € S, let

D' = D — uv,
S = Su¥d,
TS = m w(s) =v, in D in D'

M'|S = M; ¢ parallel to s.

© Packing containing uv in (D, M, S, ) <= Packing in (D', M', S, 7")
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Proof of sufficiency : Case 2 (Good arcs exist.)

For uv € A,S € Su, let [] ] . . V
D' = D—uv, * '/ % FEE
S = Su¥d,
TS = m w(s) =v,
M'|S = M; ¢ parallel to s.

© Packing containing uv in (D, M, S, ) <= Packing in (D', M', S, 7")
Q 7’ is M’-independent <= 7 is M-independent and s ¢ Span(S,)

Q (D', M',S' ') is rooted-connected <= (D, M, S, 7) is rooted-
connected and uv does not enter a tight set X that dominates v.
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Proof of sufficiency : Case 2 (Good arcs exist.)
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© By Claim, there exists a good arc v’'v/ in D[X].
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Proof of sufficiency : Case 2 (Good arcs exist.)

© Wilog. each good arc uv enters a tight set X that dominates v.

@ Choose (uv, X) with X minimal.

© X dominates u, v does not dominate u so v does not dominate X.
© By Claim, there exists a good arc v'v" in D[X].

© 'V enters a tight set Y that dominates v/

O UV enters the tight set X N Y that dominates v’

@ Contradiction.
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Thank you for your attention!
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