A NOTE
ON PACKING PATHS
IN PLANAR GRAPHS

András Frank
Zoltán Szigiethi

EÖTVÖS UNIVERSITY
EDGE-DISJOINT PATHS PROBLEM

GIVEN A GRAPH G AND $s_i, t_i \in V(G)$ $i = 1, \ldots, l$.

FIND l EDGE-DISJOINT PATHS CONNECTING THE CORRESPONDING PAIRS s_i, t_i.

G SUPPLY GRAPH

H DEMAND GRAPH

FIND l EDGE-DISJOINT CIRCUITS IN $G+H$ SUCH THAT EACH OF THEM CONTAINS EXACTLY ONE DEMAND EDGE.
BY PLANAR DUALIZATION:

FIND \(\ell \) EDGE-DISJOINT CUTS in \(G' \) (DUAL OF \(G+H \)) SUCH THAT EACH OF THEM CONTAINS EXACTLY ONE EDGE OF \(F \) (CORRESPONDING TO \(H \)).
G+H is planar

Even in this case the problem is NP-complete.
(Middendorf, Pfeiffer '93)

Necessary:
Cut criterion

\[d_G(x) \geq d_H(x) \quad \forall x \in V(G) \]

Not sufficient:
Theorem (Seymour '81)

When $G+H$ is planar and Eulerian, the edge-disjoint paths problem has a solution if and only if the cut criterion holds.

Theorem (Korach, Penn '92)

Suppose $G+H$ is planar and the cut criterion holds. Then there is at most one demand edge on each bounded face of G so that leaving out these edges from H, the problem has a solution.
REMARKS: 1. NO DEMAND EDGE IS LEFT OUT FROM THE INFINITE FACE OF G.

2. IF EACH BOUNDED FACE OF G CONTAINS AT MOST ONE DEMAND EDGE THEN THIS THEOREM SAYS NOTHING.

OUR AIM IS TO STRENGTHEN THE CUT CRITERION

a.) TO BE A SUFFICIENT CONDITION FOR THE PROBLEM.

b.) TO HAVE 1. FOR MORE FACES OF G.
\(d_G(x) \geq d_H(x) \quad \forall x \in V \)

is not sufficient

\(d_G(x) \geq d_H(x) + K \quad \forall x \in V \)

is not sufficient

\[
d_G(x) - d_H(x) = (k+1)2k - (2k^2 - 1 + k + 1) = k
\]
\textbf{THEOREM} (FRANK, SZ. '93)

\textbf{If} $G \oplus H$ \textbf{is planar and}

\[d_G(x) \geq 2 \cdot d_H(x) \quad \forall x \in V \]

\textbf{then the problem has a solution.}

\textbf{I\textit{t\textbf{.}}}} \quad d_G(x) \geq (2-\varepsilon) \cdot d_H(x) \quad \forall x \in V, \quad \varepsilon > 0

\textbf{is not sufficient}

\[d_G(x) = 2 \cdot k \quad \Rightarrow \quad d_G(x) = (2 - \frac{2}{k+1}) d_H(x) \]

\[d_H(x) = k+1 \]
b) Suppose, that the faces of σ containing demand edges are partitioned into two groups:

$$C_0, C_1, \ldots, C_k \quad (k \geq 0)$$

$$D_0, \ldots, D_\ell$$

For a cut $\delta_{G+H}(x)$ let $\mu(x)$ be the number of those faces C_i ($i \geq 1$) from which $\delta_{G+H}(x)$ contains at least one demand edge.

Theorem (Frank, Sz. '93)

If $G+H$ is planar and

$$d_G(x) \geq d_H(x) + \mu(x) \quad \forall x \in V$$

then it is possible to leave out at most one demand edge from each face D_0, \ldots, D_ℓ such that the resulting problem has a solution.
THEOREM: IF $G+H$ IS PLANAR AND
\[d_G(x) \geq d_H(x) + \mu(x) \quad \forall x \in V\]
THEN THE EDGE-DISJOINT PATHS PROBLEM
HAS A SOLUTION.

REMARK: \[d_G(x) \geq d_H(x) + \mu(x) - 2 \quad \forall x \in V\]
IS NOT SUFFICIENT.

OPEN PROBLEM:
\[d_G(x) \geq d_H(x) + \mu(x) - 1 \quad \forall x \in V\]
IS SUFFICIENT OR NOT?