Old and new results on packing arborescences

Zoltán Szigeti

Équipe Optimisation Combinatoire Laboratoire G-SCOP INP Grenoble, France

11 juin 2015

Z. Szigeti (G-SCOP, Grenoble)

Outline

Old results

- Digraphs
 - Packing spanning arborescences
 - Packing maximal arborescences
- Dypergraphs
 - Packing spanning hyper-arborescences
 - Packing maximal hyper-arborescences
- Matroid-based rooted-digraphs
 - Matroid-based packing of rooted-arborescences
 - Maximal-rank packing of rooted-arborescences
- New results
 - Matroid-based rooted-dypergraph
 - Matroid-based packing of rooted-hyper-arborescences
 - Maximal-rank packing of rooted-hyper-arborescences

Reachability in digraph

Definition

- Let $\vec{G} = (V, A)$ be a digraph and $X \subseteq V$.
 - $\rho_A(X)$ is the number of arcs entering X,
 - **2** $P_A(X)$ is the set of vertices from which X can be reached in \vec{G} ,
 - **3** $Q_A(X)$ is the set of vertices that can be reached from X in \vec{G} .

Arborescences

Definition

Let $\vec{G} = (V, A)$ be a digraph and $r \in V$. • A subgraph $\vec{T} = (U, B)$ of \vec{G} is an *r*-arborescence if • $r \in U$ with $\rho_B(r) = 0$, $\rho_B(u) = 1$ for all $u \in U \setminus r$ and $X \cap U \neq \emptyset.$ **2** An *r*-arborescence \vec{T} is • spanning if U = V, **2** maximal if $U = Q_A(r)$. Packing of arborescences is a set of pairwise arc-disjoint arborescences.

Theorem (Edmonds 1973)

Let $\vec{G} = (V, A)$ be a digraph, $r \in V$ and k a positive integer.

• There exists a packing of k spanning r-arborescences

 $P_{\mathcal{A}}(X) \geq k \text{ for all } \emptyset \neq X \subseteq V \setminus r.$

Definition

Let $\vec{G} = (V, A)$ be a digraph and $(r_1, \ldots, r_t) \in V^t$.

A packing of maximal arborescences is a set {T_i,..., T_t} of pairwise arc-disjoint maximal r_i-arborescences T_i in G; that is for every v ∈ V, {r_i : v ∈ V(T_i)} = {r_i ∈ P_A(v)}.

Theorem (Kamiyama, Katoh, Takizawa 2009)

Let $\vec{G} = (V, A)$ be a digraph and $(r_1, \ldots, r_t) \in V^t$.

There exists a packing of maximal arborescences

 $P_A(X) \ge p_A(X) \text{ for all } X \subseteq V.$

Remark

It implies Edmonds' theorem.

- Let $r_1 = \cdots = r_k = r$.
- ② $\rho_A(X) \ge k$ for all $\emptyset \ne X \subseteq V \setminus r$ implies the above condition and that each vertex is reachable from *r*.
- Hence there exists a packing of maximal r-arborescences that is a packing of spanning r-arborescences.

Dypergraphs

Definition

O Directed hypergraph (shortly dypergraph) is $\vec{\mathcal{G}} = (V, \mathcal{A})$, where

- V denotes the set of vertices and
- \mathcal{A} denotes the set of hyperarcs of $\vec{\mathcal{G}}$.
- **2** Hyperarc is a pair (Z, z) such that $z \in Z \subseteq V$, where
 - z is the head of the hyperarc (Z, z) and
 - the elements of $Z \setminus z \neq \emptyset$ are the tails of the hyperarc (Z, z).

Definition

- Let $\vec{\mathcal{G}} = (V, \mathcal{A})$ be a dypergraph and $X \subseteq V$.
 - **1** Hyperarc (Z, z) enters X if $z \in X$ and $(Z \setminus z) \cap (V \setminus X) \neq \emptyset$,
 - 2 $\rho_{\mathcal{A}}(X)$ is the number of hyperarcs entering X,
 - **Oracle Path** from u to x in $\vec{\mathcal{G}}$ is $v_1(=u), (Z_1, v_2), v_2, \ldots, v_i, (Z_i, v_{i+1}), v_{i+1}, \ldots, v_j(=x)$ such that v_i is a tail of (Z_i, v_{i+1}) .
 - $P_{\mathcal{A}}(X)$ is the set of vertices from which X can be reached in $\vec{\mathcal{G}}$,
 - **3** $Q_{\mathcal{A}}(X)$ is the set of vertices that can be reached from X in $\vec{\mathcal{G}}$.

Trimming

Definition

Trimming the dypergraph $\vec{\mathcal{G}}$ means replacing each hyperarc (K, v) of $\vec{\mathcal{G}}$ by an arc uv where u is one of the tails of the hyperarc (K, v).

Definition

h is supermodular : $h(X) + h(Y) \le h(X \cap Y) + h(X \cup Y) \quad \forall X, Y \subseteq V.$

Theorem (Frank 2011)

Let $\vec{\mathcal{G}} = (V, \mathcal{A})$ be a dypergraph and h an integer-valued, intersecting supermodular function on V such that $h(\emptyset) = 0 = h(V)$. If $\rho_{\mathcal{A}}(X) \ge h(X)$ for all $X \subseteq V$, then $\vec{\mathcal{G}}$ can be trimmed to a digraph $\vec{\mathcal{G}}$ such that $\rho_{\mathcal{A}}(X) \ge h(X)$ for all $X \subseteq V$.

Hyper-arborescences

Definition

Let
$$\vec{\mathcal{G}} = (V, \mathcal{A})$$
 be a dypergraph and $r \in V$.
A subgraph $\vec{\mathcal{T}} = (U, \mathcal{B})$ of $\vec{\mathcal{G}}$ is an
r-hyper-arborescence if it can be trimmed
to an *r*-arborescence on $U^* \cup r$, where
 $U^* = \{u : \rho_{\mathcal{B}}(u) \neq 0\}$; that is
 $r \in U \setminus U^*$,
 $\rho_{\mathcal{B}}(u) = 1$ for all $u \in U^*$ and
 $\rho_{\mathcal{B}}(X) \ge 1$ for all $X \subseteq V \setminus r$,
 $X \cap U^* \neq \emptyset$.
The *r*-hyper-arborescence $\vec{\mathcal{T}}$ is
 p_{spanning} if $U^* = V \setminus r$,
 p_{maximal} if $U^* = Q_{\mathcal{A}}(r) \setminus r$.

Packing spanning hyper-arborescences

Theorem (Frank, T. Király, Kriesell 2003)

Let $\vec{\mathcal{G}} = (V, \mathcal{A})$ be a dypergraph, $r \in V$ and k a positive integer.

There exists a packing of k spanning r-hyper-arborescences

 ρ_A(X) ≥ k for all Ø ≠ X ⊂ V \ r.

Remark

It is proved easily by trimming and Edmonds' theorem.

2 It implies Edmonds' theorem if $\vec{\mathcal{G}}$ is a digraph.

Theorem (Bérczi, Frank 2008)

Let $\vec{\mathcal{G}} = (V, \mathcal{A})$ be a dypergraph and $(r_1, \ldots, r_t) \in V^t$.

There exists a packing of maximal hyper-arborescences
 *ρ*_A(X) ≥ *p*_A(X) for all X ⊂ V.

Remark

It is proved not easily by trimming and Kamiyama, Katoh, Takizawa's theorem since p_A(X) is not intersecting supermodular.

It implies

- Frank, T. Király, Kriesell's theorem if r₁ = · · · = r_k = r and ρ_A(X) ≥ k for all Ø ≠ X ⊆ V \ r,
- **2** Kamiyama, Katoh, Takizawa's theorem if $\vec{\mathcal{G}}$ is a digraph.

Matroids

Definition

For $\mathcal{I} \subseteq 2^{\mathsf{S}}, \, \mathcal{M} = (\mathsf{S}, \mathcal{I})$ is a matroid if

- **2** If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
- **③** If *X*, *Y* ∈ \mathcal{I} with |X| < |Y| then $\exists y \in Y \setminus X$ such that $X \cup y \in \mathcal{I}$.

Examples

- Sets of linearly independent vectors in a vector space,
- Edge-sets of forests of a graph,
- $U_{n,k} = \{X \subseteq S : |X| \le k\} \text{ where } |S| = n, \text{ free matroid} = U_{n,n}.$

Matroids

Notion

- independent sets $= \mathcal{I}$,
 - any subset of an independent set is independent,
- base = maximal independent set,
 - all basis are of the same size,
- **③** rank function : $r(X) = \max\{|Y| : Y \in \mathcal{I}, Y \subseteq X\}.$
 - non-decreasing,
 - **2** submodular (that is -r is supermodular),
 - $X \in \mathcal{I} \text{ if and only if } r(X) = |X|.$

Definition

A matroid-based rooted-digraph is a quadruple $(\vec{G}, \mathcal{M}, S, \pi)$:

• $\vec{G} = (V, A)$ is a digraph,

 $\textcircled{O} \ \mathcal{M} \text{ is a matroid on a set } \verb|S] = \{ \mathsf{s}_1, \ldots, \mathsf{s}_t \}.$

π is a placement of the elements of S at vertices of V such that
 S_v ∈ I for every v ∈ V, where S_X = π⁻¹(X), the elements of S
 placed at X.

Matroid-based packing of rooted-arborescences

Definition

A rooted-arborescence is a pair (\vec{T}, s) where

- \vec{T} is an *r*-arborescence for some vertex *r*,
- **2** $s \in S$, placed at r.

Definition

A packing $\{(\vec{T}_1, s_1), \dots, (\vec{T}_{|S|}, s_{|S|})\}$ of rooted-arborescences is matroid-based if $\{s_i \in S : v \in V(\vec{T}_i)\}$ forms a base of S for every $v \in V$.

Remark

For the free matroid \mathcal{M} with all k roots at a vertex r,

- Imatroid-based packing of rooted-arborescences
- **2** packing of k spanning r-arborescences.

Matroid-based packing of rooted-arborescences

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let $(\vec{G}, \mathcal{M}, S, \pi)$ be a matroid-based rooted-digraph.

- There is a matroid-based packing of rooted-arborescences
- $\ \, {\it O}_{\cal A}(X) \geq r_{\cal M}({\sf S}) r_{\cal M}({\sf S}_X) \ \, {\it for all} \ \, \emptyset \neq X \subseteq V.$

Remark

It implies Edmonds' theorem if \mathcal{M} is the free matroid with all k roots at the vertex r.

Maximal-rank packing of rooted-arborescences

Definition

A packing $\{(\vec{T}_1, s_1), \dots, (\vec{T}_{|S|}, s_{|S|})\}$ of rooted-arborescences is of maximal rank if $\{s_i \in S : v \in V(\vec{T}_i)\}$ forms a base of $S_{P_A(v)}$ for every $v \in V$.

Theorem (Cs. Király 2013)

Let $(\vec{G}, \mathcal{M}, S, \pi)$ be a matroid-based rooted-digraph.

- There exists a maximal-rank packing of rooted-arborescences
- $\ \, \oslash \ \, \rho_A(X) \geq r_{\mathcal M}(\mathsf{S}_{P_A(X)}) r_{\mathcal M}(\mathsf{S}_X) \ \, \text{for all } X \subseteq V.$

Remark

It implies

- DdG-N-Sz' theorem if $\rho_A(X) \ge r_{\mathcal{M}}(S) r_{\mathcal{M}}(S_X)$ for all $\emptyset \neq X \subseteq V$,
- ${f 0}$ Kamiyama, Katoh, Takizawa's theorem if ${\cal M}$ is the free matroid.

Z. Szigeti (G-SCOP, Grenoble)

On packing of arborescences

Definition

A matroid-based rooted-dypergraph is a quadruple $(\vec{\mathcal{G}}, \mathcal{M}, \mathsf{S}, \pi)$:

- $\vec{\mathcal{G}} = (V, \mathcal{A})$ is a dypergraph,
- $\textcircled{O} \ \mathcal{M} \text{ is a matroid on a set } \verb|S] = \{ s_1, \ldots, s_t \}.$
- **③** π is a placement of the elements of S at vertices of V such that $S_v \in \mathcal{I}$ for every $v \in V$.

Matroid-based packing of rooted-hyper-arborescences

Definition

- A rooted-hyper-arborescence is a triple $(\vec{\mathcal{T}}, r, s)$ where $\vec{\mathcal{T}}$ is an *r*-hyper-arborescence and s is an element of S placed at *r*.
- ② A packing {($\vec{\mathcal{T}}_1, r_1, s_1$), ..., ($\vec{\mathcal{T}}_{|S|}, r_{|S|}, s_{|S|}$)} of rooted-hyperarborescences is matroid-based if {s_i ∈ S : v ∈ Q_{A($\vec{\mathcal{T}}_i$)} forms a base of S for every v ∈ V.

Theorem (Léonard, Szigeti 2013)

Let $(\vec{\mathcal{G}}, \mathcal{M}, S, \pi)$ be a matroid-based rooted-dypergraph.

 $\bullet \quad \text{There is a matroid-based packing of rooted-hyper-arborescences} \Longleftrightarrow$

 $\ \, { \ \, { \it O} } \ \, \rho_{\mathcal A}(X) \geq r_{\mathcal M}({\sf S}) - r_{\mathcal M}({\sf S}_X) \ \, { \it for all } \emptyset \neq X \subseteq V.$

Remark

It is proved easily by trimming and DdG-N-Sz' theorem.

Maximal-rank packing of rooted-hyper-arborescences

Definition

Packing $\{(\vec{\mathcal{T}}_1, r_1, s_1), \dots, (\vec{\mathcal{T}}_{|S|}, r_{|S|}, s_{|S|})\}$ of rooted-hyper-arborescences is of maximal rank if $\{s_i \in S : v \in Q_{\mathcal{A}(\vec{\mathcal{T}}_i)}(r_i)\}$ forms a base of $S_{P_{\mathcal{A}}(v)}$ $\forall v \in V$.

Theorem (Szigeti 2015-)

Let $(\vec{\mathcal{G}}, \mathcal{M}, S, \pi)$ be a matroid-based rooted-dypergraph.

There is a maximal-rank packing of rooted-hyper-arborescences ⇒
 ρ_A(X) ≥ r_M(S_{P_A(X)}) - r_M(S_X) for all X ⊆ V.

Remark

• It is proved not easily by trimming and Cs. Király's theorem since $r_{\mathcal{M}}(S_{P_{\mathcal{A}}(X)}) - r_{\mathcal{M}}(S_X)$ is not intersecting supermodular.

It implies all the previous results.

Z. Szigeti (G-SCOP, Grenoble)

On packing of arborescences

Proof of necessity

Proof

- Let {(*T*₁, r₁, s₁), ..., (*T*_{|S|}, r_{|S|}, s_{|S|})} be a maximal-rank packing of rooted-hyper-arborescences in (*G*, *M*, S, π).
- ② Let $\mathsf{B}_{\mathsf{v}} = \{\mathsf{s}_i \in \mathsf{S} : \mathsf{v} \in Q_{\mathcal{A}(\vec{\mathcal{T}}_i)}(r_i)\}$ (base of $\mathsf{S}_{\mathcal{P}_{\mathcal{A}}(\mathsf{v})}$) and $X \subseteq V$.
- **③** For each root $s_i \in \bigcup_{v \in X} B_v \setminus S_X$, there exists a vertex $v \in X$ such that $s_i \in B_v$ and then since $\vec{\mathcal{T}}_i$ is an r_i -hyper-arborescence, $r_i \notin X$ and $v \in Q_{\mathcal{A}(\vec{\mathcal{T}}_i)}(r_i) \cap X$, there exists a hyperarc of $\vec{\mathcal{T}}_i$ that enters X.
- Since the hyper-arborescences are arc-disjoint,

$$\rho_{\mathcal{A}}(X) \geq |\bigcup_{v \in X} B_{v} \setminus S_{X}| \\ \geq r_{\mathcal{M}}(\bigcup_{v \in X} B_{v} \setminus S_{X}) \\ \geq r_{\mathcal{M}}(\bigcup_{v \in X} B_{v}) - r_{\mathcal{M}}(S_{X}) \\ \geq r_{\mathcal{M}}(\bigcup_{v \in X} S_{P_{\mathcal{A}}(v)}) - r_{\mathcal{M}}(S_{X}) \\ = r_{\mathcal{M}}(S_{P_{\mathcal{A}}(X)}) - r_{\mathcal{M}}(S_{X}).$$

Conclusion

Thank you for your attention !

Theorem (Tay 1984)

"Rigidity" of a Body-Bar Framework can be characterized by the existence of a spanning tree decomposition.

Body-Bar Framework with Bar-Boundary

Theorem (Katoh, Tanigawa 2013)

"Rigidity" of a Body-Bar Framework with Bar-Boundary can be characterized by the existence of a matroid-based rooted-tree decomposition.