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Reachability in digraph

Definition

Let ~G = (V ,A) be a digraph and X ⊆ V .

1 ρA(X ) is the number of arcs entering X ,

2 PA(X ) is the set of vertices from which X can be reached in ~G ,

3 QA(X ) is the set of vertices that can be reached from X in ~G .
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Arborescences

Definition

Let ~G = (V ,A) be a digraph and r ∈ V .

1 A subgraph ~T = (U,B) of ~G is an
r -arborescence if

1 r ∈ U with ρB(r) = 0,
2 ρB(u) = 1 for all u ∈ U \ r and
3 ρB(X ) ≥ 1 for all X ⊆ V \ r ,

X ∩ U 6= ∅.

2 An r -arborescence ~T is
1 spanning if U = V ,
2 maximal if U = QA(r).

3 Packing of arborescences is a set of
pairwise arc-disjoint arborescences.
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Packing spanning arborescences

Theorem (Edmonds 1973)

Let ~G = (V ,A) be a digraph, r ∈ V and k a positive integer.

1 There exists a packing of k spanning r-arborescences ⇐⇒

2 ρA(X ) ≥ k for all ∅ 6= X ⊆ V \ r .

r
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Packing maximal arborescences

Definition

Let ~G = (V ,A) be a digraph and (r1, . . . , rt) ∈ V t .

1 A packing of maximal arborescences is a set { ~T1, . . . , ~Tt} of pairwise
arc-disjoint maximal ri -arborescences ~Ti in ~G ; that is for every v ∈ V ,
{ri : v ∈ V ( ~Ti)} = {ri ∈ PA(v)}.

2 For X ⊆ V , pA(X ) = |{ri ∈ PA(X ) \ X}|.
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Packing maximal arborescences

Theorem (Kamiyama, Katoh, Takizawa 2009)

Let ~G = (V ,A) be a digraph and (r1, . . . , rt) ∈ V t .

1 There exists a packing of maximal arborescences ⇐⇒

2 ρA(X ) ≥ pA(X ) for all X ⊆ V .

Remark

It implies Edmonds’ theorem.

1 Let r1 = · · · = rk = r .

2 ρA(X ) ≥ k for all ∅ 6= X ⊆ V \ r implies the above condition and that
each vertex is reachable from r .

3 Hence there exists a packing of maximal r -arborescences that is a
packing of spanning r -arborescences.
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Dypergraphs

Definition

1 Directed hypergraph (shortly dypergraph) is ~G= (V ,A), where

V denotes the set of vertices and
A denotes the set of hyperarcs of ~G.

2 Hyperarc is a pair (Z , z) such that z ∈ Z ⊆ V , where

z is the head of the hyperarc (Z , z) and
the elements of Z \ z 6= ∅ are the tails of the hyperarc (Z , z).
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Reachability in dypergraph

Definition

Let ~G = (V ,A) be a dypergraph and X ⊆ V .

1 Hyperarc (Z , z) enters X if z ∈ X and (Z \ z) ∩ (V \ X ) 6= ∅,

2 ρA(X ) is the number of hyperarcs entering X ,

3 Path from u to x in ~G is v1(= u), (Z1, v2), v2, . . . , vi , (Zi , vi+1), vi+1,
. . . , vj(= x) such that vi is a tail of (Zi , vi+1).

4 PA(X ) is the set of vertices from which X can be reached in ~G,

5 QA(X ) is the set of vertices that can be reached from X in ~G.

X V \ X

ρA(X ) = 2
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Trimming

Definition

Trimming the dypergraph ~G means
replacing each hyperarc (K , v) of ~G
by an arc uv where u is one of the
tails of the hyperarc (K , v).

trimming

Definition

h is supermodular : h(X ) + h(Y ) ≤ h(X ∩ Y ) + h(X ∪ Y ) ∀ X ,Y ⊆ V .

Theorem (Frank 2011)

Let ~G = (V ,A) be a dypergraph and h an integer-valued, intersecting

supermodular function on V such that h(∅) = 0 = h(V ).
If ρA(X ) ≥ h(X ) for all X ⊆ V , then ~G can be trimmed to a digraph ~G
such that ρA(X ) ≥ h(X ) for all X ⊆ V .
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Hyper-arborescences

Definition

Let ~G = (V ,A) be a dypergraph and r ∈ V .

1 A subgraph ~T = (U,B) of ~G is an
r -hyper-arborescence if it can be trimmed
to an r -arborescence on U∗ ∪ r , where
U∗ = {u : ρB(u) 6= 0} ; that is

1 r ∈ U \ U∗,
2 ρB(u) = 1 for all u ∈ U∗ and
3 ρB(X ) ≥ 1 for all X ⊆ V \ r ,

X ∩ U∗ 6= ∅.

2 The r -hyper-arborescence ~T is
1 spanning if U∗ = V \ r ,
2 maximal if U∗ = QA(r) \ r .
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Packing spanning hyper-arborescences

Theorem (Frank, T. Király, Kriesell 2003)

Let ~G = (V ,A) be a dypergraph, r ∈ V and k a positive integer.

1 There exists a packing of k spanning r-hyper-arborescences ⇐⇒

2 ρA(X ) ≥ k for all ∅ 6= X ⊆ V \ r .

Remark
1 It is proved easily by trimming and Edmonds’ theorem.

2 It implies Edmonds’ theorem if ~G is a digraph.
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Packing maximal hyper-arborescences

Theorem (Bérczi, Frank 2008)

Let ~G = (V ,A) be a dypergraph and (r1, . . . , rt) ∈ V t .

1 There exists a packing of maximal hyper-arborescences ⇐⇒

2 ρA(X ) ≥ pA(X ) for all X ⊆ V .

Remark
1 It is proved not easily by trimming and Kamiyama, Katoh, Takizawa’s

theorem since pA(X ) is not intersecting supermodular.
2 It implies

1 Frank, T. Király, Kriesell’s theorem if r1 = · · · = rk = r and ρA(X ) ≥ k

for all ∅ 6= X ⊆ V \ r ,

2 Kamiyama, Katoh, Takizawa’s theorem if ~G is a digraph.
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Matroids

Definition

For I ⊆ 2S, M = (S,I) is a matroid if

1 I 6= ∅,

2 If X ⊆ Y ∈ I then X ∈ I,

3 If X ,Y ∈ I with |X | < |Y | then ∃ y ∈ Y \ X such that X ∪ y ∈ I.

Examples

1 Sets of linearly independent vectors in a vector space,

2 Edge-sets of forests of a graph,

3 Un,k= {X ⊆ S : |X | ≤ k} where |S| = n, free matroid = Un,n.
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Matroids

Notion
1 independent sets = I,

1 any subset of an independent set is independent,

2 base = maximal independent set,
1 all basis are of the same size,

3 rank function : r(X ) = max{|Y | : Y ∈ I,Y ⊆ X}.
1 non-decreasing,
2 submodular (that is −r is supermodular),
3 X ∈ I if and only if r(X ) = |X |.
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Matroid-based rooted-digraphs

Definition

A matroid-based rooted-digraph is a quadruple ( ~G ,M,S, π) :

1 ~G = (V ,A) is a digraph,

2 M is a matroid on a set S = {s1, . . . , st}.

3 π is a placement of the elements of S at vertices of V such that
Sv ∈ I for every v ∈ V , where SX= π−1(X ), the elements of S
placed at X .

π(s1)

π(s3)

π(s2)
~G

M = U3,2

S = {s1, s2, s3}

π(s1)

π(s3)

π(s2)
X

SX = {s1, s2}
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Matroid-based packing of rooted-arborescences

Definition

A rooted-arborescence is a pair ( ~T , s) where

1 ~T is an r -arborescence for some vertex r ,

2 s ∈ S, placed at r .

π(s1)

π(s3)

π(s2)

T1

T2

T3

Definition

A packing {( ~T1, s1), . . . , ( ~T|S|, s|S|)} of rooted-arborescences is

matroid-based if {si ∈ S : v ∈ V ( ~Ti)} forms a base of S for every v ∈ V .

Remark

For the free matroid M with all k roots at a vertex r ,

1 matroid-based packing of rooted-arborescences ⇐⇒

2 packing of k spanning r -arborescences.
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Matroid-based packing of rooted-arborescences

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let ( ~G ,M,S, π) be a matroid-based rooted-digraph.

1 There is a matroid-based packing of rooted-arborescences ⇐⇒

2 ρA(X ) ≥ rM(S)− rM(SX ) for all ∅ 6= X ⊆ V .

Remark

It implies Edmonds’ theorem if M is the free matroid with all k roots at
the vertex r .
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Maximal-rank packing of rooted-arborescences

Definition

A packing {( ~T1, s1), . . . , ( ~T|S|, s|S|)} of rooted-arborescences is of maximal

rank if {si ∈ S : v ∈ V ( ~Ti)} forms a base of SPA(v) for every v ∈ V .

Theorem (Cs. Király 2013)

Let ( ~G ,M,S, π) be a matroid-based rooted-digraph.

1 There exists a maximal-rank packing of rooted-arborescences ⇐⇒

2 ρA(X ) ≥ rM(SPA(X ))− rM(SX ) for all X ⊆ V .

Remark
1 It implies

1 DdG-N-Sz’ theorem if ρA(X ) ≥ rM(S)− rM(SX ) for all ∅ 6= X ⊆ V ,
2 Kamiyama, Katoh, Takizawa’s theorem if M is the free matroid.
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Matroid-based rooted-dypergraphs

Definition

A matroid-based rooted-dypergraph is a quadruple (~G,M,S, π) :

1 ~G = (V ,A) is a dypergraph,

2 M is a matroid on a set S = {s1, . . . , st}.

3 π is a placement of the elements of S at vertices of V such that
Sv ∈ I for every v ∈ V .
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Matroid-based packing of rooted-hyper-arborescences

Definition

1 A rooted-hyper-arborescence is a triple (~T , r , s) where ~T is an
r -hyper-arborescence and s is an element of S placed at r .

2 A packing {(~T1, r1, s1), . . . , (~T|S|, r|S|, s|S|)} of rooted-hyper-
arborescences is matroid-based if {si ∈ S : v ∈ QA(~Ti )

(ri )} forms a
base of S for every v ∈ V .

Theorem (Léonard, Szigeti 2013)

Let (~G,M,S, π) be a matroid-based rooted-dypergraph.

1 There is a matroid-based packing of rooted-hyper-arborescences ⇐⇒

2 ρA(X ) ≥ rM(S)− rM(SX ) for all ∅ 6= X ⊆ V .

Remark
1 It is proved easily by trimming and DdG-N-Sz’ theorem.
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Maximal-rank packing of rooted-hyper-arborescences

Definition

Packing {(~T1, r1, s1), . . . , (~T|S|, r|S|, s|S|)} of rooted-hyper-arborescences is
of maximal rank if {si ∈ S : v ∈ QA(~Ti )

(ri )} forms a base of SPA(v)

∀v ∈ V .

Theorem (Szigeti 2015-)

Let (~G,M,S, π) be a matroid-based rooted-dypergraph.

1 There is a maximal-rank packing of rooted-hyper-arborescences ⇐⇒

2 ρA(X ) ≥ rM(SPA(X ))− rM(SX ) for all X ⊆ V .

Remark
1 It is proved not easily by trimming and Cs. Király’s theorem since

rM(SPA(X ))− rM(SX ) is not intersecting supermodular.

2 It implies all the previous results.
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Proof of necessity

Proof

1 Let {(~T1, r1, s1), . . . , (~T|S|, r|S|, s|S|)} be a maximal-rank packing of

rooted-hyper-arborescences in (~G,M,S, π).

2 Let Bv = {si ∈ S : v ∈ QA(~Ti )
(ri )} (base of SPA(v)) and X ⊆ V .

3 For each root si ∈
⋃

v∈X Bv \ SX , there exists a vertex v ∈ X such

that si ∈ Bv and then since ~Ti is an ri -hyper-arborescence, ri /∈ X and
v ∈ QA(~Ti )

(ri ) ∩ X , there exists a hyperarc of ~Ti that enters X .

4 Since the hyper-arborescences are arc-disjoint,

ρA(X ) ≥ |
⋃

v∈X Bv \ SX |
≥ rM(

⋃
v∈X Bv \ SX )

≥ rM(
⋃

v∈X Bv)− rM(SX )
≥ rM(

⋃
v∈X SPA(v))− rM(SX )

= rM(SPA(X ))− rM(SX ).

ri = π(si )

rℓ = π(sℓ)

rj = π(sj )
X
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Conclusion
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Thank you for your attention !
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Motivation : Rigidity

Body-Bar Framework
Theorem (Tay 1984)

”Rigidity” of a Body-Bar Framework can

be characterized by the existence of a

spanning tree decomposition.

Body-Bar Framework
with Bar-Boundary Theorem (Katoh, Tanigawa 2013)

”Rigidity” of a Body-Bar Framework

with Bar-Boundary can be characterized

by the existence of a matroid-based

rooted-tree decomposition.
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