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With partition constraint

@@@ A ion @0
ugmentation
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Graph G = (V,E) G' k-E-C
Partition P of V
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Definitions : global and local edge-connectivity

Global edge-conn. : k-edge-connected graph

Given a graph G = (V, E) and an integer k, G is called k-edge-connected
if each cut contains at least k edges.
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Definitions : global and local edge-connectivity

Global edge-conn. : k-edge-connected graph

Given a graph G = (V, E) and an integer k, G is called k-edge-connected
if each cut contains at least k edges.

A(u, v)

Given a graph G = (V,E) and u,v € V, the local edge-connectivity
between u and v is defined as follows :

AMu,v) =min{dg(X):ve X,ve V- X}

| A\

Local edge-conn. : r-edge-connected graph

Given a graph G = (V, E) and a function r : V x V — Z,, we say that G
is r-edge-connected if

AMu,v) > r(u,v) Yu,veV.

N
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Graphs : global edge-connectivity
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Graphs : global edge-connectivity

Global edge-connectivity augmentation of a graph

Given a graph G and an integer k > 2, what is the minimum number ~ of
new edges whose addition results in a k-edge-connected graph ?
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Graphs : global edge-connectivity

Global edge-connectivity augmentation of a graph

Given a graph G and an integer k > 2, what is the minimum number ~ of
new edges whose addition results in a k-edge-connected graph ?

© Minimax theorem (Watanabe, Nakamura (1987))
v=a:=max{[2 >y y(k — d(X))] : X subpartition of V(G)}.
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new edges whose addition results in a k-edge-connected graph ?

© Minimax theorem (Watanabe, Nakamura (1987))
v=a:=max{[2 >y y(k — d(X))] : X subpartition of V(G)}.

© Polynomially solvable (Cai, Sun (1989))
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Graphs : local edge-connectivity
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Graphs : local edge-connectivity

Local edge-connectivity augmentation of a graph

Given a graph G = (V, E) and a requirement function r: V x V — Z,
what is the minimum number + of new edges whose addition results in an

r-edge-connected graph ?
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Graphs : local edge-connectivity

Local edge-connectivity augmentation of a graph

Given a graph G = (V, E) and a requirement function r: V x V — Z,
what is the minimum number + of new edges whose addition results in an

r-edge-connected graph ?
© Minimax theorem (Frank (1992))
v=max{[3 Y xcx(R(X) — d(X))] : X subpartition of V},
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Hypergraphs : global edge-connectivity
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Hypergraphs : global edge-connectivity

Global edge-connectivity augmentation of a hypergraph

Given a hypergraph G and an integer k, what is the minimum number ~ of
new graph edges whose addition results in a k-edge-connected
hypergraph ?
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Hypergraphs : global edge-connectivity

Global edge-connectivity augmentation of a hypergraph

Given a hypergraph G and an integer k, what is the minimum number ~ of
new graph edges whose addition results in a k-edge-connected
hypergraph ?

© Minimax theorem (Bang-Jensen, Jackson (1999))
~v= max{a, c(G) — 1},
where ¢, (G) := max{c(G —H) : H C E(G), |H| < k —1}.
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Hypergraphs : global edge-connectivity

Global edge-connectivity augmentation of a hypergraph

Given a hypergraph G and an integer k, what is the minimum number ~ of
new graph edges whose addition results in a k-edge-connected
hypergraph ?

© Minimax theorem (Bang-Jensen, Jackson (1999))

Y= max{a, Ck(g) - 1}7

where ¢, (G) := max{c(G —H) : H C E(G), |H| < k —1}.
@ Polynomially solvable (Bang-Jensen, Jackson (1999))
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Hypergraphs : local edge-connectivity
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Hypergraphs : local edge-connectivity, adding hyperedges
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Hypergraphs : local edge-connectivity

Local edge-conn. augmentation of a hypergraph by addig hyperedges

Given a hypergraph G = (V, E), a requirement function r: V x V — Z,

what is the minimum total size )}, ,, |H| of new hypergraph edges
whose addition results in an r-edge-connected hypergraph?
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Given a hypergraph G = (V, E), a requirement function r: V x V — Z,
what is the minimum total size )}, ,, |H| of new hypergraph edges
whose addition results in an r-edge-connected hypergraph?

© Minimax theorem (Szigeti (1999))
v=max{> xcx(R(X) — d(X)) : X subpartition of V}.

© Polynomially solvable (Szigeti (1999))

© T. Kirdly (2005) provided a short proof for a slight extension.
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Hypergraphs : local edge-connectivity

Local edge-conn. augmentation of a hypergraph by addig hyperedges

Given a hypergraph G = (V, E), a requirement function r: V x V — Z,
what is the minimum total size )}, ,, |H| of new hypergraph edges
whose addition results in an r-edge-connected hypergraph?

© Minimax theorem (Szigeti (1999))
v=max{> xcx(R(X) — d(X)) : X subpartition of V}.

© Polynomially solvable (Szigeti (1999))

© T. Kirdly (2005) provided a short proof for a slight extension.

@ Bernath, T. Kirdly (2007) Hypergraph H can be chosen so that at
most one hyperedge of size larger than 2 exists.
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Hypergraphs : local edge-connectivity
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Hypergraphs : local edge-connectivity

Local edge-connectivity augmentation of a hypergraph

Given a hypergraph G = (V, E), a requirement function r: V x V — Z,
what is the minimum number ~ of new graph edges whose addition results
in an r-edge-connected hypergraph?
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Hypergraphs : local edge-connectivity

Local edge-connectivity augmentation of a hypergraph
Given a hypergraph G = (V, E), a requirement function r: V x V — Z,
what is the minimum number ~ of new graph edges whose addition results
in an r-edge-connected hypergraph?

© Decision problem is NP-complete (Cosh, Jackson, Z. Kiraly (1999))
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Towards the boundary of NP-completeness

In the reduction of Cosh, Jackson, Z. Kirdly : the hypergraph
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© contains only one hyperedge that is not a graph edge,
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Towards the boundary of NP-completeness

In the reduction of Cosh, Jackson, Z. Kirdly : the hypergraph

© contains only one hyperedge that is not a graph edge,
@ is of high rank (the size of that hyperedge is about n/2.)

| 5\

Question
What about hypergraphs of low rank?
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© contains only one hyperedge that is not a graph edge,
@ is of high rank (the size of that hyperedge is about n/2.)

Question

| 5\

What about hypergraphs of low rank?
© rank =2 : Polynomial (= local e-c augm. of a graph),
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What about hypergraphs of low rank?
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@ rank = 3 : Polynomial (reduced to previous one by A — Y operation),
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Towards the boundary of NP-completeness

In the reduction of Cosh, Jackson, Z. Kirdly : the hypergraph

© contains only one hyperedge that is not a graph edge,
@ is of high rank (the size of that hyperedge is about n/2.)

Question

| 5\

What about hypergraphs of low rank?
© rank =2 : Polynomial (= local e-c augm. of a graph),
@ rank = 3 : Polynomial (reduced to previous one by A — Y operation),
© rank =4 : Open.
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Graphs with partition constraints : global edge-connectivity
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Graphs with partition constraints : global edge-connectivity

Partition constrained global edge-conn. augmentation of a graph

Given a graph G, a partition P of V(G) and an integer k > 2, what is the
minimum number ~y of new edges, between different members of P, whose
addition results in a k-edge-connected graph?
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Graphs with partition constraints : global edge-connectivity

Partition constrained global edge-conn. augmentation of a graph

Given a graph G, a partition P of V(G) and an integer k > 2, what is the
minimum number ~y of new edges, between different members of P, whose
addition results in a k-edge-connected graph?

© Minimax theorem (Bang-Jensen, Gabow, Jorddn, Szigeti (1999))

e if G contains no C4- and no Cg-configuration,
U o +1 otherwise,

where ®:= max{«, 41,...,06,} and
Bj = max{>_yey(k — d(Y)) : Y subpartition of P;}.
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Graphs with partition constraints : global edge-connectivity

Partition constrained global edge-conn. augmentation of a graph

Given a graph G, a partition P of V(G) and an integer k > 2, what is the
minimum number ~y of new edges, between different members of P, whose
addition results in a k-edge-connected graph?

© Minimax theorem (Bang-Jensen, Gabow, Jorddn, Szigeti (1999))

e if G contains no C4- and no Cg-configuration,
U o +1 otherwise,

where ®:= max{«, 41,...,06,} and
Bj = max{>_yey(k — d(Y)) : Y subpartition of P;}.
@ Polynomially solvable (Bang-Jensen, Gabow, Jorddn, Szigeti (1999))
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Graphs with partition constraints : global edge-connectivity

Cs k=3 Ce
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Graphs with partition constraints : global edge-connectivity

C4-configuration

A partition {A1, Az, A3, Ag} of V is a (y-configuration of G if k is odd and
k—d(A)) > 0 V1<i<4,
d(Ai,Aisz) = O VI<i<2,
Y (k—d(X)) = k—d(A) 3XeSA)VI<i<4,
XeX;
XiUXo € S(V)) qN<I<ral<;j<2,
k—d(A)+k—d(Ais2) = ¢ Vi<i<2.

C,-configuration
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Graphs with partition constraints : global edge-connectivity

Ce-configuration

A partition {A1,Az,...,Ae} of V is a Cs-configuration of G if k is odd,
k—d(A)) = 1 V1I<i<6,
k—d(A,'UA,‘+1) =1 V1§I§6,(A7:A1)
o = 3
k—d(A) = 1 3<ji,p,3<r V1<i<6, JA;CANYV L
i—3

v

Cs-configuration
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Graphs with partition constraints : local edge-connectivity

Partition constrained local edge-conn. augmentation of a graph

Given a graph G = (V, E), a partition P of V and a requirement function
r:V xV — Z,, what is the minimum number « of new edges, between
different members of P, whose addition results in a r-edge-connected
graph?
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Hypergraphs with partition constraints : local edge-conn.

Partition constrained local edge-conn. augmentation of a hypergraph

Given a hypergraph G = (V, E), a partition P of V and a requirement
function r : V x V — Z, what is the minimum number ~ of new edges,
between different members of P, whose addition results in a
r-edge-connected hypergraph ?
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Hypergraphs with partition constraints : local edge-conn.

Partition constrained local edge-conn. augmentation of a hypergraph

Given a hypergraph G = (V, E), a partition P of V and a requirement
function r : V x V — Z, what is the minimum number ~ of new edges,
between different members of P, whose addition results in a
r-edge-connected hypergraph ?

© Decision problem is NP-complete.
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Hypergraphs with partition constraints : global edge-conn.

Partition constrained global edge-conn. augmentation of a hypergraph
Given a hypergraph G, a partition P of V(G) and an integer k, what is the
minimum number ~y of new edges, between different members of P, whose
addition results in a k-edge-connected hypergraph ?
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Partition constrained global edge-conn. augmentation of a hypergraph

Given a hypergraph G, a partition P of V(G) and an integer k, what is the
minimum number ~y of new edges, between different members of P, whose
addition results in a k-edge-connected hypergraph ?

© Minimax theorem (Bernath, Grappe, Szigeti (2008))

(] if G contains no C4- and no Cg-configuration,
Y= .
® + 1 otherwise,

where @:= max{a, c(G) — 1, f1,..., 0}
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(] if G contains no C4- and no Cg-configuration,
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® + 1 otherwise,
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Hypergraphs with partition constraints : global edge-conn.

Partition constrained global edge-conn. augmentation of a hypergraph

Given a hypergraph G, a partition P of V(G) and an integer k, what is the
minimum number ~y of new edges, between different members of P, whose

addition results in a k-edge-connected hypergraph ?
© Minimax theorem (Bernath, Grappe, Szigeti (2008))

(] if G contains no C4- and no Cg-configuration,
Y= .
® + 1 otherwise,

where @:= max{a, c(G) — 1, f1,..., 0}
@ Polynomially solvable (Bernath, Grappe, Szigeti (2008))

Ben Cosh (2000) solved the special case of bipartition.
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Hypergraphs with partition constraints : global edge-conn.

A partition {A1, A2, A3, As} of V is a Cs-configuration of G if

k—d(A) > 0 V1<i<a4,
6(A1) N6(As) = 06(A2) N6(As) = A,
k—|A| is odd,
Y (k—d(X)) = k—d(A) 3IXeSA)VI<i<4,
XeX;
XUk, € S(V/) J1</I<rdl < <2
k—d(A)+k—d(Aiz2) = © VI<i<2.

Cy4-configuration
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Hypergraphs with partition constraints : global edge-conn.

Ce-configuration

A partition {A;1, Aa,...,Ae} of V is a Cs-configuration of G if
—d(A) = 1 VvV1iI<i<e6,
k — d(A UA,+1) =1 Vi<i< 6,(A7 = Al)
o = 3
dA) = 1 F1<ji,p,j3<r, V1<i<6, JAICANY L
i—3

v
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Generalizations
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Covering a symmetric, crossing supermodular set function

Covering a symmetric, crossing supermodular set function

Given a symmetric, positively crossing supermodular set function
p:2Y — Z.,, what is the minimum number ~ of edges of a graph on V

that covers p? (d(X) > p(X) VX C V)
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Covering a symmetric, crossing supermodular set function

Covering a symmetric, crossing supermodular set function

Given a symmetric, positively crossing supermodular set function
p:2Y — Z.,, what is the minimum number ~ of edges of a graph on V

that covers p? (d(X) > p(X) VX C V)
© Minimax theorem (Benczir, Frank (1999))

= maX{O‘P? Cp — 1}7

where a,, := max{[2 >, 1 p(X)] : X' subpartition of V}, and
¢p := max{/ : p-full [-partition exists. }
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Covering a symmetric, crossing supermodular set function
with partition constraints

Covering a symmetric, crossing supermodular set function with
partition constraints

Given a symmetric, positively crossing supermodular set function
p:2Y — Z, and a partition P of V, what is the minimum number ~ of
edges, between different members of P, of a graph on V that covers p?
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Covering a symmetric, crossing supermodular set function
with partition constraints

Covering a symmetric, crossing supermodular set function with
partition constraints

Given a symmetric, positively crossing supermodular set function
p:2Y — Z, and a partition P of V, what is the minimum number ~ of
edges, between different members of P, of a graph on V that covers p?

© Minimax theorem (Bernath, Grappe, Szigeti (2008))

. D, if no C;-, no Cz- and no Cg-configuration exists,
U= @, + 1 otherwise,
where @,:= max{ap,cp — 1,01,..., 0}
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