Reachability-based matroid-restricted packing of arborescences

Zoltán Szigeti

Combinatorial Optimization Group, G-SCOP Univ. Grenoble Alpes, Grenoble INP, CNRS, France

May 2017

Joint work with :

Csaba Király (EGRES, Budapest), Shin-ichi Tanigawa (University of Tokyo).

Packing of arborescences

- spanning
- matroid-restricted
- matroid-based
- reachability
- reachability-based

New result

- matroid-based matroid-restricted
- reachability-based matroid-restricted

• Algorithmic aspects, weighted case for

- matroid-based matroid-restricted
- reachability-based matroid-restricted

Packing of arborescences

- spanning
- matroid-restricted
- matroid-based
- reachability
- reachability-based

New result

- matroid-based matroid-restricted
- reachability-based matroid-restricted

• Algorithmic aspects, weighted case for

- matroid-based matroid-restricted
- reachability-based matroid-restricted

Z. Szigeti (G-SCOP, Grenoble)

matroid intersection

Packing of arborescences

spanning

- matroid-restricted
- matroid-based
- reachability
- reachability-based

New result

- matroid-based matroid-restricted
- reachability-based matroid-restricted

• Algorithmic aspects, weighted case for

- matroid-based matroid-restricted
- reachability-based matroid-restricted

Z. Szigeti (G-SCOP, Grenoble)

matroid intersection

spanning

Packing of arborescences

- spanning
- matroid-restricted
- matroid-based
- reachability
- reachability-based

New result

- matroid-based matroid-restricted
- reachability-based matroid-restricted

• Algorithmic aspects, weighted case for

Packing of arborescences

- spanning
- matroid-restricted
- matroid-based
- reachability
- reachability-based

New result

- matroid-based matroid-restricted
- reachability-based matroid-restricted

• Algorithmic aspects, weighted case for

Packing of arborescences

- spanning
- matroid-restricted
- matroid-based
- reachability
- reachability-based

New result

- matroid-based matroid-restricted
- reachability-based matroid-restricted

Algorithmic aspects, weighted case for

Packing of arborescences

- spanning
- matroid-restricted
- matroid-based
- reachability
- reachability-based

New result

- matroid-based matroid-restricted
- reachability-based matroid-restricted

Algorithmic aspects, weighted case for

- Packing of arborescences
 - spanning
 - matroid-restricted
 - matroid-based
 - reachability
 - reachability-based
- New result
 - matroid-based matroid-restricted
 - reachability-based matroid-restricted
- Algorithmic aspects, weighted case for
 - matroid-based matroid-restricted
 reachability-based
- Z. Szigeti (G-SCOP, Grenoble)

- Packing of arborescences
 - spanning
 - matroid-restricted
 - matroid-based
 - reachability
 - reachability-based
- New result
 - matroid-based matroid-restricted
 - reachability-based matroid-restricted
- Algorithmic aspects, weighted case for
 - matroid-based matroid-restricted
 reachability-based
- Z. Szigeti (G-SCOP, Grenoble)

- Packing of arborescences
 - spanning
 - matroid-restricted
 - matroid-based
 - reachability
 - reachability-based
- New result
 - matroid-based matroid-restricted
 - reachability-based matroid-restricted
- Algorithmic aspects, weighted case for
 - matroid-based matroid-restricted
 - reachability-based matroid-restricted

reachability-based matroid-restricted

- Packing of arborescences
 - spanning
 - matroid-restricted
 - matroid-based
 - reachability
 - reachability-based
- New result
 - matroid-based matroid-restricted
 - reachability-based matroid-restricted
- Algorithmic aspects, weighted case for
 - matroid-based matroid-restricted
 - reachability-based matroid-restricted

Z. Szigeti (G-SCOP, Grenoble)

Packing of spanning s-arborescences

Definition

- **1** s-arborescence : directed tree, indegree of every vertex except s is 1,
- **2** spanning subgraph of D: subgraph that contains all the vertices of D,
- packing of arborescences : arc-disjoint arborescences,
- $\ \, {\bf O}(Z,X): \text{ set of arcs from } Z \text{ to } X, \text{ for } Z \subseteq V(D)-X,$
- $(\partial(X) | : indegree of X.$

Theorem (Edmonds 1973)

D = (V + s, A) has a packing of k spanning s-arborescences ⇒
|∂(X)| ≥ k ∀ Ø ≠ X ⊆ V.

Packing spanning arborescences with matroid intersection

Remark

Let D = (V + s, A) and G be the underlying undirected graph of D.
If ⊆ A is a packing of k spanning s-arborescences of D ⇔
F is a packing of k spanning trees of G, |∂^F(v)| = k ∀v ∈ V ⇔
F is a common base of M₁ = k-sum of the graphic matroid of G and M₂ = ⊕_{v∈V} U_{|∂(v)|,k}.

Matroid-restricted packing of spanning s-arborescences

Definition

Given a digraph D = (V + s, A) and a matroid $\mathcal{M} = (A, \mathcal{I})$, a packing of spanning *s*-arborescences $\mathcal{T}_1, \ldots, \mathcal{T}_k$ is matroid-restricted if $\bigcup_1^k A(\mathcal{T}_i) \in \mathcal{I}$.

Theorem

Given a digraph D = (V + s, A), $k \in \mathbb{Z}_+$ and a matroid $\mathcal{M} = (A, r)$ which is the direct sum of the matroids $\mathcal{M}_v = (\partial(v), r_v) \ \forall v \in V$.

D has an *M*-restricted packing of k spanning s-arborescences <⇒
 r(∂(X)) ≥ k ∀ ∅ ≠ X ⊆ V.

Remarks

- For free matroid, we are back to packing of *k* spanning *s*-arborescen.
- ② This problem can also be formulated as matroid intersection.
- Solution For general matroid \mathcal{M} , the problem is NP-complete, even for k = 1.

Matroid-based packing of s-arborescences

Definition

Let D = (V + s, A) be a digraph and \mathcal{M} a matroid on $\partial(s, V)$.

• A packing of s-arborescences $\{T_1, \ldots, T_t\}$ is matroid-based if {root arc of $T_i[s, v] : v \in V(T_i)$ } is a base of $\mathcal{M} \ \forall v \in V$.

Matroid-based packing of s-arborescences

Theorem (Durand de Gevigney, Nguyen, Szigeti 2013)

Let D = (V + s, A) be a digraph and $\mathcal{M} = (\partial(s, V), r)$ a matroid.

- There exists an \mathcal{M} -based packing of *s*-arborescences in $D \iff$
- $r(\partial(s,X)) + |\partial(V-X,X)| \ge r(\partial(s,V)) \ \forall X \subseteq V.$

Remark

A packing of k spanning s-arborescences in D = (V + s, A) can be obtained as an \mathcal{M} -based packing of s'-arborescences in $D' = (V + s + s', A \cup A')$, where $A' = \{k \times s's\}$ and free matroid \mathcal{M} on A'.

\mathcal{M}_1 -based \mathcal{M}_2 -restricted packing of *s*-arborescences

Theorem

Let
$$D = (V + s, A)$$
, $\mathcal{M}_1 = (\partial(s, V), r_1)$, $\mathcal{M}_2 = (A, r_2) = \bigoplus_{v \in V} \mathcal{M}_v$.

- D has an \mathcal{M}_1 -based \mathcal{M}_2 -restricted packing of s-arborescences \iff
- $r_1(F) + r_2(\partial(X) F) \ge r_1(\partial(s, V)) \quad \forall X \subseteq V, F \subseteq \partial(s, X).$

Remarks

- It contains matroid-restricted packing of spanning s-arborescences, even matroid intersection. For matroids M₁ and M₂ on S, our problem on (D = ({s, v}, {|S| × sv}), M₁, M₂) reduces to it.
- **2** For free \mathcal{M}_2 , we are back to \mathcal{M}_1 -based packing of *s*-arborescences.

Packing of reachability s-arborescences

Definition

Let D = (V + s, A) be a digraph.

- For $X \subseteq V$, P(X) denotes the set of vertices in V from which X is reachable by a directed path in D.
- **2** packing of reachability *s*-arborescences $\{T_1, \ldots, T_t\}$: {root arc of $T_i[s, v] : v \in V(T_i)$ } = $\partial(s, P(v)) \quad \forall v \in V$.

Packing of reachability s-arborescences

Theorem (Kamiyama, Katoh, Takizawa 2009)

Let D = (V + s, A) be a digraph.

- There exists a packing of reachability s-arborescences
- $|\partial(X)| \geq |\partial(s, P(X))| \ \forall X \subseteq V.$

Remark

Packing of k spanning s-arborescences in D = (V + s, A) can be obtained as packing of reachability s'-arborescences in $D' = (V + s + s', A \cup A')$ where $A' = \{k \times s's\}$, because $|\partial(X)| \ge k \ \forall \emptyset \ne X \subseteq V$ implies the above condition in D' and that each vertex is reachable from s in D.

Reachability-based packing of s-arborescences

Definition

Let D = (V + s, A) be a digraph and $(\mathcal{M} = (\partial(s, V), \mathcal{I}), r)$ a matroid.

• A packing of s-arborescences $\{T_1, \ldots, T_t\}$ is reachability-based if {root arc of $T_i[s, v] : v \in V(T_i)\} \in \mathcal{I}$ of size $r(\partial(s, P(v))) \forall v \in V$.

Theorem (Cs. Király 2016)

Let D = (V + s, A) be a digraph and $\mathcal{M} = (\partial(s, V), r)$ a matroid.

- *D* has an \mathcal{M} -reachability-based packing of *s*-arborescences \iff
- $r(\partial(s,X)) + |\partial(V-X,X)| \ge r(\partial(s,P(X))) \ \forall X \subseteq V.$

Remarks

- For free matroid, back to packing of reachability *s*-arborescences.
- An *M*-based packing of *s*-arborescences can be obtained as an *M*-reachability-based packing of *s*-arborescences, because r(∂(s, X)) + |∂(V X, X)| ≥ r(∂(s, V)) ∀X ⊆ V implies the above condition and that r(∂(s, P(v))) = r(∂(s, V)).

Reachability-based matroid-restricted packing of *s*-arborescences

Theorem

Let
$$D = (V + s, A)$$
, $\mathcal{M}_1 = (\partial(s, V), r_1)$, $\mathcal{M}_2 = (A, r_2) = \bigoplus_{v \in V} \mathcal{M}_v$.

- $\exists \mathcal{M}_1$ -reachability-based \mathcal{M}_2 -restricted packing of *s*-arborescen. \iff
- $r_1(F) + r_2(\partial(X) F) \ge r_1(\partial(s, P(X))) \ \forall X \subseteq V, F \subseteq \partial(s, X).$

Remarks

An M₁-based M₂-restricted packing of s-arborescences can be obtained as an M₁-reachability-based M₂-restricted packing of s-arborescences, because r₁(F) + r₂(∂(X) - F) ≥ r₁(∂(s, V))
 ∀X ⊆ V, F ⊆ ∂(s, X) implies the above condition and that r₁(∂(s, P(v))) = r₁(∂(s, V)).

For free matroid M₂, we are back to M₁-reachability-based packing of s-arborescences.

Theorem (Edmonds-Rota, +Dilworth truncation)

- D := (V, A) a digraph,
- f: 2^A → Z₊ a monotone intersecting submodular function,
 I := {B ⊆ A : |H| ≤ f(H) ∀H ⊆ B}.

Then \mathcal{I} forms the family of independent sets of a matroid on A.

Theorem

- D := (V, A) a digraph,
- \mathcal{F} an intersecting bi-set family on V,
- $b: \mathcal{F} \to \mathbb{Z}_+$ an intersecting submodular bi-set function,
- $\mathcal{I} := \{B \subseteq A : i_B(\mathsf{X}) \leq b(\mathsf{X}) \ \forall \mathsf{X} \in \mathcal{F}\}.$

Then \mathcal{I} forms the family of independent sets of a matroid on A.

Theorem

Let D = (V + s, A), $\mathcal{M}_1 = (\partial(s, V), r_1)$, $\mathcal{M}_2 = (A, r_2) = \bigoplus_{v \in V} \mathcal{M}_v$. The arc sets of the \mathcal{M}_1 -reachability-based \mathcal{M}_2 -restricted packings of *s*-arborescences can be written as common bases of \mathcal{M}'_1 and \mathcal{M}_2 .

Remark

- \mathcal{M}_1 -based : \mathcal{M}'_1 by $f(H) = k|V(H) s| k + r_1(H \cap \partial(s, V))$,
- \mathcal{M}_1 -reachability-based : \mathcal{M}'_1 by $b(X) = m(X_I) p(X)$.

Corollary

- One can decide in polynomial time if an instance has a solution.
- One can find in polynomial time an arc set of minimum weight that can be decomposed into an \mathcal{M}_1 -reachability-based \mathcal{M}_2 -restricted packing of *s*-arborescences.

Algorithm

INPUT : $(D, \mathcal{M}_1, \mathcal{M}_2 = \bigoplus_{v \in V} \mathcal{M}_v).$

OUTPUT : Either the required packing or a pair violating the condition.

- If $(D, \mathcal{M}_1, \mathcal{M}_2)$ has no solution then stop with the pair violating the condition.
- If M₂ is the free matroid then use Cs. Király's algorithm for M₁-reachability-based packing of *s*-arborescences and stop with the packing.
- **③** Otherwise, let \underline{e} be a non-bridge edge in \mathcal{M}_2 .
- If $(D e, \mathcal{M}_1 e, \mathcal{M}_2 e)$ has a solution then use recursively our algorithm for it and stop with the packing.
- **③** Otherwise, $(D, \mathcal{M}_1, \mathcal{M}'_2 = (\mathcal{M}_2/e) \oplus e)$ has a solution. Use recursively our algorithm for $(D, \mathcal{M}_1, \mathcal{M}'_2)$ and stop with the packing.

Theorem

For $(D = (V + s, A), c : A \to \mathbb{R}, \mathcal{M}_1, \mathcal{M}_2 = \bigoplus_{v \in V} \mathcal{M}_v)$, a minimum weight \mathcal{M}_1 -reachability-based \mathcal{M}_2 -restricted packing of *s*-arborescences can be found in polynomial time.

Thank you for your attention !