On (2k, k)-connected graphs

Zoltán Szigeti

Combinatorial Optimization Group Laboratoire G-SCOP INP Grenoble, France

11 septembre 2015

Joint work with : Olivier Durand de Gevigney

- Results on :
 - Orientation
 - Construction
 - Splitting off
 - Augmentation
- Concerning :
 - Edge-connectivity
 - (4,2)-connectivity
 - (2k, k)-connectivity

• A digraph *D* is called *k*-arc-connected if $\forall \emptyset \neq X \subset V$, $|\rho_D(X)| \ge k$.

② A graph *G* is called *k*-edge-connected if $\forall \emptyset \neq X \subset V$, $d_G(X) \ge k$.

- A digraph *D* is called *k*-arc-connected if $\forall \emptyset \neq X \subset V, |\rho_D(X)| \ge k$.
- **②** A graph *G* is called *k*-edge-connected if $\forall \emptyset \neq X \subset V$, $d_G(X) \ge k$.

Theorem (Nash-Williams)

G has a k-arc-connected orientation if and only if G is 2k-edge-connected.

- A digraph *D* is called *k*-arc-connected if $\forall \emptyset \neq X \subset V, |\rho_D(X)| \ge k$.
- **②** A graph *G* is called *k*-edge-connected if $\forall \emptyset \neq X \subset V$, $d_G(X) \ge k$.

Theorem (Nash-Williams)

G has a k-arc-connected orientation if and only if G is 2k-edge-connected.

Necessity :

- A digraph *D* is called *k*-arc-connected if $\forall \emptyset \neq X \subset V, |\rho_D(X)| \ge k$.
- **②** A graph *G* is called *k*-edge-connected if $\forall \emptyset \neq X \subset V$, $d_G(X) \ge k$.

Theorem (Nash-Williams)

G has a k-arc-connected orientation if and only if G is 2k-edge-connected.

Necessity :

Definition

• A digraph *D* is called *k*-vertex-connected if $|V| \ge k + 1$, $\forall X \subset V$, |X| = k - 1, D - X is 1-arc-connected.

② A graph *G* is called *k*-vertex-connected if $|V| \ge k + 1$, ∀ $X \subset V$, |X| = k - 1, G - X is connected.

Definition

• A digraph *D* is called *k*-vertex-connected if $|V| \ge k + 1$, $\forall X \subset V$, |X| = k - 1, D - X is 1-arc-connected.

② A graph G is called *k*-vertex-connected if $|V| \ge k + 1$, ∀ X ⊂ V, |X| = k - 1, G − X is connected.

Conjecture (Frank)

G has a *k*-vertex-connected orientation if and only if $|V| \ge k + 1$ and $\forall X \subset V, |X| < k, G - X$ is (2k - 2|X|)-edge-connected.

Definition

• A digraph *D* is called *k*-vertex-connected if $|V| \ge k + 1$, $\forall X \subset V$, |X| = k - 1, D - X is 1-arc-connected.

② A graph G is called *k*-vertex-connected if $|V| \ge k + 1$, ∀ X ⊂ V, |X| = k - 1, G − X is connected.

Conjecture (Frank)

G has a *k*-vertex-connected orientation if and only if $|V| \ge k + 1$ and $\forall X \subset V, |X| < k, G - X$ is (2k - 2|X|)-edge-connected.

Theorem (Durand de Gevigney) ($k \ge 3$)

This conjecture is false.

Definition

• A digraph *D* is called *k*-vertex-connected if $|V| \ge k + 1$, $\forall X \subset V$, |X| = k - 1, D - X is 1-arc-connected.

② A graph G is called *k*-vertex-connected if $|V| \ge k + 1$, ∀ X ⊂ V, |X| = k - 1, G − X is connected.

Conjecture (Frank)

G has a *k*-vertex-connected orientation if and only if $|V| \ge k + 1$ and $\forall X \subset V, |X| < k, G - X$ is (2k - 2|X|)-edge-connected.

Theorem (Durand de Gevigney) ($k \ge 3$)

This conjecture is false.

Occiding whether G has a k-vertex-connected orientation is NP-complete.

Counter-example for k = 3

Example of Durand de Gevigney

Remark (Necessary condition)

If \vec{G} is 2-vertex-connected, then

Remark (Necessary condition)

If \vec{G} is 2-vertex-connected, then $|V| \ge 3$,

① G is 4-edge-connected and,

- If \vec{G} is 2-vertex-connected, then $|V| \ge 3$,
 - G is 4-edge-connected and,
 - 2 for all $v \in V$, G v is 2-edge-connected.

- A graph G is called (4, 2)-connected if $|V| \ge 3$,
 - G is 4-edge-connected and,
 - **2** for all $v \in V$, G v is 2-edge-connected.

- A graph G is called (4, 2)-connected if $|V| \ge 3$,
 - G is 4-edge-connected and,
 - 2 for all $v \in V$, G v is 2-edge-connected.

Theorem (Sufficent condition)

A graph G has a 2-vertex-connected orientation

• if G is (4,2)-connected and Eulerian (Berg, Jordán).

- A graph G is called (4, 2)-connected if $|V| \ge 3$,
 - G is 4-edge-connected and,
 - 2 for all $v \in V$, G v is 2-edge-connected.

Theorem (Sufficent condition)

A graph G has a 2-vertex-connected orientation

- if G is (4,2)-connected and Eulerian (Berg, Jordán).
- *if G is* 18-vertex-connected (Jordán).

- A graph G is called (4, 2)-connected if $|V| \ge 3$,
 - G is 4-edge-connected and,
 - 2 for all $v \in V$, G v is 2-edge-connected.

Theorem (Sufficent condition)

- A graph G has a 2-vertex-connected orientation
 - if G is (4,2)-connected and Eulerian (Berg, Jordán).
 - *if G is* 18-vertex-connected (Jordán).
 - if G is 14-vertex-connected (Cheriyan, Durand de Gevigney, Szigeti).

- A graph G is called (4, 2)-connected if $|V| \ge 3$,
 - G is 4-edge-connected and,
 - 2 for all $v \in V$, G v is 2-edge-connected.

Theorem (Sufficent condition)

- A graph G has a 2-vertex-connected orientation
 - if G is (4,2)-connected and Eulerian (Berg, Jordán).
 - If G is 18-vertex-connected (Jordán).
 - if G is 14-vertex-connected (Cheriyan, Durand de Gevigney, Szigeti).

Theorem (Thomassen)

G has a 2-vertex-connected orientation if and only if G is (4,2)-connected.

A graph is 2k-edge-connected if and only if it can be obtained from K_2^{2k} by a sequence of the following two operations :

(a) adding a new edge,

(b) pinching k edges.

A graph is 2k-edge-connected if and only if it can be obtained from K_2^{2k} by a sequence of the following two operations :

(a) adding a new edge,

A graph is 2k-edge-connected if and only if it can be obtained from K_2^{2k} by a sequence of the following two operations :

(a) adding a new edge,

A graph is 2k-edge-connected if and only if it can be obtained from K_2^{2k} by a sequence of the following two operations :

(a) adding a new edge,

A graph is 2k-edge-connected if and only if it can be obtained from K_2^{2k} by a sequence of the following two operations :

(a) adding a new edge,

(b) pinching *k* edges.

A graph is 2k-edge-connected if and only if it can be obtained from K_2^{2k} by a sequence of the following two operations :

(a) adding a new edge,

(b) pinching *k* edges.

A graph is 2k-edge-connected if and only if it can be obtained from K_2^{2k} by a sequence of the following two operations :

(a) adding a new edge,

A graph is 2k-edge-connected if and only if it can be obtained from K_2^{2k} by a sequence of the following two operations :

(a) adding a new edge,

(b) pinching *k* edges.

A graph is 2k-edge-connected if and only if it can be obtained from K_2^{2k} by a sequence of the following two operations :

(a) adding a new edge,

(b) pinching k edges.

A graph is 2k-edge-connected if and only if it can be obtained from K_2^{2k} by a sequence of the following two operations :

- (a) adding a new edge,
- (b) pinching *k* edges.

Example

A graph is 2k-edge-connected if and only if it can be obtained from K_2^{2k} by a sequence of the following two operations :

- (a) adding a new edge,
- (b) pinching k edges.

Example

Remark

These operations preserve 2k-edge-connectivity.

A graph is 2k-edge-connected if and only if it can be obtained from K_2^{2k} by a sequence of the following two operations :

- (a) adding a new edge,
- (b) pinching *k* edges.

Remark

- These operations preserve 2k-edge-connectivity.
- It implies Nash-Williams' orientation result on k-arc-connectivity.

Theorem (Jordán)

A graph is (4, 2)-connected if and only if it can be obtained from K_3^2 by a sequence of the following two operations :

(a) adding a new edge,

(b) pinching 2 edges so that if one of them is a loop then the other one is not adjacent to it.

Theorem (Jordán)

A graph is (4, 2)-connected if and only if it can be obtained from K_3^2 by a sequence of the following two operations :

- (a) adding a new edge,
- (b) pinching 2 edges so that if one of them is a loop then the other one is not adjacent to it.

Theorem (Jordán)

A graph is (4, 2)-connected if and only if it can be obtained from K_3^2 by a sequence of the following two operations :

- (a) adding a new edge,
- (b) pinching 2 edges so that if one of them is a loop then the other one is not adjacent to it.

Theorem (Jordán)

A graph is (4, 2)-connected if and only if it can be obtained from K_3^2 by a sequence of the following two operations :

- (a) adding a new edge,
- (b) pinching 2 edges so that if one of them is a loop then the other one is not adjacent to it.

Theorem (Jordán)

A graph is (4, 2)-connected if and only if it can be obtained from K_3^2 by a sequence of the following two operations :

- (a) adding a new edge,
- (b) pinching 2 edges so that if one of them is a loop then the other one is not adjacent to it.

Theorem (Jordán)

A graph is (4, 2)-connected if and only if it can be obtained from K_3^2 by a sequence of the following two operations :

- (a) adding a new edge,
- (b) pinching 2 edges so that if one of them is a loop then the other one is not adjacent to it.

Theorem (Jordán)

A graph is (4, 2)-connected if and only if it can be obtained from K_3^2 by a sequence of the following two operations :

(a) adding a new edge,

(b) pinching 2 edges so that if one of them is a loop then the other one is not adjacent to it.

Theorem (Jordán)

A graph is (4, 2)-connected if and only if it can be obtained from K_3^2 by a sequence of the following two operations :

- (a) adding a new edge,
- (b) pinching 2 edges so that if one of them is a loop then the other one is not adjacent to it.

Example

Theorem (Jordán)

A graph is (4, 2)-connected if and only if it can be obtained from K_3^2 by a sequence of the following two operations :

- (a) adding a new edge,
- (b) pinching 2 edges so that if one of them is a loop then the other one is not adjacent to it.

Remark

These operations preserve (4, 2)-connectivity.

Theorem (Jordán)

A graph is (4, 2)-connected if and only if it can be obtained from K_3^2 by a sequence of the following two operations :

- (a) adding a new edge,
- (b) pinching 2 edges so that if one of them is a loop then the other one is not adjacent to it.

Remark

- **1** These operations preserve (4, 2)-connectivity.
- Jordán's result does not imply Thomassen's result on 2-vertex-connectivity orientation.

Splitting off : edge-connectivity

Definitions

Splitting off : edge-connectivity

Definitions

Splitting off : edge-connectivity

Definitions

Theorem (Lovász)

Let H = (V + s, E) be an ℓ -edge-connected graph in V, $\ell \ge 2$, $d_H(s)$ even. There exists a complete splitting off at s preserving ℓ -edge-connectivity.

Theorem (Lovász)

Let H = (V + s, E) be an ℓ -edge-connected graph in V, $\ell \ge 2$, $d_H(s)$ even. There exists a complete splitting off at s preserving ℓ -edge-connectivity.

Remark

It implies the construction of 2k-edge-connected graphs G:

G can be obtained from K₂^{2k} by the operations :
 (a) adding a new edge, (b) pinching k edges.

Theorem (Lovász)

Let H = (V + s, E) be an ℓ -edge-connected graph in V, $\ell \ge 2$, $d_H(s)$ even. There exists a complete splitting off at s preserving ℓ -edge-connectivity.

Remark

It implies the construction of 2k-edge-connected graphs G:

- G can be obtained from K₂^{2k} by the operations :
 (a) adding a new edge, (b) pinching k edges.
- G must be reduced to K₂^{2k} by the inverse operations :
 (a) deleting an edge, (b) complete splitting off at a vertex of degree 2k.

Theorem (Lovász)

Let H = (V + s, E) be an ℓ -edge-connected graph in V, $\ell \ge 2$, $d_H(s)$ even. There exists a complete splitting off at s preserving ℓ -edge-connectivity.

Remark

It implies the construction of 2k-edge-connected graphs G:

- G can be obtained from K₂^{2k} by the operations :
 (a) adding a new edge, (b) pinching k edges.
- G must be reduced to K₂^{2k} by the inverse operations :
 (a) deleting an edge, (b) complete splitting off at a vertex of degree 2k. This can be done by Mader's result on minimally 2k-edge-connected graphs and by Lovász' splitting off result.

Splitting off : (4, 2)-connectivity

Theorem (Jordán)

Let H = (V + s, E) be a (4,2)-connected graph with $d_H(s) = 4$. There exists a complete splitting-off at s preserving (4,2)-connectivity if and only if there exists no obstacle at s.

Theorem (Jordán)

Let H = (V + s, E) be a (4,2)-connected graph with $d_H(s) = 4$. There exists a complete splitting-off at s preserving (4,2)-connectivity if and only if there exists no obstacle at s.

Definition

For the set $\{t, v, w, y\}$ of neighbors of *s*, the pair $(t, \{A, B, C\})$ is called an *obstacle* at *s* if $\{A, B, C\}$ is a subpartition of V - t such that its elements are of degree 2 in H - t and $v \in A, w \in B, y \in C$.

Example

Theorem (Jordán)

Let H = (V + s, E) be a (4,2)-connected graph with $d_H(s) = 4$. There exists a complete splitting-off at s preserving (4,2)-connectivity if and only if there exists no obstacle at s.

Definition

For the set $\{t, v, w, y\}$ of neighbors of s, the pair $(t, \{A, B, C\})$ is called an *obstacle* at s if $\{A, B, C\}$ is a subpartition of V - t such that its elements are of degree 2 in H - t and $v \in A, w \in B, y \in C$.

Example

Remark

It implies the construction of (4, 2)-connected graphs.

Theorem (Watanabe-Nakamura)

Let G = (V, E) be a graph and $\ell \ge 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is ℓ -edge-connected is equal to

$$\left\lceil \frac{1}{2} \max \left\{ \sum_{X \in \mathcal{X}} (\ell - d_G(X)) \right\} \right\rceil,$$

where \mathcal{X} is a subpartition of V.

Graph G and $\ell = 4$

Theorem (Watanabe-Nakamura)

Let G = (V, E) be a graph and $\ell \ge 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is ℓ -edge-connected is equal to

$$\left\lceil \frac{1}{2} \max \left\{ \sum_{X \in \mathcal{X}} (\ell - d_G(X)) \right\} \right\rceil,$$

where \mathcal{X} is a subpartition of V.

Graph G and $\ell = 4$

Theorem (Watanabe-Nakamura)

Let G = (V, E) be a graph and $\ell \ge 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is ℓ -edge-connected is equal to

$$\left\lceil \frac{1}{2} \max \left\{ \sum_{X \in \mathcal{X}} (\ell - d_G(X)) \right\} \right\rceil,$$

where \mathcal{X} is a subpartition of V.

Graph G and $\ell = 4$

On (2k, k)-connected graphs

Theorem (Watanabe-Nakamura)

Let G = (V, E) be a graph and $\ell \ge 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is ℓ -edge-connected is equal to

$$\left\lceil \frac{1}{2} \max \left\{ \sum_{X \in \mathcal{X}} (\ell - d_G(X)) \right\} \right\rceil,$$

where \mathcal{X} is a subpartition of V.

Graph G and $\ell = 4$

Theorem (Watanabe-Nakamura)

Let G = (V, E) be a graph and $\ell \ge 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is ℓ -edge-connected is equal to

$$\left\lceil \frac{1}{2} \max \left\{ \sum_{X \in \mathcal{X}} (\ell - d_G(X)) \right\} \right\rceil,$$

where \mathcal{X} is a subpartition of V.

Graph G and $\ell = 4$

On (2k, k)-connected graphs

Theorem (Watanabe-Nakamura)

Let G = (V, E) be a graph and $\ell \ge 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is ℓ -edge-connected is equal to

$$\left\lceil \frac{1}{2} \max \left\{ \sum_{X \in \mathcal{X}} (\ell - d_G(X)) \right\} \right\rceil,$$

where \mathcal{X} is a subpartition of V.

$$Opt \geq \left\lceil \frac{5}{2} \right\rceil = 3$$

Theorem (Watanabe-Nakamura)

Let G = (V, E) be a graph and $\ell \ge 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is ℓ -edge-connected is equal to

$$\left\lceil \frac{1}{2} \max \left\{ \sum_{X \in \mathcal{X}} (\ell - d_G(X)) \right\} \right\rceil,$$

where \mathcal{X} is a subpartition of V.

Graph G + F is 4-edge-connected and |F| = 3

Z. Szigeti (G-SCOP, Grenoble)

On (2k, k)-connected graphs

Theorem (Watanabe-Nakamura)

Let G = (V, E) be a graph and $\ell \ge 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is ℓ -edge-connected is equal to

$$\left\lceil \frac{1}{2} \max \left\{ \sum_{X \in \mathcal{X}} (\ell - d_G(X)) \right\} \right\rceil,$$

where \mathcal{X} is a subpartition of V.

 $Opt = \lceil \frac{1}{2}maximum \text{ deficiency of a subpartition of } V \rceil$

Z. Szigeti (G-SCOP, Grenoble)

On (2k, k)-connected graphs

Frank's algorithm

Frank's algorithm

Minimal extension,

Frank's algorithm

Minimal extension,

• Add a new vertex s,

Frank's algorithm

Minimal extension,

- Add a new vertex s,
- Add a minimum number of new edges incident to s to satisfy the edge-connectivity requirements,

Frank's algorithm

Minimal extension,

- Add a new vertex s,
- Add a minimum number of new edges incident to s to satisfy the edge-connectivity requirements,
- If the degree of s is odd, then add an arbitrary edge incident to s.

Frank's algorithm

Minimal extension,

- Add a new vertex s,
- Add a minimum number of new edges incident to s to satisfy the edge-connectivity requirements,
- If the degree of s is odd, then add an arbitrary edge incident to s.
- **2** Complete splitting off preserving the edge-connectivity requirements.

Remark

O Minimal extension works for symmetric skew supermodular functions.

Frank's algorithm

Minimal extension,

- Add a new vertex s,
- Add a minimum number of new edges incident to s to satisfy the edge-connectivity requirements,
- If the degree of s is odd, then add an arbitrary edge incident to s.
- **2** Complete splitting off preserving the edge-connectivity requirements.

Remark

- Minimal extension works for symmetric skew supermodular functions.
- For a new edge-connectivity augmentation problem a new complete splitting off result (preserving the edge-connectivity requirement) must be proven.

Definition

- G is called (2k, k)-connected if $|V| \ge 3$,
 - G is 2k-edge-connected and,
 - 2 for all $v \in V$, G v is **k**-edge-connected.

Definition

G is called (2k, k)-connected if $|V| \ge 3$,

- G is 2k-edge-connected and,
- 2 for all $v \in V$, G v is **k**-edge-connected.

A (6,3)-connected graph.

Definition

1 Bi-set :
$$X = (X_O, X_I)$$
, with $X_I \subseteq X_O$,

Definition

G is called (2k, k)-connected if $|V| \ge 3$,

- G is 2k-edge-connected and,
- 2 for all $v \in V$, G v is **k**-edge-connected.

A (6,3)-connected graph.

Definition

3 Bi-set :
$$X = (X_O, X_I)$$
, with $X_I \subseteq X_O$,

 $\mathbf{2} \quad d_G^{\flat}(\mathsf{X}) : \text{ number of edges between } \\ X_I \text{ and } V \setminus X_O,$

Definition

G is called (2k, k)-connected if $|V| \ge 3$,

- G is 2k-edge-connected and,
- 2 for all $v \in V$, G v is **k**-edge-connected.

Definition

3 Bi-set :
$$X = (X_O, X_I)$$
, with $X_I \subseteq X_O$,

 $d_G^{\flat}(\mathsf{X}) : \text{number of edges between} \\ X_I \text{ and } V \setminus X_O,$

$$f^{\mathsf{b}}_{\mathcal{G}}(\mathsf{X}) : d^{\mathsf{b}}_{\mathcal{G}}(\mathsf{X}) + k|X_{\mathcal{O}} \setminus X_{\mathcal{I}}|.$$

Definition

G is called (2k, k)-connected if $|V| \ge 3$,

- G is 2k-edge-connected and,
- 2 for all $v \in V$, G v is **k**-edge-connected.

 \Leftrightarrow for all non-trivial bi-sets X of V, $f_G^{b}(X) \ge 2k$.

Example

A (6,3)-connected graph.

Definition

3 Bi-set :
$$X = (X_O, X_I)$$
, with $X_I \subseteq X_O$,

 $\mathbf{2} \quad d_{G}^{\flat}(\mathsf{X}) : \text{number of edges between} \\ X_{I} \text{ and } V \setminus X_{O},$

 $f_G^{\mathsf{b}}(\mathsf{X}): d_G^{\mathsf{b}}(\mathsf{X}) + k|X_O \setminus X_I|.$

Splitting off : (2k, k)-connectivity

Theorem (Durand de Gevigney, Szigeti)

Let H = (V + s, E) be a (2k, k)-connected graph in V with $k \ge 2$ and $d_H(s)$ even. There exists a complete splitting-off at s preserving (2k, k)-connectivity if and only if there exists no obstacle at s.

Splitting off : (2k, k)-connectivity

Theorem (Durand de Gevigney, Szigeti)

Let H = (V + s, E) be a (2k, k)-connected graph in V with $k \ge 2$ and $d_H(s)$ even. There exists a complete splitting-off at s preserving (2k, k)-connectivity if and only if there exists no obstacle at s.

Definition

The pair (t, C) is called an *obstacle* at *s* if

- t is a neighbor of s with $d_H(s, t)$ odd,
- C is a subpartition of V t such that its elements are of degree k in H - t and cover all neighbors of s but t.

Splitting off : (2k, k)-connectivity

Theorem (Durand de Gevigney, Szigeti)

Let H = (V + s, E) be a (2k, k)-connected graph in V with $k \ge 2$ and $d_H(s)$ even. There exists a complete splitting-off at s preserving (2k, k)-connectivity if and only if there exists no obstacle at s.

Definition

The pair (t, C) is called an *obstacle* at *s* if

- t is a neighbor of s with $d_H(s, t)$ odd,
- C is a subpartition of V t such that its elements are of degree k in H - t and cover all neighbors of s but t.

Remark

1 It implies Jordán's splitting off result on (4, 2)-connected graphs.

Splitting off : (2k, k)-connectivity

Theorem (Durand de Gevigney, Szigeti)

Let H = (V + s, E) be a (2k, k)-connected graph in V with $k \ge 2$ and $d_H(s)$ even. There exists a complete splitting-off at s preserving (2k, k)-connectivity if and only if there exists no obstacle at s.

Definition

The pair (t, C) is called an *obstacle* at *s* if

- t is a neighbor of s with $d_H(s, t)$ odd,
- C is a subpartition of V t such that its elements are of degree k in H - t and cover all neighbors of s but t.

Remark

It implies Jordán's splitting off result on (4,2)-connected graphs.

2 H - su is (2k, k)-connected graph in V if and only if u = t.

Z. Szigeti (G-SCOP, Grenoble)

On (2k, k)-connected graphs

11 septembre 2015

A graph G is (2k, k)-connected with k even if and only if G can be obtained from K_3^k by a sequence of the following two operations :

- adding a new edge,
- 2 pinching a set F of k edges such that, for all vertices v, $d_F(v) \leq k$.

A graph G is (2k, k)-connected with k even if and only if G can be obtained from K_3^k by a sequence of the following two operations :

- adding a new edge,
- 2 pinching a set F of k edges such that, for all vertices v, $d_F(v) \leq k$.

Remark

These operations preserve (2k, k)-connectivity.

A graph G is (2k, k)-connected with k even if and only if G can be obtained from K_3^k by a sequence of the following two operations :

adding a new edge,

2) pinching a set F of k edges such that, for all vertices v, $d_F(v) \le k$.

Remark

- **1** These operations preserve (2k, k)-connectivity.
- It implies Jordán's construction result on (4,2)-connected graphs.

A graph G is (2k, k)-connected with k even if and only if G can be obtained from K_3^k by a sequence of the following two operations :

- adding a new edge,
- 2 pinching a set F of k edges such that, for all vertices v, $d_F(v) \leq k$.

Remark

- **1** These operations preserve (2k, k)-connectivity.
- It implies Jordán's construction result on (4,2)-connected graphs.
- It is not true for k odd.

Let G = (V, E) be a graph $(|V| \ge 3)$ and $k \ge 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is (2k, k)-connected is equal to $\left\lceil \frac{1}{2} \max\left\{ \sum_{X \in \mathcal{X}_1} (2k - d_G(X)) + \sum_{X \in \mathcal{X}_2} (k - d_{G-v_X}(X)) \right\} \right\rceil$, where $\mathcal{X}_1 \cup \mathcal{X}_2$ is a subpartition of V and $v_X \in V \setminus X$.

Let G = (V, E) be a graph $(|V| \ge 3)$ and $k \ge 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is (2k, k)-connected is equal to $\left\lceil \frac{1}{2} \max\left\{ \sum_{X \in \mathcal{X}_1} (2k - d_G(X)) + \sum_{X \in \mathcal{X}_2} (k - d_{G-v_X}(X)) \right\} \right\rceil$, where $\mathcal{X}_1 \cup \mathcal{X}_2$ is a subpartition of V and $v_X \in V \setminus X$.

Proof

1 Minimal extension works (because f_G^{b} is submodular on bi-sets),

Let G = (V, E) be a graph $(|V| \ge 3)$ and $k \ge 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is (2k, k)-connected is equal to $\left\lceil \frac{1}{2} \max\left\{ \sum_{X \in \mathcal{X}_1} (2k - d_G(X)) + \sum_{X \in \mathcal{X}_2} (k - d_{G-v_X}(X)) \right\} \right\rceil$, where $\mathcal{X}_1 \cup \mathcal{X}_2$ is a subpartition of V and $v_X \in V \setminus X$.

Proof

• Minimal extension works (because f_G^b is submodular on bi-sets), and in case of parity step u can be chosen with $d_H(s, u)$ even.

Let G = (V, E) be a graph $(|V| \ge 3)$ and $k \ge 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is (2k, k)-connected is equal to $\left\lceil \frac{1}{2} \max\left\{ \sum_{X \in \mathcal{X}_1} (2k - d_G(X)) + \sum_{X \in \mathcal{X}_2} (k - d_{G-v_X}(X)) \right\} \right\rceil$, where $\mathcal{X}_1 \cup \mathcal{X}_2$ is a subpartition of V and $v_X \in V \setminus X$.

Proof

- Minimal extension works (because f_G^{b} is submodular on bi-sets), and in case of parity step u can be chosen with $d_H(s, u)$ even.
- **2** No obstacle exists in H, otherwise :

Let G = (V, E) be a graph $(|V| \ge 3)$ and $k \ge 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is (2k, k)-connected is equal to $\left\lceil \frac{1}{2} \max\left\{ \sum_{X \in \mathcal{X}_1} (2k - d_G(X)) + \sum_{X \in \mathcal{X}_2} (k - d_{G-v_X}(X)) \right\} \right\rceil$, where $\mathcal{X}_1 \cup \mathcal{X}_2$ is a subpartition of V and $v_X \in V \setminus X$.

Proof

- Minimal extension works (because f_G^b is submodular on bi-sets), and in case of parity step u can be chosen with $d_H(s, u)$ even.
- **2** No obstacle exists in H, otherwise :
 - by H st is (2k, k)-connected in V, t = u and,

Let G = (V, E) be a graph $(|V| \ge 3)$ and $k \ge 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is (2k, k)-connected is equal to $\left\lceil \frac{1}{2} \max\left\{ \sum_{X \in \mathcal{X}_1} (2k - d_G(X)) + \sum_{X \in \mathcal{X}_2} (k - d_{G-v_X}(X)) \right\} \right\rceil$, where $\mathcal{X}_1 \cup \mathcal{X}_2$ is a subpartition of V and $v_X \in V \setminus X$.

Proof

- Minimal extension works (because f_G^b is submodular on bi-sets), and in case of parity step u can be chosen with $d_H(s, u)$ even.
- No obstacle exists in H, otherwise :
 - by H st is (2k, k)-connected in V, t = u and,
 - **2** by $d_H(s,t)$ is odd, $t \neq u$.

Let G = (V, E) be a graph $(|V| \ge 3)$ and $k \ge 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is (2k, k)-connected is equal to $\left\lceil \frac{1}{2} \max\left\{ \sum_{X \in \mathcal{X}_1} (2k - d_G(X)) + \sum_{X \in \mathcal{X}_2} (k - d_{G-v_X}(X)) \right\} \right\rceil$, where $\mathcal{X}_1 \cup \mathcal{X}_2$ is a subpartition of V and $v_X \in V \setminus X$.

Proof

- Minimal extension works (because f_G^b is submodular on bi-sets), and in case of parity step u can be chosen with $d_H(s, u)$ even.
- No obstacle exists in H, otherwise :
 - by H st is (2k, k)-connected in V, t = u and,

2 by $d_H(s, t)$ is odd, $t \neq u$.

I Hence a complete splitting off exists.

Orientation : (2k,k)-connectivity

Definition

A digraph D is called (2k, k)-connected if $|V| \ge 3$,

- D is 2k-arc-connected and,
- 2 for all $v \in V$, D v is k-arc-connected.

Orientation : (2k,k)-connectivity

Definition

A digraph D is called (2k, k)-connected if $|V| \ge 3$,

- D is 2k-arc-connected and,
- 2 for all $v \in V$, D v is k-arc-connected.

Theorem (Z.Király, Szigeti)

An Eulerian graph G has a (2k, k)-connected orientation if and only if G is (4k, 2k)-connected.

Example

Orientation : (2k,k)-connectivity

Definition

A digraph D is called (2k, k)-connected if $|V| \ge 3$,

- D is 2k-arc-connected and,
- 2 for all $v \in V$, D v is k-arc-connected.

Theorem (Z.Király, Szigeti)

An Eulerian graph G has a (2k, k)-connected orientation if and only if G is (4k, 2k)-connected.

Open problem

Is it true for non Eulerian graphs?

Example

Theorem (Nash-Williams' pairing for global edge-connectivity)

 \forall 2*k*-edge-connected graph *G*, \exists a pairing *M* of the odd degree vertices *T_G* of *G* s. t. for every Eulerian orientation $\vec{G} + \vec{M}$, \vec{G} is *k*-arc-connected.

Theorem (Nash-Williams' pairing for global edge-connectivity)

 \forall 2k-edge-connected graph G, \exists a pairing M of the odd degree vertices T_G of G s. t. for every Eulerian orientation $\vec{G} + \vec{M}$, \vec{G} is k-arc-connected.

Z. Szigeti (G-SCOP, Grenoble)

On (2k, k)-connected graphs

What we have seen :

• Complete splitting off theorem on (2k, k)-connectivity,

What we have seen :

- Complete splitting off theorem on (2k, k)-connectivity,
- 2 Min-max theorem for (2k, k)-connectivity augmentation problem,

What we have seen :

- Complete splitting off theorem on (2k, k)-connectivity,
- **2** Min-max theorem for (2k, k)-connectivity augmentation problem,
- **③** Construction for (2k, k)-connectivity when k is even,

What we have seen :

- Complete splitting off theorem on (2k, k)-connectivity,
- **2** Min-max theorem for (2k, k)-connectivity augmentation problem,
- Solution for (2k, k)-connectivity when k is even,
- Orientation theorem for (2k, k)-connectivity when G is Eulerian.

What we have seen :

- Complete splitting off theorem on (2k, k)-connectivity,
- **2** Min-max theorem for (2k, k)-connectivity augmentation problem,
- Solution for (2k, k)-connectivity when k is even,
- Orientation theorem for (2k, k)-connectivity when G is Eulerian.

What we haven't seen :

What we have seen :

- Complete splitting off theorem on (2k, k)-connectivity,
- **2** Min-max theorem for (2k, k)-connectivity augmentation problem,
- Solution for (2k, k)-connectivity when k is even,
- Orientation theorem for (2k, k)-connectivity when G is Eulerian.

What we haven't seen :

Q Algorithm for (2k, k)-connectivity augmentation problem,

What we have seen :

- Complete splitting off theorem on (2k, k)-connectivity,
- **2** Min-max theorem for (2k, k)-connectivity augmentation problem,
- **3** Construction for (2k, k)-connectivity when k is even,
- Orientation theorem for (2k, k)-connectivity when G is Eulerian.

What we haven't seen :

- **Q** Algorithm for (2k, k)-connectivity augmentation problem,
- **2** Construction for (2k, k)-connectivity when k is odd,

What we have seen :

- Complete splitting off theorem on (2k, k)-connectivity,
- **2** Min-max theorem for (2k, k)-connectivity augmentation problem,
- **3** Construction for (2k, k)-connectivity when k is even,
- Orientation theorem for (2k, k)-connectivity when G is Eulerian.

What we haven't seen :

- **Q** Algorithm for (2k, k)-connectivity augmentation problem,
- **2** Construction for (2k, k)-connectivity when k is odd,
- **O**rientation theorem for (2k, k)-connectivity when G is arbitrary.

Thank you for your attention !