On $(2 k, k)$-connected graphs

Zoltán Szigeti
Combinatorial Optimization Group
Laboratoire G-SCOP
INP Grenoble, France

11 septembre 2015

Joint work with: Olivier Durand de Gevigney

Outline

- Results on :
- Orientation
- Construction
- Splitting off
- Augmentation
- Concerning :
- Edge-connectivity
- $(4,2)$-connectivity
- $(2 k, k)$-connectivity

Orientation : arc-connectivity

Definition

(1) A digraph D is called k-arc-connected if $\forall \emptyset \neq X \subset V,\left|\rho_{D}(X)\right| \geq k$.
(2) A graph G is called k-edge-connected if $\forall \emptyset \neq X \subset V, d_{G}(X) \geq k$.

Orientation : arc-connectivity

Definition

(1) A digraph D is called k-arc-connected if $\forall \emptyset \neq X \subset V,\left|\rho_{D}(X)\right| \geq k$.
(2) A graph G is called k-edge-connected if $\forall \emptyset \neq X \subset V, d_{G}(X) \geq k$.

Theorem (Nash-Williams)

G has a k-arc-connected orientation if and only if G is $2 k$-edge-connected.

Orientation : arc-connectivity

Definition

(1) A digraph D is called k-arc-connected if $\forall \emptyset \neq X \subset V,\left|\rho_{D}(X)\right| \geq k$.
(2) A graph G is called k-edge-connected if $\forall \emptyset \neq X \subset V, d_{G}(X) \geq k$.

Theorem (Nash-Williams)

G has a k-arc-connected orientation if and only if G is $2 k$-edge-connected.

Necessity :

Orientation : arc-connectivity

Definition

(1) A digraph D is called k-arc-connected if $\forall \emptyset \neq X \subset V,\left|\rho_{D}(X)\right| \geq k$.
(2) A graph G is called k-edge-connected if $\forall \emptyset \neq X \subset V, d_{G}(X) \geq k$.

Theorem (Nash-Williams)

G has a k-arc-connected orientation if and only if G is $2 k$-edge-connected.

Necessity :

Orientation : k-vertex-connectivity

Definition

(1) A digraph D is called k-vertex-connected if $|V| \geq k+1$, $\forall X \subset V,|X|=k-1, D-X$ is 1 -arc-connected.
(2) A graph G is called k-vertex-connected if $|V| \geq k+1$, $\forall X \subset V,|X|=k-1, G-X$ is connected.

Orientation : k-vertex-connectivity

Definition

(1) A digraph D is called k-vertex-connected if $|V| \geq k+1$, $\forall X \subset V,|X|=k-1, D-X$ is 1 -arc-connected.
(2) A graph G is called k-vertex-connected if $|V| \geq k+1$, $\forall X \subset V,|X|=k-1, G-X$ is connected.

Conjecture (Frank)

G has a k-vertex-connected orientation if and only if $|V| \geq k+1$ and $\forall X \subset V,|X|<k, G-X$ is $(2 k-2|X|)$-edge-connected.

Orientation : k-vertex-connectivity

Definition

(1) A digraph D is called k-vertex-connected if $|V| \geq k+1$, $\forall X \subset V,|X|=k-1, D-X$ is 1 -arc-connected.
(2) A graph G is called k-vertex-connected if $|V| \geq k+1$, $\forall X \subset V,|X|=k-1, G-X$ is connected.

Conjecture (Frank)

G has a k-vertex-connected orientation if and only if $|V| \geq k+1$ and $\forall X \subset V,|X|<k, G-X$ is $(2 k-2|X|)$-edge-connected.

Theorem (Durand de Gevigney) ($k \geq 3$)

(1) This conjecture is false.

Orientation : k-vertex-connectivity

Definition

(1) A digraph D is called k-vertex-connected if $|V| \geq k+1$, $\forall X \subset V,|X|=k-1, D-X$ is 1 -arc-connected.
(2) A graph G is called k-vertex-connected if $|V| \geq k+1$, $\forall X \subset V,|X|=k-1, G-X$ is connected.

Conjecture (Frank)

G has a k-vertex-connected orientation if and only if $|V| \geq k+1$ and $\forall X \subset V,|X|<k, G-X$ is $(2 k-2|X|)$-edge-connected.

Theorem (Durand de Gevigney) $(k \geq 3)$

(1) This conjecture is false.
(2) Deciding whether G has a k-vertex-connected orientation is NP-complete.

Counter-example for $k=3$

Example of Durand de Gevigney

Orientation : 2-vertex-connectivity

Remark (Necessary condition)

Example

If \vec{G} is 2 -vertex-connected, then

Orientation : 2-vertex-connectivity

Remark (Necessary condition)

Example

If \vec{G} is 2 -vertex-connected, then $|V| \geq 3$,

Orientation: 2-vertex-connectivity

Remark (Necessary condition)

Example

If \vec{G} is 2 -vertex-connected, then $|V| \geq 3$,
(1) G is 4 -edge-connected and,

Orientation: 2-vertex-connectivity

Remark (Necessary condition)

Example

If \vec{G} is 2 -vertex-connected, then $|V| \geq 3$,
(1) G is 4-edge-connected and,
(2) for all $v \in V, G-v$ is 2-edge-connected.

Orientation : 2-vertex-connectivity

Definition

Example

A graph G is called (4,2)-connected if $|V| \geq 3$,
(1) G is 4 -edge-connected and,
(2) for all $v \in V, G-v$ is 2-edge-connected.

Orientation : 2-vertex-connectivity

Definition

Example

A graph G is called $(4,2)$-connected if $|V| \geq 3$,
(1) G is 4-edge-connected and,
(2) for all $v \in V, G-v$ is 2-edge-connected.

Theorem (Sufficent condition)

A graph G has a 2-vertex-connected orientation
(1) if G is $(4,2)$-connected and Eulerian (Berg, Jordán).

Orientation : 2-vertex-connectivity

Definition

Example

A graph G is called $(4,2)$-connected if $|V| \geq 3$,
(1) G is 4-edge-connected and,
(2) for all $v \in V, G-v$ is 2-edge-connected.

Theorem (Sufficent condition)

A graph G has a 2-vertex-connected orientation
(1) if G is $(4,2)$-connected and Eulerian (Berg, Jordán).
(2) if G is 18-vertex-connected (Jordán).

Orientation : 2-vertex-connectivity

Definition

Example

A graph G is called $(4,2)$-connected if $|V| \geq 3$,
(1) G is 4-edge-connected and,
(2) for all $v \in V, G-v$ is 2-edge-connected.

Theorem (Sufficent condition)

A graph G has a 2-vertex-connected orientation
(1) if G is $(4,2)$-connected and Eulerian (Berg, Jordán).
(2) if G is 18-vertex-connected (Jordán).
(3) if G is 14-vertex-connected (Cheriyan, Durand de Gevigney, Szigeti).

Orientation : 2-vertex-connectivity

Definition

Example

A graph G is called (4,2)-connected if $|V| \geq 3$,
(1) G is 4 -edge-connected and,
(2) for all $v \in V, G-v$ is 2-edge-connected.

Theorem (Sufficent condition)

A graph G has a 2-vertex-connected orientation
(1) if G is $(4,2)$-connected and Eulerian (Berg, Jordán).
(2) if G is 18 -vertex-connected (Jordán).
(3) if G is 14-vertex-connected (Cheriyan, Durand de Gevigney, Szigeti).

Theorem (Thomassen)

G has a 2-vertex-connected orientation if and only if G is $(4,2)$-connected.

Construction : edge-connectivity

Theorem (Lovász)

A graph is $2 k$-edge-connected if and only if it can be obtained from $K_{2}^{2 k}$ by a sequence of the following two operations :
(a) adding a new edge,
(b) pinching k edges.

Example

Construction : edge-connectivity

Theorem (Lovász)

Example

A graph is $2 k$-edge-connected if and only if it can be obtained from $K_{2}^{2 k}$ by a sequence of the following two operations :
(a) adding a new edge,
(b) pinching k edges.

Construction : edge-connectivity

Theorem (Lovász)

A graph is $2 k$-edge-connected if and only if it can be obtained from $K_{2}^{2 k}$ by a sequence of the following two operations :
(a) adding a new edge,
(b) pinching k edges.

Example

Construction : edge-connectivity

Theorem (Lovász)

A graph is $2 k$-edge-connected if and only if it can be obtained from $K_{2}^{2 k}$ by a sequence of the following two operations :
(a) adding a new edge,
(b) pinching k edges.

Example

Construction : edge-connectivity

Theorem (Lovász)

A graph is $2 k$-edge-connected if and only if it can be obtained from $K_{2}^{2 k}$ by a sequence of the following two operations :
(a) adding a new edge,
(b) pinching k edges.

Example

Construction : edge-connectivity

Theorem (Lovász)

A graph is $2 k$-edge-connected if and only if it can be obtained from $K_{2}^{2 k}$ by a sequence of the following two operations :
(a) adding a new edge,
(b) pinching k edges.

Example

Construction : edge-connectivity

Theorem (Lovász)

A graph is $2 k$-edge-connected if and only if it can be obtained from $K_{2}^{2 k}$ by a sequence of the following two operations :
(a) adding a new edge,
(b) pinching k edges.

Example

Construction : edge-connectivity

Theorem (Lovász)

A graph is $2 k$-edge-connected if and only if it can be obtained from $K_{2}^{2 k}$ by a sequence of the following two operations :
(a) adding a new edge,
(b) pinching k edges.

Example

Construction : edge-connectivity

Theorem (Lovász)

A graph is $2 k$-edge-connected if and only if it can be obtained from $K_{2}^{2 k}$ by a sequence of the following two operations :
(a) adding a new edge,
(b) pinching k edges.

Example

Construction : edge-connectivity

Theorem (Lovász)

Example

A graph is $2 k$-edge-connected if and only if it can be obtained from $K_{2}^{2 k}$ by a sequence of the following two operations :
(a) adding a new edge,
(b) pinching k edges.

Example

Construction : edge-connectivity

Theorem (Lovász)

Example

A graph is $2 k$-edge-connected if and only if it can be obtained from $K_{2}^{2 k}$ by a sequence of the following two operations :
(a) adding a new edge,
(b) pinching k edges.

Remark

(1) These operations preserve $2 k$-edge-connectivity.

Construction : edge-connectivity

Theorem (Lovász)

A graph is $2 k$-edge-connected if and only if it can be obtained from $K_{2}^{2 k}$ by a sequence of the following two operations :
(a) adding a new edge,
(b) pinching k edges.

Example

Remark

(1) These operations preserve $2 k$-edge-connectivity.
(2) It implies Nash-Williams' orientation result on k-arc-connectivity.

Construction : (4, 2)-connectivity

Theorem (Jordán)

A graph is $(4,2)$-connected if and only if it can be obtained from K_{3}^{2} by a sequence of the following two operations :
(a) adding a new edge,
(b) pinching 2 edges so that if one of them is a loop then the other one is not adjacent to it.

Example

Construction : (4, 2)-connectivity

Theorem (Jordán)

A graph is $(4,2)$-connected if and only if it can be obtained from K_{3}^{2} by a sequence of the following two operations :
(a) adding a new edge,
(b) pinching 2 edges so that if one of them is a loop then the other one is not adjacent to it.

Example

Construction : (4, 2)-connectivity

Theorem (Jordán)

A graph is $(4,2)$-connected if and only if it can be obtained from K_{3}^{2} by a sequence of the following two operations :
(a) adding a new edge,
(b) pinching 2 edges so that if one of them is a loop then the other one is not adjacent to it.

Example

Construction : (4, 2)-connectivity

Theorem (Jordán)

A graph is $(4,2)$-connected if and only if it can be obtained from K_{3}^{2} by a sequence of the following two operations :
(a) adding a new edge,
(b) pinching 2 edges so that if one of them is a loop then the other one is not adjacent to it.

Example

Construction : (4, 2)-connectivity

Theorem (Jordán)

A graph is $(4,2)$-connected if and only if it can be obtained from K_{3}^{2} by a sequence of the following two operations :
(a) adding a new edge,
(b) pinching 2 edges so that if one of them is a loop then the other one is not adjacent to it.

Example

Construction : (4, 2)-connectivity

Theorem (Jordán)

A graph is $(4,2)$-connected if and only if it can be obtained from K_{3}^{2} by a sequence of the following two operations :
(a) adding a new edge,
(b) pinching 2 edges so that if one of them is a loop then the other one is not adjacent to it.

Example

Construction : (4, 2)-connectivity

Theorem (Jordán)

A graph is $(4,2)$-connected if and only if it can be obtained from K_{3}^{2} by a sequence of the following two operations :
(a) adding a new edge,
(b) pinching 2 edges so that if one of them is a loop then the other one is not adjacent to it.

Example

Construction : (4, 2)-connectivity

Theorem (Jordán)

Example

A graph is (4,2)-connected if and only if it can be obtained from K_{3}^{2} by a sequence of the following two operations :
(a) adding a new edge,
(b) pinching 2 edges so that if one of them is a loop then the other one is not adjacent to it.

Example

Construction : (4, 2)-connectivity

Theorem (Jordán)

A graph is $(4,2)$-connected if and only if it can be obtained from K_{3}^{2} by a sequence of the following two operations :
(a) adding a new edge,
(b) pinching 2 edges so that if one of them is a loop then the other one is not adjacent to it.

Example

Remark

(1) These operations preserve $(4,2)$-connectivity.

Construction : (4, 2)-connectivity

Theorem (Jordán)

A graph is $(4,2)$-connected if and only if it can be obtained from K_{3}^{2} by a sequence of the following two operations :
(a) adding a new edge,
(b) pinching 2 edges so that if one of them is a loop then the other one is not adjacent to it.

Example

Remark

(1) These operations preserve $(4,2)$-connectivity.
(2) Jordán's result does not imply Thomassen's result on 2-vertex-connectivity orientation.

Splitting off : edge-connectivity

Splitting off : edge-connectivity

Splitting off : edge-connectivity

Definitions

Theorem (Lovász)

Let $H=(V+s, E)$ be an ℓ-edge-connected graph in $V, \ell \geq 2, d_{H}(s)$ even. There exists a complete splitting off at s preserving ℓ-edge-connectivity.

Splitting off : edge-connectivity

Theorem (Lovász)

Let $H=(V+s, E)$ be an ℓ-edge-connected graph in $V, \ell \geq 2, d_{H}(s)$ even. There exists a complete splitting off at s preserving ℓ-edge-connectivity.

Remark

It implies the construction of $2 k$-edge-connected graphs G :
(1) G can be obtained from $K_{2}^{2 k}$ by the operations :
(a) adding a new edge, (b) pinching k edges.

Splitting off : edge-connectivity

Theorem (Lovász)

Let $H=(V+s, E)$ be an ℓ-edge-connected graph in $V, \ell \geq 2, d_{H}(s)$ even. There exists a complete splitting off at spreserving ℓ-edge-connectivity.

Remark

It implies the construction of $2 k$-edge-connected graphs G :
(1) G can be obtained from $K_{2}^{2 k}$ by the operations:
(a) adding a new edge, (b) pinching k edges.
(2) G must be reduced to $K_{2}^{2 k}$ by the inverse operations:
(a) deleting an edge, (b) complete splitting off at a vertex of degree $2 k$.

Splitting off : edge-connectivity

Theorem (Lovász)

Let $H=(V+s, E)$ be an ℓ-edge-connected graph in $V, \ell \geq 2, d_{H}(s)$ even. There exists a complete splitting off at spreserving ℓ-edge-connectivity.

Remark

It implies the construction of $2 k$-edge-connected graphs G :
(1) G can be obtained from $K_{2}^{2 k}$ by the operations:
(a) adding a new edge, (b) pinching k edges.
(2) G must be reduced to $K_{2}^{2 k}$ by the inverse operations:
(a) deleting an edge, (b) complete splitting off at a vertex of degree $2 k$.

This can be done by Mader's result on minimally $2 k$-edge-connected graphs and by Lovász' splitting off result.

Splitting off : (4, 2)-connectivity

Theorem (Jordán)

Let $H=(V+s, E)$ be a $(4,2)$-connected graph with $d_{H}(s)=4$. There exists a complete splitting-off at s preserving $(4,2)$-connectivity if and only if there exists no obstacle at s.

Splitting off : $(4,2)$-connectivity

Theorem (Jordán)

Let $H=(V+s, E)$ be a $(4,2)$-connected graph with $d_{H}(s)=4$. There exists a complete splitting-off at s preserving $(4,2)$-connectivity if and only if there exists no obstacle at s.

Definition

For the set $\{t, v, w, y\}$ of neighbors of s, the pair $(t,\{A, B, C\})$ is called an obstacle at s if $\{A, B, C\}$ is a subpartition of $V-t$ such that its elements are of degree 2 in $H-t$ and $v \in A, w \in B, y \in C$.

Splitting off : (4, 2)-connectivity

Theorem (Jordán)

Let $H=(V+s, E)$ be a $(4,2)$-connected graph with $d_{H}(s)=4$. There exists a complete splitting-off at s preserving $(4,2)$-connectivity if and only if there exists no obstacle at s.

Definition

For the set $\{t, v, w, y\}$ of neighbors of s, the pair $(t,\{A, B, C\})$ is called an obstacle at s if $\{A, B, C\}$ is a subpartition of $V-t$ such that its elements are of degree 2 in $H-t$ and $v \in A, w \in B, y \in C$.

Remark

It implies the construction of (4, 2)-connected graphs.

Augmentation

Theorem (Watanabe-Nakamura)

Let $G=(V, E)$ be a graph and $\ell \geq 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is ℓ-edge-connected is equal to

$$
\left\lceil\frac{1}{2} \max \left\{\sum_{X \in \mathcal{X}}\left(\ell-d_{G}(X)\right)\right\}\right\rceil,
$$

where \mathcal{X} is a subpartition of V.

Graph G and $\ell=4$

Augmentation

Theorem (Watanabe-Nakamura)

Let $G=(V, E)$ be a graph and $\ell \geq 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is ℓ-edge-connected is equal to

$$
\left\lceil\frac{1}{2} \max \left\{\sum_{X \in \mathcal{X}}\left(\ell-d_{G}(X)\right)\right\}\right\rceil,
$$

where \mathcal{X} is a subpartition of V.

Graph G and $\ell=4$

Augmentation

Theorem (Watanabe-Nakamura)

Let $G=(V, E)$ be a graph and $\ell \geq 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is ℓ-edge-connected is equal to

$$
\left\lceil\frac{1}{2} \max \left\{\sum_{X \in \mathcal{X}}\left(\ell-d_{G}(X)\right)\right\}\right\rceil,
$$

where \mathcal{X} is a subpartition of V.

Graph G and $\ell=4$

Augmentation

Theorem (Watanabe-Nakamura)

Let $G=(V, E)$ be a graph and $\ell \geq 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is ℓ-edge-connected is equal to

$$
\left\lceil\frac{1}{2} \max \left\{\sum_{X \in \mathcal{X}}\left(\ell-d_{G}(X)\right)\right\}\right\rceil
$$

where \mathcal{X} is a subpartition of V.

Graph G and $\ell=4$

Augmentation

Theorem (Watanabe-Nakamura)

Let $G=(V, E)$ be a graph and $\ell \geq 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is ℓ-edge-connected is equal to

$$
\left\lceil\frac{1}{2} \max \left\{\sum_{X \in \mathcal{X}}\left(\ell-d_{G}(X)\right)\right\}\right\rceil
$$

where \mathcal{X} is a subpartition of V.

Graph G and $\ell=4$

Augmentation

Theorem (Watanabe-Nakamura)

Let $G=(V, E)$ be a graph and $\ell \geq 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is ℓ-edge-connected is equal to

$$
\left\lceil\frac{1}{2} \max \left\{\sum_{X \in \mathcal{X}}\left(\ell-d_{G}(X)\right)\right\}\right\rceil
$$

where \mathcal{X} is a subpartition of V.

$$
\text { Opt } \geq\left\lceil\frac{5}{2}\right\rceil=3
$$

Augmentation

Theorem (Watanabe-Nakamura)

Let $G=(V, E)$ be a graph and $\ell \geq 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is ℓ-edge-connected is equal to

$$
\left\lceil\frac{1}{2} \max \left\{\sum_{X \in \mathcal{X}}\left(\ell-d_{G}(X)\right)\right\}\right\rceil
$$

where \mathcal{X} is a subpartition of V.

Graph $G+F$ is 4-edge-connected and $|F|=3$

Augmentation

Theorem (Watanabe-Nakamura)

Let $G=(V, E)$ be a graph and $\ell \geq 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is ℓ-edge-connected is equal to

$$
\left\lceil\frac{1}{2} \max \left\{\sum_{X \in \mathcal{X}}\left(\ell-d_{G}(X)\right)\right\}\right\rceil
$$

where \mathcal{X} is a subpartition of V.

Opt $=\left\lceil\frac{1}{2}\right.$ maximum deficiency of a subpartition of $\left.V\right\rceil$

General method

Frank's algorithm

General method

Frank's algorithm

(1) Minimal extension,
(2) Complete splitting off preserving the edge-connectivity requirements.

General method

Frank's algorithm

(1) Minimal extension,
(1) Add a new vertex s,
(2) Complete splitting off preserving the edge-connectivity requirements.

General method

Frank's algorithm

(1) Minimal extension,
(1) Add a new vertex s,
(2) Add a minimum number of new edges incident to s to satisfy the edge-connectivity requirements,
(2) Complete splitting off preserving the edge-connectivity requirements.

General method

Frank's algorithm

(1) Minimal extension,
(1) Add a new vertex s,
(2) Add a minimum number of new edges incident to s to satisfy the edge-connectivity requirements,
(3) If the degree of s is odd, then add an arbitrary edge incident to s.
(2) Complete splitting off preserving the edge-connectivity requirements.

General method

Frank's algorithm

(1) Minimal extension,
(1) Add a new vertex s,
(2) Add a minimum number of new edges incident to s to satisfy the edge-connectivity requirements,
(3) If the degree of s is odd, then add an arbitrary edge incident to s.
(2) Complete splitting off preserving the edge-connectivity requirements.

Remark

(1) Minimal extension works for symmetric skew supermodular functions.

General method

Frank's algorithm

(1) Minimal extension,
(1) Add a new vertex s,
(2) Add a minimum number of new edges incident to s to satisfy the edge-connectivity requirements,
(3) If the degree of s is odd, then add an arbitrary edge incident to s.
(2) Complete splitting off preserving the edge-connectivity requirements.

Remark

(1) Minimal extension works for symmetric skew supermodular functions.
(2) For a new edge-connectivity augmentation problem a new complete splitting off result (preserving the edge-connectivity requirement) must be proven.

$(2 k, k)$-connected graph

Definition

G is called $(2 k, k)$-connected if $|V| \geq 3$,
(1) G is $2 k$-edge-connected and,
(2) for all $v \in V, G-v$ is k-edge-connected.

Example

A $(6,3)$-connected graph.

$(2 k, k)$-connected graph

Definition

G is called $(2 k, k)$-connected if $|V| \geq 3$,
(1) G is $2 k$-edge-connected and,
(2) for all $v \in V, G-v$ is k-edge-connected.

Example

A $(6,3)$-connected graph.

Definition

(3) Bi-set : $\mathrm{X}=\left(X_{O}, X_{I}\right)$, with $X_{I} \subseteq X_{O}$,

Example

$(2 k, k)$-connected graph

Definition

G is called $(2 k, k)$-connected if $|V| \geq 3$,
(1) G is $2 k$-edge-connected and,
(2) for all $v \in V, G-v$ is k-edge-connected.

Example

A $(6,3)$-connected graph.

Definition

(3) Bi-set: $\mathrm{X}=\left(X_{O}, X_{I}\right)$, with $X_{I} \subseteq X_{O}$,
(2) $d_{G}^{\mathrm{b}}(\mathrm{X})$: number of edges between X_{I} and $V \backslash X_{O}$,

Example

$(2 k, k)$-connected graph

Definition

G is called $(2 k, k)$-connected if $|V| \geq 3$,
(1) G is $2 k$-edge-connected and,
(2) for all $v \in V, G-v$ is k-edge-connected.

Definition

(1) Bi-set : $\mathrm{X}=\left(X_{O}, X_{I}\right)$, with $X_{I} \subseteq X_{O}$,
(2) $d_{G}^{\mathrm{b}}(\mathrm{X})$: number of edges between X_{1} and $V \backslash X_{O}$,
(0) $f_{G}^{\mathrm{b}}(\mathrm{X}): d_{G}^{\mathrm{b}}(\mathrm{X})+k\left|X_{O} \backslash X_{l}\right|$.

Example

A $(6,3)$-connected graph.

Example

$(2 k, k)$-connected graph

Definition

G is called $(2 k, k)$-connected if $|V| \geq 3$,
(1) G is $2 k$-edge-connected and,
(2) for all $v \in V, G-v$ is k-edge-connected.
\Leftrightarrow for all non-trivial bi-sets X of $V, f_{G}^{\mathrm{b}}(X) \geq 2 k$.

Example

A $(6,3)$-connected graph.

Definition

(1) Bi-set : $\mathrm{X}=\left(X_{O}, X_{I}\right)$, with $X_{I} \subseteq X_{O}$,
(2) $d_{G}^{\mathrm{b}}(\mathrm{X})$: number of edges between X_{1} and $V \backslash X_{O}$,
(0) $f_{G}^{\mathrm{b}}(\mathrm{X}): d_{G}^{\mathrm{b}}(\mathrm{X})+k\left|X_{O} \backslash X_{l}\right|$.

Example

Splitting off : $(2 k, k)$-connectivity

Theorem (Durand de Gevigney, Szigeti)

Let $H=(V+s, E)$ be a $(2 k, k)$-connected graph in V with $k \geq 2$ and $d_{H}(s)$ even. There exists a complete splitting-off at s preserving $(2 k, k)$-connectivity if and only if there exists no obstacle at s.

Splitting off : $(2 k, k)$-connectivity

Theorem (Durand de Gevigney, Szigeti)

Let $H=(V+s, E)$ be a $(2 k, k)$-connected graph in V with $k \geq 2$ and $d_{H}(s)$ even. There exists a complete splitting-off at s preserving $(2 k, k)$-connectivity if and only if there exists no obstacle at s.

Definition

The pair (t, \mathcal{C}) is called an obstacle at s if
(1) t is a neighbor of s with $d_{H}(s, t)$ odd,
(2) \mathcal{C} is a subpartition of $V-t$ such that its elements are of degree k in $H-t$ and cover all neighbors of s but t.

Example

Splitting off : $(2 k, k)$-connectivity

Theorem (Durand de Gevigney, Szigeti)

Let $H=(V+s, E)$ be a $(2 k, k)$-connected graph in V with $k \geq 2$ and $d_{H}(s)$ even. There exists a complete splitting-off at s preserving $(2 k, k)$-connectivity if and only if there exists no obstacle at s.

Definition

The pair (t, \mathcal{C}) is called an obstacle at s if
(1) t is a neighbor of s with $d_{H}(s, t)$ odd,
(2) \mathcal{C} is a subpartition of $V-t$ such that its elements are of degree k in $H-t$ and cover all neighbors of s but t.

Example

Remark

(1) It implies Jordán's splitting off result on (4, 2)-connected graphs.

Splitting off : $(2 k, k)$-connectivity

Theorem (Durand de Gevigney, Szigeti)

Let $H=(V+s, E)$ be a $(2 k, k)$-connected graph in V with $k \geq 2$ and $d_{H}(s)$ even. There exists a complete splitting-off at s preserving $(2 k, k)$-connectivity if and only if there exists no obstacle at s.

Definition

The pair (t, \mathcal{C}) is called an obstacle at s if
(1) t is a neighbor of s with $d_{H}(s, t)$ odd,
(2) \mathcal{C} is a subpartition of $V-t$ such that its elements are of degree k in $H-t$ and cover all neighbors of s but t.

Example

Remark

(1) It implies Jordán's splitting off result on (4, 2)-connected graphs.
(2) $H-s u$ is $(2 k, k)$-connected graph in V if and only if $u=t$.

Construction : ($2 \mathrm{k}, \mathrm{k}$)-connectivity

Theorem (Durand de Gevigney, Szigeti)

A graph G is $(2 k, k)$-connected with k even if and only if G can be obtained from K_{3}^{k} by a sequence of the following two operations :
(1) adding a new edge,
(2) pinching a set F of k edges such that, for all vertices $v, d_{F}(v) \leq k$.

Construction : (2k,k)-connectivity

Theorem (Durand de Gevigney, Szigeti)

A graph G is $(2 k, k)$-connected with k even if and only if G can be obtained from K_{3}^{k} by a sequence of the following two operations :
(1) adding a new edge,
(2) pinching a set F of k edges such that, for all vertices $v, d_{F}(v) \leq k$.

Remark

(1) These operations preserve $(2 k, k)$-connectivity.

Construction : $(2 k, k)$-connectivity

Theorem (Durand de Gevigney, Szigeti)

A graph G is $(2 k, k)$-connected with k even if and only if G can be obtained from K_{3}^{k} by a sequence of the following two operations :
(1) adding a new edge,
(2) pinching a set F of k edges such that, for all vertices $v, d_{F}(v) \leq k$.

Remark

(1) These operations preserve $(2 k, k)$-connectivity.
(2) It implies Jordán's construction result on $(4,2)$-connected graphs.

Construction : $(2 k, k)$-connectivity

Theorem (Durand de Gevigney, Szigeti)

A graph G is $(2 k, k)$-connected with k even if and only if G can be obtained from K_{3}^{k} by a sequence of the following two operations :
(1) adding a new edge,
(2) pinching a set F of k edges such that, for all vertices $v, d_{F}(v) \leq k$.

Remark

(1) These operations preserve $(2 k, k)$-connectivity.
(2) It implies Jordán's construction result on $(4,2)$-connected graphs.
(3) It is not true for k odd.

Augmentation : $(2 k, k)$-connectivity

Theorem (Durand de Gevigney, Szigeti)

Let $G=(V, E)$ be a graph $(|V| \geq 3)$ and $k \geq 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is $(2 k, k)$-connected is equal to $\left\lceil\frac{1}{2} \max \left\{\sum_{\mathrm{X} \in \mathcal{X}_{1}}\left(2 k-d_{G}(X)\right)+\sum_{\mathrm{X} \in \mathcal{X}_{2}}\left(k-d_{G-v_{X}}(X)\right)\right\}\right\rceil$, where $\mathcal{X}_{1} \cup \mathcal{X}_{2}$ is a subpartition of V and $v_{X} \in V \backslash X$.

Augmentation : $(2 \mathrm{k}, \mathrm{k})$-connectivity

Theorem (Durand de Gevigney, Szigeti)

Let $G=(V, E)$ be a graph $(|V| \geq 3)$ and $k \geq 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is $(2 k, k)$-connected is equal to $\left\lceil\frac{1}{2} \max \left\{\sum_{\mathrm{X} \in \mathcal{X}_{1}}\left(2 k-d_{G}(X)\right)+\sum_{\mathrm{X} \in \mathcal{X}_{2}}\left(k-d_{G-v_{X}}(X)\right)\right\}\right\rceil$, where $\mathcal{X}_{1} \cup \mathcal{X}_{2}$ is a subpartition of V and $v_{X} \in V \backslash X$.

Proof

(1) Minimal extension works (because f_{G}^{b} is submodular on bi-sets),

Augmentation : $(2 k, k)$-connectivity

Theorem (Durand de Gevigney, Szigeti)

Let $G=(V, E)$ be a graph $(|V| \geq 3)$ and $k \geq 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is $(2 k, k)$-connected is equal to $\left\lceil\frac{1}{2} \max \left\{\sum_{\mathrm{X} \in \mathcal{X}_{1}}\left(2 k-d_{G}(X)\right)+\sum_{\mathrm{X} \in \mathcal{X}_{2}}\left(k-d_{G-v_{X}}(X)\right)\right\}\right\rceil$, where $\mathcal{X}_{1} \cup \mathcal{X}_{2}$ is a subpartition of V and $v_{X} \in V \backslash X$.

Proof

(1) Minimal extension works (because f_{G}^{b} is submodular on bi-sets), and in case of parity step u can be chosen with $d_{H}(s, u)$ even.

Augmentation : $(2 k, k)$-connectivity

Theorem (Durand de Gevigney, Szigeti)

Let $G=(V, E)$ be a graph $(|V| \geq 3)$ and $k \geq 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is $(2 k, k)$-connected is equal to $\left\lceil\frac{1}{2} \max \left\{\sum_{\mathrm{X} \in \mathcal{X}_{1}}\left(2 k-d_{G}(X)\right)+\sum_{\mathrm{X} \in \mathcal{X}_{2}}\left(k-d_{G-v_{X}}(X)\right)\right\}\right\rceil$, where $\mathcal{X}_{1} \cup \mathcal{X}_{2}$ is a subpartition of V and $v_{X} \in V \backslash X$.

Proof

(1) Minimal extension works (because f_{G}^{b} is submodular on bi-sets), and in case of parity step u can be chosen with $d_{H}(s, u)$ even.
(2) No obstacle exists in H, otherwise :

Augmentation : $(2 k, k)$-connectivity

Theorem (Durand de Gevigney, Szigeti)

Let $G=(V, E)$ be a graph $(|V| \geq 3)$ and $k \geq 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is $(2 k, k)$-connected is equal to $\left\lceil\frac{1}{2} \max \left\{\sum_{\mathrm{X} \in \mathcal{X}_{1}}\left(2 k-d_{G}(X)\right)+\sum_{\mathrm{X} \in \mathcal{X}_{2}}\left(k-d_{G-v_{X}}(X)\right)\right\}\right\rceil$, where $\mathcal{X}_{1} \cup \mathcal{X}_{2}$ is a subpartition of V and $v_{X} \in V \backslash X$.

Proof

(1) Minimal extension works (because f_{G}^{b} is submodular on bi-sets), and in case of parity step u can be chosen with $d_{H}(s, u)$ even.
(2) No obstacle exists in H, otherwise :
(1) by H-st is $(2 k, k)$-connected in $V, t=u$ and,

Augmentation : $(2 k, k)$-connectivity

Theorem (Durand de Gevigney, Szigeti)

Let $G=(V, E)$ be a graph $(|V| \geq 3)$ and $k \geq 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is $(2 k, k)$-connected is equal to $\left\lceil\frac{1}{2} \max \left\{\sum_{\mathrm{X} \in \mathcal{X}_{1}}\left(2 k-d_{G}(X)\right)+\sum_{\mathrm{X} \in \mathcal{X}_{2}}\left(k-d_{G-v_{X}}(X)\right)\right\}\right\rceil$, where $\mathcal{X}_{1} \cup \mathcal{X}_{2}$ is a subpartition of V and $v_{X} \in V \backslash X$.

Proof

(1) Minimal extension works (because f_{G}^{b} is submodular on bi-sets), and in case of parity step u can be chosen with $d_{H}(s, u)$ even.
(2) No obstacle exists in H, otherwise :
(1) by H - st is $(2 k, k)$-connected in $V, t=u$ and,
(2) by $d_{H}(s, t)$ is odd, $t \neq u$.

Augmentation : $(2 k, k)$-connectivity

Theorem (Durand de Gevigney, Szigeti)

Let $G=(V, E)$ be a graph $(|V| \geq 3)$ and $k \geq 2$ an integer. The minimum cardinality of a set F of edges such that $(V, E \cup F)$ is $(2 k, k)$-connected is equal to $\left\lceil\frac{1}{2} \max \left\{\sum_{\mathrm{X} \in \mathcal{X}_{1}}\left(2 k-d_{G}(X)\right)+\sum_{\mathrm{X} \in \mathcal{X}_{2}}\left(k-d_{G-v_{X}}(X)\right)\right\}\right\rceil$, where $\mathcal{X}_{1} \cup \mathcal{X}_{2}$ is a subpartition of V and $v_{X} \in V \backslash X$.

Proof

(1) Minimal extension works (because f_{G}^{b} is submodular on bi-sets), and in case of parity step u can be chosen with $d_{H}(s, u)$ even.
(2) No obstacle exists in H, otherwise :
(1) by H - st is $(2 k, k)$-connected in $V, t=u$ and,
(2) by $d_{H}(s, t)$ is odd, $t \neq u$.
(3) Hence a complete splitting off exists.

Orientation : $(2 k, k)$-connectivity

Definition

A digraph D is called $(2 k, k)$-connected if $|V| \geq 3$,
(1) D is $2 k$-arc-connected and,
(2) for all $v \in V, D-v$ is k-arc-connected.

Orientation : $(2 k, k)$-connectivity

Definition

A digraph D is called $(2 k, k)$-connected if $|V| \geq 3$,
(1) D is $2 k$-arc-connected and,
(2) for all $v \in V, D-v$ is k-arc-connected.

Theorem (Z.Király, Szigeti)

An Eulerian graph G has a $(2 k, k)$-connected orientation if and only if G is (4k, 2k)-connected.

Orientation : $(2 k, k)$-connectivity

Definition

A digraph D is called $(2 k, k)$-connected if $|V| \geq 3$,
(1) D is $2 k$-arc-connected and,
(2) for all $v \in V, D-v$ is k-arc-connected.

Theorem (Z.Király, Szigeti)

An Eulerian graph G has a $(2 k, k)$-connected orientation if and only if G is (4k, 2k)-connected.

Open problem

Is it true for non Eulerian graphs?

Orientation : Proof

Theorem (Nash-Williams' pairing for global edge-connectivity)
$\forall 2 k$-edge-connected graph G, \exists a pairing M of the odd degree vertices
T_{G} of G s. t. for every Eulerian orientation $\vec{G}+\vec{M}, \vec{G}$ is k-arc-connected.

Orientation : Proof

Theorem (Nash-Williams' pairing for global edge-connectivity)

$\forall 2 k$-edge-connected graph G, \exists a pairing M of the odd degree vertices T_{G} of G s. t. for every Eulerian orientation $\vec{G}+\vec{M}, \vec{G}$ is k-arc-connected.

Proof

Conclusion

What we have seen :
(1) Complete splitting off theorem on $(2 k, k)$-connectivity,

Conclusion

What we have seen :

(1) Complete splitting off theorem on $(2 k, k)$-connectivity,
(2) Min-max theorem for $(2 k, k)$-connectivity augmentation problem,

Conclusion

What we have seen :

(1) Complete splitting off theorem on $(2 k, k)$-connectivity,
(2) Min-max theorem for $(2 k, k)$-connectivity augmentation problem,
(3) Construction for $(2 k, k)$-connectivity when k is even,

Conclusion

What we have seen :

(1) Complete splitting off theorem on $(2 k, k)$-connectivity,
(2) Min-max theorem for $(2 k, k)$-connectivity augmentation problem,
(3) Construction for $(2 k, k)$-connectivity when k is even,
(3) Orientation theorem for $(2 k, k)$-connectivity when G is Eulerian.

Conclusion

What we have seen :

(1) Complete splitting off theorem on $(2 k, k)$-connectivity,
(2) Min-max theorem for $(2 k, k)$-connectivity augmentation problem,
(3) Construction for $(2 k, k)$-connectivity when k is even,
(9) Orientation theorem for $(2 k, k)$-connectivity when G is Eulerian.

What we haven't seen :

Conclusion

What we have seen :

(1) Complete splitting off theorem on $(2 k, k)$-connectivity,
(2) Min-max theorem for $(2 k, k)$-connectivity augmentation problem,
(3) Construction for $(2 k, k)$-connectivity when k is even,
(9) Orientation theorem for $(2 k, k)$-connectivity when G is Eulerian.

What we haven't seen :

(1) Algorithm for $(2 k, k)$-connectivity augmentation problem,

Conclusion

What we have seen :

(1) Complete splitting off theorem on $(2 k, k)$-connectivity,
(2) Min-max theorem for $(2 k, k)$-connectivity augmentation problem,
(3) Construction for $(2 k, k)$-connectivity when k is even,
(9) Orientation theorem for $(2 k, k)$-connectivity when G is Eulerian.

What we haven't seen :

(1) Algorithm for $(2 k, k)$-connectivity augmentation problem,
(2) Construction for $(2 k, k)$-connectivity when k is odd,

Conclusion

What we have seen :

(1) Complete splitting off theorem on $(2 k, k)$-connectivity,
(2) Min-max theorem for $(2 k, k)$-connectivity augmentation problem,
(3) Construction for $(2 k, k)$-connectivity when k is even,
(9) Orientation theorem for $(2 k, k)$-connectivity when G is Eulerian.

What we haven't seen :

(1) Algorithm for $(2 k, k)$-connectivity augmentation problem,
(2) Construction for $(2 k, k)$-connectivity when k is odd,
(3) Orientation theorem for $(2 k, k)$-connectivity when G is arbitrary.

Thank you for your attention!

