Edge-connectivity augmentations of graphs and hypergraphs

Zoltán Szigeti

Laboratoire G-SCOP INP Grenoble, France

November 2008

Edge-connectivity augmentation problems

Graphs

- global edge-connectivity augmentation [Watanabe, Nakamura],
- global edge-connectivity augmentation over symmetric parity families [Sz],
- node to area global edge-connectivity augmentation [Ishii, Hagiwara],
- global edge-connectivity augmentation by attaching stars [B. Fleiner],
- global edge-connectivity augmentation with partition constraint [Bang-Jensen, Gabow, Jordán, Sz].
- local edge-connectivity augmentation [Frank],
- local edge-connectivity augmentation by attaching stars [Jordán, Sz],

Edge-connectivity augmentation problems

Hypergraphs

- global edge-connectivity augmentation in hypergraphs by adding graph edges [Bang-Jensen, Jackson],
- global edge-connectivity augmentation in hypergraphs by adding uniform hyperedges [T. Király],
- local edge-connectivity augmentation in hypergraphs by adding graph edges (NP-complete) [Cosh, Jackson, Z. Király],
- local edge-connectivity augmentation in hypergraphs by adding a hypergraph of minimum total size [Sz].

Edge-connectivity augmentation problems

Set functions

- covering a symmetric crossing supermodular set function by a graph [Benczúr, Frank],
- covering a symmetric crossing supermodular set function by a uniform hypergraph [T. Király],
- covering a symmetric crossing supermodular set function $p \neq 1$ by a graph with partition constraint [Grappe, Sz],
- covering a symmetric skew-supermodular set function by a graph (NP-complete) [Z. Király],
- covering a symmetric semi-monotone set function by a graph [Ishii; Grappe, Sz],
- covering a symmetric skew-supermodular set function by a hypergraph of minimum total size [Sz].

Graphs: Basic Problem

Global edge-connectivity augmentation of a graph

- Given a graph G = (V, E) and an integer k, what is the minimum number γ of new edges whose addition results in a k-edge-connected graph?
- $\gamma := \min\{|F| : d_{G+F}(X) \ge k \ \forall \emptyset \ne X \subset V\}$ = $\min\{|F| : d_{(V,F)}(X) \ge k - d_G(X) \ \forall \emptyset \ne X \subset V\}.$
- $p_1(X) = k$ and $p_2(X) = k d_G(X)$ are symmetric, crossing supermodular.

Graphs: Basic Problem

Global edge-connectivity augmentation of a graph

- Given a graph G = (V, E) and an integer k, what is the minimum number γ of new edges whose addition results in a k-edge-connected graph?
- $\gamma := \min\{|F| : d_{G+F}(X) \ge k \ \forall \emptyset \ne X \subset V\}$ = $\min\{|F| : d_{(V,F)}(X) \ge k - d_G(X) \ \forall \emptyset \ne X \subset V\}.$
- $p_1(X) = k$ and $p_2(X) = k d_G(X)$ are symmetric, crossing supermodular.

Graphs: Basic Problem

Global edge-connectivity augmentation of a graph

- Given a graph G = (V, E) and an integer k, what is the minimum number γ of new edges whose addition results in a k-edge-connected graph?
- $\gamma := \min\{|F| : d_{G+F}(X) \ge k \ \forall \emptyset \ne X \subset V\}$ = $\min\{|F| : d_{(V,F)}(X) \ge k - d_G(X) \ \forall \emptyset \ne X \subset V\}.$
- $p_1(X) = k$ and $p_2(X) = k d_G(X)$ are symmetric, crossing supermodular.

- Given a bipartite graph $G = (V_1, V_2; E)$ and an integer k, what is the minimum number γ of new edges whose addition results in a k-edge-connected bipartite graph?
- Given a graph G = (V, E), a partition \mathcal{P} of V and an integer k, what is the minimum number γ of new edges between different members of \mathcal{P} whose addition results in a k-edge-connected graph?

```
• (G = (V_1, V_2; E), \mathcal{P} = \{V_1, V_2\}) = Bipartite graph Problem
• (G = (V, E), \mathcal{P} = \{\{v\} : v \in V\}) = Basic Problem
```

- Given a bipartite graph $G = (V_1, V_2; E)$ and an integer k, what is the minimum number γ of new edges whose addition results in a k-edge-connected bipartite graph?
- Given a graph G = (V, E), a partition \mathcal{P} of V and an integer k, what is the minimum number γ of new edges between different members of \mathcal{P} whose addition results in a k-edge-connected graph?

- Given a bipartite graph $G = (V_1, V_2; E)$ and an integer k, what is the minimum number γ of new edges whose addition results in a k-edge-connected bipartite graph?
- Given a graph G = (V, E), a partition \mathcal{P} of V and an integer k, what is the minimum number γ of new edges between different members of \mathcal{P} whose addition results in a k-edge-connected graph?

```
• (G = (V_1, V_2; E), \mathcal{P} = \{V_1, V_2\}) = Bipartite graph Problem
• (G = (V, E), \mathcal{P} = \{\{v\} : v \in V\}) = Basic Problem
```


- Given a bipartite graph $G = (V_1, V_2; E)$ and an integer k, what is the minimum number γ of new edges whose addition results in a k-edge-connected bipartite graph?
- Given a graph G = (V, E), a partition \mathcal{P} of V and an integer k, what is the minimum number γ of new edges between different members of \mathcal{P} whose addition results in a k-edge-connected graph?
 - $(G = (V_1, V_2; E), \mathcal{P} = \{V_1, V_2\})$ = Bipartite graph Problem • $(G = (V, E), \mathcal{P} = \{\{v\} : v \in V\})$ = Basic Problem

- Given a bipartite graph $G = (V_1, V_2; E)$ and an integer k, what is the minimum number γ of new edges whose addition results in a k-edge-connected bipartite graph?
- Given a graph G = (V, E), a partition \mathcal{P} of V and an integer k, what is the minimum number γ of new edges between different members of \mathcal{P} whose addition results in a k-edge-connected graph?
 - $(G = (V_1, V_2; E), \mathcal{P} = \{V_1, V_2\})$ = Bipartite graph Problem
 - $(G = (V, E), P = \{\{v\} : v \in V\}) = Basic Problem$

Connectivity functions

Symmetric function

 $p: 2^V \to \mathbb{Z}$ is called symmetric if $\forall X \subset V$, p(X) = p(V - X).

Connectivity functions

Symmetric function

 $p: 2^V \to \mathbb{Z}$ is called symmetric if $\forall X \subset V$, p(X) = p(V - X).

Crossing supermodular function

$$p: 2^V \to \mathbb{Z}$$
 is called crossing supermodular if $\forall X, Y \subset V$ with $X - Y, Y - X, X \cap Y, V - (X \cup Y) \neq \emptyset, p(X), p(Y) > 0:$

$$p(X) + p(Y) \leq p(X \cap Y) + p(X \cup Y).$$

Connectivity functions

Symmetric function

$$p: 2^V \to \mathbb{Z}$$
 is called symmetric if $\forall X \subset V$, $p(X) = p(V - X)$.

Crossing supermodular function

$$p: 2^V \to \mathbb{Z}$$
 is called crossing supermodular if $\forall X, Y \subset V$ with $X - Y, Y - X, X \cap Y, V - (X \cup Y) \neq \emptyset, p(X), p(Y) > 0:$

$$p(X) + p(Y) \leq p(X \cap Y) + p(X \cup Y).$$

Well-known examples

- $p(X) = p'(X) d_G(X)$, (p'(X)) is a symmetric crossing supermodular function).

Covering a function

Covering

A graph H = (V, F) covers a function $p: 2^V \to \mathbb{Z}$ if

$$d_H(X) \ge p(X) \ \forall X \subset V.$$

Covering a function

Covering

A graph H = (V, F) covers a function $p: 2^V \to \mathbb{Z}$ if

$$d_H(X) \geq p(X) \ \forall X \subset V.$$

Minimization problem 1

Given a symmetric crossing supermodular function p on V, what is the minimum number of edges of a graph H = (V, F) that covers p?

Covering a function

Covering

A graph H = (V, F) covers a function $p: 2^V \to \mathbb{Z}$ if

$$d_H(X) \geq p(X) \ \forall X \subset V.$$

Minimization problem 1

Given a symmetric crossing supermodular function p on V, what is the minimum number of edges of a graph H = (V, F) that covers p?

Minimization problem 2

Given a symmetric crossing supermodular function p on V and a graph G = (V, E), what is the minimum number of new edges such that the graph H = (V, E + F) covers p?

Relations among these problems

Covering a function: Problem with partition constraint

Covering a function by a graph with partition constraint

Given a graph G = (V, E), a partition \mathcal{P} of V and a symmetric crossing supermodular function p, what is the minimum number γ of new edges between different members of \mathcal{P} whose addition results in a graph that covers p?

- $(G = (V, E), P = \{\{v\} : v \in V\} \text{ and } p) = \text{Covering of } p$
- (G = (V, E), P and p = k)= Global edge-connectivity augmentation of a graph with partition constraint

Covering a function: Problem with partition constraint

Covering a function by a graph with partition constraint

Given a graph G = (V, E), a partition \mathcal{P} of V and a symmetric crossing supermodular function p, what is the minimum number γ of new edges between different members of \mathcal{P} whose addition results in a graph that covers p?

- $(G = (V, E), \mathcal{P} = \{\{v\} : v \in V\} \text{ and } p) = \text{Covering of } p$
- (G = (V, E), P and p = k)= Global edge-connectivity augmentation of a graph with partition constraint

Covering a function: Problem with partition constraint

Covering a function by a graph with partition constraint

Given a graph G = (V, E), a partition \mathcal{P} of V and a symmetric crossing supermodular function p, what is the minimum number γ of new edges between different members of \mathcal{P} whose addition results in a graph that covers p?

- $(G = (V, E), \mathcal{P} = \{\{v\} : v \in V\} \text{ and } p) = \text{Covering of } p$
- (G = (V, E), P) and p = k Global edge-connectivity augmentation of a graph with partition constraint

Results: Basic Problem

Notation

S(V)= all subpartitions of V.

Results: Basic Problem

Notation

$$\mathcal{S}(V)$$
= all subpartitions of V .

Lowerbound

$$\alpha := \max\{\lceil \frac{1}{2} \sum_{X \in \mathcal{X}} (k - d(X)) \rceil : \mathcal{X} \in \mathcal{S}(V)\}.$$

Results: Basic Problem

Notation

$$S(V)$$
= all subpartitions of V .

Lowerbound

$$\alpha := \max\{\lceil \frac{1}{2} \sum_{X \in \mathcal{X}} (k - d(X)) \rceil : \mathcal{X} \in \mathcal{S}(V)\}.$$

Theorem (Watanabe, Nakamura)

Let G = (V, E) be a graph and $k \ge 2$. Then the minimum number γ of new edges whose addition results in a k-edge-connected graph is

$$\gamma = \alpha$$
.

Lowerbound

Let Φ := max{ $\alpha, \beta_1, \dots, \beta_r$ } where

$$\alpha := \max\{\lceil \frac{1}{2} \sum_{X \in \mathcal{X}} (k - d(X)) \rceil : \mathcal{X} \in \mathcal{S}(V)\},$$

$$eta_{j} := \max\{\sum_{Y \in \mathcal{Y}} (k - d(Y)) : \mathcal{Y} \in \mathcal{S}(V_{j})\} \quad \forall 1 \leq j \leq r.$$

Lowerbound

Let Φ := max{ $\alpha, \beta_1, \dots, \beta_r$ } where

$$\alpha := \max\{\lceil \frac{1}{2} \sum_{X \in \mathcal{X}} (k - d(X)) \rceil : \mathcal{X} \in \mathcal{S}(V)\},$$

$$eta_j := \max\{\sum_{Y \in \mathcal{V}} (k - d(Y)) : \mathcal{Y} \in \mathcal{S}(V_j)\} \quad \forall 1 \leq j \leq r.$$

Attention!

C_4 -configuration

A partition $\{A_1,A_2,A_3,A_4\}$ of V is a C_4 -configuration of G if k is odd and

$$egin{array}{lll} k-d(A_i) &>& 0 & orall 1 \leq i \leq 4, \ d(A_i,A_{i+2}) &=& 0 & orall 1 \leq i \leq 2, \ \sum_{X \in \mathcal{X}_i} (k-d(X)) &=& k-d(A_i) & \exists \mathcal{X}_i \in \mathcal{S}(A_i) \ orall 1 \leq i \leq 4, \ \mathcal{X}_j \cup \mathcal{X}_{j+2} &\in& \mathcal{S}(V_l) & \exists 1 \leq l \leq r \ \exists 1 \leq j \leq 2, \end{array}$$

C₄-configuration

 $k - d(A_i) + k - d(A_{i+2}) = \Phi$

 $\forall 1 < i < 2$.

C_4 -configuration

C₆-configuration

A partition $\{A_1, A_2, \dots, A_6\}$ of V is a C_6 -configuration of G if k is odd,

$$k - d(A_i) = 1 \quad \forall 1 \leq i \leq 6,$$
 $k - d(A_i \cup A_{i+1}) = 1 \quad \forall 1 \leq i \leq 6, (A_7 = A_1)$
 $\Phi = 3,$
 $k - d(A'_i) = 1 \quad \exists 1 \leq j_1, j_2, j_3 \leq r, \ \forall 1 \leq i \leq 6, \ \exists A'_i \subseteq A_i \cap V_{j_{i-1}}$

C_6 -configuration

C_6 -configuration

Theorem (Bang-Jensen, Gabow, Jordán, Sz)

Let G = (V, E) be a graph, \mathcal{P} a partition of V and $k \geq 2$. Then the minimum number γ of new edges between different members of \mathcal{P} whose addition results in a k-edge-connected graph is

$$\gamma = \begin{cases} \Phi & \text{if } G \text{ contains no } C_4\text{- and no } C_6\text{-configuration,} \\ \Phi + 1 & \text{otherwise.} \end{cases}$$

Results: Covering crossing supermodular functions

Lowerbound

Let Ψ := max{ $\alpha_p, L-1$ } where

$$\begin{array}{ll} \alpha_{p} &:=& \max\{\lceil\frac{1}{2}\sum_{X\in\mathcal{X}}p(X)\rceil:\mathcal{X}\in\mathcal{S}(V)\},\\ L &:=& \max\{I:\{Q_{1},\ldots,Q_{I}\}\text{ partition of }V,\\ &p(\bigcup_{i\in I}Q_{i})\geq 1\;\forall I,p(Q_{j})=1\;\exists j\}. \end{array}$$

Results: Covering crossing supermodular functions

Lowerbound

Let Ψ := max{ $\alpha_p, L-1$ } where

$$egin{aligned} lpha_{m{p}} &:= \max\{\lceil rac{1}{2} \sum_{X \in \mathcal{X}} p(X)
ceil : \mathcal{X} \in \mathcal{S}(V) \}, \ \mathcal{L} &:= \max\{I : \{Q_1, \ldots, Q_I\} \text{ partition of } V, \ p(igcup_{i \in I} Q_i) \geq 1 \ orall I, p(Q_j) = 1 \ \exists j \}. \end{aligned}$$

Theorem (Benczúr, Frank)

Let $p: 2^V \to \mathbb{Z}_+$ be a symmetric crossing supermodular set function. Then the minimum number γ of edges of a graph H = (V, F) that covers p is

$$\gamma = \Psi$$
.

Lowerbound

Let
$$\Phi$$
:= max $\{\alpha_p, \beta_1, \dots, \beta_r\}$ where $q(X) = p(X) - d_G(X)$ and

$$\alpha_{p} := \max\{\lceil \frac{1}{2} \sum_{X \in \mathcal{X}} q(X) \rceil : \mathcal{X} \in \mathcal{S}(V)\},$$

$$eta_j := \max\{\sum_{Y \in \mathcal{V}} q(Y) : \mathcal{Y} \in \mathcal{S}(V_j)\} \quad \forall 1 \leq j \leq r.$$

Lowerbound

Let Φ := max $\{\alpha_p, \beta_1, \dots, \beta_r\}$ where $q(X) = p(X) - d_G(X)$ and

$$\frac{\alpha_{\mathbf{p}}}{} \ := \ \max\{\lceil\frac{1}{2}\sum_{X\in\mathcal{X}}q(X)\rceil:\mathcal{X}\in\mathcal{S}(V)\},$$

$$eta_j := \max\{\sum_{Y \in \mathcal{V}} q(Y) : \mathcal{Y} \in \mathcal{S}(V_j)\} \quad orall 1 \leq j \leq r.$$

Attention!

C_4^* -configuration

A partition $\{A_1, A_2, A_3, A_4\}$ of V is a C_4^* -configuration of G if $\forall 1 \leq i \leq 4$

$$egin{array}{lll} q(A_i) &>& 0, \ d(A_i,A_{i+2}) &=& 0, \ &\sum_{X\in\mathcal{X}_i} q(X) &=& q(A_i) &\exists \mathcal{X}_i\in\mathcal{S}(A_i), \ &\mathcal{X}_j\cup\mathcal{X}_{j+2} &\in& \mathcal{S}(V_l) &\exists 1\leq l\leq r\;\exists 1\leq j\leq 2, \ q(A_i)+q(A_{i+2}) &=& \Phi, \ p(A_i)+p(A_{i+1}) &-& p(A_i\cup A_{i+1})\; ext{is odd}, \ p(A_i\cup A_{i-1})+p(A_i\cup A_{i+1}) &=& p(A_{i-1})+p(A_{i+1}). \end{array}$$

C_6^* -configuration

A partition $\{A_1,A_2,\ldots,A_6\}$ of V is a C_6^* -configuration of G if $\forall 1\leq i\leq 6$

$$q(A_{i}) = 1,$$

$$q(A_{i} \cup A_{i+1}) = 1, (A_{7} = A_{1})$$

$$\Phi = 3,$$

$$q(A'_{i}) = 1 \quad \exists 1 \leq j_{1}, j_{2}, j_{3} \leq r, \exists A'_{i} \subseteq A_{i} \cap V_{j_{i-3 \lfloor \frac{(i-1)}{3} \rfloor}}.$$

Theorem (Grappe, Sz)

Let G = (V, E) be a graph, \mathcal{P} a partition of V and $p : 2^V \to \mathbb{Z}_+$ a symmetric crossing supermodular set function with $p \neq 1$.

Then the minimum number γ of new edges between different members of $\mathcal P$ whose addition results in a graph that covers p is

$$\gamma = \begin{cases} \Phi & \text{if } G \text{ contains no } C_4^*\text{- and no } C_6^*\text{-configuration,} \\ \Phi + 1 & \text{otherwise.} \end{cases}$$