On 2-vertex-connected orientations of graphs

Zoltán Szigeti
Laboratoire G-SCOP
INP Grenoble, France

12 January 2012

Joint work with :
Joseph Cheriyan (Waterloo) and Olivier Durand de Gevigney (Grenoble)

Outline

- Definitions
- Orientations with arc-connectivity constraints
- Orientations with vertex-connectivity constraints
- k-vertex-connected orientations
- 2-vertex-connected orientations
- Packing of special spanning subgraphs
- Matroid theory

Orientation

Orientation

Connectivity

Definitions

An undirected graph $G=(V, E)$ is

- connected if there exists a (u, v)-path $\forall u, v \in V$,
- k-edge-connected if $D-X$ is connected $\forall X \subset E,|X| \leq k-1$,
- k-vertex-connected if $D-X$ is connected $\forall X \subset V,|X|=k-1$ and $|V|>k$.

A directed graph $D=(V, A)$ is

- strongly connected if \exists a directed (u, v)-path $\forall(u, v) \in V \times V$,
- k-arc-connected if $D-X$ is strongly connected $\forall X \subset A,|X| \leq k-1$,
- k-vertex-conn. if $D-X$ is strongly connected $\forall X \subset V,|X|=k-1$ and $|V|>k$.

k-arc-connected orientation

Theorem (Nash-Williams 1960)

Given an undirected graph G,

- there exists a k-arc-connected orientation of G
- G is $2 k$-edge-connected.

k-arc-connected orientation

Theorem (Nash-Williams 1960)

Given an undirected graph G,

- there exists a k-arc-connected orientation of G
- G is $2 k$-edge-connected.

necessity :

k-arc-connected orientation

Theorem (Nash-Williams 1960)

Given an undirected graph G,

- there exists a k-arc-connected orientation of G
- G is $2 k$-edge-connected.

necessity :

k-vertex-connected orientation

Conjecture (Thomassen 1989)

There exists a function $f(k)$ such that every $f(k)$-vertex-connected graph has a k-vertex-connected orientation.

k-vertex-connected orientation

Conjecture (Thomassen 1989)

There exists a function $f(k)$ such that every $f(k)$-vertex-connected graph has a k-vertex-connected orientation.

Conjecture (Frank 1995)

Given an undirected graph $G=(V, E)$ with $|V|>k$,

- there exists a k-vertex-connected orientation of G

k-vertex-connected orientation

Conjecture (Thomassen 1989)

There exists a function $f(k)$ such that every $f(k)$-vertex-connected graph has a k-vertex-connected orientation.

Conjecture (Frank 1995)

Given an undirected graph $G=(V, E)$ with $|V|>k$,

- there exists a k-vertex-connected orientation of G

necessity :

\vec{G} is k-vertex-connected

k-vertex-connected orientation

Conjecture (Thomassen 1989)

There exists a function $f(k)$ such that every $f(k)$-vertex-connected graph has a k-vertex-connected orientation.

Conjecture (Frank 1995)

Given an undirected graph $G=(V, E)$ with $|V|>k$,

- there exists a k-vertex-connected orientation of G

necessity :

\vec{G} is k-vertex-connected

k-vertex-connected orientation

Conjecture (Thomassen 1989)

There exists a function $f(k)$ such that every $f(k)$-vertex-connected graph has a k-vertex-connected orientation.

Conjecture (Frank 1995)

Given an undirected graph $G=(V, E)$ with $|V|>k$,

- there exists a k-vertex-connected orientation of G

necessity :

k-vertex-connected orientation

Conjecture (Thomassen 1989)

There exists a function $f(k)$ such that every $f(k)$-vertex-connected graph has a k-vertex-connected orientation.

Conjecture (Frank 1995)

Given an undirected graph $G=(V, E)$ with $|V|>k$,

- there exists a k-vertex-connected orientation of G

- $G-X$ is $(2 k-2|X|)$-edge-connected for all $X \subseteq V$ with $|X|<k$.
necessity :

k-vertex-connected orientation

Conjecture (Thomassen 1989)

There exists a function $f(k)$ such that every $f(k)$-vertex-connected graph has a k-vertex-connected orientation.

Conjecture (Frank 1995)

Given an undirected graph $G=(V, E)$ with $|V|>k$,

- there exists a k-vertex-connected orientation of G
- $G-X$ is $(2 k-2|X|)$-edge-connected for all $X \subseteq V$ with $|X|<k$.

Remark

Frank's conjecture would imply that $f(k) \leq 2 k$.

2-vertex-connected orientation : Frank's Conjecture

Conjecture (Frank 1995)

Given an undirected graph $G=(V, E)$ with $|V|>2$,

- there exists a 2-vertex-connected orientation of G \Longleftrightarrow
- G is 4-edge-connected and $G-v$ is 2-edge-connected for all $v \in V$.

2-vertex-connected orientation : Frank's Conjecture

Conjecture (Frank 1995)

Given an undirected graph $G=(V, E)$ with $|V|>2$,

- there exists a 2-vertex-connected orientation of G \Longleftrightarrow
- G is 4-edge-connected and $G-v$ is 2-edge-connected for all $v \in V$.

Theorem (Berg-Jordán 2006)

Given an Eulerian graph $G=(V, E)$ with $|V|>2$,

- there exists a 2-vertex-connected Eulerian orientation of G

- G is 4-edge-connected and $G-v$ is 2-edge-connected for all $v \in V$.

2-vertex-connected orientation : Thomassen's Conjecture

Theorem (Jordán 2005)

Every 18-vertex-connected graph has a 2-vertex-connected orientation : $f(2) \leq 18$.

2-vertex-connected orientation : Thomassen's Conjecture

Theorem (Jordán 2005)

Every 18-vertex-connected graph has a 2-vertex-connected orientation :

$$
f(2) \leq 18 .
$$

Theorem (Cheriyan, Durand de Gevigney, Szigeti 2011)

Every 14-vertex-connected graph has a 2-vertex-connected orientation :

$$
f(2) \leq 14
$$

2-vertex-connected orientation : Thomassen's Conjecture

Theorem (Jordán 2005)

Every 18-vertex-connected graph has a 2-vertex-connected orientation :

$$
f(2) \leq 18 .
$$

Theorem (Cheriyan, Durand de Gevigney, Szigeti 2011)

Every 14-vertex-connected graph has a 2-vertex-connected orientation :

$$
f(2) \leq 14
$$

Remark

Frank's conjecture would imply that $f(2) \leq 4$.

Proof

Theorem (Jordán 2005)

Every 18-vertex-connected graph has a 2-vertex-connected orientation.

Proof

Theorem (Jordán 2005)

Every 18-vertex-connected graph has a 2-vertex-connected orientation.

Theorem (Berg-Jordán 2006) (Tool 1)

Given an Eulerian graph $G=(V, E)$ with $|V|>2$,

- there exists a 2-vertex-connected orientation of G

- $G-v$ is 2-edge-connected for all $v \in V$.

Proof

Theorem (Jordán 2005)

Every 18-vertex-connected graph has a 2-vertex-connected orientation.

Theorem (Berg-Jordán 2006) (Tool 1)

Given an Eulerian graph $G=(V, E)$ with $|V|>2$,

- there exists a 2-vertex-connected orientation of G

- $G-v$ is 2-edge-connected for all $v \in V$.

Find a spanning subgraph G such that

- $G-v$ is 2-edge-connected for all $v \in V$,
- G-v contains 2 edge-disjoint connected spanning subgraphs for all
- G contains 2 edge-disjoint 2-vertex-connected spanning subgraphs

Proof

Theorem (Jordán 2005)

Every 18-vertex-connected graph has a 2-vertex-connected orientation.

Theorem (Berg-Jordán 2006) (Tool 1)

Given an Eulerian graph $G=(V, E)$ with $|V|>2$,

- there exists a 2-vertex-connected orientation of G

- $G-v$ is 2-edge-connected for all $v \in V$.

Find a spanning subgraph G such that

- $G-v$ is 2-edge-connected for all $v \in V$,
- $G-v$ contains 2 edge-disjoint connected spanning subgraphs for all $v \in V$,
- G contains 2 edge-disjoint 2-vertex-connected spanning subgraphs

Proof

Theorem (Jordán 2005)

Every 18-vertex-connected graph has a 2-vertex-connected orientation.

Theorem (Berg-Jordán 2006) (Tool 1)

Given an Eulerian graph $G=(V, E)$ with $|V|>2$,

- there exists a 2-vertex-connected orientation of G

- $G-v$ is 2-edge-connected for all $v \in V$.

Find a spanning subgraph G such that

- $G-v$ is 2-edge-connected for all $v \in V$,
- $G-v$ contains 2 edge-disjoint connected spanning subgraphs for all $v \in V$,
- G contains 2 edge-disjoint 2-vertex-connected spanning subgraphs.

Proof

Theorem (Jordán 2005)

Every 18-vertex-connected graph has a 2-vertex-connected orientation.

Theorem (Berg-Jordán 2006) (Tool 1)

Given an Eulerian graph $G=(V, E)$ with $|V|>2$,

- there exists a 2-vertex-connected orientation of G
- $G-v$ is 2-edge-connected for all $v \in V$.

Theorem (Jordán 2005) (Tool 2)

Every $6 k$-vertex-connected graph contains k edge-disjoint 2-vertexconnected spanning subgraphs.

Proof

(Jordán 2005)

- Let H be a 18 -vertex-connected graph.
- By Tool 2, H contains 3 edge-disjoint 2-vertex-connected spanning subgraphs: G_{1}, G_{2}, and G_{3}.
- Let $G^{\prime}:=G_{1} \cup G_{2}$. Then $G^{\prime}-v$ is 2 -edge-connected for every vertex v. - Let T be the set of odd degree vertices in G^{\prime}.
- By Tool 1, G, and hence H, has a 2-vertex-connected orientation.

Proof

(Jordán 2005)

- Let H be a 18-vertex-connected graph.
- By Tool 2, H contains 3 edge-disjoint 2-vertex-connected spanning subgraphs: G_{1}, G_{2}, and G_{3}.
- Let $G^{\prime}:=G_{1} \cup G_{2}$. Then $G^{\prime}-v$ is 2-edge-connected for every vertex v.
- Let T be the set of odd degree vertices in G^{\prime}.
- By Tool 1, G, and hence H, has a 2-vertex-connected orientation.

Proof

(Jordán 2005)

- Let H be a 18-vertex-connected graph.
- By Tool 2, H contains 3 edge-disjoint 2-vertex-connected spanning subgraphs: G_{1}, G_{2}, and G_{3}.
- Let $G^{\prime}:=G_{1} \cup G_{2}$. Then $G^{\prime}-v$ is 2-edge-connected for every vertex v. - Let T be the set of odd degree vertices in G^{\prime}.
- By Tool 1, G, and hence H, has a 2-vertex-connected orientation.

Proof

(Jordán 2005)

- Let H be a 18-vertex-connected graph.
- By Tool 2, H contains 3 edge-disjoint 2-vertex-connected spanning subgraphs: G_{1}, G_{2}, and G_{3}.
- Let $G^{\prime}:=G_{1} \cup G_{2}$. Then $G^{\prime}-v$ is 2-edge-connected for every vertex v.
- Let T be the set of odd degree vertices in G^{\prime}.
- By Tool 1, G, and hence H, has a 2-vertex-connected orientation.

Proof

(Jordán 2005)

- Let H be a 18-vertex-connected graph.
- By Tool 2, H contains 3 edge-disjoint 2-vertex-connected spanning subgraphs: G_{1}, G_{2}, and G_{3}.
- Let $G^{\prime}:=G_{1} \cup G_{2}$. Then $G^{\prime}-v$ is 2-edge-connected for every vertex v.
- Let T be the set of odd degree vertices in G^{\prime}. Since G_{3} is connected, it contains a T-join F.
- By Tool 1, G, and hence H, has a 2-vertex-connected orientation

Proof

(Jordán 2005)

- Let H be a 18-vertex-connected graph.
- By Tool 2, H contains 3 edge-disjoint 2-vertex-connected spanning subgraphs: G_{1}, G_{2}, and G_{3}.
- Let $G^{\prime}:=G_{1} \cup G_{2}$. Then $G^{\prime}-v$ is 2-edge-connected for every vertex v.
- Let T be the set of odd degree vertices in G^{\prime}. Since G_{3} is connected, it contains a T-join F. Then $G:=G^{\prime}+F$ is Eulerian.
\square

Proof

(Jordán 2005)

- Let H be a 18-vertex-connected graph.
- By Tool 2, H contains 3 edge-disjoint 2-vertex-connected spanning subgraphs: G_{1}, G_{2}, and G_{3}.
- Let $G^{\prime}:=G_{1} \cup G_{2}$. Then $G^{\prime}-v$ is 2-edge-connected for every vertex v.
- Let T be the set of odd degree vertices in G^{\prime}. Since G_{3} is connected, it contains a T-join F. Then $G:=G^{\prime}+F$ is Eulerian.
- By Tool 1, G, and hence H, has a 2-vertex-connected orientation.

Proof of the new upperbound

Theorem

Every 14-vertex-connected graph has a 2-vertex-connected orientation.

Proof of the new upperbound

Theorem

Every 14-vertex-connected graph has a 2-vertex-connected orientation.

Theorem (Berg-Jordán 2006) (Tool 1)

Given an Eulerian graph $G=(V, E)$ with $|V|>2$,

- there exists a 2-vertex-connected orientation of G

- $G-v$ is 2-edge-connected for all $v \in V$.

Proof of the new upperbound

Theorem

Every 14-vertex-connected graph has a 2-vertex-connected orientation.

Theorem (Berg-Jordán 2006) (Tool 1)

Given an Eulerian graph $G=(V, E)$ with $|V|>2$,

- there exists a 2-vertex-connected orientation of G

- $G-v$ is 2-edge-connected for all $v \in V$.

Theorem (Cheriyan, Durand de Gevigney, Szigeti 2011) (Tool 2')

Every $(6 k+2 \ell)$-vertex-connected graph contains k 2-vertex-connected and ℓ connected edge-disjoint spanning subgraphs.

Proof of the new upperbound

- Let H be a 14 -vertex-connected graph.
- By Tool 2', H contains two 2-vertex-connected and one connected edge-disjoint spanning subgraphs: G_{1}, G_{2}, and G_{3}.
- Let $G^{\prime}:=G_{1} \cup G_{2}$. Then $G^{\prime}-v$ is 2-edge-connected for every vertex v.
- Let T be the set of odd degree vertices in G^{\prime}.
- By Tool 1, G, and hence H, has a 2-vertex-connected orientation.

Proof of the new upperbound

- Let H be a 14-vertex-connected graph.
- By Tool 2', H contains two 2-vertex-connected and one connected edge-disjoint spanning subgraphs: G_{1}, G_{2}, and G_{3}.
- Let $G^{\prime}:=G_{1} \cup G_{2}$. Then $G^{\prime}-v$ is 2-edge-conne - By Tool 1, G, and hence H, has a 2-vertex-connected orientation.

Proof of the new upperbound

- Let H be a 14 -vertex-connected graph.
- By Tool 2', H contains two 2-vertex-connected and one connected edge-disjoint spanning subgraphs: G_{1}, G_{2}, and G_{3}.
- Let $G^{\prime}:=G_{1} \cup G_{2}$. Then $G^{\prime}-v$ is 2-edge-connected for every vertex v.
- Let T be the set of odd degree vertices in G^{\prime}. Since G_{3} is connected, it contains a T-join F. Then $G:=G^{\prime}+F$ is Eulerian.
- By Tool 1, G, and hence H, has a 2-vertex-connected orientation.

How to prove them?

Theorem (Berg-Jordán 2006) (Tool 1)

Given an Eulerian graph $G=(V, E)$ with $|V|>2$,

- there exists a 2-vertex-connected orientation of G

- $G-v$ is 2-edge-connected for all $v \in V$.

Theorem (Jordán 2005) (Tool 2)

Every $6 k$-vertex-connected graph contains k edge-disjoint 2-vertexconnected spanning subgraphs.

Theorem (Tool 2')

Every $(6 k+2 \ell)$-vertex-connected graph contains $k 2$-vertex-connected and ℓ connected edge-disjoint spanning subgraphs.

Rigidity Matroid

Definition

Given a graph $G=(V, E)$ with $n=|V|$.
Rigidity Matroid :

- independent sets: $\mathcal{R}(G)=\left\{F \subseteq E: i_{F}(X) \leq 2|X|-3 \quad \forall X \subseteq V\right\}$ (Crapo 1979).
- rank function $r_{\mathcal{R}}(F)=\min \left\{\sum_{X \in \mathcal{H}}(2|X|-3): \mathcal{H}\right.$ set of subsets of V covering $F\}$ (Lovász-Yemini 1982).
- G is rigid if $r_{\mathcal{R}}(E)=2 n-3($ Laman 1970 $)$

Rigidity Matroid

Definition

Given a graph $G=(V, E)$ with $n=|V|$. Rigidity Matroid :

- independent sets: $\mathcal{R}(G)=\left\{F \subseteq E: i_{F}(X) \leq 2|X|-3 \quad \forall X \subseteq V\right\}$ (Crapo 1979).
- rank function $r_{\mathcal{R}}(F)=\min \left\{\sum_{X \in \mathcal{H}}(2|X|-3): \mathcal{H}\right.$ set of subsets of V covering F \} (Lovász-Yemini 1982).
- G is rigid if $r_{\mathcal{R}}(E)=2 n-3$ (Laman 1970)

a covering \mathcal{H} of E

Rigidity Matroid

Definition

Given a graph $G=(V, E)$ with $n=|V|$. Rigidity Matroid :

- independent sets: $\mathcal{R}(G)=\left\{F \subseteq E: i_{F}(X) \leq 2|X|-3 \quad \forall X \subseteq V\right\}$ (Crapo 1979).
- rank function $r_{\mathcal{R}}(F)=\min \left\{\sum_{X \in \mathcal{H}}(2|X|-3): \mathcal{H}\right.$ set of subsets of V covering F \} (Lovász-Yemini 1982).
- G is rigid if $r_{\mathcal{R}}(E)=2 n-3$ (Laman 1970).

Packing of rigid spanning subgraphs

Remark

Every rigid graph is 2-vertex-connected.

Packing of rigid spanning subgraphs

Remark

Every rigid graph is 2-vertex-connected.

Proof

- Suppose G is not 2-vertex-connected.
- Then there exists a covering $\{X, Y\}$ of E such that $|X \cap Y| \leq 1$.

- G is not rigid.

Packing of rigid spanning subgraphs

Remark

Every rigid graph is 2-vertex-connected.

Proof

- Suppose G is not 2-vertex-connected.
- Then there exists a covering $\{X, Y\}$ of E such that $|X \cap Y| \leq 1$.

Packing of rigid spanning subgraphs

Remark

Every rigid graph is 2-vertex-connected.

Proof

- Suppose G is not 2-vertex-connected.
- Then there exists a covering $\{X, Y\}$ of E such that $|X \cap Y| \leq 1$.
- $r_{\mathcal{R}}(E) \leq 2|X|-3+2|Y|-3=2|X \cup Y|+2|X \cap Y|-6 \leq 2 n-4$.
- G is not rigid.

Packing of rigid spanning subgraphs

Remark

Every rigid graph is 2-vertex-connected.

Proof

- Suppose G is not 2-vertex-connected.
- Then there exists a covering $\{X, Y\}$ of E such that $|X \cap Y| \leq 1$.
- $r_{\mathcal{R}}(E) \leq 2|X|-3+2|Y|-3=2|X \cup Y|+2|X \cap Y|-6 \leq 2 n-4$.
- G is not rigid.

Packing of rigid spanning subgraphs

Remark

Every rigid graph is 2-vertex-connected.

```
Theorem (Lovász-Yemini 1982)
Every 6-vertex-connected graph is rigid.
```


Packing of rigid spanning subgraphs

Remark

Every rigid graph is 2-vertex-connected.

Theorem (Lovász-Yemini 1982)

Every 6-vertex-connected graph is rigid.

Theorem (Jordán 2005)

Every $6 k$-vertex-connected graph contains k rigid edge-disjoint spanning subgraphs.

Circuit Matroid

Definition

Given a graph $G=(V, E)$ with $n=|V|$.
Circuit Matroid :

- independent sets : $\mathcal{C}(G)=$ the edge sets of the forests of G.
- rank function $r_{C}(F)=n-c(F)$.
- G is connected if \exists a spanning tree $\left(r_{\mathcal{C}}(E)=n-1\right)$.

Packing of connected spanning subgraphs

Theorem (Tutte 1961)

Given an undirected graph G and an integer $\ell \geq 1$,

- there exist ℓ edge-disjoint spanning trees of G
- for every partition \mathcal{P} of V,

$G, \ell=2$

Packing of connected spanning subgraphs

Theorem (Tutte 1961)

Given an undirected graph G and an integer $\ell \geq 1$,

- there exist ℓ edge-disjoint spanning trees of G \qquad
- for every partition \mathcal{P} of V,

Packing of connected spanning subgraphs

Theorem (Tutte 1961)

Given an undirected graph G and an integer $\ell \geq 1$,

- there exist ℓ edge-disjoint spanning trees of G \qquad
- for every partition \mathcal{P} of V,

Packing of connected spanning subgraphs

Theorem (Tutte 1961)

Given an undirected graph G and an integer $\ell \geq 1$,

- there exist ℓ edge-disjoint spanning trees of G \qquad
- for every partition \mathcal{P} of $V,|E(\mathcal{P})|$

Packing of connected spanning subgraphs

Theorem (Tutte 1961)

Given an undirected graph G and an integer $\ell \geq 1$,

- there exist ℓ edge-disjoint spanning trees of G \qquad
- for every partition \mathcal{P} of $V,|E(\mathcal{P})| \geq \ell(|\mathcal{P}|-1)$.

Packing of connected spanning subgraphs

Theorem (Tutte 1961)

Given an undirected graph G and an integer $\ell \geq 1$,

- there exist ℓ edge-disjoint spanning trees of G \qquad
- for every partition \mathcal{P} of $V,|E(\mathcal{P})| \geq \ell(|\mathcal{P}|-1)$.

Remark

Every 2ℓ-edge-connected graph contains ℓ edge-disjoint spanning trees.

$$
|E(\mathcal{P})|=\frac{1}{2} \sum_{P \in \mathcal{P}} d(P) \geq \frac{1}{2} 2 \ell|\mathcal{P}|>\ell(|\mathcal{P}|-1) .
$$

Packing of rigid and connected spanning subgraphs

Theorem (Cheriyan, Durand de Gevigney, Szigeti 2011)

Every $(6 k+2 \ell)$-vertex-connected graph contains k rigid and ℓ connected edge-disjoint spanning subgraphs.

Packing of rigid and connected spanning subgraphs

Theorem (Cheriyan, Durand de Gevigney, Szigeti 2011)

Every $(6 k+2 \ell)$-vertex-connected graph contains k rigid and ℓ connected edge-disjoint spanning subgraphs.

Tool

$\mathcal{M}_{k, \ell}(G)=$ matroid union of k copies of $\mathcal{R}(G)$ and ℓ copies of $\mathcal{C}(G)$.

- independent sets are the union of k independent sets of $\mathcal{R}(G)$ and independent sets of $\mathcal{C}(G)$.

- G contains k rigid and ℓ connected edge-disjoint spanning subgraphs $\Longleftrightarrow r_{\mathcal{M}_{k, \ell}}(E)=k(2 n-3)+\ell(n-1)$.

Packing of rigid and connected spanning subgraphs

Theorem (Cheriyan, Durand de Gevigney, Szigeti 2011)

Every $(6 k+2 \ell)$-vertex-connected graph contains k rigid and ℓ connected edge-disjoint spanning subgraphs.

Tool

$\mathcal{M}_{k, \ell}(G)=$ matroid union of k copies of $\mathcal{R}(G)$ and ℓ copies of $\mathcal{C}(G)$.

- independent sets are the union of k independent sets of $\mathcal{R}(G)$ and ℓ independent sets of $\mathcal{C}(G)$.
- $\operatorname{rank} \operatorname{rM}_{\mathcal{M}_{k} \ell}(E)=\min _{F \subset E} \operatorname{kr}_{\mathcal{R}}(F)+\operatorname{\ell r_{\mathcal {C}}}(F)+|E \backslash F|$. (Edmonds 1968)
- G contains k rigid and ℓ connected edge-disjoint spanning subgraphs $\Longleftrightarrow r_{\mathcal{M}_{k, \ell}}(E)=k(2 n-3)+\ell(n-1)$.

Packing of rigid and connected spanning subgraphs

Theorem (Cheriyan, Durand de Gevigney, Szigeti 2011)

Every $(6 k+2 \ell)$-vertex-connected graph contains k rigid and ℓ connected edge-disjoint spanning subgraphs.

Tool

$\mathcal{M}_{k, \ell}(G)=$ matroid union of k copies of $\mathcal{R}(G)$ and ℓ copies of $\mathcal{C}(G)$.

- independent sets are the union of k independent sets of $\mathcal{R}(G)$ and ℓ independent sets of $\mathcal{C}(G)$.
- rank $r_{\mathcal{M}_{k, \ell}}(E)=\min _{F \subseteq E} k r_{\mathcal{R}}(F)+\operatorname{lr}_{\mathcal{C}}(F)+|E \backslash F|$. (Edmonds 1968)
- G contains k rigid and ℓ connected edge-disjoint spanning subgraphs $\Longleftrightarrow r_{\mathcal{M}_{k, \ell}}(E)=k(2 n-3)+\ell(n-1)$.

Packing of rigid and connected spanning subgraphs

Theorem (Cheriyan, Durand de Gevigney, Szigeti 2011)

Every $(6 k+2 \ell)$-vertex-connected graph contains k rigid and ℓ connected edge-disjoint spanning subgraphs.

Tool

$\mathcal{M}_{k, \ell}(G)=$ matroid union of k copies of $\mathcal{R}(G)$ and ℓ copies of $\mathcal{C}(G)$.

- independent sets are the union of k independent sets of $\mathcal{R}(G)$ and ℓ independent sets of $\mathcal{C}(G)$.
- rank $r_{\mathcal{M}_{k, \ell}}(E)=\min _{F \subseteq E} k r_{\mathcal{R}}(F)+\ell r_{\mathcal{C}}(F)+|E \backslash F|$. (Edmonds 1968)
- G contains k rigid and ℓ connected edge-disjoint spanning subgraphs $\Longleftrightarrow r_{\mathcal{M}_{k, \ell}}(E)=k(2 n-3)+\ell(n-1)$.

Remarks

Remarks

- Proof of Jordán 2005 follows the proof of Lovász-Yemini 1982.
- Our proof is completely different.
- It provides a transparent proof for the theorem of Lovász-Yemini 1982.
- It enabled us to weaken the condition : instead of $(6 k+2 \ell)$-vertexconnectivity we used $(6 k+2 \ell, 2 k)$-connectivity.

Remarks

Remarks

- Proof of Jordán 2005 follows the proof of Lovász-Yemini 1982.
- Our proof is completely different.
- It provides a transparent proof for the theorem of Lovász-Yemini 1982.
- It enabled us to weaken the condition : instead of $(6 k+2 \ell)$-vertexconnectivity we used $(6 k+2 \ell, 2 k)$-connectivity.

Remarks

Remarks

- Proof of Jordán 2005 follows the proof of Lovász-Yemini 1982.
- Our proof is completely different.
- It provides a transparent proof for the theorem of Lovász-Yemini 1982.
- It enabled us to weaken the condition : instead of $(6 k+2 \ell)$-vertexconnectivity we used $(6 k+2 \ell, 2 k)$-connectivity.

Remarks

Remarks

- Proof of Jordán 2005 follows the proof of Lovász-Yemini 1982.
- Our proof is completely different.
- It provides a transparent proof for the theorem of Lovász-Yemini 1982.
- It enabled us to weaken the condition : instead of $(6 k+2 \ell)$-vertexconnectivity we used $(6 k+2 \ell, 2 k)$-connectivity.

Remarks

Remarks

- Proof of Jordán 2005 follows the proof of Lovász-Yemini 1982.
- Our proof is completely different.
- It provides a transparent proof for the theorem of Lovász-Yemini 1982.
- It enabled us to weaken the condition : instead of $(6 k+2 \ell)$-vertexconnectivity we used $(6 k+2 \ell, 2 k)$-connectivity.

Definition

G is (a, b)-connected if $G-X$ is $(a-b|X|)$-edge-conn. $\forall X \subseteq V$.

Remarks

Remarks

- Proof of Jordán 2005 follows the proof of Lovász-Yemini 1982.
- Our proof is completely different.
- It provides a transparent proof for the theorem of Lovász-Yemini 1982.
- It enabled us to weaken the condition: instead of $(6 k+2 \ell)$-vertexconnectivity we used $(6 k+2 \ell, 2 k)$-connectivity.

Definition

G is (a, b)-connected if $G-X$ is $(a-b|X|)$-edge-conn. $\forall X \subseteq V$.

Conjecture (Frank 1995)

Given an undirected graph $G=(V, E)$ with $|V|>2$,

- there exists a 2-vertex-connected orientation of G

- G is $(4,2)$-connected.

Main result

Theorem (Lovász-Yemini 1982)

Every 6-vertex-connected graph is rigid.

Theorem (Jordán 2005)

Every $6 k$-vertex-connected graph contains k rigid edge-disjoint spanning subgraphs.

Theorem (Jackson et Jordán 2009)

Every simple (6, 2)-connected graph is rigid.

Theorem (Cheriyan, Durand de Gevigney, Szigeti 2011)

Every simple $(6 k+2 \ell, 2 k)$-connected graph contains $k(\geq 1)$ rigid (2-vertex-connected) and ℓ connected edge-disjoint spanning subgraphs.

Thank you for your attention!

