On 2-vertex-connected orientations of graphs

Zoltán Szigeti

Laboratoire G-SCOP
INP Grenoble, France

12 January 2012

Joint work with:
Joseph Cheriyan (Waterloo) and Olivier Durand de Gevigney (Grenoble)
Outline

- Definitions
- Orientations with arc-connectivity constraints
- Orientations with vertex-connectivity constraints
 - k-vertex-connected orientations
 - 2-vertex-connected orientations
- Packing of special spanning subgraphs
- Matroid theory
On 2-vertex-connected orientations
Connectivity

Definitions

An **undirected** graph $G = (V, E)$ is

- **connected** if there exists a (u, v)-path $\forall u, v \in V$,
- **k-edge-connected** if $D - X$ is connected $\forall X \subset E, |X| \leq k - 1$,
- **k-vertex-connected** if $D - X$ is connected $\forall X \subset V, |X| = k - 1$ and $|V| > k$.

A **directed** graph $D = (V, A)$ is

- **strongly connected** if \exists a directed (u, v)-path $\forall (u, v) \in V \times V$,
- **k-arc-connected** if $D - X$ is strongly connected $\forall X \subset A, |X| \leq k - 1$,
- **k-vertex-conn.** if $D - X$ is strongly connected $\forall X \subset V, |X| = k - 1$ and $|V| > k$.

Z. Szigeti (G-SCOP, Grenoble)
Theorem (Nash-Williams 1960)

Given an undirected graph \(G \),

- there exists a \(k \)-arc-connected orientation of \(G \)
- \(G \) is \(2k \)-edge-connected.
Theorem (Nash-Williams 1960)

Given an undirected graph G, there exists a k-arc-connected orientation of G if and only if G is $2k$-edge-connected.

necessity:

$$\vec{G}$$

$X \cup V - X$
Theorem (Nash-Williams 1960)

Given an undirected graph G,

- there exists a k-arc-connected orientation of G \(\iff\)
- G is $2k$-edge-connected.

necessity:
Conjecture (Thomassen 1989)

There exists a function $f(k)$ such that every $f(k)$-vertex-connected graph has a k-vertex-connected orientation.
k-vertex-connected orientation

Conjecture (Thomassen 1989)

There exists a function $f(k)$ such that every $f(k)$-vertex-connected graph has a k-vertex-connected orientation.

Conjecture (Frank 1995)

Given an undirected graph $G = (V, E)$ with $|V| > k$,
- there exists a k-vertex-connected orientation of G if and only if $G - X$ is $(2k - 2|X|)$-edge-connected for all $X \subseteq V$ with $|X| < k$.

Z. Szigeti (G-SCOP, Grenoble)

On 2-vertex-connected orientations

12 January 2012 6 / 21
Conjecture (Thomassen 1989)
There exists a function $f(k)$ such that every $f(k)$-vertex-connected graph has a k-vertex-connected orientation.

Conjecture (Frank 1995)
Given an undirected graph $G = (V, E)$ with $|V| > k$,
- there exists a k-vertex-connected orientation of G ⇐⇒
- $G - X$ is $(2k - 2|X|)$-edge-connected for all $X \subseteq V$ with $|X| < k$.

necessity:

\vec{G} is k-vertex-connected
Conjecture (Thomassen 1989)
There exists a function $f(k)$ such that every $f(k)$-vertex-connected graph has a k-vertex-connected orientation.

Conjecture (Frank 1995)
Given an undirected graph $G = (V, E)$ with $|V| > k$,

- there exists a k-vertex-connected orientation of G;
- $G - X$ is $(2k - 2|X|)$-edge-connected for all $X \subseteq V$ with $|X| < k$.

necessity:

\ddot{G} is k-vertex-connected.
Conjecture (Thomassen 1989)

There exists a function $f(k)$ such that every $f(k)$-vertex-connected graph has a k-vertex-connected orientation.

Conjecture (Frank 1995)

Given an undirected graph $G = (V, E)$ with $|V| > k$,

- there exists a k-vertex-connected orientation of G

- $G - X$ is $(2k - 2|X|)$-edge-connected for all $X \subseteq V$ with $|X| < k$.

necessity :

\[\tilde{G} - X \text{ is } (k - |X|)\text{-vertex-connected} \]
Conjecture (Thomassen 1989)

There exists a function $f(k)$ such that every $f(k)$-vertex-connected graph has a k-vertex-connected orientation.

Conjecture (Frank 1995)

Given an undirected graph $G = (V, E)$ with $|V| > k$,

1. there exists a k-vertex-connected orientation of G
2. $G - X$ is $\left(2k - 2|X|\right)$-edge-connected for all $X \subseteq V$ with $|X| < k$.

necessity :

$G - X$ is $\left(2k - 2|X|\right)$-edge-connected
Conjecture (Thomassen 1989)
There exists a function $f(k)$ such that every $f(k)$-vertex-connected graph has a k-vertex-connected orientation.

Conjecture (Frank 1995)
Given an undirected graph $G = (V, E)$ with $|V| > k$,

- there exists a k-vertex-connected orientation of G \iff
- $G - X$ is $(2k - 2|X|)$-edge-connected for all $X \subseteq V$ with $|X| < k$.

Remark
Frank’s conjecture would imply that $f(k) \leq 2k$.

Conjecture (Frank 1995)

Given an undirected graph $G = (V, E)$ with $|V| > 2$,

- there exists a 2-vertex-connected orientation of G \iff
- G is 4-edge-connected and $G - v$ is 2-edge-connected for all $v \in V$.
Conjecture (Frank 1995)

Given an undirected graph $G = (V, E)$ with $|V| > 2$,
- there exists a 2-vertex-connected orientation of G
- G is 4-edge-connected and $G - v$ is 2-edge-connected for all $v \in V$.

Theorem (Berg-Jordán 2006)

Given an Eulerian graph $G = (V, E)$ with $|V| > 2$,
- there exists a 2-vertex-connected Eulerian orientation of G
- G is 4-edge-connected and $G - v$ is 2-edge-connected for all $v \in V$.
Theorem (Jordán 2005)

Every 18-vertex-connected graph has a 2-vertex-connected orientation:
\[f(2) \leq 18. \]
<table>
<thead>
<tr>
<th>Theorem (Jordán 2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every 18-vertex-connected graph has a 2-vertex-connected orientation: $f(2) \leq 18$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Cheriyan, Durand de Gevigney, Szigeti 2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every 14-vertex-connected graph has a 2-vertex-connected orientation: $f(2) \leq 14$.</td>
</tr>
</tbody>
</table>
Theorem (Jordán 2005)

*Every 18-vertex-connected graph has a 2-vertex-connected orientation: $f(2) \leq 18$.***

Theorem (Cheriyan, Durand de Gevigney, Szigeti 2011)

*Every 14-vertex-connected graph has a 2-vertex-connected orientation: $f(2) \leq 14$.***

Remark

Frank’s conjecture would imply that $f(2) \leq 4$.**
Proof

Theorem (Jordán 2005)

Every 18-vertex-connected graph has a 2-vertex-connected orientation.
Proof

Theorem (Jordán 2005)

Every 18-vertex-connected graph has a 2-vertex-connected orientation.

Theorem (Berg-Jordán 2006) (Tool 1)

Given an Eulerian graph \(G = (V, E) \) with \(|V| > 2 \),

- there exists a 2-vertex-connected orientation of \(G \) \iff
- \(G - v \) is 2-edge-connected for all \(v \in V \).
Theorem (Jordán 2005)

Every 18-vertex-connected graph has a 2-vertex-connected orientation.

Theorem (Berg-Jordán 2006) (Tool 1)

Given an Eulerian graph $G = (V, E)$ with $|V| > 2$,

- there exists a 2-vertex-connected orientation of G \iff $G - v$ is 2-edge-connected for all $v \in V$.

Find a spanning subgraph G such that

- $G - v$ is 2-edge-connected for all $v \in V$,
- $G - v$ contains 2 edge-disjoint connected spanning subgraphs for all $v \in V$,
- G contains 2 edge-disjoint 2-vertex-connected spanning subgraphs.
Proof

Theorem (Jordán 2005)

Every 18-vertex-connected graph has a 2-vertex-connected orientation.

Theorem (Berg-Jordán 2006) (Tool 1)

*Given an Eulerian graph \(G = (V, E) \) with \(|V| > 2\),
 - there exists a 2-vertex-connected orientation of \(G \) \iff \(G - v \) is 2-edge-connected for all \(v \in V \).*

Find a spanning subgraph \(G \) such that
 - \(G - v \) is 2-edge-connected for all \(v \in V \),
 - \(G - v \) contains 2 edge-disjoint connected spanning subgraphs for all \(v \in V \),
 - \(G \) contains 2 edge-disjoint 2-vertex-connected spanning subgraphs.
Proof

Theorem (Jordán 2005)

Every 18-vertex-connected graph has a 2-vertex-connected orientation.

Theorem (Berg-Jordán 2006) (Tool 1)

*Given an Eulerian graph $G = (V, E)$ with $|V| > 2$, there exists a 2-vertex-connected orientation of G if and only if $G - v$ is 2-edge-connected for all $v \in V$.***

Find a spanning subgraph G such that

- $G - v$ is 2-edge-connected for all $v \in V$,
- $G - v$ contains 2 edge-disjoint connected spanning subgraphs for all $v \in V$,
- G contains 2 edge-disjoint 2-vertex-connected spanning subgraphs.
Proof

Theorem (Jordán 2005)

Every 18-vertex-connected graph has a 2-vertex-connected orientation.

Theorem (Berg-Jordán 2006) (Tool 1)

Given an Eulerian graph $G = (V, E)$ with $|V| > 2$,

- there exists a 2-vertex-connected orientation of G \iff
- $G - v$ is 2-edge-connected for all $v \in V$.

Theorem (Jordán 2005) (Tool 2)

Every 6k-vertex-connected graph contains k edge-disjoint 2-vertex-connected spanning subgraphs.
Proof

(Jordán 2005)

- Let H be a 18-vertex-connected graph.
- By Tool 2, H contains 3 edge-disjoint 2-vertex-connected spanning subgraphs: G_1, G_2, and G_3.
- Let $G' := G_1 \cup G_2$. Then $G' - v$ is 2-edge-connected for every vertex v.
- Let T be the set of odd degree vertices in G'.

- By Tool 1, G, and hence H, has a 2-vertex-connected orientation.
(Jordán 2005)

Let H be a 18-vertex-connected graph.

By Tool 2, H contains 3 edge-disjoint 2-vertex-connected spanning subgraphs: G_1, G_2, and G_3.

Let $G' := G_1 \cup G_2$. Then $G' - v$ is 2-edge-connected for every vertex v.

Let T be the set of odd degree vertices in G'.

By Tool 1, G, and hence H, has a 2-vertex-connected orientation.
Let H be a 18-vertex-connected graph.

By **Tool 2**, H contains 3 edge-disjoint 2-vertex-connected spanning subgraphs: G_1, G_2, and G_3.

Let $G' := G_1 \cup G_2$. Then $G' - v$ is 2-edge-connected for every vertex v.

Let T be the set of odd degree vertices in G'.

By **Tool 1**, G, and hence H, has a 2-vertex-connected orientation.
Proof

(Jordán 2005)

- Let H be a 18-vertex-connected graph.
- By Tool 2, H contains 3 edge-disjoint 2-vertex-connected spanning subgraphs: G_1, G_2, and G_3.
- Let $G' := G_1 \cup G_2$. Then $G' - v$ is 2-edge-connected for every vertex v.
- Let T be the set of odd degree vertices in G'.

- By Tool 1, G, and hence H, has a 2-vertex-connected orientation.
Let H be a 18-vertex-connected graph.

By Tool 2, H contains 3 edge-disjoint 2-vertex-connected spanning subgraphs: G_1, G_2, and G_3.

Let $G' := G_1 \cup G_2$. Then $G' - v$ is 2-edge-connected for every vertex v.

Let T be the set of odd degree vertices in G'. Since G_3 is connected, it contains a T-join F.

By Tool 1, G, and hence H, has a 2-vertex-connected orientation.
Proof

(Jordán 2005)

- Let H be a 18-vertex-connected graph.
- By Tool 2, H contains 3 edge-disjoint 2-vertex-connected spanning subgraphs: G_1, G_2, and G_3.
- Let $G' := G_1 \cup G_2$. Then $G' - v$ is 2-edge-connected for every vertex v.
- Let T be the set of odd degree vertices in G'. Since G_3 is connected, it contains a T-join F. Then $G := G' + F$ is Eulerian.
- By Tool 1, G, and hence H, has a 2-vertex-connected orientation.
Proof

(Jordán 2005)

- Let H be a 18-vertex-connected graph.
- By Tool 2, H contains 3 edge-disjoint 2-vertex-connected spanning subgraphs: G_1, G_2, and G_3.
- Let $G' := G_1 \cup G_2$. Then $G' - v$ is 2-edge-connected for every vertex v.
- Let T be the set of odd degree vertices in G'.
 Since G_3 is connected, it contains a T-join F.
 Then $G := G' + F$ is Eulerian.
- By Tool 1, G, and hence H, has a 2-vertex-connected orientation.
Proof of the new upperbound

Theorem

Every *14*-vertex-connected graph has a *2*-vertex-connected orientation.

Z. Szigeti (G-SCOP, Grenoble)

On 2-vertex-connected orientations

12 January 2012 11 / 21
Proof of the new upperbound

Theorem

Every 14-vertex-connected graph has a 2-vertex-connected orientation.

Theorem (Berg-Jordán 2006) (Tool 1)

Given an *Eulerian* graph $G = (V, E)$ with $|V| > 2$,

- there exists a 2-vertex-connected orientation of G \iff
- $G - v$ is 2-edge-connected for all $v \in V$.
Proof of the new upperbound

Theorem
Every 14-vertex-connected graph has a 2-vertex-connected orientation.

Theorem (Berg-Jordán 2006) (Tool 1)

Given an Eulerian graph \(G = (V, E) \) with \(|V| > 2 \),

- there exists a 2-vertex-connected orientation of \(G \) \(\iff \)
- \(G - v \) is 2-edge-connected for all \(v \in V \).

Theorem (Cheriyan, Durand de Gevigney, Szigeti 2011) (Tool 2’)

Every \((6k + 2\ell)\)-vertex-connected graph contains \(k \) 2-vertex-connected and \(\ell \) connected edge-disjoint spanning subgraphs.
Proof of the new upperbound

- Let H be a 14-vertex-connected graph.
- By Tool 2', H contains two 2-vertex-connected and one connected edge-disjoint spanning subgraphs: G_1, G_2, and G_3.
- Let $G' := G_1 \cup G_2$. Then $G' - v$ is 2-edge-connected for every vertex v.
- Let T be the set of odd degree vertices in G'.

- By Tool 1, G, and hence H, has a 2-vertex-connected orientation.
Proof of the new upperbound

- Let H be a 14-vertex-connected graph.
- By **Tool 2’**, H contains two 2-vertex-connected and one connected edge-disjoint spanning subgraphs: G_1, G_2, and G_3.
- Let $G' := G_1 \cup G_2$. Then $G' - v$ is 2-edge-connected for every vertex v.
- Let T be the set of odd degree vertices in G'.

- By **Tool 1**, G, and hence H, has a 2-vertex-connected orientation.
Proof of the new upperbound

- Let H be a 14-vertex-connected graph.
- By Tool 2’, H contains two 2-vertex-connected and one connected edge-disjoint spanning subgraphs: G_1, G_2, and G_3.
- Let $G' := G_1 \cup G_2$. Then $G' - v$ is 2-edge-connected for every vertex v.
- Let T be the set of odd degree vertices in G'. Since G_3 is connected, it contains a T-join F.
- Then $G := G' + F$ is Eulerian.
- By Tool 1, G, and hence H, has a 2-vertex-connected orientation.
How to prove them?

<table>
<thead>
<tr>
<th>Theorem (Berg-Jordán 2006) (Tool 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given an Eulerian graph $G = (V, E)$ with $</td>
</tr>
<tr>
<td>- there exists a 2-vertex-connected orientation of G</td>
</tr>
<tr>
<td>- $G - v$ is 2-edge-connected for all $v \in V$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Jordán 2005) (Tool 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every $6k$-vertex-connected graph contains k edge-disjoint 2-vertex-connected spanning subgraphs.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Tool 2')</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every $(6k + 2\ell)$-vertex-connected graph contains k 2-vertex-connected and ℓ connected edge-disjoint spanning subgraphs.</td>
</tr>
</tbody>
</table>
Rigidity Matroid

Definition

Given a graph $G = (V, E)$ with $n = |V|$.

Rigidity Matroid:

- independent sets: $\mathcal{R}(G) = \{F \subseteq E : i_F(X) \leq 2|X| - 3 \quad \forall X \subseteq V\}$ (Crapo 1979).
- rank function $r_{\mathcal{R}}(F) = \min \{\sum_{X \in \mathcal{H}} (2|X| - 3) : \mathcal{H} \text{ set of subsets of } V \text{ covering } F\}$ (Lovász-Yemini 1982).
- G is rigid if $r_{\mathcal{R}}(E) = 2n - 3$ (Laman 1970).
Rigidity Matroid

Definition

Given a graph \(G = (V, E) \) with \(n = |V| \).

Rigidity Matroid:

- independent sets: \(\mathcal{R}(G) = \{ F \subseteq E : i_F(X) \leq 2|X| - 3 \ \forall \ X \subseteq V \} \) (Crapo 1979).
- rank function \(r_{\mathcal{R}}(F) = \min \{ \sum_{X \in \mathcal{H}} (2|X| - 3) : \mathcal{H} \text{ set of subsets of } V \text{ covering } F \} \) (Lovász-Yemini 1982).
- \(G \) is rigid if \(r_{\mathcal{R}}(E) = 2n - 3 \) (Laman 1970).
Rigidity Matroid

Definition

Given a graph $G = (V, E)$ with $n = |V|$.

Rigidity Matroid:

- independent sets: $\mathcal{R}(G) = \{F \subseteq E : i_F(X) \leq 2|X| - 3 \quad \forall X \subseteq V\}$ (Crapo 1979).

- rank function $r_{\mathcal{R}}(F) = \min \{\sum_{X \in \mathcal{H}}(2|X| - 3) : \mathcal{H} \text{ set of subsets of } V \text{ covering } F\}$ (Lovász-Yemini 1982).

- G is rigid if $r_{\mathcal{R}}(E) = 2n - 3$ (Laman 1970).

![a rigid graph](image)
Remark

Every rigid graph is 2-vertex-connected.
Remark

Every **rigid** graph is 2-vertex-connected.

Proof

- Suppose G is not 2-vertex-connected.
- Then there exists a covering \{X, Y\} of E such that $|X \cap Y| \leq 1$.
- $r_R(E) \leq 2|X| - 3 + 2|Y| - 3 = 2|X \cup Y| + 2|X \cap Y| - 6 \leq 2n - 4$.
- G is not **rigid**.
Remark

Every rigid graph is 2-vertex-connected.

Proof

- Suppose G is not 2-vertex-connected.
- Then there exists a covering $\{X, Y\}$ of E such that $|X \cap Y| \leq 1$.
- $r_R(E) \leq 2|X| - 3 + 2|Y| - 3 = 2|X \cup Y| + 2|X \cap Y| - 6 \leq 2n - 4$.
- G is not rigid.
Remark

Every **rigid** graph is 2-vertex-connected.

Proof

- Suppose G is not 2-vertex-connected.
- Then there exists a covering $\{X, Y\}$ of E such that $|X \cap Y| \leq 1$.
- $r_R(E) \leq 2|X| - 3 + 2|Y| - 3 = 2|X \cup Y| + 2|X \cap Y| - 6 \leq 2n - 4$.
- G is not rigid.
Remark

Every rigid graph is 2-vertex-connected.

Proof

- Suppose G is not 2-vertex-connected.
- Then there exists a covering $\{X, Y\}$ of E such that $|X \cap Y| \leq 1$.
- $r_R(E) \leq 2|X| - 3 + 2|Y| - 3 = 2|X \cup Y| + 2|X \cap Y| - 6 \leq 2n - 4$.
- G is not rigid.
Remark

Every rigid graph is 2-vertex-connected.

Theorem (Lovász-Yemini 1982)

Every 6-vertex-connected graph is rigid.
Remark
Every rigid graph is 2-vertex-connected.

Theorem (Lovász-Yemini 1982)
Every 6-vertex-connected graph is rigid.

Theorem (Jordán 2005)
Every $6k$-vertex-connected graph contains k rigid edge-disjoint spanning subgraphs.
Circuit Matroid

Definition

Given a graph $G = (V, E)$ with $n = |V|$.

Circuit Matroid:

- independent sets: $\mathcal{C}(G) =$ the edge sets of the forests of G.
- rank function $r_C(F) = n - c(F)$.
- G is connected if \exists a spanning tree ($r_C(E) = n - 1$).
Theorem (Tutte 1961)

Given an undirected graph G and an integer $\ell \geq 1$,

- there exist ℓ edge-disjoint spanning trees of G \iff
- for every partition \mathcal{P} of V, $G, \ell = 2$
Theorem (Tutte 1961)

Given an undirected graph G and an integer $\ell \geq 1$,

- there exist ℓ edge-disjoint spanning trees of G \iff
- for every partition \mathcal{P} of V,
Packing of connected spanning subgraphs

Theorem (Tutte 1961)

Given an undirected graph G and an integer $\ell \geq 1$,

- there exist ℓ edge-disjoint spanning trees of G \iff
- for every partition \mathcal{P} of V, \mathcal{P}
Theorem (Tutte 1961)

Given an undirected graph G and an integer $\ell \geq 1$,
- there exist ℓ edge-disjoint spanning trees of G \iff
- for every partition \mathcal{P} of V, $|E(\mathcal{P})|$
Theorem (Tutte 1961)

Given an undirected graph G and an integer $\ell \geq 1$,

- there exist ℓ edge-disjoint spanning trees of G \iff
- for every partition \mathcal{P} of V, $|E(\mathcal{P})| \geq \ell(|\mathcal{P}| - 1)$.
Packing of connected spanning subgraphs

Theorem (Tutte 1961)

Given an undirected graph G and an integer $\ell \geq 1$,

- there exist ℓ edge-disjoint spanning trees of G ⟺
- for every partition \mathcal{P} of V, $|E(\mathcal{P})| \geq \ell(|\mathcal{P}| - 1)$.

Remark

Every 2ℓ-edge-connected graph contains ℓ edge-disjoint spanning trees.

$|E(\mathcal{P})| = \frac{1}{2} \sum_{P \in \mathcal{P}} d(P) \geq \frac{1}{2} 2\ell|\mathcal{P}| > \ell(|\mathcal{P}| - 1)$.
Theorem (Cheriyan, Durand de Gevigney, Szigeti 2011)

Every \((6k + 2\ell)\)-vertex-connected graph contains \(k\) rigid and \(\ell\) connected edge-disjoint spanning subgraphs.
Theorem (Cheriyan, Durand de Gevigney, Szigeti 2011)

Every \((6k + 2\ell)\)-vertex-connected graph contains \(k\) rigid and \(\ell\) connected edge-disjoint spanning subgraphs.

Tool

\[M_{k,\ell}(G) = \text{matroid union of } k \text{ copies of } \mathcal{R}(G) \text{ and } \ell \text{ copies of } \mathcal{C}(G). \]

- independent sets are the union of \(k\) independent sets of \(\mathcal{R}(G)\) and \(\ell\) independent sets of \(\mathcal{C}(G)\).
- rank \(r_{M_{k,\ell}}(E) = \min_{F \subseteq E} kr_{\mathcal{R}}(F) + \ell r_{\mathcal{C}}(F) + |E \setminus F|\). (Edmonds 1968)
- \(G\) contains \(k\) rigid and \(\ell\) connected edge-disjoint spanning subgraphs \(\iff r_{M_{k,\ell}}(E) = k(2n - 3) + \ell(n - 1).\)
Theorem (Cheriyan, Durand de Gevigney, Szigeti 2011)

Every \((6k + 2\ell)\)-vertex-connected graph contains \(k\) rigid and \(\ell\) connected edge-disjoint spanning subgraphs.

Tool

\[
\mathcal{M}_{k,\ell}(G) = \text{matroid union of } k \text{ copies of } \mathcal{R}(G) \text{ and } \ell \text{ copies of } \mathcal{C}(G).
\]

- independent sets are the union of \(k\) independent sets of \(\mathcal{R}(G)\) and \(\ell\) independent sets of \(\mathcal{C}(G)\).
- rank \(r_{\mathcal{M}_{k,\ell}}(E) = \min_{F \subseteq E} kr_{\mathcal{R}}(F) + \ell r_{\mathcal{C}}(F) + |E \setminus F|\). (Edmonds 1968)
- \(G\) contains \(k\) rigid and \(\ell\) connected edge-disjoint spanning subgraphs \(\iff r_{\mathcal{M}_{k,\ell}}(E) = k(2n - 3) + \ell(n - 1)\).
Packing of rigid and connected spanning subgraphs

Theorem (Cheriyan, Durand de Gevigney, Szigeti 2011)

Every \((6k + 2\ell)\)-vertex-connected graph contains \(k\) rigid and \(\ell\) connected edge-disjoint spanning subgraphs.

Tool

\(\mathcal{M}_{k,\ell}(G) = \text{matroid union of } k \text{ copies of } \mathcal{R}(G) \text{ and } \ell \text{ copies of } \mathcal{C}(G).\)

- independent sets are the union of \(k\) independent sets of \(\mathcal{R}(G)\) and \(\ell\) independent sets of \(\mathcal{C}(G)\).
- rank \(r_{\mathcal{M}_{k,\ell}}(E) = \min_{F \subseteq E} kr_{\mathcal{R}}(F) + \ell r_{\mathcal{C}}(F) + |E \setminus F|. \) (Edmonds 1968)
- \(G\) contains \(k\) rigid and \(\ell\) connected edge-disjoint spanning subgraphs \(\iff r_{\mathcal{M}_{k,\ell}}(E) = k(2n - 3) + \ell(n - 1).\)
Packing of rigid and connected spanning subgraphs

Theorem (Cheriyan, Durand de Gevigney, Szigeti 2011)

Every \((6k + 2\ell)\)-vertex-connected graph contains \(k\) rigid and \(\ell\) connected edge-disjoint spanning subgraphs.

Tool

\(\mathcal{M}_{k,\ell}(G) = \text{matroid union of } k \text{ copies of } \mathcal{R}(G) \text{ and } \ell \text{ copies of } \mathcal{C}(G).\)

- independent sets are the union of \(k\) independent sets of \(\mathcal{R}(G)\) and \(\ell\) independent sets of \(\mathcal{C}(G)\).
- rank \(r_{\mathcal{M}_{k,\ell}}(E) = \min_{F \subseteq E} kr_{\mathcal{R}}(F) + \ell r_{\mathcal{C}}(F) + |E \setminus F|\). (Edmonds 1968)
- \(G\) contains \(k\) rigid and \(\ell\) connected edge-disjoint spanning subgraphs \(\iff\) \(r_{\mathcal{M}_{k,\ell}}(E) = k(2n - 3) + \ell(n - 1)\).

Our proof is completely different.

It provides a transparent proof for the theorem of Lovász-Yemini 1982.

It enabled us to weaken the condition: instead of \((6k + 2\ell)\)-vertex-connectivity we used \((6k + 2\ell, 2k)\)-connectivity.
Remarks

- Our proof is completely different.

- It provides a transparent proof for the theorem of Lovász-Yemini 1982.
- It enabled us to weaken the condition: instead of $(6k + 2\ell)$-vertex-connectivity we used $(6k + 2\ell, 2k)$-connectivity.
Our proof is completely different.
It provides a transparent proof for the theorem of Lovász-Yemini 1982.
It enabled us to weaken the condition: instead of \((6k + 2\ell)\)-vertex-connectivity we used \((6k + 2\ell, 2k)\)-connectivity.
Remarks

- Our proof is completely different.
- It provides a transparent proof for the theorem of Lovász-Yemini 1982.
- It enabled us to weaken the condition: instead of \((6k + 2\ell)\)-vertex-connectivity we used \((6k + 2\ell, 2k)\)-connectivity.
Remarks

- Our proof is completely different.
- It provides a transparent proof for the theorem of Lovász-Yemini 1982.
- It enabled us to weaken the condition: instead of $(6k + 2\ell)$-vertex-connectivity we used $(6k + 2\ell, 2k)$-connectivity.

Definition

G is (a, b)-connected if $G - X$ is $(a - b|X|)$-edge-conn. $\forall X \subseteq V$.

Z. Szigeti (G-SCOP, Grenoble)

On 2-vertex-connected orientations

12 January 2012

19 / 21
Remarks

- Our proof is completely different.
- It provides a transparent proof for the theorem of Lovász-Yemini 1982.
- It enabled us to weaken the condition: instead of \((6k + 2\ell)\)-vertex-connectivity we used \((6k + 2\ell, 2k)\)-connectivity.

Definition

\(G\) is \((a, b)\)-connected if \(G - X\) is \((a - b|X|)\)-edge-connected. \(\forall X \subseteq V\).

Conjecture (Frank 1995)

Given an undirected graph \(G = (V, E)\) with \(|V| > 2\),
- there exists a 2-vertex-connected orientation of \(G\)
- \(G\) is \((4, 2)\)-connected.
Theorem (Lovász-Yemini 1982)
Every 6-vertex-connected graph is rigid.

Theorem (Jordán 2005)
Every $6k$-vertex-connected graph contains k rigid edge-disjoint spanning subgraphs.

Theorem (Jackson et Jordán 2009)
Every simple $(6, 2)$-connected graph is rigid.

Theorem (Cheriyan, Durand de Gevigney, Szigeti 2011)
Every simple $(6k + 2\ell, 2k)$-connected graph contains $k \geq 1$ rigid (2-vertex-connected) and ℓ connected edge-disjoint spanning subgraphs.
Thank you for your attention!