On packing of arborescences with matroid constraints

Zoltán Szigeti

Laboratoire G-SCOP
INP Grenoble, France

January 2013

Joint work with:
Olivier Durand de Gevigney and Viet Hang Nguyen (Grenoble)
Outline

- **Motivations**
 - Undirected = Orientation + Directed
 - Rigidity

- **Results**
 - Undirected: Matroid-based packing of rooted-trees
 - Directed: Matroid-based packing of rooted-arborescences
 - Orientation: Supermodular function

- **Further results**
 - Algorithmic aspects
 - Generalization

- **Conclusion**
Outline

- Motivations
 - Undirected $=$ Orientation $+$ Directed
 - Rigidity
- Results
 - Undirected: Matroid-based packing of rooted-trees
 - Directed: Matroid-based packing of rooted-arborescences
 - Orientation: Supermodular function
- Further results
 - Algorithmic aspects
 - Generalization
- Conclusion
Motivations
- Undirected $=$ Orientation $+$ Directed
- Rigidity

Results
- Undirected: Matroid-based packing of rooted-trees
- Directed: Matroid-based packing of rooted-arborescences
- Orientation: Supermodular function

Further results
- Algorithmic aspects
- Generalization

Conclusion
Outline

- Motivations
 - Undirected = Orientation + Directed
 - Rigidity

- Results
 - Undirected: Matroid-based packing of rooted-trees
 - Directed: Matroid-based packing of rooted-arborescences
 - Orientation: Supermodular function

- Further results
 - Algorithmic aspects
 - Generalization

- Conclusion
Outline

- Motivations
 - Undirected = Orientation + Directed
 - Rigidity

- Results
 - Undirected: Matroid-based packing of rooted-trees
 - Directed: Matroid-based packing of rooted-arborescences
 - Orientation: Supermodular function

- Further results
 - Algorithmic aspects
 - Generalization

- Conclusion
Outline

- Motivations
 - Undirected = Orientation + Directed
 - Rigidity
- Results
 - Undirected: Matroid-based packing of rooted-trees
 - Directed: Matroid-based packing of rooted-arborescences
 - Orientation: Supermodular function
- Further results
 - Algorithmic aspects
 - Generalization
- Conclusion
Outline

- Motivations
 - Undirected = Orientation + Directed
 - Rigidity
- Results
 - Undirected : Matroid-based packing of rooted-trees
 - Directed : Matroid-based packing of rooted-arborescences
 - Orientation : Supermodular function
- Further results
 - Algorithmic aspects
 - Generalization
- Conclusion
Outline

Motivations
- Undirected = Orientation + Directed
- Rigidity

Results
- Undirected: Matroid-based packing of rooted-trees
- Directed: Matroid-based packing of rooted-arborescences
- Orientation: Supermodular function

Further results
- Algorithmic aspects
- Generalization

Conclusion
Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.
Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.
Motivation 1: Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a **packing of k spanning trees in G**
- G is **k-partition-connected**.

Z. Szigeti (G-SCOP, Grenoble)
On packing of arborescences
January 2013
Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a **packing of k spanning trees in G**
- G is k-partition-connected.

\iff for every partition \mathcal{P} of V,

\[
\begin{align*}
\end{align*}
\]
Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a **packing of k spanning trees in G**
- G is k-partition-connected.

\iff for every partition \mathcal{P} of V, $e_G(\mathcal{P}) \geq k(|\mathcal{P}| - 1)$.

\[e_G(\mathcal{P}) \]
Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a \textit{packing of k spanning trees in G} \iff
- G is \textit{k-partition-connected}.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a \textit{packing of k spanning r-arborescences in D} \iff
- D is \textit{k-rooted-connected for r}.
Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G \iff G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D \iff D is k-rooted-connected for r.
Motivation 1: Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G \(\iff\)
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D \(\iff\)
- D is k-rooted-connected for r.
Motivation 1: Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)
Let G be an undirected graph and k a positive integer.
- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)
Let D be a directed graph, r a vertex of D and k a positive integer.
- There exists a packing of k spanning r-arborescences in D
- D is k-rooted-connected for r.
 $\iff \rho_D(X) \geq k \ \forall \emptyset \neq X \subseteq V \setminus r.$
Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.
- There exists a **packing of k spanning trees in G**
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.
- There exists a **packing of k spanning r-arborescences in D**
- D is k-rooted-connected for r.

Theorem (Frank 1978)

Let G be an undirected graph, r a vertex of G and k a positive integer.
- There exists an orientation of G that is k-rooted-connected for r
- G is k-partition-connected.
Theorem (Tutte, Nash-Williams 1961)
Let G be an undirected graph and k a positive integer.
- There exists a packing of k spanning trees in G \iff G is k-partition-connected.

Theorem (Edmonds 1973)
Let D be a directed graph, r a vertex of D and k a positive integer.
- There exists a packing of k spanning r-arborescences in D \iff D is k-rooted-connected for r.

Theorem (Frank 1978)
Let G be an undirected graph, r a vertex of G and k a positive integer.
- There exists an orientation of G that is k-rooted-connected for r \iff G is k-partition-connected.
Motivation 1: Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.
- There exists a packing of k spanning trees in G \iff G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.
- There exists a packing of k spanning r-arborescences in D \iff D is k-rooted-connected for r.

Theorem (Frank 1978)

Let G be an undirected graph, r a vertex of G and k a positive integer.
- There exists an orientation of G that is k-rooted-connected for r \iff G is k-partition-connected.
Motivation 1: Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G \iff G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D \iff D is k-rooted-connected for r.

Theorem (Frank 1978)

Let G be an undirected graph, r a vertex of G and k a positive integer.

- There exists an orientation of G that is k-rooted-connected for r \iff G is k-partition-connected.
Motivation 1: Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)
Let G be an undirected graph and k a positive integer.
- There exists a packing of k spanning trees in G \iff G is k-partition-connected.

Theorem (Edmonds 1973)
Let D be a directed graph, r a vertex of D and k a positive integer.
- There exists a packing of k spanning r-arborescences in D \iff D is k-rooted-connected for r.

Theorem (Frank 1978)
Let G be an undirected graph, r a vertex of G and k a positive integer.
- There exists an orientation of G that is k-rooted-connected for r \iff G is k-partition-connected.
Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G \iff G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D \iff D is k-rooted-connected for r.

Theorem (Frank 1978)

Let G be an undirected graph, r a vertex of G and k a positive integer.

- There exists an orientation of G that is k-rooted-connected for r \iff G is k-partition-connected.
Motivation 1: Undirected = Orientation + Directed

<table>
<thead>
<tr>
<th>Theorem (Tutte, Nash-Williams 1961)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let G be an undirected graph and k a positive integer.</td>
</tr>
<tr>
<td>- There exists a packing of k spanning trees in G</td>
</tr>
<tr>
<td>- G is k-partition-connected.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Edmonds 1973)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let D be a directed graph, r a vertex of D and k a positive integer.</td>
</tr>
<tr>
<td>- There exists a packing of k spanning r-arborescences in D</td>
</tr>
<tr>
<td>- D is k-rooted-connected for r.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Frank 1978)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let G be an undirected graph, r a vertex of G and k a positive integer.</td>
</tr>
<tr>
<td>- There exists an orientation of G that is k-rooted-connected for r</td>
</tr>
<tr>
<td>- G is k-partition-connected.</td>
</tr>
</tbody>
</table>
Motivation 1: Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)
Let G be an undirected graph and k a positive integer.
- There exists a packing of k spanning trees in G \iff G is k-partition-connected.

Theorem (Edmonds 1973)
Let D be a directed graph, r a vertex of D and k a positive integer.
- There exists a packing of k spanning r-arborescences in D \iff D is k-rooted-connected for r.

Theorem (Frank 1978)
Let G be an undirected graph, r a vertex of G and k a positive integer.
- There exists an orientation of G that is k-rooted-connected for r \iff G is k-partition-connected.
<table>
<thead>
<tr>
<th>Theorem (Tutte, Nash-Williams 1961)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let G be an undirected graph and k a positive integer.</td>
</tr>
<tr>
<td>- There exists a packing of k spanning trees in G</td>
</tr>
<tr>
<td>- G is k-partition-connected.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Edmonds 1973)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let D be a directed graph, r a vertex of D and k a positive integer.</td>
</tr>
<tr>
<td>- There exists a packing of k spanning r-arborescences in D</td>
</tr>
<tr>
<td>- D is k-rooted-connected for r.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Frank 1978)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let G be an undirected graph, r a vertex of G and k a positive integer.</td>
</tr>
<tr>
<td>- There exists an orientation of G that is k-rooted-connected for r</td>
</tr>
<tr>
<td>- G is k-partition-connected.</td>
</tr>
</tbody>
</table>
Motivation 1: Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)
Let G be an undirected graph and k a positive integer.
- There exists a packing of k spanning trees in G \(\iff\)
- G is k-partition-connected.

Theorem (Edmonds 1973)
Let D be a directed graph, r a vertex of D and k a positive integer.
- There exists a packing of k spanning r-arborescences in D \(\iff\)
- D is k-rooted-connected for r.

Theorem (Frank 1978)
Let G be an undirected graph, r a vertex of G and k a positive integer.
- There exists an orientation of G that is k-rooted-connected for r \(\iff\)
- G is k-partition-connected.
Motivation 2: Rigidity

Body-Bar Framework
"Rigidity" of a Body-Bar Framework can be characterized by the existence of a spanning tree decomposition.
"Rigidity" of a Body-Bar Framework can be characterized by the existence of a spanning tree decomposition.
Motivation 2: Rigidity

Theorem (Tay 1984)
"Rigidity" of a Body-Bar Framework can be characterized by the existence of a spanning tree decomposition.

Theorem (Katoh, Tanigawa 2012)
"Rigidity" of a Body-Bar Framework with Bar-Boundary can be characterized by the existence of a matroid-based rooted-tree decomposition.
Matroids

Definition

For $\mathcal{I} \subseteq 2^S$, $\mathcal{M} = (S, \mathcal{I})$ is a matroid if

1. $\mathcal{I} \neq \emptyset$,
2. If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
3. If $X, Y \in \mathcal{I}$ with $|X| < |Y|$ then $\exists \ y \in Y \setminus X$ such that $X \cup y \in \mathcal{I}$.
Matroids

Definition

For $\mathcal{I} \subseteq 2^S$, $M = (S, \mathcal{I})$ is a matroid if

1. $\mathcal{I} \neq \emptyset$,
2. If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
3. If $X, Y \in \mathcal{I}$ with $|X| < |Y|$ then $\exists \ y \in Y \setminus X$ such that $X \cup y \in \mathcal{I}$.
Matroids

Definition

For $\mathcal{I} \subseteq 2^S$, $M = (S, \mathcal{I})$ is a matroid if

1. $\mathcal{I} \neq \emptyset$,
2. If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
3. If $X, Y \in \mathcal{I}$ with $|X| < |Y|$ then $\exists y \in Y \setminus X$ such that $X \cup y \in \mathcal{I}$.

Z. Szigeti (G-SCOP, Grenoble)

On packing of arborescences

January 2013 5 / 16
Matroids

Definition

For $\mathcal{I} \subseteq 2^S$, $\mathcal{M} = (S, \mathcal{I})$ is a matroid if

1. $\mathcal{I} \neq \emptyset$,
2. If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
3. If $X, Y \in \mathcal{I}$ with $|X| < |Y|$ then $\exists \ y \in Y \setminus X$ such that $X \cup y \in \mathcal{I}$.
Matroids

Definition

For $\mathcal{I} \subseteq 2^S$, $\mathcal{M} = (S, \mathcal{I})$ is a matroid if

1. $\mathcal{I} \neq \emptyset$,
2. If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
3. If $X, Y \in \mathcal{I}$ with $|X| < |Y|$ then $\exists y \in Y \setminus X$ such that $X \cup y \in \mathcal{I}$.

Examples

1. Sets of linearly independent vectors in a vector space,
2. Edge-sets of forests of a graph,
3. $U_{n,k} = \{X \subseteq S : |X| \leq k\}$ where $|S| = n$,
Matroids

Definition

For $\mathcal{I} \subseteq 2^S$, $\mathcal{M} = (S, \mathcal{I})$ is a matroid if

1. $\mathcal{I} \neq \emptyset$,
2. If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
3. If $X, Y \in \mathcal{I}$ with $|X| < |Y|$ then $\exists \ y \in Y \setminus X$ such that $X \cup y \in \mathcal{I}$.

Examples

1. Sets of linearly independent vectors in a vector space,
2. Edge-sets of forests of a graph,
3. $U_{n,k} = \{X \subseteq S : |X| \leq k\}$ where $|S| = n$,
Matroids

Definition

For $\mathcal{I} \subseteq 2^S$, $\mathcal{M} = (S, \mathcal{I})$ is a matroid if

1. $\mathcal{I} \neq \emptyset$,
2. If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
3. If $X, Y \in \mathcal{I}$ with $|X| < |Y|$ then $\exists y \in Y \setminus X$ such that $X \cup y \in \mathcal{I}$.

Examples

1. Sets of linearly independent vectors in a vector space,
2. Edge-sets of forests of a graph,
3. $U_{n,k} = \{ X \subseteq S : |X| \leq k \}$ where $|S| = n$.
Matroids

Definition

For $\mathcal{I} \subseteq 2^S$, $\mathcal{M} = (S, \mathcal{I})$ is a matroid if

1. $\mathcal{I} \neq \emptyset$,
2. If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
3. If $X, Y \in \mathcal{I}$ with $|X| < |Y|$ then $\exists y \in Y \setminus X$ such that $X \cup y \in \mathcal{I}$.

Examples

1. Sets of linearly independent vectors in a vector space,
2. Edge-sets of forests of a graph,
3. $U_{n,k} = \{X \subseteq S : |X| \leq k\}$ where $|S| = n$, free matroid = $U_{n,n}$.
Matroids

Notion

1. **independent sets** \(\mathcal{I} \),
 1. any subset of an independent set is independent,

2. **base** = maximal independent set,
 1. all basis are of the same size,

3. **rank function** : \(r(X) = \max\{|Y| : Y \in \mathcal{I}, Y \subseteq X\} \).
 1. non-decreasing,
 2. submodular,
 3. \(X \in \mathcal{I} \) if and only if \(r(X) = |X| \).
Matroids

Notion

1. **independent** sets = \mathcal{I},
 - any subset of an independent set is independent,
2. base = maximal independent set,
 - all bases are of the same size,
3. rank function: $r(X) = \max\{|Y| : Y \in \mathcal{I}, Y \subseteq X\}$.
 - non-decreasing,
 - submodular,
 - $X \in \mathcal{I}$ if and only if $r(X) = |X|$.

Z. Szigeti (G-SCOP, Grenoble)
Matroids

Notion

1. independent sets = \(\mathcal{I} \),
 - any subset of an independent set is independent,
2. base = maximal independent set,
 - all basis are of the same size,
3. rank function: \(r(X) = \max\{|Y| : Y \in \mathcal{I}, Y \subseteq X\} \).
 - non-decreasing,
 - submodular,
 - \(X \in \mathcal{I} \) if and only if \(r(X) = |X| \).
Matroids

Notion

1. **independent sets** = \(\mathcal{I} \),
 - any subset of an independent set is independent,

2. **base** = maximal independent set,
 - all basis are of the same size,

3. **rank function** : \(r(X) = \max \{|Y| : Y \in \mathcal{I}, Y \subseteq X\} \).
 - non-decreasing,
 - submodular,
 - \(X \in \mathcal{I} \) if and only if \(r(X) = |X| \).
Matroids

Notion

1. **independent sets** = \mathcal{I},
 - any subset of an independent set is independent,

2. **base** = maximal independent set,
 - all basis are of the same size,

3. **rank function**: $r(X) = \max\{|Y| : Y \in \mathcal{I}, Y \subseteq X\}$.
 - non-decreasing,
 - submodular,
 - $X \in \mathcal{I}$ if and only if $r(X) = |X|$.
Matroids

Notion

1. **Independent sets** = \mathcal{I},
 - any subset of an independent set is independent,

2. **Base** = maximal independent set,
 - all bases are of the same size,

3. **Rank function** : $r(X) = \max\{|Y| : Y \in \mathcal{I}, Y \subseteq X\}$.
 - non-decreasing,
 - submodular,
 - $X \in \mathcal{I}$ if and only if $r(X) = |X|$.

Z. Szigeti (G-SCOP, Grenoble)
Matroids

Notion

1. **independent sets** $= \mathcal{I}$,
 - any subset of an independent set is independent,
2. **base** $= \text{maximal independent set},$
 - all basis are of the same size,
3. **rank function** $r(X) = \max\{|Y| : Y \in \mathcal{I}, Y \subseteq X\}$.
 - non-decreasing,
 - submodular,
 - $X \in \mathcal{I}$ if and only if $r(X) = |X|$.
Matroids

Notion

1. **Independent sets** = \mathcal{I}, any subset of an independent set is independent,
2. **Base** = maximal independent set, all basis are of the same size,
3. **Rank function** : $r(X) = \max\{|Y| : Y \in \mathcal{I}, Y \subseteq X\}$.
 - non-decreasing,
 - submodular,
 - $X \in \mathcal{I}$ if and only if $r(X) = |X|$.
A matroid-based rooted-graph is a quadruple (G, \mathcal{M}, S, π):

1. $G = (V, E)$ undirected graph,
2. \mathcal{M} a matroid on a set $S = \{s_1, \ldots, s_t\}$.
3. π a placement of the elements of S at vertices of V.

\[U_3,2 \]

$S = \{s_1, s_2, s_3\}$

$\mathcal{M} = U_3,2$
Matroid-based rooted-graphs

Definition

A matroid-based rooted-graph is a quadruple \((G, \mathcal{M}, S, \pi)\):

1. \(G = (V, E)\) undirected graph,
2. \(\mathcal{M}\) a matroid on a set \(S = \{s_1, \ldots, s_t\}\).
3. \(\pi\) a placement of the elements of \(S\) at vertices of \(V\).

Notation

- \(S_X = \{s_1, s_2\}\)
Definition

A rooted-tree is a pair \((T, s)\) where

1. \(T\) is a tree,
2. \(s \in S\), placed at a vertex of \(T\).
A **rooted-tree** is a pair \((T, s)\) where

1. \(T\) is a tree,
2. \(s \in S\), placed at a vertex of \(T\).
M-based packing of rooted-trees

Definition

A **rooted-tree** is a pair \((T, s)\) where

1. \(T\) is a tree,
2. \(s \in S\), placed at a vertex of \(T\).
\(M \)-based packing of rooted-trees

Definition

A rooted-tree is a pair \((T, s)\) where

1. \(T \) is a tree,
2. \(s \in S \), placed at a vertex of \(T \).

Definition

A packing \(\{(T_1, s_1), \ldots, (T_{|S|}, s_{|S|})\} \) of rooted-trees is called \(M \)-based if
Definition

A rooted-tree is a pair \((T, s)\) where

1. \(T\) is a tree,
2. \(s \in S\), placed at a vertex of \(T\).

\[\pi(s_1), \pi(s_2), \pi(s_3)\]

Definition

A packing \(\{(T_1, s_1), \ldots, (T_{|S|}, s_{|S|})\}\) of rooted-trees is called \(\mathcal{M}\)-based if \(\{s_i \in S : v \in V(T_i)\}\) forms a base of \(\mathcal{M}\) for every \(v \in V\).
\section*{\textit{M}-based packing of rooted-trees}

\textbf{Definition}

A packing \(\{(T_1, s_1), \ldots, (T_{|S|}, s_{|S|})\} \) of rooted-trees is called \textit{\textit{M}}-based if \(\{s_i \in S : v \in V(T_i)\} \) forms a base of \(\textit{M} \) for every \(v \in V \).

\textbf{Remark}

For the \textbf{free matroid} \(\textit{M} \) with all \(k \) roots at a vertex \(r \),

- matroid-based packing of rooted-trees \(\iff \)
- packing of \(k \) spanning trees.
\(M \)-based packing of rooted-trees

Definition

A packing \(\{(T_1, s_1), \ldots, (T_{|S|}, s_{|S|})\} \) of rooted-trees is called \(M \)-based if \(\{s_i \in S : v \in V(T_i)\} \) forms a base of \(M \) for every \(v \in V \).

Remark

For the free matroid \(M \) with all \(k \) roots at a vertex \(r \),

- matroid-based packing of rooted-trees \iff
- packing of \(k \) spanning trees.
M-based packing of rooted-trees

Definition

A packing \(\{(T_1, s_1), \ldots, (T_{|S|}, s_{|S|})\} \) of rooted-trees is called \(M \)-based if \(\{s_i \in S : v \in V(T_i)\} \) forms a base of \(M \) for every \(v \in V \).

Remark

For the free matroid \(M \) with all \(k \) roots at a vertex \(r \),

- matroid-based packing of rooted-trees
- packing of \(k \) spanning trees.
Definition

A packing \(\{(T_1, s_1), \ldots, (T_{|S|}, s_{|S|})\} \) of rooted-trees is called \(\mathcal{M}\)-based if \(\{s_i \in S : v \in V(T_i)\} \) forms a base of \(\mathcal{M} \) for every \(v \in V \).

Definitions

1. \(\pi \) is \(\mathcal{M}\)-independent if for every \(v \in V \), \(S_v \) is independent in \(\mathcal{M} \).
2. \((G, \mathcal{M}, S, \pi) \) is partition-connected if for every partition \(\mathcal{P} \) of \(V \),
 \[e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} (r_M(S) - r_M(S_X)). \]
A packing $\{(T_1, s_1), \ldots, (T_{|S|}, s_{|S|})\}$ of rooted-trees is called M-based if $\{s_i \in S : v \in V(T_i)\}$ forms a base of M for every $v \in V$.

1. π is M-independent if for every $v \in V$, S_v is independent in M.
2. (G, M, S, π) is partition-connected if for every partition P of V, $e_G(P) \geq \sum_{X \in P} (r_M(S) - r_M(S_X))$.
\mathcal{M}-based packing of rooted-trees

Definition

A packing $\{(T_1, s_1), \ldots, (T_{|S|}, s_{|S|})\}$ of rooted-trees is called \mathcal{M}-based if

$\{s_i \in S : v \in V(T_i)\}$ forms a base of \mathcal{M} for every $v \in V$.

Definitions

1. π is \mathcal{M}-independent if for every $v \in V$, S_v is independent in \mathcal{M}.
2. (G, \mathcal{M}, S, π) is partition-connected if for every partition \mathcal{P} of V,

$$e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} (r_\mathcal{M}(S) - r_\mathcal{M}(S_X)).$$

Theorem (Katoh, Tanigawa 2012)

Let (G, \mathcal{M}, S, π) be a matroid-based rooted-graph. Then

- There is a matroid-based packing of rooted-trees in (G, \mathcal{M}, S, π) if and only if π is \mathcal{M}-independent and (G, \mathcal{M}, S, π) is partition-connected.
M-based packing of rooted-trees

Definition

A packing \(\{ (T_1, s_1), \ldots, (T_{|S|}, s_{|S|}) \} \) of rooted-trees is called \(\mathcal{M} \)-based if \(\{ s_i \in S : v \in V(T_i) \} \) forms a base of \(\mathcal{M} \) for every \(v \in V \).

Definitions

1. \(\pi \) is \(\mathcal{M} \)-independent if for every \(v \in V \), \(S_v \) is independent in \(\mathcal{M} \).
2. \((G, \mathcal{M}, S, \pi)\) is partition-connected if for every partition \(\mathcal{P} \) of \(V \),
\[
e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} (r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X)).
\]

Theorem (Katoh, Tanigawa 2012)

Let \((G, \mathcal{M}, S, \pi)\) be a matroid-based rooted-graph.

- There is a matroid-based packing of rooted-trees in \((G, \mathcal{M}, S, \pi)\) if and only if \(\pi \) is \(\mathcal{M} \)-independent and \((G, \mathcal{M}, S, \pi)\) is partition-connected.
M-based packing of rooted-trees

Definition
A packing \(\{ (T_1,s_1), \ldots, (T_{|S|},s_{|S|}) \} \) of rooted-trees is called **M**-based if \(\{s_i \in S : v \in V(T_i)\} \) forms a base of **M** for every \(v \in V \).

Definitions
1. \(\pi \) is **M**-independent if for every \(v \in V \), \(S_v \) is independent in **M**.
2. \((G, M, S, \pi)\) is partition-connected if for every partition \(\mathcal{P} \) of \(V \),
 \[e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} (r_M(S) - r_M(S_X)) \].

Theorem (Katoh, Tanigawa 2012)
Let \((G, M, S, \pi)\) be a matroid-based rooted-graph.
- There is a matroid-based packing of rooted-trees in \((G, M, S, \pi)\) if and only if \(\pi \) is **M**-independent and \((G, M, S, \pi)\) is partition-connected.
Definition

A rooted-arborescence is a pair \((T, s)\) where

1. \(T\) is an \(r\)-arborescence,

2. \(s \in S\), placed at \(r\).
Definition

A rooted-arborescence is a pair \((T, s)\) where

1. \(T\) is an \(r\)-arborescence,
2. \(s \in S\), placed at \(r\).
\(M \)-based packing of rooted-arborescences

Definition

A **rooted-arborescence** is a pair \((T, s)\) where

1. \(T \) is an \(r \)-arborescence,
2. \(s \in S \), placed at \(r \).

\[\begin{align*}
\pi(s_1) & \quad \text{\textcolor{red}{\quad T_1}} \\
\pi(s_2) & \quad \text{\textcolor{blue}{\quad T_2}} \\
\pi(s_3) & \quad \text{\textcolor{green}{\quad T_3}}
\end{align*}\]
Definition

A rooted-arborescence is a pair \((T, s)\) where

1. \(T\) is an \(r\)-arborescence,
2. \(s \in S\), placed at \(r\).

Definition

A packing \(\{(T_1, s_1), \ldots, (T_{|S|}, s_{|S|})\}\) of rooted-arborescences is \(\mathcal{M}\)-based if
Definition

A **rooted-arborescence** is a pair \((T, s)\) where

1. \(T\) is an \(r\)-arborescence,
2. \(s \in S\), placed at \(r\).

Definition

A packing \(\{(T_1, s_1), \ldots, (T_{|S|}, s_{|S|})\}\) of rooted-arborescences is \(\mathcal{M}\)-based if \(\{s_i \in S : v \in V(T_i)\}\) forms a base of \(\mathcal{M}\) for every \(v \in V\).
Definition

A packing \(\{ (T_1, s_1), \ldots, (T_{|S|}, s_{|S|}) \} \) of rooted-arborescences is \(\mathcal{M} \)-based if \(\{ s_i \in S : v \in V(T_i) \} \) forms a base of \(\mathcal{M} \) for every \(v \in V \).

Remark

For the free matroid \(\mathcal{M} \) with all \(k \) roots at a vertex \(r \),

- matroid-based packing of rooted-arborescences \(\iff \)
- packing of \(k \) spanning \(r \)-arborescences.
Definition

A packing \(\{(T_1, s_1), \ldots, (T_{|S|}, s_{|S|})\} \) of rooted-arborescences is \(M \)-based if \(\{s_i \in S : v \in V(T_i)\} \) forms a base of \(M \) for every \(v \in V \).

Remark

For the free matroid \(M \) with all \(k \) roots at a vertex \(r \),

- matroid-based packing of rooted-arborescences

\[\iff \]

- packing of \(k \) spanning \(r \)-arborescences.
A packing \(\{(T_1, s_1), \ldots, (T_{|S|}, s_{|S|})\} \) of rooted-arborescences is \(\mathcal{M} \)-based if \(\{s_i \in S : v \in V(T_i)\} \) forms a base of \(\mathcal{M} \) for every \(v \in V \).

For the free matroid \(\mathcal{M} \) with all \(k \) roots at a vertex \(r \),

- matroid-based packing of rooted-arborescences
- packing of \(k \) spanning \(r \)-arborescences.

\[\iff \]
Definition

A packing \(\{(T_1, s_1), \ldots, (T_{|S|}, s_{|S|})\} \) of rooted-arborescences is \(\mathcal{M} \)-based if \(\{s_i \in S : v \in V(T_i)\} \) forms a base of \(\mathcal{M} \) for every \(v \in V \).

Definition

\((D, \mathcal{M}, S, \pi)\) is **rooted-connected** if for every \(\emptyset \neq X \subseteq V \),

\[
\rho_D(X) \geq r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X).
\]
A packing \(\{(T_1, s_1), \ldots, (T_{|S|}, s_{|S|})\} \) of rooted-arborescences is \(\mathcal{M} \)-based if
\(\{s_i \in S : v \in V(T_i)\} \) forms a base of \(\mathcal{M} \) for every \(v \in V \).

\((D, \mathcal{M}, S, \pi)\) is rooted-connected if for every \(\emptyset \neq X \subseteq V \),
\[\rho_D(X) \geq r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X). \]

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

Let \((D, \mathcal{M}, S, \pi)\) be a matroid-based rooted-digraph.

- There is a matroid-based packing of rooted-arborescences in \((D, \mathcal{M}, S, \pi)\)
- \(\pi\) is \(\mathcal{M}\)-independent and \((D, \mathcal{M}, S, \pi)\) is rooted-connected.
Definition

A packing \(\{(T_1,s_1), \ldots, (T_{|S|},s_{|S|})\} \) of rooted-arborescences is \(\mathcal{M} \)-based if \(\{s_i \in S : v \in V(T_i)\} \) forms a base of \(\mathcal{M} \) for every \(v \in V \).

Definition

\((D, \mathcal{M}, S, \pi)\) is rooted-connected if for every \(\emptyset \neq X \subseteq V \),
\[\rho_D(X) \geq r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X). \]

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

Let \((D, \mathcal{M}, S, \pi)\) be a matroid-based rooted-digraph.

- There is a matroid-based packing of rooted-arborescences in \((D, \mathcal{M}, S, \pi)\)

 \[\iff \]

- \(\pi \) is \(\mathcal{M} \)-independent and \((D, \mathcal{M}, S, \pi)\) is rooted-connected.
\mathcal{M}-based packing of rooted-arborescences

Definition

A packing $\{ (T_1, s_1), \ldots, (T_{|S|}, s_{|S|}) \}$ of rooted-arborescences is \mathcal{M}-based if $\{ s_i \in S : v \in V(T_i) \}$ forms a base of \mathcal{M} for every $v \in V$.

Definition

(D, \mathcal{M}, S, π) is rooted-connected if for every $\emptyset \neq X \subseteq V$,

$$\rho_D(X) \geq r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X).$$

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

Let (D, \mathcal{M}, S, π) be a matroid-based rooted-digraph.

- There is a matroid-based packing of rooted-arborescences in (D, \mathcal{M}, S, π)

 \iff

- π is \mathcal{M}-independent and (D, \mathcal{M}, S, π) is rooted-connected.
Proof of necessity

Let \(\{(T_1, s_1), \ldots, (T_{|S|}, s_{|S|})\} \) be a matroid-based packing of rooted-arborescences in \((D, \mathcal{M}, S, \pi)\) and \(v \in X \subseteq V \).

Let \(B = \{s_i \in S : v \in V(T_i)\} \), \(B_1 = B \cap S_X \) and \(B_2 = B \setminus B_1 \).

Since \(S_v \subseteq B_1 \subseteq B \) is a base of \(\mathcal{M} \), \(\pi \) is \(\mathcal{M} \)-independent.

Since, for each root \(s_i \) in \(B_2 \), there exists an arc of \(T_i \) that enters \(X \) and the arborescences are arc-disjoint, \(\rho_D(X) \geq |B_2| = |B| - |B_1| = r_M(S) - r_M(B_1) \geq r_M(S) - r_M(S_X) \) that is \((D, \mathcal{M}, S, \pi)\) is rooted-connected.
Proof of necessity

Let \(\{(T_1, s_1), \ldots, (T_{|S|}, s_{|S|})\} \) be a matroid-based packing of rooted-arborescences in \((D, \mathcal{M}, S, \pi)\) and \(v \in X \subseteq V \).

Let \(B = \{s_i \in S : v \in V(T_i)\} \), \(B_1 = B \cap S_X \) and \(B_2 = B \setminus B_1 \).

Since \(S_v \subseteq B_1 \subseteq B \) is a base of \(\mathcal{M} \), \(\pi \) is \(\mathcal{M} \)-independent.

Since, for each root \(s_i \) in \(B_2 \), there exists an arc of \(T_i \) that enters \(X \) and the arborescences are arc-disjoint,

\[
\rho_D(X) \geq |B_2| = |B| - |B_1| = r_{\mathcal{M}}(S) - r_{\mathcal{M}}(B_1) \geq r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X)
\]

that is \((D, \mathcal{M}, S, \pi)\) is rooted-connected.
Proof of necessity

- Let \(\{(T_1, s_1), \ldots, (T_{|S|}, s_{|S|})\} \) be a matroid-based packing of rooted-arborescences in \((D, \mathcal{M}, S, \pi)\) and \(v \in X \subseteq V\).
- Let \(B = \{s_i \in S : v \in V(T_i)\} \), \(B_1 = B \cap S_X \) and \(B_2 = B \setminus B_1 \).
- Since \(S_v \subseteq B_1 \subseteq B \) is a base of \(\mathcal{M} \), \(\pi \) is \(\mathcal{M} \)-independent.
- Since, for each root \(s_i \) in \(B_2 \), there exists an arc of \(T_i \) that enters \(X \) and the arborescences are arc-disjoint,
 \[\rho_D(X) \geq |B_2| = |B| - |B_1| = r_\mathcal{M}(S) - r_\mathcal{M}(B_1) \geq r_\mathcal{M}(S) - r_\mathcal{M}(S_X) \]
 that is \((D, \mathcal{M}, S, \pi)\) is rooted-connected.
Proof of necessity

Let \(\{(T_1, s_1), \ldots, (T_{|S|}, s_{|S|})\} \) be a matroid-based packing of rooted-arborescences in \((D, M, S, \pi)\) and \(v \in X \subseteq V \).

Let \(B = \{ s_i \in S : v \in V(T_i) \} \), \(B_1 = B \cap S_X \) and \(B_2 = B \setminus B_1 \).

Since \(S_v \subseteq B_1 \subseteq B \) is a base of \(M \), \(\pi \) is \(M \)-independent.

Since, for each root \(s_i \) in \(B_2 \), there exists an arc of \(T_i \) that enters \(X \) and the arborescences are arc-disjoint,
\[
\rho_D(X) \geq |B_2| = |B| - |B_1| = r_M(S) - r_M(B_1) \geq r_M(S) - r_M(S_X)
\]
that is \((D, M, S, \pi)\) is rooted-connected.
Theorem (Frank 1980)

Let $G = (V, E)$ be an undirected graph and $h : 2^V \rightarrow \mathbb{Z}_+$ an intersecting supermodular non-increasing set-function.

- There is an orientation D of G s. t. $\rho_D(X) \geq h(X)$ $\forall \emptyset \neq X \subset V$

- $e_G(P) \geq \sum_{X \in P} h(X)$ for every partition P of V.

Theorem (Frank 1980)

Let $G = (V, E)$ be an undirected graph and $h : 2^V \rightarrow \mathbb{Z}_+$ an intersecting supermodular non-increasing set-function.

- There is an orientation D of G s. t. $\rho_D(X) \geq h(X)$ $\forall \emptyset \neq X \subset V$
- $e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$ for every partition \mathcal{P} of V.
Theorem (Frank 1980)

Let $G = (V, E)$ be an undirected graph and $h : 2^V \rightarrow \mathbb{Z}_+$ an intersecting supermodular non-increasing set-function.

- There is an orientation D of G s. t. $\rho_D(X) \geq h(X)$ $\forall \emptyset \neq X \subset V$
 \[\iff\]
- $e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$ for every partition \mathcal{P} of V.

Z. Szigeti (G-SCOP, Grenoble)
On packing of arborescences
January 2013
Orientation results

Theorem (Frank 1980)

Let $G = (V, E)$ be an undirected graph and $h : 2^V \rightarrow \mathbb{Z}_+$ an intersecting supermodular non-increasing set-function.

- There is an orientation D of G s. t. $\rho_D(X) \geq h(X) \ \forall \emptyset \neq X \subset V$
- $e_G(P) \geq \sum_{X \in P} h(X)$ for every partition P of V.

Applying for $h(X) = r_M(S) - r_M(S_X)$ provides
Orientation results

Theorem (Frank 1980)

Let $G = (V, E)$ be an undirected graph and $h : 2^V \rightarrow \mathbb{Z}_+$ an intersecting supermodular non-increasing set-function.

- There is an orientation D of G s. t. $\rho_D(X) \geq h(X) \quad \forall \emptyset \neq X \subset V$

- $e_G(P) \geq \sum_{X \in P} h(X)$ for every partition P of V.

Applying for $h(X) = r_M(S) - r_M(S_X)$ provides

Corollary

Let (G, M, S, π) be a matroid-based rooted-graph.

- There is an orientation D of G s. t. (D, M, S, π) is rooted-connected

- (G, M, S, π) is partition-connected.
Orientation results

Theorem (Frank 1980)

Let $G = (V, E)$ be an undirected graph and $h : 2^V \rightarrow \mathbb{Z}_+$ an intersecting supermodular non-increasing set-function.

- There is an orientation D of G s. t. $\rho_D(X) \geq h(X)$ $\forall \emptyset \neq X \subset V$

- $e_G(P) \geq \sum_{X \in P} h(X)$ for every partition P of V.

Applying for $h(X) = r_M(S) - r_M(S_X)$ provides

Corollary

Let (G, M, S, π) be a matroid-based rooted-graph.

- There is an orientation D of G s. t. (D, M, S, π) is rooted-connected

- (G, M, S, π) is partition-connected.
Theorem (Frank 1980)

Let $G = (V, E)$ be an undirected graph and $h : 2^V \to \mathbb{Z}_+$ an intersecting supermodular non-increasing set-function.

- There is an orientation D of G s.t. $\rho_D(X) \geq h(X) \quad \forall \emptyset \neq X \subset V$
- $e_G(P) \geq \sum_{X \in P} h(X)$ for every partition P of V.

Applying for $h(X) = r_M(S) - r_M(S_X)$ provides

Corollary

Let (G, \mathcal{M}, S, π) be a matroid-based rooted-graph.

- There is an orientation D of G s.t. (D, \mathcal{M}, S, π) is rooted-connected
- (G, \mathcal{M}, S, π) is partition-connected.
Plan executed

Theorem (Katoh, Tanigawa 2012)

- \exists a matroid-based packing of rooted-trees in (G, \mathcal{M}, S, π)
 \[\iff \]
 - π is \mathcal{M}-independent and (G, \mathcal{M}, S, π) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

- \exists a matroid-based packing of rooted-arborescences in (D, \mathcal{M}, S, π)
 \[\iff \]
 - π is \mathcal{M}-independent and (D, \mathcal{M}, S, π) is rooted-connected.

Theorem (Frank 1980)

- \exists an orientation D of G s. t. (D, \mathcal{M}, S, π) is rooted-connected
 \[\iff \]
 - (G, \mathcal{M}, S, π) is partition-connected.
Theorem (Katoh, Tanigawa 2012)
- ∃ a matroid-based packing of rooted-trees in (G, \mathcal{M}, S, π)
- \iff
- π is \mathcal{M}-independent and (G, \mathcal{M}, S, π) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)
- ∃ a matroid-based packing of rooted-arborescences in (D, \mathcal{M}, S, π)
- \iff
- π is \mathcal{M}-independent and (D, \mathcal{M}, S, π) is rooted-connected.

Theorem (Frank 1980)
- ∃ an orientation D of G s. t. (D, \mathcal{M}, S, π) is rooted-connected
- \iff
- (G, \mathcal{M}, S, π) is partition-connected.
Theorem (Katoh, Tanigawa 2012)

- \exists a matroid-based packing of rooted-trees in (G, M, S, π)
- π is M-independent and (G, M, S, π) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

- \exists a matroid-based packing of rooted-arborescences in (D, M, S, π)
- π is M-independent and (D, M, S, π) is rooted-connected.

Theorem (Frank 1980)

- \exists an orientation D of G s. t. (D, M, S, π) is rooted-connected
- (G, M, S, π) is partition-connected.
Plan executed

<table>
<thead>
<tr>
<th>Theorem (Katoh, Tanigawa 2012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>⋄ ∃ a matroid-based packing of rooted-trees in ((G, \mathcal{M}, S, \pi)) \iff \pi \text{ is } \mathcal{M}\text{-independent and } (G, \mathcal{M}, S, \pi) \text{ is partition-connected}.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>⋄ ∃ a matroid-based packing of rooted-arborescences in ((D, \mathcal{M}, S, \pi)) \iff \pi \text{ is } \mathcal{M}\text{-independent and } (D, \mathcal{M}, S, \pi) \text{ is rooted-connected}.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Frank 1980)</th>
</tr>
</thead>
<tbody>
<tr>
<td>⋄ ∃ an orientation (D) of (G) s. t. ((D, \mathcal{M}, S, \pi)) is rooted-connected \iff (\mathcal{M}\text{-independent and } (G, \mathcal{M}, S, \pi) \text{ is partition-connected}.</td>
</tr>
</tbody>
</table>
Theorem (Katoh, Tanigawa 2012)

- ∃ a matroid-based packing of rooted-trees in \((G, \mathcal{M}, S, \pi)\)

- \(\pi\) is \(\mathcal{M}\)-independent and \((G, \mathcal{M}, S, \pi)\) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

- ∃ a matroid-based packing of rooted-arborescences in \((D, \mathcal{M}, S, \pi)\)

- \(\pi\) is \(\mathcal{M}\)-independent and \((D, \mathcal{M}, S, \pi)\) is rooted-connected.

Theorem (Frank 1980)

- ∃ an orientation \(D\) of \(G\) s. t. \((D, \mathcal{M}, S, \pi)\) is rooted-connected

- \((G, \mathcal{M}, S, \pi)\) is partition-connected.
Theorem (Katoh, Tanigawa 2012)

- ∃ a matroid-based packing of rooted-trees in \((G, \mathcal{M}, S, \pi)\)
- \(\pi\) is \(\mathcal{M}\)-independent and \((G, \mathcal{M}, S, \pi)\) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

- ∃ a matroid-based packing of rooted-arborescences in \((D, \mathcal{M}, S, \pi)\)
- \(\pi\) is \(\mathcal{M}\)-independent and \((D, \mathcal{M}, S, \pi)\) is rooted-connected.

Theorem (Frank 1980)

- ∃ an orientation \(D\) of \(G\) s. t. \((D, \mathcal{M}, S, \pi)\) is rooted-connected
- \((G, \mathcal{M}, S, \pi)\) is partition-connected.
Theorem (Katoh, Tanigawa 2012)

- ∃ a matroid-based packing of rooted-trees in \((G, \mathcal{M}, S, \pi)\)
 - ⇐⇒
 - \(\pi\) is \(\mathcal{M}\)-independent and \((G, \mathcal{M}, S, \pi)\) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

- ∃ a matroid-based packing of rooted-arborescences in \((D, \mathcal{M}, S, \pi)\)
 - ⇐⇒
 - \(\pi\) is \(\mathcal{M}\)-independent and \((D, \mathcal{M}, S, \pi)\) is rooted-connected.

Theorem (Frank 1980)

- ∃ an orientation \(D\) of \(G\) s. t. \((D, \mathcal{M}, S, \pi)\) is rooted-connected
 - ⇐⇒
 - \((G, \mathcal{M}, S, \pi)\) is partition-connected.
Plan executed

<table>
<thead>
<tr>
<th>Theorem (Katoh, Tanigawa 2012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\exists a matroid-based packing of rooted-trees in (G, M, S, π) \iff π is M-independent and (G, M, S, π) is partition-connected.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\exists a matroid-based packing of rooted-arborescences in (D, M, S, π) \iff π is M-independent and (D, M, S, π) is rooted-connected.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Frank 1980)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\exists an orientation D of G s. t. (D, M, S, π) is rooted-connected \iff (G, M, S, π) is partition-connected.</td>
</tr>
</tbody>
</table>
Plan executed

Theorem (Katoh, Tanigawa 2012)

- \(\exists \) a matroid-based packing of rooted-trees in \((G, \mathcal{M}, S, \pi)\)
 \[\iff\]
- \(\pi \) is \(\mathcal{M} \)-independent and \((G, \mathcal{M}, S, \pi)\) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

- \(\exists \) a matroid-based packing of rooted-arborescences in \((D, \mathcal{M}, S, \pi)\)
 \[\iff\]
- \(\pi \) is \(\mathcal{M} \)-independent and \((D, \mathcal{M}, S, \pi)\) is rooted-connected.

Theorem (Frank 1980)

- \(\exists \) an orientation \(D \) of \(G \) s. t. \((D, \mathcal{M}, S, \pi)\) is rooted-connected
 \[\iff\]
- \((G, \mathcal{M}, S, \pi)\) is partition-connected.
Plan executed

Theorem (Katoh, Tanigawa 2012)

- \(\exists \) a matroid-based packing of rooted-trees in \((G, M, S, \pi)\)
 \(\iff\)
- \(\pi\) is \(M\)-independent and \((G, M, S, \pi)\) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

- \(\exists \) a matroid-based packing of rooted-arborescences in \((D, M, S, \pi)\)
 \(\iff\)
- \(\pi\) is \(M\)-independent and \((D, M, S, \pi)\) is rooted-connected.

Theorem (Frank 1980)

- \(\exists \) an orientation \(D\) of \(G\) s. t. \((D, M, S, \pi)\) is rooted-connected
 \(\iff\)
- \((G, M, S, \pi)\) is partition-connected.
About the proofs

Theorem (Katoh, Tanigawa 2012)

- \exists a matroid-based packing of rooted-trees in (G, M, S, π)
 \iff
- π is M-independent and (G, M, S, π) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

- \exists a matroid-based packing of rooted-arborescences in (D, M, S, π)
 \iff
- π is M-independent and (D, M, S, π) is rooted-connected.

Theorem (Frank 1980)

- \exists an orientation D of G s. t. (D, M, S, π) is rooted-connected
 \iff
- (G, M, S, π) is partition-connected.
About the proofs

Theorem (Katoh, Tanigawa 2012)

- ∃ a matroid-based packing of rooted-trees in \((G, M, S, \pi)\)
- \(\iff\) 8 pages
- \(\pi\) is \(M\)-independent and \((G, M, S, \pi)\) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

- ∃ a matroid-based packing of rooted-arborescences in \((D, M, S, \pi)\)
- \(\iff\)
- \(\pi\) is \(M\)-independent and \((D, M, S, \pi)\) is rooted-connected.

Theorem (Frank 1980)

- ∃ an orientation \(D\) of \(G\) s. t. \((D, M, S, \pi)\) is rooted-connected
- \(\iff\)
- \((G, M, S, \pi)\) is partition-connected.
About the proofs

Theorem (Katoh, Tanigawa 2012)
\[\exists \text{ a matroid-based packing of rooted-trees in } (G, M, S, \pi) \]
\[\iff \text{ 8 pages} \]
\[\pi \text{ is } M\text{-independent and } (G, M, S, \pi) \text{ is partition-connected.} \]

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)
\[\exists \text{ a matroid-based packing of rooted-arborescences in } (D, M, S, \pi) \]
\[\iff \text{ 2 pages} \]
\[\pi \text{ is } M\text{-independent and } (D, M, S, \pi) \text{ is rooted-connected.} \]

Theorem (Frank 1980)
\[\exists \text{ an orientation } D \text{ of } G \text{ s. t. } (D, M, S, \pi) \text{ is rooted-connected} \]
\[\iff \]
\[(G, M, S, \pi) \text{ is partition-connected.} \]
About the proofs

Theorem (Katoh, Tanigawa 2012)

\exists \text{ a matroid-based packing of rooted-trees in } (G, M, S, \pi) \\
\iff 8 \text{ pages}

\pi \text{ is } M\text{-independent and } (G, M, S, \pi) \text{ is partition-connected.}

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

\exists \text{ a matroid-based packing of rooted-arborescences in } (D, M, S, \pi) \\
\iff 2 \text{ pages}

\pi \text{ is } M\text{-independent and } (D, M, S, \pi) \text{ is rooted-connected.}

Theorem (Frank 1980)

\exists \text{ an orientation } D \text{ of } G \text{ s. t. } (D, M, S, \pi) \text{ is rooted-connected} \\
\iff 4 \text{ pages}

(G, M, S, \pi) \text{ is partition-connected.}
Further results

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

1. A matroid-based packing of rooted-arborescences can be found in polynomial time,
2. We have a complete description of the convex hull of the incidence vectors of the matroid-based packings of rooted-arborescences,
3. A matroid-based packing of rooted-arborescences of minimum weight can be found in polynomial time,
4. Our theorem can be generalized for directed hypergraphs.
Further results

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

1. A matroid-based packing of rooted-arborescences can be found in **polynomial** time,

2. We have a complete description of the **convex hull** of the incidence vectors of the matroid-based packings of rooted-arborescences,

3. A matroid-based packing of rooted-arborescences of **minimum weight** can be found in polynomial time,

4. Our theorem can be generalized for directed **hypergraphs**.
Further results

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

1. A matroid-based packing of rooted-arborescences can be found in polynomial time,
2. We have a complete description of the convex hull of the incidence vectors of the matroid-based packings of rooted-arborescences,
3. A matroid-based packing of rooted-arborescences of minimum weight can be found in polynomial time,
4. Our theorem can be generalized for directed hypergraphs.
Further results

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

1. A matroid-based packing of rooted-arborescences can be found in polynomial time,
2. We have a complete description of the convex hull of the incidence vectors of the matroid-based packings of rooted-arborescences,
3. A matroid-based packing of rooted-arborescences of minimum weight can be found in polynomial time,
4. Our theorem can be generalized for directed hypergraphs.
Summary

- We presented a theorem on matroid-based packing of rooted-arborescences that
 - generalizes Edmonds' result on packing of spanning r-arborescences,
 - implies – using Frank's orientation theorem – Katoh and Tanigawa's result on matroid-based packing of rooted-trees,
 - has a short simple and algorithmic proof.
- The weighted version can also be solved in polynomial time.
Summary

- We presented a theorem on matroid-based packing of rooted-arborescences that:
 - generalizes Edmonds’ result on packing of spanning r-arborescences,
 - implies – using Frank’s orientation theorem – Katoh and Tanigawa’s result on matroid-based packing of rooted-trees,
 - has a short simple and algorithmic proof.
- The weighted version can also be solved in polynomial time.
Conclusion

Summary

- We presented a theorem on matroid-based packing of rooted-arborescences that
 - generalizes Edmonds’ result on packing of spanning r-arborescences,
 - implies – using Frank’s orientation theorem – Katoh and Tanigawa’s result on matroid-based packing of rooted-trees,
 - has a short simple and algorithmic proof.
- The weighted version can also be solved in polynomial time.
Conclusion

Summary

- We presented a theorem on matroid-based packing of rooted-arborescences that
 - generalizes Edmonds’ result on packing of spanning r-arborescences,
 - implies – using Frank’s orientation theorem – Katoh and Tanigawa’s result on matroid-based packing of rooted-trees,
 - has a short simple and algorithmic proof.

- The weighted version can also be solved in polynomial time.
We presented a theorem on matroid-based packing of rooted-arborescences that
generalizes Edmonds’ result on packing of spanning \(r \)-arborescences,
implies – using Frank’s orientation theorem – Katoh and Tanigawa’s
result on matroid-based packing of rooted-trees,
has a short simple and algorithmic proof.
The weighted version can also be solved in polynomial time.
Conclusion

Summary

- We presented a theorem on matroid-based packing of rooted-arborescences that
 - generalizes Edmonds’ result on packing of spanning \(r \)-arborescences,
 - implies – using Frank’s orientation theorem – Katoh and Tanigawa’s result on matroid-based packing of rooted-trees,
 - has a short simple and algorithmic proof.
- The weighted version can also be solved in polynomial time.

Open problem

Combinatorial algorithm for finding a matroid-based packing of rooted-arborescences of minimum weight?
Thank you for your attention!