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Let G be an undirected graph and k a positive integer.

There exists a packing of k spanning trees in G ⇐⇒

G is k-partition-connected.
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Let G be an undirected graph and k a positive integer.

There exists a packing of k spanning trees in G ⇐⇒

G is k-partition-connected.

⇐⇒ for every partition P of V , eG (P) ≥ k(|P| − 1).
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Motivation 2 : Rigidity

Body-Bar Framework
Theorem (Tay 1984)

”Rigidity” of a Body-Bar Framework can

be characterized by the existence of a

spanning tree decomposition.

Body-Bar Framework
with Bar-Boundary Theorem (Katoh, Tanigawa 2012)

”Rigidity” of a Body-Bar Framework

with Bar-Boundary can be characterized

by the existence of a matroid-based

rooted-tree decomposition.
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Matroids

Definition

For I ⊆ 2S, M = (S,I) is a matroid if

1 I 6= ∅,

2 If X ⊆ Y ∈ I then X ∈ I,

3 If X ,Y ∈ I with |X | < |Y | then ∃ y ∈ Y \ X such that X ∪ y ∈ I.
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2 If X ⊆ Y ∈ I then X ∈ I,
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Examples

1 Sets of linearly independent vectors in a vector space,

2 Edge-sets of forests of a graph,

3 Un,k= {X ⊆ S : |X | ≤ k} where |S| = n, free matroid = Un,n.
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Matroids

Notion
1 independent sets = I,

1 any subset of an independent set is independent,

2 base = maximal independent set,
1 all basis are of the same size,

3 rank function : r(X ) = max{|Y | : Y ∈ I,Y ⊆ X}.
1 non-decreasing,
2 submodular,
3 X ∈ I if and only if r(X ) = |X |.
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Matroid-based rooted-graphs

Definition

A matroid-based rooted-graph is a quadruple (G ,M,S, π) :

1 G = (V ,E ) undirected graph,

2 M a matroid on a set S = {s1, . . . , st}.

3 π a placement of the elements of S at vertices of V .

π(s1)

π(s3)

π(s2)
G

M = U3,2

S = {s1, s2, s3}
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Definition

A matroid-based rooted-graph is a quadruple (G ,M,S, π) :

1 G = (V ,E ) undirected graph,

2 M a matroid on a set S = {s1, . . . , st}.

3 π a placement of the elements of S at vertices of V .

π(s1)

π(s3)

π(s2)
X

SX = {s1, s2}

Notation

SX = the elements of S placed at X (= π−1(X )).
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M-based packing of rooted-trees

Definition

A rooted-tree is a pair (T , s) where

1 T is a tree,

2 s ∈ S, placed at a vertex of T .

π(s1)

π(s3)

π(s2)

T1

T2

T3
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T2
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Definition

A packing {(T1, s1), . . . , (T|S|, s|S|)} of rooted-trees is called M-based if
{si ∈ S : v ∈ V (Ti)} forms a base of M for every v ∈ V .
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Proof of necessity

Let {(T1, s1), . . . , (T|S|, s|S|)} be a matroid-based packing of
rooted-arborescences in (D,M,S, π) and v ∈ X ⊆ V .

Let B = {si ∈ S : v ∈ V (Ti)}, B1 = B ∩ SX and B2 = B \ B1.

Since Sv ⊆ B1 ⊆ B is a base of M, π is M-independent.

Since, for each root si in B2, there exists an arc of Ti that enters X
and the arborescences are arc-disjoint,
ρD(X ) ≥ |B2| = |B| − |B1| = rM(S)− rM(B1) ≥ rM(S)− rM(SX )
that is (D,M,S, π) is rooted-connected.
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Orientation results

Theorem (Frank 1980)

Let G = (V ,E ) be an undirected graph and h : 2V → Z+ an intersecting

supermodular non-increasing set-function.

There is an orientation D of G s. t. ρD(X ) ≥ h(X ) ∀ ∅ 6= X ⊂ V

⇐⇒

eG (P) ≥
∑

X∈P h(X ) for every partition P of V .
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Plan executed

Theorem (Katoh, Tanigawa 2012)

∃ a matroid-based packing of rooted-trees in (G ,M,S, π)
⇐⇒

π is M-independent and (G ,M,S, π) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

∃ a matroid-based packing of rooted-arborescences in (D,M,S, π)
⇐⇒

π is M-independent and (D,M,S, π) is rooted-connected.

Theorem (Frank 1980)

∃ an orientation D of G s. t. (D,M,S, π) is rooted-connected
⇐⇒

(G ,M,S, π) is partition-connected.
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About the proofs

Theorem (Katoh, Tanigawa 2012)

∃ a matroid-based packing of rooted-trees in (G ,M,S, π)
⇐⇒ 8 pages

π is M-independent and (G ,M,S, π) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

∃ a matroid-based packing of rooted-arborescences in (D,M,S, π)
⇐⇒ 2 pages

π is M-independent and (D,M,S, π) is rooted-connected.

Theorem (Frank 1980)

∃ an orientation D of G s. t. (D,M,S, π) is rooted-connected
⇐⇒ 4 pages

(G ,M,S, π) is partition-connected.
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Further results

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

1 A matroid-based packing of rooted-arborescences can be found in
polynomial time,

2 We have a complete description of the convex hull of the incidence
vectors of the matroid-based packings of rooted-arborescences,

3 A matroid-based packing of rooted-arborescences of minimum weight
can be found in polynomial time,

4 Our theorem can be generalized for directed hypergraphs.
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Conclusion

Summary

We presented a theorem on matroid-based packing of
rooted-arborescences that

generalizes Edmonds’ result on packing of spanning r -arborescences,
implies – using Frank’s orientation theorem – Katoh and Tanigawa’s
result on matroid-based packing of rooted-trees,
has a short simple and algorithmic proof.

The weighted version can also be solved in polynomial time.
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Conclusion

Summary

We presented a theorem on matroid-based packing of
rooted-arborescences that

generalizes Edmonds’ result on packing of spanning r -arborescences,
implies – using Frank’s orientation theorem – Katoh and Tanigawa’s
result on matroid-based packing of rooted-trees,
has a short simple and algorithmic proof.

The weighted version can also be solved in polynomial time.

Open problem

Combinatorial algorithm for finding a matroid-based packing of
rooted-arborescences of minimum weight ?
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Thank you for your attention !
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