On packing of arborescences with matroid constraints

Zoltán Szigeti

Laboratoire G-SCOP INP Grenoble, France

January 2013

Joint work with : Olivier Durand de Gevigney and Viet Hang Nguyen (Grenoble)

Motivations

- Undirected = Orientation + Directed
- Rigidity

Results

- Undirected : Matroid-based packing of rooted-trees
- Directed : Matroid-based packing of rooted-arborescences
- Orientation : Supermodular function

• Further results

- Algorithmic aspects
- Generalization

Motivations

- Undirected = Orientation + Directed
- Rigidity

Results

- Undirected : Matroid-based packing of rooted-trees
- Directed : Matroid-based packing of rooted-arborescences
- Orientation : Supermodular function

Further results

- Algorithmic aspects
- Generalization

Motivations

- Undirected = Orientation + Directed
- Rigidity

Results

- Undirected : Matroid-based packing of rooted-trees
- Directed : Matroid-based packing of rooted-arborescences
- Orientation : Supermodular function

Further results

- Algorithmic aspects
- Generalization

Motivations

- Undirected = Orientation + Directed
- Rigidity
- Results
 - Undirected : Matroid-based packing of rooted-trees
 - Directed : Matroid-based packing of rooted-arborescences
 - Orientation : Supermodular function

• Further results

- Algorithmic aspects
- Generalization

Motivations

- Undirected = Orientation + Directed
- Rigidity
- Results
 - Undirected : Matroid-based packing of rooted-trees
 - Directed : Matroid-based packing of rooted-arborescences
 - Orientation : Supermodular function

Further results

- Algorithmic aspects
- Generalization

Motivations

- $\bullet \ \ {\sf Undirected} = {\sf Orientation} + {\sf Directed}$
- Rigidity
- Results
 - Undirected : Matroid-based packing of rooted-trees
 - Directed : Matroid-based packing of rooted-arborescences
 - Orientation : Supermodular function

Further results

- Algorithmic aspects
- Generalization

Motivations

- $\bullet \ \ {\sf Undirected} = {\sf Orientation} + {\sf Directed}$
- Rigidity
- Results
 - Undirected : Matroid-based packing of rooted-trees
 - Directed : Matroid-based packing of rooted-arborescences
 - Orientation : Supermodular function
- Further results
 - Algorithmic aspects
 - Generalization

Motivations

- $\bullet \ \ {\sf Undirected} = {\sf Orientation} + {\sf Directed}$
- Rigidity
- Results
 - Undirected : Matroid-based packing of rooted-trees
 - Directed : Matroid-based packing of rooted-arborescences
 - Orientation : Supermodular function
- Further results
 - Algorithmic aspects
 - Generalization

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- *G* is *k*-partition-connected.

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

 $\iff \textit{for every partition } \mathcal{P} \textit{ of } V,$

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

 \iff for every partition \mathcal{P} of V, $e_G(\mathcal{P}) \ge k(|\mathcal{P}| - 1)$.

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

- There exists a packing of k spanning r-arborescences in D
- D is k-rooted-connected for r.

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

- There exists a packing of k spanning r-arborescences in D
- *D* is k-rooted-connected for r.

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

- There exists a packing of k spanning r-arborescences in D
- D is k-rooted-connected for r.

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

- There exists a packing of k spanning r-arborescences in D
- D is k-rooted-connected for r. $\iff \rho_D(X) \ge k \quad \forall \ \emptyset \neq X \subseteq V \setminus r.$

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D
- D is k-rooted-connected for r.

Theorem (Frank 1978)

- There exists an orientation of G that is k-rooted-connected for r ⇐⇒
- G is k-partition-connected.

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D
- D is k-rooted-connected for r.

Theorem (Frank 1978)

Let G be an undirected graph, r a vertex of G and k a positive integer.

There exists an orientation of G that is k-rooted-connected for r ⇐⇒

• G is k-partition-connected.

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D
- D is k-rooted-connected for r.

Theorem (Frank 1978)

- There exists an orientation of G that is k-rooted-connected for r ⇐⇒
- G is k-partition-connected.

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D
- D is k-rooted-connected for r.

Theorem (Frank 1978)

- There exists an orientation of G that is k-rooted-connected for $r \iff$
- G is k-partition-connected.

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D
- D is k-rooted-connected for r.

Theorem (Frank 1978)

- There exists an orientation of G that is k-rooted-connected for $r \iff$
- G is k-partition-connected.

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D
- D is k-rooted-connected for r.

Theorem (Frank 1978)

- There exists an orientation of G that is k-rooted-connected for r ⇐⇒
- G is k-partition-connected.

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D
- D is k-rooted-connected for r.

Theorem (Frank 1978)

- There exists an orientation of G that is k-rooted-connected for r ⇐⇒
- G is k-partition-connected.

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D
- D is k-rooted-connected for r.

Theorem (Frank 1978)

- There exists an orientation of G that is k-rooted-connected for $r \iff$
- G is k-partition-connected.

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D
- D is k-rooted-connected for r.

Theorem (Frank 1978)

- There exists an orientation of G that is k-rooted-connected for $r \iff$
- G is k-partition-connected.

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D
- D is k-rooted-connected for r.

Theorem (Frank 1978)

- There exists an orientation of G that is k-rooted-connected for $r \iff$
- G is k-partition-connected.

Motivation 2 : Rigidity

< 一型

Theorem (Tay 1984)

"Rigidity" of a Body-Bar Framework can be characterized by the existence of a spanning tree decomposition.

Body-Bar Framework with Bar-Boundary

Theorem (Tay 1984)

"Rigidity" of a Body-Bar Framework can be characterized by the existence of a spanning tree decomposition.

Theorem (Tay 1984)

"Rigidity" of a Body-Bar Framework can be characterized by the existence of a spanning tree decomposition.

Body-Bar Framework with Bar-Boundary

Theorem (Katoh, Tanigawa 2012)

"Rigidity" of a Body-Bar Framework with Bar-Boundary can be characterized by the existence of a matroid-based rooted-tree decomposition.

Definition

- 2 If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
- 3 If $X, Y \in \mathcal{I}$ with |X| < |Y| then $\exists y \in Y \setminus X$ such that $X \cup y \in \mathcal{I}$.

Definition

- **2** If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
- ③ If $X, Y \in \mathcal{I}$ with |X| < |Y| then $\exists y \in Y \setminus X$ such that $X \cup y \in \mathcal{I}$.

Definition

- **2** If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
- 3 If $X, Y \in \mathcal{I}$ with |X| < |Y| then $\exists y \in Y \setminus X$ such that $X \cup y \in \mathcal{I}$.

Definition

- $\ \, \mathbf{\mathcal{I}}\neq \emptyset,$
- **2** If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
- **3** If $X, Y \in \mathcal{I}$ with |X| < |Y| then $\exists y \in Y \setminus X$ such that $X \cup y \in \mathcal{I}$.
Definition

For $\mathcal{I} \subseteq 2^{\mathsf{S}}, \, \mathcal{M} = (\mathsf{S}, \mathcal{I})$ is a matroid if

- **2** If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
- **③** If *X*, *Y* ∈ \mathcal{I} with |X| < |Y| then $\exists y \in Y \setminus X$ such that $X \cup y \in \mathcal{I}$.

- Sets of linearly independent vectors in a vector space,
- Edge-sets of forests of a graph,
- 3 $U_{n,k} = \{X \subseteq S : |X| \le k\}$ where |S| = n,

Definition

For $\mathcal{I} \subseteq 2^{\mathsf{S}}, \, \mathcal{M} = (\mathsf{S}, \mathcal{I})$ is a matroid if

- **2** If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
- **③** If *X*, *Y* ∈ \mathcal{I} with |X| < |Y| then $\exists y \in Y \setminus X$ such that $X \cup y \in \mathcal{I}$.

- Sets of linearly independent vectors in a vector space,
- Edge-sets of forests of a graph,

Definition

For $\mathcal{I} \subseteq 2^{\mathsf{S}}, \, \mathcal{M} = (\mathsf{S}, \mathcal{I})$ is a matroid if

- **2** If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
- **③** If *X*, *Y* ∈ \mathcal{I} with |X| < |Y| then $\exists y \in Y \setminus X$ such that $X \cup y \in \mathcal{I}$.

- Sets of linearly independent vectors in a vector space,
- Edge-sets of forests of a graph,
- $U_{n,k} = \{ X \subseteq S : |X| \le k \} \text{ where } |S| = n,$

Definition

For $\mathcal{I} \subseteq 2^{\mathsf{S}}, \, \mathcal{M} = (\mathsf{S}, \mathcal{I})$ is a matroid if

- **2** If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
- **③** If *X*, *Y* ∈ \mathcal{I} with |X| < |Y| then $\exists y \in Y \setminus X$ such that $X \cup y \in \mathcal{I}$.

- Sets of linearly independent vectors in a vector space,
- Edge-sets of forests of a graph,
- $U_{n,k} = \{X \subseteq S : |X| \le k\} \text{ where } |S| = n, \text{ free matroid} = U_{n,n}.$

Notion

• independent sets = \mathcal{I} ,

any subset of an independent set is independent,

Description base = maximal independent set,

all basis are of the same size,

- 3 rank function : $r(X) = \max\{|Y| : Y \in \mathcal{I}, Y \subseteq X\}.$
 - non-decreasing,
 - submodular,

• $X \in \mathcal{I}$ if and only if r(X) = |X|.

< <p>Image: A image: A image:

Notion

• independent sets $= \mathcal{I}$,

any subset of an independent set is independent,

2 base = maximal independent set,

all basis are of the same size,

- 3 rank function : $r(X) = \max\{|Y| : Y \in \mathcal{I}, Y \subseteq X\}.$
 - non-decreasing,
 - submodular,

• $X \in \mathcal{I}$ if and only if r(X) = |X|.

<ロト < 同ト < 三ト <

Notion

- independent sets $= \mathcal{I}$,
 - any subset of an independent set is independent,
- base = maximal independent set,
 - all basis are of the same size,
- 3 rank function : $r(X) = \max\{|Y| : Y \in \mathcal{I}, Y \subseteq X\}$.
 - non-decreasing,
 - 🥑 submodular,
 - $X \in \mathcal{I}$ if and only if r(X) = |X|.

▲□ ► ▲ □ ► ▲

Notion

- independent sets = \mathcal{I} ,
 - any subset of an independent set is independent,
- **base** = maximal independent set,
 - all basis are of the same size,
- 3 rank function : $r(X) = \max\{|Y| : Y \in \mathcal{I}, Y \subseteq X\}$.
 - non-decreasing
 - submodular,
 - $X \in \mathcal{I}$ if and only if r(X) = |X|.

(□) < □) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□)

- independent sets $= \mathcal{I}$,
 - any subset of an independent set is independent,
- base = maximal independent set,
 - all basis are of the same size,
- **③** rank function : $r(X) = \max\{|Y| : Y \in \mathcal{I}, Y \subseteq X\}.$
 - non-decreasing,
 - submodular,
 - $X \in \mathcal{I}$ if and only if r(X) = |X|.

- independent sets $= \mathcal{I}$,
 - any subset of an independent set is independent,
- base = maximal independent set,
 - all basis are of the same size,
- **③** rank function : $r(X) = \max\{|Y| : Y \in \mathcal{I}, Y \subseteq X\}.$
 - non-decreasing,
 - submodular,
 - $X \in \mathcal{I}$ if and only if r(X) = |X|.

- independent sets $= \mathcal{I}$,
 - any subset of an independent set is independent,
- Desception 2 base = maximal independent set,
 - all basis are of the same size,
- **③** rank function : $r(X) = \max\{|Y| : Y \in \mathcal{I}, Y \subseteq X\}.$
 - non-decreasing,
 - submodular,
 - $X \in \mathcal{I}$ if and only if r(X) = |X|.

- independent sets $= \mathcal{I}$,
 - any subset of an independent set is independent,
- base = maximal independent set,
 - all basis are of the same size,
- **③** rank function : $r(X) = \max\{|Y| : Y \in \mathcal{I}, Y \subseteq X\}.$
 - non-decreasing,
 - submodular,
 - $X \in \mathcal{I} \text{ if and only if } r(X) = |X|.$

Definition

A matroid-based rooted-graph is a quadruple (G, \mathcal{M}, S, π) :

- G = (V, E) undirected graph,
- $\textcircled{O} \ \mathcal{M} \text{ a matroid on a set } \verb|S] = \{ \mathsf{s}_1, \ldots, \mathsf{s}_t \}.$
- **③** π a placement of the elements of S at vertices of V.

Definition

A matroid-based rooted-graph is a quadruple (G, \mathcal{M}, S, π) :

- G = (V, E) undirected graph,
- $\textcircled{O} \ \mathcal{M} \text{ a matroid on a set } \verb|S] = \{ \mathsf{s}_1, \ldots, \mathsf{s}_t \}.$
- **③** π a placement of the elements of S at vertices of V.

Notation

•
$$S_X =$$
 the elements of S placed at $X (= \pi^{-1}(X))$.

Z. Szigeti (G-SCOP, Grenoble)

Definition

A rooted-tree is a pair (T, s) where

T is a tree,

② $s \in S$, placed at a vertex of T.

Definition

A rooted-tree is a pair (T, s) where

- T is a tree,
- 2 s \in S, placed at a vertex of T.

Definition

A rooted-tree is a pair (T, s) where

- T is a tree,
- **2** $s \in S$, placed at a vertex of T.

Definition

A rooted-tree is a pair (T, s) where

- T is a tree,
- **2** $s \in S$, placed at a vertex of T.

Definition

A packing $\{(T_1, s_1), \dots, (T_{|S|}, s_{|S|})\}$ of rooted-trees is called *M*-based if

< □ > < 同 >

- ∢ ≣ →

Definition

A rooted-tree is a pair (T, s) where

- T is a tree,
- **2** $s \in S$, placed at a vertex of T.

Definition

A packing $\{(T_1, s_1), \dots, (T_{|S|}, s_{|S|})\}$ of rooted-trees is called \mathcal{M} -based if $\{s_i \in S : v \in V(T_i)\}$ forms a base of \mathcal{M} for every $v \in V$.

Z. Szigeti (G-SCOP, Grenoble)

▶ ৰ ≣ ▶ ≣ ৩ ৭ ৫ January 2013 8 / 16

< ロ > < 同 > < 三 > < 三

Definition

A packing $\{(T_1, s_1), \dots, (T_{|S|}, s_{|S|})\}$ of rooted-trees is called \mathcal{M} -based if $\{s_i \in S : v \in V(T_i)\}$ forms a base of \mathcal{M} for every $v \in V$.

Remark

- matroid-based packing of rooted-trees
- packing of k spanning trees.

Definition

A packing $\{(T_1, s_1), \dots, (T_{|S|}, s_{|S|})\}$ of rooted-trees is called \mathcal{M} -based if $\{s_i \in S : v \in V(T_i)\}$ forms a base of \mathcal{M} for every $v \in V$.

Remark

- matroid-based packing of rooted-trees
- packing of k spanning trees.

Definition

A packing $\{(T_1, s_1), \dots, (T_{|S|}, s_{|S|})\}$ of rooted-trees is called \mathcal{M} -based if $\{s_i \in S : v \in V(T_i)\}$ forms a base of \mathcal{M} for every $v \in V$.

Remark

- matroid-based packing of rooted-trees
- packing of k spanning trees.

Definition

A packing $\{(T_1, s_1), \dots, (T_{|S|}, s_{|S|})\}$ of rooted-trees is called \mathcal{M} -based if $\{s_i \in S : v \in V(T_i)\}$ forms a base of \mathcal{M} for every $v \in V$.

Definitions

π is *M*-independent if for every *v* ∈ *V*, S_v is independent in *M*.
(*G*, *M*, S, *π*) is partition-connected if for every partition *P* of *V*, *e_G*(*P*) ≥ ∑_{X∈P}(*r_M*(S) − *r_M*(S_X)).

Definition

A packing $\{(T_1, s_1), \dots, (T_{|S|}, s_{|S|})\}$ of rooted-trees is called \mathcal{M} -based if $\{s_i \in S : v \in V(T_i)\}$ forms a base of \mathcal{M} for every $v \in V$.

Definitions

• π is \mathcal{M} -independent if for every $v \in V$, S_v is independent in \mathcal{M} .

② (G, \mathcal{M}, S, π) is partition-connected if for every partition \mathcal{P} of V, $e_G(\mathcal{P}) \ge \sum_{X \in \mathcal{P}} (r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X)).$

Definition

A packing $\{(T_1, s_1), \dots, (T_{|S|}, s_{|S|})\}$ of rooted-trees is called \mathcal{M} -based if $\{s_i \in S : v \in V(T_i)\}$ forms a base of \mathcal{M} for every $v \in V$.

Definitions

• π is \mathcal{M} -independent if for every $v \in V$, S_v is independent in \mathcal{M} .

② (G, \mathcal{M}, S, π) is partition-connected if for every partition \mathcal{P} of V, $e_G(\mathcal{P}) \ge \sum_{X \in \mathcal{P}} (r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X)).$

Theorem (Katoh, Tanigawa 2012)

Let (G, \mathcal{M}, S, π) be a matroid-based rooted-graph.

• There is a matroid-based packing of rooted-trees in $(G, \mathcal{M}, S, \pi) \iff$

• π is \mathcal{M} -independent and (G, \mathcal{M}, S, π) is partition-connected.

Image: A math a math

Definition

A packing $\{(T_1, s_1), \dots, (T_{|S|}, s_{|S|})\}$ of rooted-trees is called \mathcal{M} -based if $\{s_i \in S : v \in V(T_i)\}$ forms a base of \mathcal{M} for every $v \in V$.

Definitions

• π is \mathcal{M} -independent if for every $v \in V$, S_v is independent in \mathcal{M} .

② (G, \mathcal{M}, S, π) is partition-connected if for every partition \mathcal{P} of V, $e_G(\mathcal{P}) \ge \sum_{X \in \mathcal{P}} (r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X)).$

Theorem (Katoh, Tanigawa 2012)

Let (G, \mathcal{M}, S, π) be a matroid-based rooted-graph.

• There is a matroid-based packing of rooted-trees in $(G, \mathcal{M}, S, \pi) \iff$

• π is \mathcal{M} -independent and (G, \mathcal{M}, S, π) is partition-connected.

Image: A math a math

Definition

A packing $\{(T_1, s_1), \dots, (T_{|S|}, s_{|S|})\}$ of rooted-trees is called \mathcal{M} -based if $\{s_i \in S : v \in V(T_i)\}$ forms a base of \mathcal{M} for every $v \in V$.

Definitions

• π is \mathcal{M} -independent if for every $v \in V$, S_v is independent in \mathcal{M} .

② (G, \mathcal{M}, S, π) is partition-connected if for every partition \mathcal{P} of V, $e_G(\mathcal{P}) \ge \sum_{X \in \mathcal{P}} (r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X)).$

Theorem (Katoh, Tanigawa 2012)

Let (G, \mathcal{M}, S, π) be a matroid-based rooted-graph.

• There is a matroid-based packing of rooted-trees in $(G, \mathcal{M}, S, \pi) \iff$

• π is \mathcal{M} -independent and (G, \mathcal{M}, S, π) is partition-connected.

< D > < A > < B >

Definition

A rooted-arborescence is a pair (T, s) where

- T is an r-arborescence,
- 2 s \in S, placed at r.

Definition

A rooted-arborescence is a pair (T, s) where

- **1** T is an *r*-arborescence,
- **2** $s \in S$, placed at r.

Definition

A rooted-arborescence is a pair (T, s) where

- **1** T is an *r*-arborescence,
- **2** $s \in S$, placed at r.

Definition

A rooted-arborescence is a pair (T, s) where

- T is an r-arborescence,
- **2** $s \in S$, placed at r.

Definition

A packing $\{(T_1, s_1), \dots, (T_{|S|}, s_{|S|})\}$ of rooted-arborescences is \mathcal{M} -based if

< □ > < 同 >

- ∢ ≣ →

Definition

A rooted-arborescence is a pair (T, s) where

- T is an r-arborescence,
- **2** $s \in S$, placed at r.

Definition

A packing { $(T_1, s_1), \ldots, (T_{|S|}, s_{|S|})$ } of rooted-arborescences is \mathcal{M} -based if { $s_i \in S : v \in V(T_i)$ } forms a base of \mathcal{M} for every $v \in V$.

Z. Szigeti (G-SCOP, Grenoble)

January 2013 9 / 16

< ロ > < 同 > < 三 > < 三

Definition

A packing $\{(T_1, s_1), \dots, (T_{|S|}, s_{|S|})\}$ of rooted-arborescences is \mathcal{M} -based if $\{s_i \in S : v \in V(T_i)\}$ forms a base of \mathcal{M} for every $v \in V$.

Remark

- matroid-based packing of rooted-arborescences
- packing of k spanning r-arborescences.

Definition

A packing $\{(T_1, s_1), \dots, (T_{|S|}, s_{|S|})\}$ of rooted-arborescences is \mathcal{M} -based if $\{s_i \in S : v \in V(T_i)\}$ forms a base of \mathcal{M} for every $v \in V$.

Remark

For the free matroid \mathcal{M} with all k roots at a vertex r,

• matroid-based packing of rooted-arborescences

packing of k spanning r-arborescences.

Definition

A packing $\{(T_1, s_1), \dots, (T_{|S|}, s_{|S|})\}$ of rooted-arborescences is \mathcal{M} -based if $\{s_i \in S : v \in V(T_i)\}$ forms a base of \mathcal{M} for every $v \in V$.

Remark

- matroid-based packing of rooted-arborescences
- packing of k spanning r-arborescences.

\mathcal{M} -based packing of rooted-arborescences

Definition

A packing $\{(T_1, s_1), \dots, (T_{|S|}, s_{|S|})\}$ of rooted-arborescences is \mathcal{M} -based if $\{s_i \in S : v \in V(T_i)\}$ forms a base of \mathcal{M} for every $v \in V$.

Definition

$$(D, \mathcal{M}, \mathsf{S}, \pi)$$
 is rooted-connected if for every $\emptyset \neq X \subseteq V$,
 $\rho_D(X) \ge r_{\mathcal{M}}(\mathsf{S}) - r_{\mathcal{M}}(\mathsf{S}_X).$
$\mathcal M$ -based packing of rooted-arborescences

Definition

A packing $\{(T_1, s_1), \dots, (T_{|S|}, s_{|S|})\}$ of rooted-arborescences is \mathcal{M} -based if $\{s_i \in S : v \in V(T_i)\}$ forms a base of \mathcal{M} for every $v \in V$.

Definition

$$(D, \mathcal{M}, \mathsf{S}, \pi)$$
 is rooted-connected if for every $\emptyset \neq X \subseteq V$,
 $\rho_D(X) \ge r_{\mathcal{M}}(\mathsf{S}) - r_{\mathcal{M}}(\mathsf{S}_X).$

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

Let (D, \mathcal{M}, S, π) be a matroid-based rooted-digraph.

• There is a matroid-based packing of rooted-arborescences in (D, \mathcal{M}, S, π)

• π is *M*-independent and (D, M, S, π) is rooted-connected.

$\mathcal M$ -based packing of rooted-arborescences

Definition

A packing $\{(T_1, s_1), \dots, (T_{|S|}, s_{|S|})\}$ of rooted-arborescences is \mathcal{M} -based if $\{s_i \in S : v \in V(T_i)\}$ forms a base of \mathcal{M} for every $v \in V$.

Definition

$$(D, \mathcal{M}, \mathsf{S}, \pi)$$
 is rooted-connected if for every $\emptyset \neq X \subseteq V$,
 $\rho_D(X) \ge r_{\mathcal{M}}(\mathsf{S}) - r_{\mathcal{M}}(\mathsf{S}_X).$

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

Let (D, \mathcal{M}, S, π) be a matroid-based rooted-digraph.

• There is a matroid-based packing of rooted-arborescences in (D, M, S, π)

• π is \mathcal{M} -independent and (D, \mathcal{M}, S, π) is rooted-connected.

$\mathcal M$ -based packing of rooted-arborescences

Definition

A packing $\{(T_1, s_1), \dots, (T_{|S|}, s_{|S|})\}$ of rooted-arborescences is \mathcal{M} -based if $\{s_i \in S : v \in V(T_i)\}$ forms a base of \mathcal{M} for every $v \in V$.

Definition

$$(D, \mathcal{M}, \mathsf{S}, \pi)$$
 is rooted-connected if for every $\emptyset \neq X \subseteq V$,
 $\rho_D(X) \ge r_{\mathcal{M}}(\mathsf{S}) - r_{\mathcal{M}}(\mathsf{S}_X).$

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

Let (D, \mathcal{M}, S, π) be a matroid-based rooted-digraph.

 There is a matroid-based packing of rooted-arborescences in (D, M, S, π)

• π is *M*-independent and (D, \mathcal{M}, S, π) is rooted-connected.

- Let {(T₁, s₁), ..., (T_{|S|}, s_{|S|})} be a matroid-based packing of rooted-arborescences in (D, M, S, π) and v ∈ X ⊆ V.
- Let $B = \{s_i \in S : v \in V(T_i)\}$, $B_1 = B \cap S_X$ and $B_2 = B \setminus B_1$.
- Since $S_v \subseteq B_1 \subseteq B$ is a base of \mathcal{M} , π is \mathcal{M} -independent.
- Since, for each root s_i in B₂, there exists an arc of T_i that enters X and the arborescences are arc-disjoint,
 ρ_D(X) ≥ |B₂| = |B| |B₁| = r_M(S) r_M(B₁) ≥ r_M(S) r_M(S_X) that is (D, M, S, π) is rooted-connected.

- Let {(T₁, s₁), ..., (T_{|S|}, s_{|S|})} be a matroid-based packing of rooted-arborescences in (D, M, S, π) and v ∈ X ⊆ V.
- Let $B = \{s_i \in S : v \in V(T_i)\}$, $B_1 = B \cap S_X$ and $B_2 = B \setminus B_1$.
- Since $S_v \subseteq B_1 \subseteq B$ is a base of \mathcal{M} , π is \mathcal{M} -independent.
- Since, for each root s_i in B₂, there exists an arc of T_i that enters X and the arborescences are arc-disjoint,

 ρ_D(X) ≥ |B₂| = |B| |B₁| = r_M(S) r_M(B₁) ≥ r_M(S) r_M(S_X) that is (D, M, S, π) is rooted-connected.

- Let {(T₁, s₁), ..., (T_{|S|}, s_{|S|})} be a matroid-based packing of rooted-arborescences in (D, M, S, π) and v ∈ X ⊆ V.
- Let $B = \{s_i \in S : v \in V(T_i)\}$, $B_1 = B \cap S_X$ and $B_2 = B \setminus B_1$.
- Since $S_v \subseteq B_1 \subseteq B$ is a base of \mathcal{M} , π is \mathcal{M} -independent.
- Since, for each root s_i in B₂, there exists an arc of T_i that enters X and the arborescences are arc-disjoint,

 ρ_D(X) ≥ |B₂| = |B| |B₁| = r_M(S) r_M(B₁) ≥ r_M(S) r_M(S_X) that is (D, M, S, π) is rooted-connected.

- Let {(T₁, s₁), ..., (T_{|S|}, s_{|S|})} be a matroid-based packing of rooted-arborescences in (D, M, S, π) and v ∈ X ⊆ V.
- Let $B = \{s_i \in S : v \in V(T_i)\}$, $B_1 = B \cap S_X$ and $B_2 = B \setminus B_1$.
- Since $S_v \subseteq B_1 \subseteq B$ is a base of \mathcal{M} , π is \mathcal{M} -independent.
- Since, for each root s_i in B_2 , there exists an arc of T_i that enters X and the arborescences are arc-disjoint, $\rho_D(X) \ge |B_2| = |B| - |B_1| = r_M(S) - r_M(B_1) \ge r_M(S) - r_M(S_X)$ that is (D, \mathcal{M}, S, π) is rooted-connected.

Let G = (V, E) be an undirected graph and $h : 2^V \to \mathbb{Z}_+$ an intersecting supermodular non-increasing set-function.

• There is an orientation D of G s. t. $\rho_D(X) \ge h(X) \quad \forall \emptyset \neq X \subset V$

• $e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$ for every partition \mathcal{P} of V.

Let G = (V, E) be an undirected graph and $h : 2^V \to \mathbb{Z}_+$ an intersecting supermodular non-increasing set-function.

• There is an orientation D of G s. t. $\rho_D(X) \ge h(X) \quad \forall \emptyset \neq X \subset V$

\iff

• $e_G(\mathcal{P}) \ge \sum_{X \in \mathcal{P}} h(X)$ for every partition \mathcal{P} of V.

Let G = (V, E) be an undirected graph and $h : 2^V \to \mathbb{Z}_+$ an intersecting supermodular non-increasing set-function.

• There is an orientation D of G s. t. $\rho_D(X) \ge h(X) \quad \forall \emptyset \neq X \subset V$

 \Leftrightarrow

• $e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$ for every partition \mathcal{P} of V.

Let G = (V, E) be an undirected graph and $h : 2^V \to \mathbb{Z}_+$ an intersecting supermodular non-increasing set-function.

• There is an orientation D of G s. t. $\rho_D(X) \ge h(X) \quad \forall \emptyset \neq X \subset V$

 \Leftrightarrow

• $e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$ for every partition \mathcal{P} of V.

Applying for $h(X) = r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X)$ provides

Let G = (V, E) be an undirected graph and $h : 2^V \to \mathbb{Z}_+$ an intersecting supermodular non-increasing set-function.

• There is an orientation D of G s. t. $\rho_D(X) \ge h(X) \quad \forall \ \emptyset \neq X \subset V$

• $e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$ for every partition \mathcal{P} of V.

Applying for $h(X) = r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X)$ provides

Corollary Let (G, \mathcal{M}, S, π) be a matroid-based rooted-graph. • There is an orientation D of G s. t. (D, \mathcal{M}, S, π) is rooted-connected \Leftrightarrow • (G, \mathcal{M}, S, π) is partition-connected.

Let G = (V, E) be an undirected graph and $h : 2^V \to \mathbb{Z}_+$ an intersecting supermodular non-increasing set-function.

• There is an orientation D of G s. t. $\rho_D(X) \ge h(X) \quad \forall \ \emptyset \neq X \subset V$

• $e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$ for every partition \mathcal{P} of V.

Applying for $h(X) = r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X)$ provides

Corollary

Let (G, \mathcal{M}, S, π) be a matroid-based rooted-graph.

• There is an orientation D of G s. t. (D, \mathcal{M}, S, π) is rooted-connected

• (G, \mathcal{M}, S, π) is partition-connected.

・ う き ・ ・ ・ ・

Let G = (V, E) be an undirected graph and $h : 2^V \to \mathbb{Z}_+$ an intersecting supermodular non-increasing set-function.

• There is an orientation D of G s. t. $\rho_D(X) \ge h(X) \quad \forall \ \emptyset \neq X \subset V$

• $e_G(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$ for every partition \mathcal{P} of V.

Applying for $h(X) = r_{\mathcal{M}}(S) - r_{\mathcal{M}}(S_X)$ provides

Corollary

Let (G, \mathcal{M}, S, π) be a matroid-based rooted-graph.

- There is an orientation D of G s. t. (D, \mathcal{M}, S, π) is rooted-connected
- (G, \mathcal{M}, S, π) is partition-connected.

・ う き ・ ・ ・ ・

Theorem (Katoh, Tanigawa 2012)

• \exists a matroid-based packing of rooted-trees in (G, \mathcal{M} , S, π)

• π is \mathcal{M} -independent and (G, \mathcal{M}, S, π) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

• \exists a matroid-based packing of rooted-arborescences in (D, \mathcal{M}, S, π) \iff

• π is \mathcal{M} -independent and (D, \mathcal{M}, S, π) is rooted-connected.

Theorem (Frank 1980)

• \exists an orientation D of G s. t. (D, \mathcal{M}, S, π) is rooted-connected

Theorem (Katoh, Tanigawa 2012)

• \exists a matroid-based packing of rooted-trees in (G, $\mathcal{M}, \mathsf{S}, \pi$)

• π is \mathcal{M} -independent and (G, \mathcal{M}, S, π) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

• \exists a matroid-based packing of rooted-arborescences in (D, \mathcal{M}, S, π) \iff

• π is \mathcal{M} -independent and (D, \mathcal{M}, S, π) is rooted-connected.

Theorem (Frank 1980)

• \exists an orientation D of G s. t. (D, \mathcal{M}, S, π) is rooted-connected

Theorem (Katoh, Tanigawa 2012)

• \exists a matroid-based packing of rooted-trees in (G, \mathcal{M} , S, π)

• π is \mathcal{M} -independent and (G, \mathcal{M}, S, π) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

• \exists a matroid-based packing of rooted-arborescences in (D, \mathcal{M}, S, π) \iff

• π is \mathcal{M} -independent and (D, \mathcal{M}, S, π) is rooted-connected.

Theorem (Frank 1980)

• \exists an orientation D of G s. t. (D, \mathcal{M}, S, π) is rooted-connected

Theorem (Katoh, Tanigawa 2012)

• \exists a matroid-based packing of rooted-trees in (G, \mathcal{M} , S, π)

• π is \mathcal{M} -independent and (G, \mathcal{M}, S, π) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

• \exists a matroid-based packing of rooted-arborescences in (D, \mathcal{M}, S, π) \iff

• π is \mathcal{M} -independent and (D, \mathcal{M}, S, π) is rooted-connected.

Theorem (Frank 1980)

• \exists an orientation D of G s. t. (D, \mathcal{M}, S, π) is rooted-connected

Theorem (Katoh, Tanigawa 2012)

• \exists a matroid-based packing of rooted-trees in (G, \mathcal{M} , S, π)

• π is \mathcal{M} -independent and (G, \mathcal{M}, S, π) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

• \exists a matroid-based packing of rooted-arborescences in (D, \mathcal{M}, S, π)

• π is \mathcal{M} -independent and (D, \mathcal{M}, S, π) is rooted-connected.

Theorem (Frank 1980)

• \exists an orientation D of G s. t. (D, \mathcal{M}, S, π) is rooted-connected

Theorem (Katoh, Tanigawa 2012)

• \exists a matroid-based packing of rooted-trees in (G, \mathcal{M} , S, π)

• π is \mathcal{M} -independent and (G, \mathcal{M}, S, π) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

• \exists a matroid-based packing of rooted-arborescences in (D, \mathcal{M}, S, π)

• π is \mathcal{M} -independent and (D, \mathcal{M}, S, π) is rooted-connected.

Theorem (Frank 1980)

• \exists an orientation D of G s. t. (D, \mathcal{M}, S, π) is rooted-connected

Theorem (Katoh, Tanigawa 2012)

• \exists a matroid-based packing of rooted-trees in (G, \mathcal{M}, S, π)

• π is *M*-independent and (*G*, *M*, *S*, π) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

• \exists a matroid-based packing of rooted-arborescences in (D, \mathcal{M}, S, π)

• π is \mathcal{M} -independent and (D, \mathcal{M}, S, π) is rooted-connected.

Theorem (Frank 1980)

• \exists an orientation D of G s. t. (D, \mathcal{M}, S, π) is rooted-connected

Theorem (Katoh, Tanigawa 2012)

• \exists a matroid-based packing of rooted-trees in (G, \mathcal{M} , S, π)

• π is \mathcal{M} -independent and (G, \mathcal{M}, S, π) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

• \exists a matroid-based packing of rooted-arborescences in (D, \mathcal{M}, S, π)

• π is \mathcal{M} -independent and (D, \mathcal{M}, S, π) is rooted-connected.

Theorem (Frank 1980)

• \exists an orientation D of G s. t. (D, \mathcal{M}, S, π) is rooted-connected

•
$$(G, \mathcal{M}, \mathsf{S}, \pi)$$
 is partition-connected.

Theorem (Katoh, Tanigawa 2012)

• \exists a matroid-based packing of rooted-trees in (G, \mathcal{M} , S, π)

• π is \mathcal{M} -independent and (G, \mathcal{M}, S, π) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

• \exists a matroid-based packing of rooted-arborescences in (D, \mathcal{M}, S, π)

 \iff

• π is \mathcal{M} -independent and (D, \mathcal{M}, S, π) is rooted-connected.

Theorem (Frank 1980)

• \exists an orientation D of G s. t. (D, \mathcal{M}, S, π) is rooted-connected

Theorem (Katoh, Tanigawa 2012)

• \exists a matroid-based packing of rooted-trees in (G, \mathcal{M}, S, π)

• π is \mathcal{M} -independent and (G, \mathcal{M}, S, π) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

• \exists a matroid-based packing of rooted-arborescences in (D, \mathcal{M}, S, π) \iff

• π is \mathcal{M} -independent and (D, \mathcal{M}, S, π) is rooted-connected.

Theorem (Frank 1980)

• \exists an orientation D of G s. t. (D, \mathcal{M}, S, π) is rooted-connected

Theorem (Katoh, Tanigawa 2012)

• \exists a matroid-based packing of rooted-trees in (G, \mathcal{M} , S, π)

• π is \mathcal{M} -independent and (G, \mathcal{M}, S, π) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

• \exists a matroid-based packing of rooted-arborescences in (D, \mathcal{M}, S, π) \iff

• π is \mathcal{M} -independent and (D, \mathcal{M}, S, π) is rooted-connected.

Theorem (Frank 1980)

• \exists an orientation D of G s. t. (D, \mathcal{M}, S, π) is rooted-connected

Theorem (Katoh, Tanigawa 2012)

• \exists a matroid-based packing of rooted-trees in (G, \mathcal{M} , S, π) $\iff 8$ pages

• π is \mathcal{M} -independent and (G, \mathcal{M}, S, π) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

• \exists a matroid-based packing of rooted-arborescences in (D, \mathcal{M}, S, π) \iff

• π is \mathcal{M} -independent and (D, \mathcal{M}, S, π) is rooted-connected.

Theorem (Frank 1980)

• \exists an orientation D of G s. t. (D, \mathcal{M}, S, π) is rooted-connected

Theorem (Katoh, Tanigawa 2012)

• \exists a matroid-based packing of rooted-trees in (G, \mathcal{M}, S, π) $\iff 8 \text{ pages}$

• π is \mathcal{M} -independent and (G, \mathcal{M}, S, π) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

• \exists a matroid-based packing of rooted-arborescences in (D, \mathcal{M}, S, π) $\iff 2 \text{ pages}$

• π is \mathcal{M} -independent and (D, \mathcal{M}, S, π) is rooted-connected.

Theorem (Frank 1980)

• \exists an orientation D of G s. t. (D, \mathcal{M}, S, π) is rooted-connected

•
$$(G, \mathcal{M}, \mathsf{S}, \pi)$$
 is partition-connected.

Theorem (Katoh, Tanigawa 2012)

• \exists a matroid-based packing of rooted-trees in (G, \mathcal{M}, S, π) $\iff 8 \text{ pages}$

• π is \mathcal{M} -independent and (G, \mathcal{M}, S, π) is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

• \exists a matroid-based packing of rooted-arborescences in (D, \mathcal{M}, S, π) $\iff 2 \text{ pages}$

• π is \mathcal{M} -independent and (D, \mathcal{M}, S, π) is rooted-connected.

Theorem (Frank 1980)

- \exists an orientation *D* of *G* s. t. (D, \mathcal{M}, S, π) is rooted-connected $\iff 4$ pages
- (G, \mathcal{M}, S, π) is partition-connected.

- A matroid-based packing of rooted-arborescences can be found in polynomial time,
- We have a complete description of the convex hull of the incidence vectors of the matroid-based packings of rooted-arborescences,
- A matroid-based packing of rooted-arborescences of minimum weight can be found in polynomial time,
- Our theorem can be generalized for directed hypergraphs.

- A matroid-based packing of rooted-arborescences can be found in polynomial time,
- We have a complete description of the convex hull of the incidence vectors of the matroid-based packings of rooted-arborescences,
- A matroid-based packing of rooted-arborescences of minimum weight can be found in polynomial time,
- Our theorem can be generalized for directed hypergraphs.

- A matroid-based packing of rooted-arborescences can be found in polynomial time,
- We have a complete description of the convex hull of the incidence vectors of the matroid-based packings of rooted-arborescences,
- A matroid-based packing of rooted-arborescences of minimum weight can be found in polynomial time,
 - Our theorem can be generalized for directed hypergraphs.

- A matroid-based packing of rooted-arborescences can be found in polynomial time,
- We have a complete description of the convex hull of the incidence vectors of the matroid-based packings of rooted-arborescences,
- A matroid-based packing of rooted-arborescences of minimum weight can be found in polynomial time,
- Our theorem can be generalized for directed hypergraphs.

Summary

• We presented a theorem on matroid-based packing of rooted-arborescences that

- generalizes Edmonds' result on packing of spanning r-arborescences,
- implies using Frank's orientation theorem Katoh and Tanigawa's result on matroid-based packing of rooted-trees,
- has a short simple and algorithmic proof.
- The weighted version can also be solved in polynomial time.

Summary

- We presented a theorem on matroid-based packing of rooted-arborescences that
 - generalizes Edmonds' result on packing of spanning r-arborescences,
 - implies using Frank's orientation theorem Katoh and Tanigawa's result on matroid-based packing of rooted-trees,
 - has a short simple and algorithmic proof.
- The weighted version can also be solved in polynomial time.

Summary

- We presented a theorem on matroid-based packing of rooted-arborescences that
 - generalizes Edmonds' result on packing of spanning r-arborescences,
 - implies using Frank's orientation theorem Katoh and Tanigawa's result on matroid-based packing of rooted-trees,
 - has a short simple and algorithmic proof.
- The weighted version can also be solved in polynomial time.

Summary

- We presented a theorem on matroid-based packing of rooted-arborescences that
 - generalizes Edmonds' result on packing of spanning r-arborescences,
 - implies using Frank's orientation theorem Katoh and Tanigawa's result on matroid-based packing of rooted-trees,
 - has a short simple and algorithmic proof.
- The weighted version can also be solved in polynomial time.
Conclusion

Summary

- We presented a theorem on matroid-based packing of rooted-arborescences that
 - generalizes Edmonds' result on packing of spanning r-arborescences,
 - implies using Frank's orientation theorem Katoh and Tanigawa's result on matroid-based packing of rooted-trees,
 - has a short simple and algorithmic proof.
- The weighted version can also be solved in polynomial time.

Conclusion

Summary

- We presented a theorem on matroid-based packing of rooted-arborescences that
 - generalizes Edmonds' result on packing of spanning r-arborescences,
 - implies using Frank's orientation theorem Katoh and Tanigawa's result on matroid-based packing of rooted-trees,
 - has a short simple and algorithmic proof.
- The weighted version can also be solved in polynomial time.

Open problem

Combinatorial algorithm for finding a matroid-based packing of rooted-arborescences of minimum weight?

Thank you for your attention !