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Motivation 2 : Rigidity

Body-Bar Framework

Theorem (Tay 1984)

"Rigidity” of a Body-Bar Framework can
be characterized by the existence of a
spanning tree decomposition.

Body-Bar Framework

with Bar-Boundary Theorem (Katoh, Tanigawa 2012)

"Rigidity” of a Body-Bar Framework
with Bar-Boundary can be characterized
by the existence of a matroid-based
rooted-tree decomposition.
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v

Examples
© Sets of linearly independent vectors in a vector space,
© Edge-sets of forests of a graph,
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© independent sets = 7,
@ any subset of an independent set is independent,
© base = maximal independent set,
@ all basis are of the same size,
© rank function : r(X) =max{|Y|: Y €Z,Y C X}.
@ non-decreasing,

©® submodular,
©® X €I if and only if r(X) = |X|.
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Matroid-based rooted-graphs

A matroid-based rooted-graph is a quadruple (G, M,S, ) :
© G = (V,E) undirected graph,
© M a matroid on a set S = {s1,...,S¢}.
© 1w a placement of the elements of S at vertices of V.

m(s1)

G m(s2
SE {51,52,53}
M= Us,
m(s3)
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Matroid-based rooted-graphs

A matroid-based rooted-graph is a quadruple (G, M,S, ) :
© G = (V,E) undirected graph,
© M a matroid on a set S = {s1,...,S¢}.
© 7 a placement of the elements of S at vertices of V.

X
Sx = {51752}

m(s2

m(s3)

o Sx = the elements of S placed at X (= 7—1(X)).
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M-based packing of rooted-trees

Definition

A rooted-tree is a pair (T,s) where

t(s1)

7(s2

N
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Definition

A packing {(T1,s1),---,(T|s|,5|s|)} of rooted-trees is called M-based if
{si€S:ve V(T;)} forms a base of M for every v € V.

For the free matroid M with all k roots at a vertex r,

@ matroid-based packing of rooted-trees <~

@ packing of k spanning trees.
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A packing {(T1,s1),---,(T|s|,5|s|)} of rooted-trees is called M-based if
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Definitions
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Q (G, M,S, ) is partition-connected if for every partition P of V,
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Theorem (Katoh, Tanigawa 2012)

Let (G, M,S, ) be a matroid-based rooted-graph.
@ There is a matroid-based packing of rooted-trees in (G, M,S, ) <—
@ 7 is M-independent and (G, M,S, ) is partition-connected.
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Proof of necessity

o Let {(T1,s1),---,(T|s|;S|s|)} be a matroid-based packing of
rooted-arborescences in (D, M,S,;7) and ve X C V.
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o Let {(T1,s1),---,(T|s|;S|s|)} be a matroid-based packing of
rooted-arborescences in (D, M,S,;7) and ve X C V.

o Let B={s;€S:veV(T;)}, Bi=BNSx and B, =B\ B;.

@ Since S, C By C B is a base of M, 7 is M-independent.

@ Since, for each root s; in By, there exists an arc of T; that enters X
and the arborescences are arc-disjoint,
pp(X) = |B2| = [B| = |B1| = rm(S) — rm(B1) = ra(S) — rm(Sx)
that is (D, M, S, ) is rooted-connected.
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Orientation results

Theorem (Frank 1980)

Let G = (V, E) be an undirected graph and h: 2V — 7. an intersecting
supermodular non-increasing set-function.
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Plan executed

Theorem (Katoh, Tanigawa 2012)

® 3 a matroid-based packing of rooted-trees in (G, M,S, )
<

® 7 is M-independent and (G, M,S, ) is partition-connected.

A,

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

® 3 a matroid-based packing of rooted-arborescences in (D, M, S, )
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Theorem (Frank 1980)

@ 3 an orientation D of G s. t. (D, M, S, x) is rooted-connected
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e (G, M,S, ) is partition-connected.
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Further results

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

© A matroid-based packing of rooted-arborescences can be found in
polynomial time,
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Further results

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

© A matroid-based packing of rooted-arborescences can be found in
polynomial time,

© We have a complete description of the convex hull of the incidence
vectors of the matroid-based packings of rooted-arborescences,

© A matroid-based packing of rooted-arborescences of minimum weight
can be found in polynomial time,

@ Our theorem can be generalized for directed hypergraphs.
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Conclusion

@ We presented a theorem on matroid-based packing of
rooted-arborescences that

o generalizes Edmonds’ result on packing of spanning r-arborescences,

@ implies — using Frank’s orientation theorem — Katoh and Tanigawa's
result on matroid-based packing of rooted-trees,

@ has a short simple and algorithmic proof.

@ The weighted version can also be solved in polynomial time.

Open problem

| \

Combinatorial algorithm for finding a matroid-based packing of
rooted-arborescences of minimum weight ?
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Thank you for your attention !
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