On packing of arborescences with matroid constraints

Zoltán Szigeti
Laboratoire G-SCOP
INP Grenoble, France
January 2013

Joint work with :
Olivier Durand de Gevigney and Viet Hang Nguyen (Grenoble)

Outline

- Motivations
- Undirected $=$ Orientation + Directed
- Rigidity
- Results
- Undirected : Matroid-based packing of rooted-trees
- Directed : Matroid-based packing of rooted-arborescences
- Orientation : Supermodular function
- Further results
- Algorithmic aspects
- Generalization
- Conclusion

Outline

- Motivations
- Undirected $=$ Orientation + Directed
- Results
- Undirected: Matroid-based packing of rooted-trees
- Directed : Matroid-based packing of rooted-arborescences
- Orientation : Supermodular function
- Further results
- Algorithmic aspects
- Generalization
- Conclusion

Outline

- Motivations
- Undirected $=$ Orientation + Directed
- Rigidity
- Results
- Undirected : Matroid-based packing of rooted-trees
- Directed : Matroid-based packing of rooted-arborescences
- Orientation : Supermodular function
- Further results
- Algorithmic aspects
- Generalization
- Conclusion

Outline

- Motivations
- Undirected $=$ Orientation + Directed
- Rigidity
- Results
- Undirected : Matroid-based packing of rooted-trees
- Directed : Matroid-based packing of rooted-arborescences
- Orientation : Supermodular function
- Further results
- Algorithmic aspects
- Generalization
- Conclusion

Outline

- Motivations
- Undirected $=$ Orientation + Directed
- Rigidity
- Results
- Undirected : Matroid-based packing of rooted-trees
- Directed : Matroid-based packing of rooted-arborescences
- Orientation : Supermodular function
- Further results
- Algorithmic aspects
- Generalization
- Conclusion

Outline

- Motivations
- Undirected $=$ Orientation + Directed
- Rigidity
- Results
- Undirected : Matroid-based packing of rooted-trees
- Directed: Matroid-based packing of rooted-arborescences
- Orientation : Supermodular function
- Further results
- Algorithmic aspects
- Generalization
- Conclusion

Outline

- Motivations
- Undirected $=$ Orientation + Directed
- Rigidity
- Results
- Undirected : Matroid-based packing of rooted-trees
- Directed: Matroid-based packing of rooted-arborescences
- Orientation : Supermodular function
- Further results
- Algorithmic aspects
- Generalization
- Conclusion

Outline

- Motivations
- Undirected $=$ Orientation + Directed
- Rigidity
- Results
- Undirected : Matroid-based packing of rooted-trees
- Directed: Matroid-based packing of rooted-arborescences
- Orientation : Supermodular function
- Further results
- Algorithmic aspects
- Generalization
- Conclusion

Motivation 1 : Undirected $=$ Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)
Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Motivation 1 : Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)
Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G

[^0]
Motivation 1 : Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)
Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Motivation 1 : Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)
Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected. \Longleftrightarrow for every partition \mathcal{P} of V,

Motivation 1 : Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.
\Longleftrightarrow for every partition \mathcal{P} of $V, e_{G}(\mathcal{P}) \geq k(|\mathcal{P}|-1)$.

Motivation 1 : Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

Motivation 1 : Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D

Motivation 1 : Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D
- D is k-rooted-connected for r.

Motivation 1 : Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D

- D is k-rooted-connected for $r . \Longleftrightarrow \rho_{D}(X) \geq k \quad \forall \emptyset \neq X \subseteq V \backslash r$.

Motivation 1 : Undirected = Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D
- D is k-rooted-connected for r.

Theorem (Frank 1978)

Let G be an undirected graph, r a vertex of G and k a positive integer.

- There exists an orientation of G that is k-rooted-connected for $r \Longleftrightarrow$
- G is k-partition-connected.

Motivation 1 : Undirected $=$ Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D
- D is k-rooted-connected for r.

Theorem (Frank 1978)

Let G be an undirected graph, r a vertex of G and k a positive integer.

- There exists an orientation of G that is k-rooted-connected for $r \Longleftrightarrow$ - G is k-partition-connected.

Motivation 1 : Undirected $=$ Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D
- D is k-rooted-connected for r.

Theorem (Frank 1978)

Let G be an undirected graph, r a vertex of G and k a positive integer.

- There exists an orientation of G that is k-rooted-connected for $r \Longleftrightarrow$
- G is k-partition-connected.

Motivation 1 : Undirected $=$ Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D
- D is k-rooted-connected for r.

Theorem (Frank 1978)

Let G be an undirected graph, r a vertex of G and k a positive integer.

- There exists an orientation of G that is k-rooted-connected for $r \Longleftrightarrow$
- G is k-partition-connected.

Motivation 1 : Undirected $=$ Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D
- D is k-rooted-connected for r.

Theorem (Frank 1978)

Let G be an undirected graph, r a vertex of G and k a positive integer.

- There exists an orientation of G that is k-rooted-connected for $r \Longleftrightarrow$
- G is k-partition-connected.

Motivation 1 : Undirected $=$ Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D
- D is k-rooted-connected for r.

Theorem (Frank 1978)

Let G be an undirected graph, r a vertex of G and k a positive integer.

- There exists an orientation of G that is k-rooted-connected for $r \Longleftrightarrow$
- G is k-partition-connected.

Motivation 1 : Undirected $=$ Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D
- D is k-rooted-connected for r.

Theorem (Frank 1978)

Let G be an undirected graph, r a vertex of G and k a positive integer.

- There exists an orientation of G that is k-rooted-connected for $r \Longleftrightarrow$
- G is k-partition-connected.

Motivation 1 : Undirected $=$ Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D
- D is k-rooted-connected for r.

Theorem (Frank 1978)

Let G be an undirected graph, r a vertex of G and k a positive integer.

- There exists an orientation of G that is k-rooted-connected for $r \Longleftrightarrow$
- G is k-partition-connected.

Motivation 1 : Undirected $=$ Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D
- D is k-rooted-connected for r.

Theorem (Frank 1978)

Let G be an undirected graph, r a vertex of G and k a positive integer.

- There exists an orientation of G that is k-rooted-connected for $r \Longleftrightarrow$
- G is k-partition-connected.

Motivation 1 : Undirected $=$ Orientation + Directed

Theorem (Tutte, Nash-Williams 1961)

Let G be an undirected graph and k a positive integer.

- There exists a packing of k spanning trees in G
- G is k-partition-connected.

Theorem (Edmonds 1973)

Let D be a directed graph, r a vertex of D and k a positive integer.

- There exists a packing of k spanning r-arborescences in D
- D is k-rooted-connected for r.

Theorem (Frank 1978)

Let G be an undirected graph, r a vertex of G and k a positive integer.

- There exists an orientation of G that is k-rooted-connected for $r \Longleftrightarrow$
- G is k-partition-connected.

Motivation 2 : Rigidity

Body-Bar Framework

Motivation 2 : Rigidity

Body-Bar Framework

Theorem (Tay 1984)

"Rigidity" of a Body-Bar Framework can be characterized by the existence of a spanning tree decomposition.

Motivation 2 : Rigidity

Body-Bar Framework

Theorem (Tay 1984)

"Rigidity" of a Body-Bar Framework can be characterized by the existence of a spanning tree decomposition.

Body-Bar Framework with Bar-Boundary

Motivation 2 : Rigidity

Body-Bar Framework

Theorem (Tay 1984)

"Rigidity" of a Body-Bar Framework can be characterized by the existence of a spanning tree decomposition.

Body-Bar Framework

 with Bar-Boundary

Matroids

Definition

For $\mathcal{I} \subseteq 2^{S}, \mathcal{M}=(S, \mathcal{I})$ is a matroid if
(1) $I \neq \emptyset$,
(2) If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
(3) If $X, Y \in \mathcal{I}$ with $|X|<|Y|$ then $\exists y \in Y \backslash X$ such that $X \cup y \in \mathcal{I}$.

Matroids

Definition

For $\mathcal{I} \subseteq 2^{S}, \mathcal{M}=(S, \mathcal{I})$ is a matroid if
(1) $\mathcal{I} \neq \emptyset$,
(2) If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$, (3) If $X, Y \in \mathcal{I}$ with $|X|<|Y|$ then $\exists y \in Y \backslash X$ such that $X \cup y \in \mathcal{I}$.

Matroids

Definition

For $\mathcal{I} \subseteq 2^{S}, \mathcal{M}=(S, \mathcal{I})$ is a matroid if
(1) $\mathcal{I} \neq \emptyset$,
(2) If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
(3) If $X, Y \in \mathcal{I}$ with $|X|<|Y|$ then $\exists y \in Y \backslash X$ such that $X \cup y \in \mathcal{I}$.

Matroids

Definition

For $\mathcal{I} \subseteq 2^{S}, \mathcal{M}=(\mathrm{S}, \mathcal{I})$ is a matroid if
(1) $\mathcal{I} \neq \emptyset$,
(2) If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
(3) If $X, Y \in \mathcal{I}$ with $|X|<|Y|$ then $\exists y \in Y \backslash X$ such that $X \cup y \in \mathcal{I}$.

Matroids

Definition

For $\mathcal{I} \subseteq 2^{S}, \mathcal{M}=(\mathrm{S}, \mathcal{I})$ is a matroid if
(1) $\mathcal{I} \neq \emptyset$,
(2) If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
(3) If $X, Y \in \mathcal{I}$ with $|X|<|Y|$ then $\exists y \in Y \backslash X$ such that $X \cup y \in \mathcal{I}$.

Examples

(1) Sets of linearly independent vectors in a vector space,
(2) Edge-sets of forests of a graph,
(3) $U_{n, k}=\{X \subseteq S:|X| \leq k\}$ where $|S|=n$,

Matroids

Definition

For $\mathcal{I} \subseteq 2^{S}, \mathcal{M}=(\mathrm{S}, \mathcal{I})$ is a matroid if
(1) $\mathcal{I} \neq \emptyset$,
(2) If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
(3) If $X, Y \in \mathcal{I}$ with $|X|<|Y|$ then $\exists y \in Y \backslash X$ such that $X \cup y \in \mathcal{I}$.

Examples

(1) Sets of linearly independent vectors in a vector space,
(2) Edge-sets of forests of a graph,

Matroids

Definition

For $\mathcal{I} \subseteq 2^{S}, \mathcal{M}=(\mathrm{S}, \mathcal{I})$ is a matroid if
(1) $\mathcal{I} \neq \emptyset$,
(2) If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
(3) If $X, Y \in \mathcal{I}$ with $|X|<|Y|$ then $\exists y \in Y \backslash X$ such that $X \cup y \in \mathcal{I}$.

Examples

(1) Sets of linearly independent vectors in a vector space,
(2) Edge-sets of forests of a graph,
(3) $U_{n, k}=\{X \subseteq S:|X| \leq k\}$ where $|S|=n$,

Matroids

Definition

For $\mathcal{I} \subseteq 2^{S}, \mathcal{M}=(\mathrm{S}, \mathcal{I})$ is a matroid if
(1) $\mathcal{I} \neq \emptyset$,
(2) If $X \subseteq Y \in \mathcal{I}$ then $X \in \mathcal{I}$,
(3) If $X, Y \in \mathcal{I}$ with $|X|<|Y|$ then $\exists y \in Y \backslash X$ such that $X \cup y \in \mathcal{I}$.

Examples

(1) Sets of linearly independent vectors in a vector space,
(2) Edge-sets of forests of a graph,
(3) $U_{n, k}=\{X \subseteq S:|X| \leq k\}$ where $|S|=n$, free matroid $=U_{n, n}$.

Matroids

Notion

(1) independent sets $=\mathcal{I}$,
(1) any subset of an independent set is independent,
(2) base = maximal independent set,
(3) rank function : $r(X)=\max \{|Y|: Y \in \mathcal{I}, Y \subseteq X\}$.

Matroids

Notion

(1) independent sets $=\mathcal{I}$,
(1) any subset of an independent set is independent,
(2) base $=$ maximal independent set,
(3) rank function : $r(X)=\max \{|Y|: Y \in \mathcal{I}, Y \subseteq X\}$.

Matroids

Notion

(1) independent sets $=\mathcal{I}$,
(1) any subset of an independent set is independent,
(2) base $=$ maximal independent set,
(1) all basis are of the same size,
(3) rank function : $r(X)=\max \{|Y|: Y \in \mathcal{I}, Y \subseteq X\}$.

Matroids

Notion

(1) independent sets $=\mathcal{I}$,
(1) any subset of an independent set is independent,
(2) base = maximal independent set,
(1) all basis are of the same size,
(3) rank function : $r(X)=\max \{|Y|: Y \in \mathcal{I}, Y \subseteq X\}$.

Matroids

Notion

(1) independent sets $=\mathcal{I}$,
(1) any subset of an independent set is independent,
(2) base = maximal independent set,
(1) all basis are of the same size,
(3) rank function : $r(X)=\max \{|Y|: Y \in \mathcal{I}, Y \subseteq X\}$.
(1) non-decreasing,
(2) submodular,
(3) $X \in \mathcal{I}$ if and only if $r(X)=|X|$.

Matroids

Notion

(1) independent sets $=\mathcal{I}$,
(1) any subset of an independent set is independent,
(2) base = maximal independent set,
(1) all basis are of the same size,
(3) rank function : $r(X)=\max \{|Y|: Y \in \mathcal{I}, Y \subseteq X\}$.
(1) non-decreasing,
(2) submodular,
(3) $X \in \mathcal{I}$ if and only if $r(X)=|X|$.

Matroids

Notion

(1) independent sets $=\mathcal{I}$,
(1) any subset of an independent set is independent,
(2) base = maximal independent set,
(1) all basis are of the same size,
(3) rank function : $r(X)=\max \{|Y|: Y \in \mathcal{I}, Y \subseteq X\}$.
(1) non-decreasing,
(2) submodular,

Matroids

Notion

(1) independent sets $=\mathcal{I}$,
(1) any subset of an independent set is independent,
(2) base = maximal independent set,
(1) all basis are of the same size,
(3) rank function : $r(X)=\max \{|Y|: Y \in \mathcal{I}, Y \subseteq X\}$.
(1) non-decreasing,
(2) submodular,
(3) $X \in \mathcal{I}$ if and only if $r(X)=|X|$.

Matroid-based rooted-graphs

Definition

A matroid-based rooted-graph is a quadruple $(G, \mathcal{M}, \mathrm{~S}, \pi)$:
(1) $G=(V, E)$ undirected graph,
(2) \mathcal{M} a matroid on a set $\mathrm{S}=\left\{\mathrm{s}_{1}, \ldots, \mathrm{~s}_{t}\right\}$.
(3) π a placement of the elements of S at vertices of V.

Matroid-based rooted-graphs

Definition

A matroid-based rooted-graph is a quadruple $(G, \mathcal{M}, \mathrm{~S}, \pi)$:
(1) $G=(V, E)$ undirected graph,
(2) \mathcal{M} a matroid on a set $S=\left\{\mathrm{s}_{1}, \ldots, \mathrm{~s}_{t}\right\}$.
(3) π a placement of the elements of S at vertices of V.

Notation

- $S_{X}=$ the elements of S placed at $X\left(=\pi^{-1}(X)\right)$.

\mathcal{M}-based packing of rooted-trees

Definition

A rooted-tree is a pair $(T, \mathrm{~s})$ where
(1) T is a tree,
(2) $s \in S$, placed at a vertex of T.

\mathcal{M}-based packing of rooted-trees

Definition

A rooted-tree is a pair ($T, \mathrm{~s}$) where
(1) T is a tree,
(2) $s \in S$, placed at a vertex of T.

\mathcal{M}-based packing of rooted-trees

Definition

A rooted-tree is a pair ($T, \mathrm{~s}$) where
(1) T is a tree,
(2) $s \in S$, placed at a vertex of T.

\mathcal{M}-based packing of rooted-trees

Definition

A rooted-tree is a pair $(T, \mathrm{~s})$ where
(1) T is a tree,
(2) $s \in S$, placed at a vertex of T.

Definition

A packing $\left\{\left(T_{1}, \mathrm{~s}_{1}\right), \ldots,\left(T_{|\mathrm{S}|}, \mathrm{s}_{\mathrm{S} \mid}\right)\right\}$ of rooted-trees is called \mathcal{M}-based if

\mathcal{M}-based packing of rooted-trees

Definition

A rooted-tree is a pair $(T, \mathrm{~s})$ where
(1) T is a tree,
(2) $s \in S$, placed at a vertex of T.

Definition

A packing $\left\{\left(T_{1}, \mathrm{~s}_{1}\right), \ldots,\left(T_{|\mathrm{S}|}, \mathrm{s}_{|\mathrm{S}|}\right)\right\}$ of rooted-trees is called \mathcal{M}-based if $\left\{s_{i} \in S: v \in V\left(T_{i}\right)\right\}$ forms a base of \mathcal{M} for every $v \in V$.

\mathcal{M}-based packing of rooted-trees

Definition

A packing $\left\{\left(T_{1}, \mathrm{~s}_{1}\right), \ldots,\left(T_{|\mathrm{S}|}, \mathrm{s}_{\mathrm{S} \mid}\right)\right\}$ of rooted-trees is called \mathcal{M}-based if $\left\{s_{i} \in S: v \in V\left(T_{i}\right)\right\}$ forms a base of \mathcal{M} for every $v \in V$.

Remark

For the free matroid \mathcal{M} with all k roots at a vertex r,

- matroid-based packing of rooted-trees
- packing of k spanning trees.

\mathcal{M}-based packing of rooted-trees

Definition

A packing $\left\{\left(T_{1}, \mathrm{~s}_{1}\right), \ldots,\left(T_{|\mathrm{S}|}, \mathrm{s}_{|\mathrm{S}|}\right)\right\}$ of rooted-trees is called \mathcal{M}-based if $\left\{s_{i} \in S: v \in V\left(T_{i}\right)\right\}$ forms a base of \mathcal{M} for every $v \in V$.

Remark

For the free matroid \mathcal{M} with all k roots at a vertex r,

- matroid-based packing of rooted-trees

$$
2
$$

- packing of k spanning trees.

\mathcal{M}-based packing of rooted-trees

Definition

A packing $\left\{\left(T_{1}, \mathrm{~s}_{1}\right), \ldots,\left(T_{|\mathrm{S}|}, \mathrm{s}_{|\mathrm{S}|}\right)\right\}$ of rooted-trees is called \mathcal{M}-based if $\left\{s_{i} \in S: v \in V\left(T_{i}\right)\right\}$ forms a base of \mathcal{M} for every $v \in V$.

Remark

For the free matroid \mathcal{M} with all k roots at a vertex r,

- matroid-based packing of rooted-trees
- packing of k spanning trees.

\mathcal{M}-based packing of rooted-trees

Definition

A packing $\left\{\left(T_{1}, \mathrm{~s}_{1}\right), \ldots,\left(T_{|\mathrm{S}|}, \mathrm{s}_{\mathrm{S} \mid}\right)\right\}$ of rooted-trees is called \mathcal{M}-based if $\left\{s_{i} \in S: v \in V\left(T_{i}\right)\right\}$ forms a base of \mathcal{M} for every $v \in V$.

Definitions

(1) π is \mathcal{M}-independent if for every $v \in V, S_{v}$ is independent in \mathcal{M}. (2) (G, \mathcal{M}, S, π) is partition-connected if for every partition \mathcal{P} of V,

\mathcal{M}-based packing of rooted-trees

Definition

A packing $\left\{\left(T_{1}, \mathrm{~s}_{1}\right), \ldots,\left(T_{|\mathrm{S}|}, \mathrm{s}_{|\mathrm{S}|}\right)\right\}$ of rooted-trees is called \mathcal{M}-based if $\left\{s_{i} \in S: v \in V\left(T_{i}\right)\right\}$ forms a base of \mathcal{M} for every $v \in V$.

Definitions

(1) π is \mathcal{M}-independent if for every $v \in V, S_{v}$ is independent in \mathcal{M}.
(2) $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected if for every partition \mathcal{P} of V,

$$
e_{G}(\mathcal{P}) \geq \sum_{X \in \mathcal{P}}\left(r_{\mathcal{M}}(S)-r_{\mathcal{M}}\left(S_{X}\right)\right)
$$

\mathcal{M}-based packing of rooted-trees

Definition

A packing $\left\{\left(T_{1}, \mathrm{~s}_{1}\right), \ldots,\left(T_{|\mathrm{S}|}, \mathrm{s}_{|\mathrm{S}|}\right)\right\}$ of rooted-trees is called \mathcal{M}-based if $\left\{s_{i} \in S: v \in V\left(T_{i}\right)\right\}$ forms a base of \mathcal{M} for every $v \in V$.

Definitions

(1) π is \mathcal{M}-independent if for every $v \in V, S_{v}$ is independent in \mathcal{M}.
(2) $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected if for every partition \mathcal{P} of V,

$$
e_{G}(\mathcal{P}) \geq \sum_{X \in \mathcal{P}}\left(r_{\mathcal{M}}(S)-r_{\mathcal{M}}\left(S_{X}\right)\right)
$$

Theorem (Katoh, Tanigawa 2012)

Let $(G, \mathcal{M}, \mathrm{~S}, \pi)$ be a matroid-based rooted-graph.

- There is a matroid-based packing of rooted-trees in $(G, \mathcal{M}, S, \pi) \Longleftrightarrow$
- π is \mathcal{M}-independent and $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

\mathcal{M}-based packing of rooted-trees

Definition

A packing $\left\{\left(T_{1}, \mathrm{~s}_{1}\right), \ldots,\left(T_{|\mathrm{S}|}, \mathrm{s}_{|\mathrm{S}|}\right)\right\}$ of rooted-trees is called \mathcal{M}-based if $\left\{s_{i} \in S: v \in V\left(T_{i}\right)\right\}$ forms a base of \mathcal{M} for every $v \in V$.

Definitions

(1) π is \mathcal{M}-independent if for every $v \in V, S_{v}$ is independent in \mathcal{M}.
(2) $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected if for every partition \mathcal{P} of V,

$$
e_{G}(\mathcal{P}) \geq \sum_{X \in \mathcal{P}}\left(r_{\mathcal{M}}(S)-r_{\mathcal{M}}\left(S_{X}\right)\right)
$$

Theorem (Katoh, Tanigawa 2012)

Let $(G, \mathcal{M}, \mathrm{~S}, \pi)$ be a matroid-based rooted-graph.

- There is a matroid-based packing of rooted-trees in $(G, \mathcal{M}, \mathrm{~S}, \pi) \Longleftrightarrow$ - π is \mathcal{M}-independent and (G, \mathcal{M}, S, π) is partition-connected.

\mathcal{M}-based packing of rooted-trees

Definition

A packing $\left\{\left(T_{1}, \mathrm{~s}_{1}\right), \ldots,\left(T_{|\mathrm{S}|}, \mathrm{s}_{|\mathrm{S}|}\right)\right\}$ of rooted-trees is called \mathcal{M}-based if $\left\{s_{i} \in S: v \in V\left(T_{i}\right)\right\}$ forms a base of \mathcal{M} for every $v \in V$.

Definitions

(1) π is \mathcal{M}-independent if for every $v \in V, S_{v}$ is independent in \mathcal{M}.
(2) $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected if for every partition \mathcal{P} of V,

$$
e_{G}(\mathcal{P}) \geq \sum_{X \in \mathcal{P}}\left(r_{\mathcal{M}}(S)-r_{\mathcal{M}}\left(S_{X}\right)\right)
$$

Theorem (Katoh, Tanigawa 2012)

Let $(G, \mathcal{M}, \mathrm{~S}, \pi)$ be a matroid-based rooted-graph.

- There is a matroid-based packing of rooted-trees in $(G, \mathcal{M}, \mathrm{~S}, \pi) \Longleftrightarrow$
- π is \mathcal{M}-independent and $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

\mathcal{M}-based packing of rooted-arborescences

Definition

A rooted-arborescence is a pair $(T, \mathrm{~s})$ where
(1) T is an r-arborescence,
(2) $s \in S$, placed at r.

\mathcal{M}-based packing of rooted-arborescences

Definition

A rooted-arborescence is a pair $(T, \mathrm{~s})$ where
(1) T is an r-arborescence,
(2) $s \in S$, placed at r.

\mathcal{M}-based packing of rooted-arborescences

Definition

A rooted-arborescence is a pair $(T, \mathrm{~s})$ where
(1) T is an r-arborescence,
(2) $s \in S$, placed at r.

\mathcal{M}-based packing of rooted-arborescences

Definition

A rooted-arborescence is a pair $(T, \mathrm{~s})$ where
(1) T is an r-arborescence,
(2) $s \in S$, placed at r.

Definition

A packing $\left\{\left(T_{1}, \mathrm{~s}_{1}\right), \ldots,\left(T_{|\mathrm{S}|}, \mathrm{s}_{|\mathrm{S}|}\right)\right\}$ of rooted-arborescences is \mathcal{M}-based if

\mathcal{M}-based packing of rooted-arborescences

Definition

A rooted-arborescence is a pair $(T, \mathrm{~s})$ where
(1) T is an r-arborescence,
(2) $s \in S$, placed at r.

Definition

A packing $\left\{\left(T_{1}, \mathrm{~s}_{1}\right), \ldots,\left(T_{|\mathrm{S}|}, \mathrm{s}_{|\mathrm{S}|}\right)\right\}$ of rooted-arborescences is \mathcal{M}-based if $\left\{s_{i} \in S: v \in V\left(T_{i}\right)\right\}$ forms a base of \mathcal{M} for every $v \in V$.

\mathcal{M}-based packing of rooted-arborescences

Definition

A packing $\left\{\left(T_{1}, \mathrm{~s}_{1}\right), \ldots,\left(T_{|\mathrm{S}|}, \mathrm{s}_{|\mathrm{S}|}\right)\right\}$ of rooted-arborescences is \mathcal{M}-based if $\left\{s_{i} \in S: v \in V\left(T_{i}\right)\right\}$ forms a base of \mathcal{M} for every $v \in V$.

Remark

For the free matroid \mathcal{M} with all k roots at a vertex r,

- matroid-based packing of rooted-arborescences
- packing of k spanning r-arborescences.

\mathcal{M}-based packing of rooted-arborescences

Definition

A packing $\left\{\left(T_{1}, \mathrm{~s}_{1}\right), \ldots,\left(T_{|\mathrm{S}|}, \mathrm{s}_{|\mathrm{S}|}\right)\right\}$ of rooted-arborescences is \mathcal{M}-based if $\left\{s_{i} \in S: v \in V\left(T_{i}\right)\right\}$ forms a base of \mathcal{M} for every $v \in V$.

Remark

For the free matroid \mathcal{M} with all k roots at a vertex r,

- matroid-based packing of rooted-arborescences

\mathcal{M}-based packing of rooted-arborescences

Definition

A packing $\left\{\left(T_{1}, \mathrm{~s}_{1}\right), \ldots,\left(T_{|\mathrm{S}|}, \mathrm{s}_{\mid \mathrm{S}}\right)\right\}$ of rooted-arborescences is \mathcal{M}-based if $\left\{s_{i} \in S: v \in V\left(T_{i}\right)\right\}$ forms a base of \mathcal{M} for every $v \in V$.

Remark

For the free matroid \mathcal{M} with all k roots at a vertex r,

- matroid-based packing of rooted-arborescences
- packing of k spanning r-arborescences.

\mathcal{M}-based packing of rooted-arborescences

Definition

A packing $\left\{\left(T_{1}, \mathrm{~s}_{1}\right), \ldots,\left(T_{|\mathrm{S}|}, \mathrm{s}_{|\mathrm{S}|}\right)\right\}$ of rooted-arborescences is \mathcal{M}-based if $\left\{s_{i} \in S: v \in V\left(T_{i}\right)\right\}$ forms a base of \mathcal{M} for every $v \in V$.

Definition

$(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected if for every $\emptyset \neq X \subseteq V$,

$$
\rho_{D}(X) \geq r_{\mathcal{M}}(S)-r_{\mathcal{M}}\left(S_{X}\right)
$$

\mathcal{M}-based packing of rooted-arborescences

Definition

A packing $\left\{\left(T_{1}, \mathrm{~s}_{1}\right), \ldots,\left(T_{|\mathrm{S}|}, \mathrm{s}_{|\mathrm{S}|}\right)\right\}$ of rooted-arborescences is \mathcal{M}-based if $\left\{s_{i} \in S: v \in V\left(T_{i}\right)\right\}$ forms a base of \mathcal{M} for every $v \in V$.

Definition

$(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected if for every $\emptyset \neq X \subseteq V$,

$$
\rho_{D}(X) \geq r_{\mathcal{M}}(S)-r_{\mathcal{M}}\left(S_{X}\right) .
$$

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)
Let $(D, \mathcal{M}, \mathrm{~S}, \pi)$ be a matroid-based rooted-digraph.

- There is a matroid-based packing of rooted-arborescences in ($D, \mathcal{M}, \mathrm{~S}, \pi$)
- π is \mathcal{M}-independent and ($D, \mathcal{M}, \mathrm{~S}, \pi$) is rooted-connected.

\mathcal{M}-based packing of rooted-arborescences

Definition

A packing $\left\{\left(T_{1}, \mathrm{~s}_{1}\right), \ldots,\left(T_{|\mathrm{S}|}, \mathrm{s}_{|\mathrm{S}|}\right)\right\}$ of rooted-arborescences is \mathcal{M}-based if $\left\{s_{i} \in S: v \in V\left(T_{i}\right)\right\}$ forms a base of \mathcal{M} for every $v \in V$.

Definition

$(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected if for every $\emptyset \neq X \subseteq V$,

$$
\rho_{D}(X) \geq r_{\mathcal{M}}(S)-r_{\mathcal{M}}\left(S_{X}\right) .
$$

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)
Let $(D, \mathcal{M}, \mathrm{~S}, \pi)$ be a matroid-based rooted-digraph.

- There is a matroid-based packing of rooted-arborescences in $(D, \mathcal{M}, \mathrm{~S}, \pi)$

- π is \mathcal{M}-independent and (D, \mathcal{M}, S, π) is rooted-connected.

\mathcal{M}-based packing of rooted-arborescences

Definition

A packing $\left\{\left(T_{1}, \mathrm{~s}_{1}\right), \ldots,\left(T_{|\mathrm{S}|}, \mathrm{s}_{|\mathrm{S}|}\right)\right\}$ of rooted-arborescences is \mathcal{M}-based if $\left\{s_{i} \in S: v \in V\left(T_{i}\right)\right\}$ forms a base of \mathcal{M} for every $v \in V$.

Definition

$(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected if for every $\emptyset \neq X \subseteq V$,

$$
\rho_{D}(X) \geq r_{\mathcal{M}}(S)-r_{\mathcal{M}}\left(S_{X}\right) .
$$

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)
Let $(D, \mathcal{M}, \mathrm{~S}, \pi)$ be a matroid-based rooted-digraph.

- There is a matroid-based packing of rooted-arborescences in $(D, \mathcal{M}, \mathrm{~S}, \pi)$
- π is \mathcal{M}-independent and $(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected.

Proof of necessity

- Let $\left\{\left(T_{1}, \mathbf{s}_{1}\right), \ldots,\left(T_{|\mathrm{S}|}, \mathbf{s}_{|\mathrm{S}|}\right)\right\}$ be a matroid-based packing of rooted-arborescences in ($D, \mathcal{M}, \mathrm{~S}, \pi$) and $v \in X \subseteq V$.
- Since $S_{v} \subseteq B_{1} \subseteq B$ is a base of \mathcal{M}, π is \mathcal{M}-independent.
- Since, for each root s_{i} in B_{2}, there exists an arc of T_{i} that enters X and the arborescences are arc-disjoint, $\rho_{D}(X) \geq\left|\mathrm{B}_{2}\right|=|\mathrm{B}|-\left|\mathrm{B}_{1}\right|=r_{\mathcal{M}}(\mathrm{S})-r_{\mathcal{M}}\left(B_{1}\right) \geq r_{\mathcal{M}}(\mathrm{S})-r_{\mathcal{M}}\left(S_{X}\right)$ that is $(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected.

Proof of necessity

- Let $\left\{\left(T_{1}, \mathrm{~s}_{1}\right), \ldots,\left(T_{|\mathrm{S}|}, \mathrm{s}_{|\mathrm{S}|}\right)\right\}$ be a matroid-based packing of rooted-arborescences in ($D, \mathcal{M}, \mathrm{~S}, \pi$) and $v \in X \subseteq V$.
- Let $\mathrm{B}=\left\{\mathrm{s}_{i} \in \mathrm{~S}: v \in V\left(T_{i}\right)\right\}, \mathrm{B}_{1}=\mathrm{B} \cap \mathrm{S}_{X}$ and $\mathrm{B}_{2}=\mathrm{B} \backslash B_{1}$.
- Since $S_{v} \subseteq B_{1} \subseteq B$ is a base of \mathcal{M}, π is \mathcal{M}-independent.
- Since, for each root s_{i} in B_{2}, there exists an arc of T_{i} that enters X and the arborescences are arc-disjoint, $\rho_{D}(X) \geq\left|B_{2}\right|=|B|-\left|B_{1}\right|=r_{\mathcal{M}}(S)-r_{\mathcal{M}}\left(B_{1}\right) \geq r_{\mathcal{M}}(S)-r_{\mathcal{M}}\left(S_{X}\right)$ that is (D, \mathcal{M}, S, π) is rooted-connected.

Proof of necessity

- Let $\left\{\left(T_{1}, \mathrm{~s}_{1}\right), \ldots,\left(T_{|\mathrm{S}|}, \mathrm{s}_{|\mathrm{S}|}\right)\right\}$ be a matroid-based packing of rooted-arborescences in ($D, \mathcal{M}, \mathrm{~S}, \pi$) and $v \in X \subseteq V$.
- Let $\mathrm{B}=\left\{\mathrm{s}_{i} \in \mathrm{~S}: v \in V\left(T_{i}\right)\right\}, \mathrm{B}_{1}=\mathrm{B} \cap \mathrm{S}_{X}$ and $\mathrm{B}_{2}=\mathrm{B} \backslash B_{1}$.
- Since $S_{v} \subseteq B_{1} \subseteq B$ is a base of \mathcal{M}, π is \mathcal{M}-independent.
- Since, for each root s_{i} in B_{2}, there exists an arc of T_{i} that enters X and the arborescences are arc-disjoint,
 that is (D, \mathcal{M}, S, π) is rooted-connected.

Proof of necessity

- Let $\left\{\left(T_{1}, \mathrm{~s}_{1}\right), \ldots,\left(T_{|\mathrm{S}|}, \mathrm{s}_{|\mathrm{S}|}\right)\right\}$ be a matroid-based packing of rooted-arborescences in ($D, \mathcal{M}, \mathrm{~S}, \pi$) and $v \in X \subseteq V$.
- Let $\mathrm{B}=\left\{\mathrm{s}_{i} \in \mathrm{~S}: v \in V\left(T_{i}\right)\right\}, \mathrm{B}_{1}=\mathrm{B} \cap \mathrm{S}_{X}$ and $\mathrm{B}_{2}=\mathrm{B} \backslash B_{1}$.
- Since $S_{v} \subseteq B_{1} \subseteq B$ is a base of \mathcal{M}, π is \mathcal{M}-independent.
- Since, for each root s_{i} in B_{2}, there exists an arc of T_{i} that enters X and the arborescences are arc-disjoint, $\rho_{D}(X) \geq\left|\mathrm{B}_{2}\right|=|\mathrm{B}|-\left|\mathrm{B}_{1}\right|=r_{\mathcal{M}}(\mathrm{S})-r_{\mathcal{M}}\left(B_{1}\right) \geq r_{\mathcal{M}}(\mathrm{S})-r_{\mathcal{M}}\left(\mathrm{S}_{X}\right)$ that is $(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected.

Orientation results

Theorem (Frank 1980)

Let $G=(V, E)$ be an undirected graph and $h: 2^{V} \rightarrow \mathbb{Z}_{+}$an intersecting supermodular non-increasing set-function.

- $e_{G}(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$ for every partition \mathcal{P} of V

Orientation results

Theorem (Frank 1980)

Let $G=(V, E)$ be an undirected graph and $h: 2^{V} \rightarrow \mathbb{Z}_{+}$an intersecting supermodular non-increasing set-function.

- There is an orientation D of G s.t. $\rho_{D}(X) \geq h(X) \forall \emptyset \neq X \subset V$ \Longleftrightarrow
- $e_{G}(\mathcal{P}) \geq \sum_{x \in \mathcal{P}} h(X)$ for every partition \mathcal{P} of V.

Orientation results

Theorem (Frank 1980)

Let $G=(V, E)$ be an undirected graph and $h: 2^{V} \rightarrow \mathbb{Z}_{+}$an intersecting supermodular non-increasing set-function.

- There is an orientation D of G s. t. $\rho_{D}(X) \geq h(X) \forall \emptyset \neq X \subset V$ \Longleftrightarrow
- $e_{G}(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$ for every partition \mathcal{P} of V.

Orientation results

Theorem (Frank 1980)

Let $G=(V, E)$ be an undirected graph and $h: 2^{V} \rightarrow \mathbb{Z}_{+}$an intersecting supermodular non-increasing set-function.

- There is an orientation D of G s. t. $\rho_{D}(X) \geq h(X) \forall \emptyset \neq X \subset V$ \Longleftrightarrow
- $e_{G}(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$ for every partition \mathcal{P} of V.

Applying for $h(X)=r_{\mathcal{M}}(S)-r_{\mathcal{M}}\left(S_{X}\right)$ provides

Orientation results

Theorem (Frank 1980)

Let $G=(V, E)$ be an undirected graph and $h: 2^{V} \rightarrow \mathbb{Z}_{+}$an intersecting supermodular non-increasing set-function.

- There is an orientation D of G s. t. $\rho_{D}(X) \geq h(X) \forall \emptyset \neq X \subset V$ \Longleftrightarrow
- $e_{G}(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$ for every partition \mathcal{P} of V.

Applying for $h(X)=r_{\mathcal{M}}(S)-r_{\mathcal{M}}\left(S_{X}\right)$ provides

Corollary

Let $(G, \mathcal{M}, \mathrm{~S}, \pi)$ be a matroid-based rooted-graph.

- There is an orientation D of G s.t. (D, \mathcal{M}, S, π) is rooted-connected
\square

Orientation results

Theorem (Frank 1980)

Let $G=(V, E)$ be an undirected graph and $h: 2^{V} \rightarrow \mathbb{Z}_{+}$an intersecting supermodular non-increasing set-function.

- There is an orientation D of G s. t. $\rho_{D}(X) \geq h(X) \forall \emptyset \neq X \subset V$ \Longleftrightarrow
- $e_{G}(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$ for every partition \mathcal{P} of V.

Applying for $h(X)=r_{\mathcal{M}}(S)-r_{\mathcal{M}}\left(S_{X}\right)$ provides

Corollary

Let $(G, \mathcal{M}, \mathrm{~S}, \pi)$ be a matroid-based rooted-graph.

- There is an orientation D of G s. t. $(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected \Longleftrightarrow
- (G, M,S, π) is partition-connected.

Orientation results

Theorem (Frank 1980)

Let $G=(V, E)$ be an undirected graph and $h: 2^{V} \rightarrow \mathbb{Z}_{+}$an intersecting supermodular non-increasing set-function.

- There is an orientation D of G s. t. $\rho_{D}(X) \geq h(X) \forall \emptyset \neq X \subset V$ \Longleftrightarrow
- $e_{G}(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} h(X)$ for every partition \mathcal{P} of V.

Applying for $h(X)=r_{\mathcal{M}}(S)-r_{\mathcal{M}}\left(S_{X}\right)$ provides

Corollary

Let $(G, \mathcal{M}, \mathrm{~S}, \pi)$ be a matroid-based rooted-graph.

- There is an orientation D of G s. t. $(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected \Longleftrightarrow
- $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

Plan executed

Theorem (Katoh, Tanigawa 2012)

- \exists a matroid-based packing of rooted-trees in $(G, \mathcal{M}, \mathrm{~S}, \pi)$ \Longleftrightarrow
- π is \mathcal{M}-independent and $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

- \exists a matroid-based packing of rooted-arborescences in $(D, \mathcal{M}, \mathrm{~S}, \pi)$
- π is \mathcal{M}-independent and ($D, \mathcal{M}, \mathrm{~S}, \pi$) is rooted-connected.

Theorem (Frank 1980)

- \exists an orientation D of G s.t. $(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected \Longleftrightarrow
- $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

Plan executed

Theorem (Katoh, Tanigawa 2012)

- \exists a matroid-based packing of rooted-trees in $(G, \mathcal{M}, \mathrm{~S}, \pi)$ \Longleftrightarrow
- π is \mathcal{M}-independent and $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

- \exists a matroid-based packing of rooted-arborescences in $(D, \mathcal{M}, \mathrm{~S}, \pi)$
- π is \mathcal{M}-independent and ($D, \mathcal{M}, \mathrm{~S}, \pi$) is rooted-connected.

Theorem (Frank 1980)

- \exists an orientation D of G s.t. $(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected \Longleftrightarrow
- $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

Plan executed

Theorem (Katoh, Tanigawa 2012)

- \exists a matroid-based packing of rooted-trees in $(G, \mathcal{M}, \mathrm{~S}, \pi)$ \Longleftrightarrow
- π is \mathcal{M}-independent and $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

- \exists a matroid-based packing of rooted-arborescences in $(D, \mathcal{M}, \mathrm{~S}, \pi)$
- π is \mathcal{M}-independent and ($D, \mathcal{M}, \mathrm{~S}, \pi$) is rooted-connected.

Theorem (Frank 1980)

- \exists an orientation D of G s.t. $(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected \Longleftrightarrow
- $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

Plan executed

Theorem (Katoh, Tanigawa 2012)

- \exists a matroid-based packing of rooted-trees in $(G, \mathcal{M}, \mathrm{~S}, \pi)$ \Longleftrightarrow
- π is \mathcal{M}-independent and $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

- \exists a matroid-based packing of rooted-arborescences in $(D, \mathcal{M}, \mathrm{~S}, \pi)$
- π is \mathcal{M}-independent and ($D, \mathcal{M}, \mathrm{~S}, \pi$) is rooted-connected.

Theorem (Frank 1980)

- \exists an orientation D of G s.t. $(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected \Longleftrightarrow
- $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

Plan executed

Theorem (Katoh, Tanigawa 2012)

- \exists a matroid-based packing of rooted-trees in $(G, \mathcal{M}, \mathrm{~S}, \pi)$ \Longleftrightarrow
- π is \mathcal{M}-independent and $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

- \exists a matroid-based packing of rooted-arborescences in $(D, \mathcal{M}, \mathrm{~S}, \pi)$
- π is \mathcal{M}-independent and ($D, \mathcal{M}, \mathrm{~S}, \pi$) is rooted-connected.

Theorem (Frank 1980)

- \exists an orientation D of G s.t. $(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected \Longleftrightarrow
- $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

Plan executed

Theorem (Katoh, Tanigawa 2012)

- \exists a matroid-based packing of rooted-trees in $(G, \mathcal{M}, \mathrm{~S}, \pi)$ \Longleftrightarrow
- π is \mathcal{M}-independent and $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

- \exists a matroid-based packing of rooted-arborescences in $(D, \mathcal{M}, \mathrm{~S}, \pi)$
- π is \mathcal{M}-independent and $(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected.

Theorem (Frank 1980)

- \exists an orientation D of G s.t. $(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected \Longleftrightarrow
- $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

Plan executed

Theorem (Katoh, Tanigawa 2012)

- \exists a matroid-based packing of rooted-trees in $(G, \mathcal{M}, \mathrm{~S}, \pi)$ \Longleftrightarrow
- π is \mathcal{M}-independent and $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

- \exists a matroid-based packing of rooted-arborescences in $(D, \mathcal{M}, \mathrm{~S}, \pi)$
- π is \mathcal{M}-independent and $(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected.

Theorem (Frank 1980)

- \exists an orientation D of G s.t. $(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected \Longleftrightarrow
- $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

Plan executed

Theorem (Katoh, Tanigawa 2012)

- \exists a matroid-based packing of rooted-trees in $(G, \mathcal{M}, \mathrm{~S}, \pi)$ \Longleftrightarrow
- π is \mathcal{M}-independent and $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

- \exists a matroid-based packing of rooted-arborescences in $(D, \mathcal{M}, \mathrm{~S}, \pi)$
- π is \mathcal{M}-independent and $(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected.

Theorem (Frank 1980)

- \exists an orientation D of G s.t. $(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected \Longleftrightarrow
- $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

Plan executed

Theorem (Katoh, Tanigawa 2012)

- \exists a matroid-based packing of rooted-trees in $(G, \mathcal{M}, \mathrm{~S}, \pi)$ \Longleftrightarrow
- π is \mathcal{M}-independent and $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

- \exists a matroid-based packing of rooted-arborescences in (D, \mathcal{M}, S, π) \Longleftrightarrow
- π is \mathcal{M}-independent and $(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected.

Theorem (Frank 1980)

- \exists an orientation D of G s.t. $(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected \Longleftrightarrow
- $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

Plan executed

Theorem (Katoh, Tanigawa 2012)

- \exists a matroid-based packing of rooted-trees in $(G, \mathcal{M}, \mathrm{~S}, \pi)$ \Longleftrightarrow
- π is \mathcal{M}-independent and $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

- \exists a matroid-based packing of rooted-arborescences in $(D, \mathcal{M}, \mathrm{~S}, \pi)$
- π is \mathcal{M}-independent and ($D, \mathcal{M}, \mathrm{~S}, \pi$) is rooted-connected.

Theorem (Frank 1980)

- \exists an orientation D of G s.t. $(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected \Longleftrightarrow
- $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

About the proofs

Theorem (Katoh, Tanigawa 2012)

- \exists a matroid-based packing of rooted-trees in $(G, \mathcal{M}, \mathrm{~S}, \pi)$ \Longleftrightarrow
- π is \mathcal{M}-independent and $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

- \exists a matroid-based packing of rooted-arborescences in $(D, \mathcal{M}, \mathrm{~S}, \pi)$
- π is \mathcal{M}-independent and $(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected.

Theorem (Frank 1980)

- \exists an orientation D of G s. t. $(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected \Longleftrightarrow
- $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

About the proofs

Theorem (Katoh, Tanigawa 2012)

- \exists a matroid-based packing of rooted-trees in $(G, \mathcal{M}, \mathrm{~S}, \pi)$ $\Longleftrightarrow 8$ pages
- π is \mathcal{M}-independent and $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

- \exists a matroid-based packing of rooted-arborescences in $(D, \mathcal{M}, \mathrm{~S}, \pi)$
- π is \mathcal{M}-independent and $(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected.

Theorem (Frank 1980)

- \exists an orientation D of G s.t. $(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected \Longleftrightarrow
- $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

About the proofs

Theorem (Katoh, Tanigawa 2012)

- \exists a matroid-based packing of rooted-trees in $(G, \mathcal{M}, \mathrm{~S}, \pi)$ $\Longleftrightarrow 8$ pages
- π is \mathcal{M}-independent and $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

- \exists a matroid-based packing of rooted-arborescences in $(D, \mathcal{M}, \mathrm{~S}, \pi)$ $\Longleftrightarrow 2$ pages
- π is \mathcal{M}-independent and ($D, \mathcal{M}, \mathrm{~S}, \pi$) is rooted-connected.

Theorem (Frank 1980)

- \exists an orientation D of G s. t. $(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected \Longleftrightarrow
- $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

About the proofs

Theorem (Katoh, Tanigawa 2012)

- \exists a matroid-based packing of rooted-trees in $(G, \mathcal{M}, \mathrm{~S}, \pi)$ $\Longleftrightarrow 8$ pages
- π is \mathcal{M}-independent and $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

- \exists a matroid-based packing of rooted-arborescences in $(D, \mathcal{M}, \mathrm{~S}, \pi)$ $\Longleftrightarrow 2$ pages
- π is \mathcal{M}-independent and ($D, \mathcal{M}, \mathrm{~S}, \pi$) is rooted-connected.

Theorem (Frank 1980)

- \exists an orientation D of G s.t. $(D, \mathcal{M}, \mathrm{~S}, \pi)$ is rooted-connected $\Longleftrightarrow 4$ pages
- $(G, \mathcal{M}, \mathrm{~S}, \pi)$ is partition-connected.

Further results

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

(1) A matroid-based packing of rooted-arborescences can be found in polynomial time,
(2) We have a complete description of the convex hull of the incidence vectors of the matroid-based packings of rooted-arborescences,
(3) A matroid-hased nacking of rooted-arhorescences of minimum weight can be found in polynomial time,
(4) Our theorem can be generalized for directed hypergraphs.

Further results

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

(1) A matroid-based packing of rooted-arborescences can be found in polynomial time,
(2) We have a complete description of the convex hull of the incidence vectors of the matroid-based packings of rooted-arborescences,
(3) A matroid-based packing of rooted-arborescences of minimum weight can be found in polynomial time,
(1) Our theorem can be generalized for directed hypergraphs.

Further results

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

(1) A matroid-based packing of rooted-arborescences can be found in polynomial time,
(2) We have a complete description of the convex hull of the incidence vectors of the matroid-based packings of rooted-arborescences,
(3) A matroid-based packing of rooted-arborescences of minimum weight can be found in polynomial time,
(Our theorem can be generalized for directed hypergraphs.

Further results

Theorem (Durand de Gevigney, Nguyen, Szigeti 2012)

(1) A matroid-based packing of rooted-arborescences can be found in polynomial time,
(2) We have a complete description of the convex hull of the incidence vectors of the matroid-based packings of rooted-arborescences,
(3) A matroid-based packing of rooted-arborescences of minimum weight can be found in polynomial time,
(9) Our theorem can be generalized for directed hypergraphs.

Conclusion

Summary

- We presented a theorem on matroid-based packing of rooted-arborescences that
- generalizes Edmonds' result on packing of spanning r-arborescences,
- implies - using Frank's orientation theorem - Katoh and Tanigawa's result on matroid-based packing of rooted-trees,
- has a short simple and algorithmic proof.
- The weighted version can also be solved in polynomial time.

Conclusion

Summary

- We presented a theorem on matroid-based packing of rooted-arborescences that
- generalizes Edmonds' result on packing of spanning r-arborescences,
- implies - using Frank's orientation theorem - Katoh and Tanigawa's result on matroid-based packing of rooted-trees,
- has a short simple and algorithmic proof.
- The weighted version can also be solved in polynomial time.

Conclusion

Summary

- We presented a theorem on matroid-based packing of rooted-arborescences that
- generalizes Edmonds' result on packing of spanning r-arborescences,
- implies - using Frank's orientation theorem - Katoh and Tanigawa's result on matroid-based packing of rooted-trees,
- has a short simple and algorithmic proof.
- The weighted version can also be solved in polynomial time.

Conclusion

Summary

- We presented a theorem on matroid-based packing of rooted-arborescences that
- generalizes Edmonds' result on packing of spanning r-arborescences,
- implies - using Frank's orientation theorem - Katoh and Tanigawa's result on matroid-based packing of rooted-trees,
- has a short simple and algorithmic proof.
\square

Conclusion

Summary

- We presented a theorem on matroid-based packing of rooted-arborescences that
- generalizes Edmonds' result on packing of spanning r-arborescences,
- implies - using Frank's orientation theorem - Katoh and Tanigawa's result on matroid-based packing of rooted-trees,
- has a short simple and algorithmic proof.
- The weighted version can also be solved in polynomial time.

Conclusion

Summary

- We presented a theorem on matroid-based packing of rooted-arborescences that
- generalizes Edmonds' result on packing of spanning r-arborescences,
- implies - using Frank's orientation theorem - Katoh and Tanigawa's result on matroid-based packing of rooted-trees,
- has a short simple and algorithmic proof.
- The weighted version can also be solved in polynomial time.

Open problem

Combinatorial algorithm for finding a matroid-based packing of rooted-arborescences of minimum weight?

Thank you for your attention!

[^0]: - G is k-partition-connected.

