RELIABLE ORIENTATIONS
OF EULERIAN GRAPHS

Zoltán SZIGETI

ÉQUIPE COMBINATOIRE ET OPT.
UNIVERSITÉ PARIS 6.

JOINT WORK WITH ZOLTÁN KIRÁLY
DEFINITIONS:

k-Edge-Connectivity

Undirected

\[d(x) \geq k \]

Directed

\[\phi(x) \geq k \]

k-Arc-Connectivity

\[x \neq \emptyset \quad v-x \neq \emptyset \]

k-Vertex-Connectivity

\[|x| < k \quad \text{directed} \]

\[|V| \geq k + 1 \]
DEF. $G=(V,E)$ is **minimally k-edge-connected** if
- G is k-edge-connected,
- $G-e$ is not k-edge-connected for all $e \in E$.

EX.

\[\begin{array}{c}
 \begin{array}{c}
 \bullet \\
 \bullet \\
 \bullet \\
 \bullet \\
 \end{array} \\
 \begin{array}{c}
 \begin{array}{c}
 e \\
 \bullet
 \end{array} \\
 \end{array}
\end{array} \]

- **Minimally 2-E-C**
- **Not minimally 2-E-C**

Theorem (Mader)

Every minimally k-edge-connected graph has a vertex of degree k.

DEF. SPLITTING OFF

COMPLETE SPLITTING OFF

THEOREM (LOVA’S 2)

If $G = (V, E)$ is 2k-edge-connected, $s \in V$ with $\delta(s)$ even, then there exists a complete splitting off such that G' is 2k-edge-connected.
THEOREM (NASH-WILLIAMS)

G has a k-arc-connected orientation if and only if G is $2k$-edge-connected.

\Rightarrow

\downarrow

\Rightarrow

$G \xrightarrow{k\text{-A-C}} \overrightarrow{G} \xrightarrow{2k\text{-E-C}} G$

\text{LOVÁSZ: EASY BY SPLITTING OFF}
THEOREM (NASH-WILLIAMS)
If \(G=(V,E) \) is \(2k \)-EDGE-CONNECTED then there exists a pairing \(M \) of \(T_G \) s.t.
\[
d_M(x) \leq d_G(x) - 2k \quad \forall x \neq \emptyset.
\]
where \(T_G = \{ u \in V : d_G(u) \text{ is odd} \} \) and a set \(M \) of new edges is a pairing if
\[
d_M(u) = \begin{cases}
1 & \text{if } u \in T_G \\
0 & \text{if } u \in V - T_G
\end{cases}
\]

REMARKS:

1. KIRÁLY, S2.: EASY BY SPLITTING OFF
2. NASH-WILLIAMS: FOR ALL EULERIAN ORIENTATION \(\vec{G} + \vec{M} \) of \(G + M \), \(\vec{G} \) is \(k \)-ARC-CONNECTED.

\[
\phi_G(x) = \phi_{G+M}(x) - \phi_M(x) \geq \frac{d_{G+M}(x)}{2} - d_M(x) = \frac{d_G(x) - d_M(x)}{2} \geq k \quad \forall x \neq \emptyset.
\]
PROOF: INDUCTION ON $|E|$.

CASE 1.

$\exists d(s)$ EVEN

COMPLETE SPLITTING OFF

(Lovász)

G^{2k-E-C}

G'^{2k-E-C}

$R: T_{G'} = T_G$

T_G

INDUCTION

$\exists M' \text{ PAIRING OF } T_{G'}$

$\exists M \text{ PAIRING OF } T_G$

$d_M(x) \leq d_{G'}(x) - 2k$

$d_M'(x) \leq d_{G'}(x) - 2k \ \forall x$

$d_M(x) \leq d_G(x) - 2k$

$d_M'(x) \leq d_G(x) - 2k \ \forall x$
CASE 2.

\[T_G = V \]

Let \(G \) be a \(2k \)-E-C.

\[\exists e : G^e = G - e \quad \text{where} \quad 2k \text{-E-C} \]

\[R : T_{G^e} = T_G - u - v \]

\[\exists M' \text{ PAIRING OF } T_{G^e} \]

\[M = M' \cup \{uv\} \]

Pairing of \(T_G \)

\[d_M(x_i) = d_{M'}(x_i) \leq d_{G^e}(x_i) - 2k \]

\[= d_G(x_i) - 2k \]

OR

\[d_M(x_2) = d_{M'}(x_2) + 1 \leq d_{G^e}(x_2) + 1 - 2k \]

\[= d_G(x_2) - 2k \]
Theorem (Nash-Williams)

If G is $2k$-edge-connected then there exists a pairing M s.t. for all Eulerian orientation $\tilde{G} + \tilde{M}$ of $G + M$, \tilde{G} is k-arc-connected.

(Feasible pairing)

Observation

Given • an Eulerian graph $G = (V,E)$,
• a partition P_V of the edges incident to V into pairs $A \cup B$, V,

there exists an Eulerian orientation \tilde{G} of G compatible with all P_V.
EXAMPLE:
CONJECTURE (THOMASSEN, FRANK)

\[G = (V,E) \] has a \(k \)-vertex-connected \((|V| \geq k+1)\) orientation

\[G - X \text{ is } 2(k-|X|)\text{-edge-connected} \]

for all \(X \subset V, |X| < k \).

\[\Downarrow \]

\[\tilde{G} \text{ is } k\text{-V-C} \Rightarrow \]

\[\tilde{G} - X \text{ is } (k-|X|)\text{-V-C} \Rightarrow \]

\[\tilde{G} - X \text{ is } (k-|X|)\text{-A-C} \Rightarrow \]

\[G - X \text{ is } 2(k-|X|)\text{-E-C} \quad \forall X \subset V, |X| < k. \]

\[\Uparrow \text{ OPEN EVEN FOR } k = 2. \]
CONJECTURE \((k=2)\)
\[G = (V,E) \text{ has a } 2\text{-vertex-connected (} |V| \geq 3) \text{ orientation} \iff G \text{ is 4-edge-connected}\]
\[G - u \text{ is 2-edge-connected } \forall u \in V.\]

THEOREM (BERG-JORDÁN)
AN EULERIAN GRAPH \(G = (V,E)\) HAS AN ORIENTATION \(\tilde{G}\) SUCH THAT \(\tilde{G} - u\) IS 1-ARC-CONNECTED \(\forall u \in V\)
\[\iff G - u \text{ is 2-edge-connected } \forall u \in V.\]

CONJECTURE (FRANK)
AN EULERIAN GRAPH \(G = (V,E)\) HAS AN ORIENTATION \(\tilde{G}\) SUCH THAT \(\tilde{G} - u\) IS \(k\)-ARC-CONNECTED \(\forall u \in V\)
\[\iff G - u \text{ is } 2^k\text{-edge-connected } \forall u \in V.\]

THEOREM (KIRÁLY-SZ.) TRUE
SHORT, EASY PROOF
PROOF:

G EULERIAN
G-U 2k-E-C \(\forall \in V \)

\(M_\sigma \) FEASIBLE
PAIRING OF G-U

\(\tilde{G} \) EULERIAN
\(\tilde{G} - U + M_\sigma \) EULERIAN
\(\forall \in V \)

\(\tilde{G} - U \) R-A-C \(\forall \in V \)

COMPATIBLE EULERIAN ORIENTATION G

\(P_\sigma \)
Remark: Not true if G is not Eulerian

$(G-u)$ is 2E-C $\forall u \in V \Rightarrow \nexists \tilde{G}: \tilde{G}-u$ is K-A-C $\forall u \in V$

Ex.

G

$G-u$ is 2-E-C $\forall u$

$\# \tilde{G}: \tilde{G}-u$ is 1-A-C $\forall u$:

WLOG $\delta(u) \leq 1$

\downarrow

$\tilde{G}-u$ is NOT 1-A-C

Remark: Not counter-example for conjecture of Frank, Thomassen:

G is NOT 4-E-C.
Remark: Not true if \(G \) is not Eulerian

\[
\begin{align*}
G \text{ is } 2k-E-C & \quad \exists \tilde{G}: \tilde{G} \text{ is } k-A-C \\
G - u \text{ is } 2(k-1)-E-C \forall u \in V & \quad \tilde{G} - u \text{ is } (k-1)-A-C \forall \tilde{u} \in V
\end{align*}
\]

Example:

\[
\begin{align*}
G & \quad G \text{ is } 8-E-C \\
G - u \text{ is } 6-E-C \forall u \in V & \quad \tilde{G} \text{ is } 4-A-C, \tilde{G} - u \text{ is } 3-A-C \forall \tilde{u} \in \tilde{V}
\end{align*}
\]

\[
\begin{align*}
\text{WLOG } \delta(u) &= 4 \\
\exists u &\n \quad \tilde{G} - u \text{ is NOT } 3-A-C
\end{align*}
\]

Remark: Not counter-example for Conjecture of Frank, Thomassen:

\(G - u \text{ is NOT } 4-E-C \).