An excluded minor characterization of Seymour graphs

Zoltán Szigeti

Laboratoire G-SCOP Grenoble, France

15th November 2011

joint with A. Ageev, Y. Benchetrit, A. Sebő

1 / 25

Motivation

- 2 Definitions : complete packing of cuts, joins
- Seymour Graphs
- Around Seymour graphs
- Old co-NP characterization of Seymour graphs
- New co-NP characterization of Seymour graphs
- Ideas of the proof
- Algorithmic aspects
- Open problem

Given a graph H = (V, E) and k pairs of vertices $\{s_i, t_i\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_i, t_i .

Given a graph H = (V, E) and k pairs of vertices $\{s_i, t_i\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_i, t_i .

Reformulation by adding the set F of edges $s_i t_i$.

Given a graph H = (V, E) and k pairs of vertices $\{s_i, t_i\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_i, t_i .

Reformulation by adding the set F of edges $s_i t_i$.

Complete packing of cycles

Given a graph H' = (V, E + F), decide whether there exist |F| edge-disjoint cycles in H', each containing exactly one edge of F.

Given a graph H = (V, E) and k pairs of vertices $\{s_i, t_i\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_i, t_i .

Reformulation by adding the set F of edges $s_i t_i$.

Complete packing of cycles

Given a graph H' = (V, E + F), decide whether there exist |F| edge-disjoint cycles in H', each containing exactly one edge of F.

Suppose H' is planar. The problem in the dual :

Given a graph H = (V, E) and k pairs of vertices $\{s_i, t_i\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_i, t_i .

Reformulation by adding the set F of edges $s_i t_i$.

Complete packing of cycles

Given a graph H' = (V, E + F), decide whether there exist |F| edge-disjoint cycles in H', each containing exactly one edge of F.

Suppose H' is planar. The problem in the dual :

Complete packing of cuts

Given a graph G = (V', E' + F'), decide whether there exist |F'| edge-disjoint cuts in G, each containing exactly one edge of F'.

Complete packing of paths

Adding the edges

The graph H'

Complete packing of cycles

H′ is planar

Z. Szigeti (G-SCOP, Grenoble)

Characterization of Seymour graphs

15th November 2011

4 / 25

H' and his dual

Z. Szigeti (G-SCOP, Grenoble)

Characterization of Seymour graphs

15th November 2011

4 / 25

H' and his dual

Complete packing of cycles and cuts

The graphs are not planar anymore !

The problem

Given a graph G = (V, E + F), decide whether there exist |F| edge-disjoint cuts in G, each containing exactly one edge of F.

The problem

Given a graph G = (V, E + F), decide whether there exist |F| edge-disjoint cuts in G, each containing exactly one edge of F.

Necessary condition

If the graph G = (V, E + F) admits a complete packing of cuts, then F is a join : for every cycle C, $|C \cap F| \le |C \setminus F|$.

The problem

Given a graph G = (V, E + F), decide whether there exist |F| edge-disjoint cuts in G, each containing exactly one edge of F.

Necessary condition

If the graph G = (V, E + F) admits a complete packing of cuts, then F is a join : for every cycle C, $|C \cap F| \le |C \setminus F|$.

Sufficient condition?

If F is a join, the graph G = (V, E + F) admits a complete packing of cuts?

The problem

Given a graph G = (V, E + F), decide whether there exist |F| edge-disjoint cuts in G, each containing exactly one edge of F.

Necessary condition

If the graph G = (V, E + F) admits a complete packing of cuts, then F is a join : for every cycle C, $|C \cap F| \le |C \setminus F|$.

Sufficient condition?

If F is a join, the graph G = (V, E + F) admits a complete packing of cuts?

э

イロト イポト イヨト イヨト

The problem

Given a graph G = (V, E + F), decide whether there exist |F| edge-disjoint cuts in G, each containing exactly one edge of F.

Necessary condition

If the graph G = (V, E + F) admits a complete packing of cuts, then F is a join : for every cycle C, $|C \cap F| \le |C \setminus F|$.

Sufficient condition?

If F is a join, the graph G = (V, E + F) admits a complete packing of cuts?

Theorem (Middendorf, Pfeiffer)

Given a join in a graph, decide whether there exists a complete packing of cuts is an NP-complete problem.

Z. Szigeti (G-SCOP, Grenoble)

Characterization of Seymour graphs

If G is a bipartite graph, then for every join there exists a complete packing of cuts.

If G is a bipartite graph, then for every join there exists a complete

then for every join there exists a complete packing of cuts.

Theorem (Seymour)

If G is a series-parallel graph,

then for every join there exists a complete packing of cuts.

If G is a bipartite graph, then for every join there exists a complete packing of cuts.

Theorem (Seymour)

If G is a series-parallel graph,

then for every join there exists a complete packing of cuts.

Definition

G is a Seymour graph

if for every join there exists a complete packing of cuts.

If G is a bipartite graph, (\iff no odd cycle) then for every join there exists a complete packing of cuts.

Theorem (Seymour)

If G is a series-parallel graph,

then for every join there exists a complete packing of cuts.

Definition

G is a Seymour graph

if for every join there exists a complete packing of cuts.

If G is a bipartite graph, (\iff no odd cycle) then for every join there exists a complete packing of cuts.

Theorem (Seymour)

If G is a series-parallel graph, (\iff no subdivision of K_4) then for every join there exists a complete packing of cuts.

Definition

G is a Seymour graph if for every join there exists a complete packing of cuts.

If G is a bipartite graph, (\iff no odd cycle) then for every join there exists a complete packing of cuts.

Theorem (Seymour)

If G is a series-parallel graph, (\iff no subdivision of K_4) then for every join there exists a complete packing of cuts.

Definition

G is a Seymour graph \iff ?

if for every join there exists a complete packing of cuts.

・ロト ・同ト ・ヨト ・ヨト

Subclasses

- Seymour : Graphs without odd cycle,
- Seymour : Graphs without subdivision of K₄,
- **3** Gerards : Graphs without odd K_4 and without odd prism,
- Szigeti : Graphs without non-Seymour odd K₄ and without non-Seymour odd prism.

Subclasses Seymour : Graphs without odd cycle, Seymour : Graphs without subdivision of K₄, Gerards : Graphs without odd K₄ and without odd pri Szigeti : Graphs without non-Seymour odd K₄ and w non-Seymour odd prism.

7 / 25

Subclasses

- Seymour : Graphs without odd cycle,
- **2** Seymour : Graphs without subdivision of K_4 ,
- **3** Gerards : Graphs without odd K_4 and without odd prism,
- Szigeti : Graphs without non-Seymour odd K₄ and without non-Seymour odd prism.

7 / 25

Subclasses

- Seymour : Graphs without odd cycle,
- **2** Seymour : Graphs without subdivision of K_4 ,
- Second S
- Szigeti : Graphs without non-Seymour odd K₄ and without non-Seymour odd prism.

Subclasses

- Seymour : Graphs without odd cycle,
- **2** Seymour : Graphs without subdivision of K_4 ,
- Second S
- Szigeti : Graphs without non-Seymour odd K₄ and without non-Seymour odd prism.

Z. Szigeti (G-SCOP, Grenoble)

Subclasses

- Seymour : Graphs without odd cycle,
- **2** Seymour : Graphs without subdivision of K_4 ,
- Second S
- Szigeti : Graphs without non-Seymour odd K₄ and without non-Seymour odd prism.

Subclasses

- Seymour : Graphs without odd cycle,
- **2** Seymour : Graphs without subdivision of K_4 ,
- **③** Gerards : Graphs without odd K_4 and without odd prism,
- Szigeti : Graphs without non-Seymour odd K₄ and without non-Seymour odd prism.

odd prism

Subclasses

- Seymour : Graphs without odd cycle,
- Seymour : Graphs without subdivision of K_4 ,
- Serards : Graphs without odd K_4 and without odd prism,
- Szigeti : Graphs without non-Seymour odd K₄ and without non-Seymour odd prism.

Superclass

Seymour graph \implies no even subdivision of K_4 and of prism.

Z. Szigeti (G-SCOP, Grenoble)

Characterization of Seymour graphs

15th November 2011

7 / 25

æ

ъ

< □ > < 同 >

Definition Given a join *F*, a cycle *C* is *F*-tight if $|C \cap F| = |C \setminus F|$.

< A

э

Definition

Given a join F, a cycle C is F-tight if $|C \cap F| = |C \setminus F|$.

Lemma (Sebő)

If for a join F of G there exist two F-tight cycles whose union is not bipartite, then G is not Seymour.

Definition

Given a join F, a cycle C is F-tight if $|C \cap F| = |C \setminus F|$.

Lemma (Sebő)

If for a join F of G there exist two F-tight cycles whose union is not bipartite, then G is not Seymour.

Conjecture (Sebő)

Definition

Given a join F, a cycle C is F-tight if $|C \cap F| = |C \setminus F|$.

Lemma (Sebő)

If for a join F of G there exist two F-tight cycles whose union is not bipartite, then G is not Seymour.

Conjecture (Sebő)

Definition

Given a join F, a cycle C is F-tight if $|C \cap F| = |C \setminus F|$.

Lemma (Sebő)

If for a join F of G there exist two F-tight cycles whose union is not bipartite, then G is not Seymour.

Conjecture (Sebő)

Definition

Given a join F, a cycle C is F-tight if $|C \cap F| = |C \setminus F|$.

Lemma (Sebő)

If for a join F of G there exist two F-tight cycles whose union is not bipartite, then G is not Seymour.

Conjecture (Sebő)

Attention !

Seymour property is not inherited to subgraphs.

② Contraction of an edge does not keep Seymour property.

Attention !

Seymour property is not inherited to subgraphs.

Ontraction of an edge does not keep Seymour property.

Attention !

- Seymour property is not inherited to subgraphs.
- ② Contraction of an edge does not keep Seymour property.

Special non-Seymour subgraph

- **()** A Seymour graph may contain as a subgraph an odd K_4 or prism.
- A Seymour graph may not contain as a subgraph an even subdivision of K₄ or of prism.

Attention !

- Seymour property is not inherited to subgraphs.
- 2 Contraction of an edge does not keep Seymour property.

Special non-Seymour subgraph

- **()** A Seymour graph may contain as a subgraph an odd K_4 or prism.
- A Seymour graph may not contain as a subgraph an even subdivision of K₄ or of prism.

- **(**) *G* is factor-critical if $\forall v \in V$, G v admits a perfect matching.
- 2 The contraction of a factor-critical subgraph and its neighbors is a factor-contraction.

- **Q** G is factor-critical if $\forall v \in V, G v$ admits a perfect matching.
- 2 The contraction of a factor-critical subgraph and its neighbors is a factor-contraction.

- **Q** G is factor-critical if $\forall v \in V, G v$ admits a perfect matching.
- The contraction of a factor-critical subgraph and its neighbors is a factor-contraction.

- **Q** G is factor-critical if $\forall v \in V, G v$ admits a perfect matching.
- The contraction of a factor-critical subgraph and its neighbors is a factor-contraction.

Important lemma

Factor-contraction keeps the Seymour property !

Z. Szigeti (G-SCOP, Grenoble)

15th November 2011

11 / 25

- Star-contraction : contraction of all edges incident to a vertex.
- **Odd cycle-contraction** : contraction of an odd cycle.
- STOC-minor : Graph obtained by a series of star and odd cycle-contractions.

- Star-contraction : contraction of all edges incident to a vertex.
- Odd cycle-contraction : contraction of an odd cycle.
- STOC-minor : Graph obtained by a series of star and odd cycle-contractions.

- Star-contraction : contraction of all edges incident to a vertex.
- Odd cycle-contraction : contraction of an odd cycle.
- STOC-minor : Graph obtained by a series of star and odd cycle-contractions.

- Star-contraction : contraction of all edges incident to a vertex.
- **Odd cycle-contraction** : contraction of an odd cycle.
- STOC-minor : Graph obtained by a series of star and odd cycle-contractions.

- Star-contraction : contraction of all edges incident to a vertex.
- **Odd cycle-contraction** : contraction of an odd cycle.
- STOC-minor : Graph obtained by a series of star and odd cycle-contractions.

Remark

If G can be factor-contracted to H then H is a STOC-minor of G !

Theorem (Ageev, Benchetrit, Sebő, Szigeti)

The following conditions are equivalent :

G is not Seymour,

- G can be factor-contracted to a graph that contains a non-trivial bicritical subgraph,
- 3 *G* can be factor-contracted to a graph that contains an even subdivision of K_4 or of the prism,
- G has a STOC-minor that contains an even subdivision of K₄ or of the prism,
- **5** G has a STOC-minor that contains an even subdivision of K_4 .

Theorem (Ageev, Benchetrit, Sebő, Szigeti)

- G is not Seymour, Sebő's theorem \implies
- G can be factor-contracted to a graph that contains a non-trivial bicritical subgraph,
- 3 G can be factor-contracted to a graph that contains an even subdivision of K_4 or of the prism,
- G has a STOC-minor that contains an even subdivision of K₄ or of the prism,
- **5** *G* has a STOC-minor that contains an even subdivision of K_4 .

Theorem (Ageev, Benchetrit, Sebő, Szigeti)

- G is not Seymour,
- ② G can be factor-contracted to a graph that contains a non-trivial bicritical subgraph, Lovász-Plummer's theorem ⇒
- G can be factor-contracted to a graph that contains an even subdivision of K₄ or of the prism,
- G has a STOC-minor that contains an even subdivision of K₄ or of the prism,
- **o** G has a STOC-minor that contains an even subdivision of K_4 .

Theorem (Ageev, Benchetrit, Sebő, Szigeti)

- G is not Seymour,
- G can be factor-contracted to a graph that contains a non-trivial bicritical subgraph,
- G can be factor-contracted to a graph that contains an even subdivision of K_4 or of the prism, Lovász theorem \implies
- G has a STOC-minor that contains an even subdivision of K₄ or of the prism,
- **5** G has a STOC-minor that contains an even subdivision of K_4 .

Theorem (Ageev, Benchetrit, Sebő, Szigeti)

- G is not Seymour,
- G can be factor-contracted to a graph that contains a non-trivial bicritical subgraph,
- G can be factor-contracted to a graph that contains an even subdivision of K_4 or of the prism,
- G has a STOC-minor that contains an even subdivision of K₄ or of the prism,
- G has a STOC-minor that contains an even subdivision of K_4 .

- **1** If *H* contains an even subdivision of K_4 then *H* is not Seymour.
- Star-contraction keeps the Seymour property.
- 3 Odd cycle-contraction keeps the Seymour property.

14 / 25

() If H contains an even subdivision of K_4 then H is not Seymour.

- 2 Star-contraction keeps the Seymour property.
- Odd cycle-contraction keeps the Seymour property.

- **(**) If H contains an even subdivision of K_4 then H is not Seymour.
- Star-contraction keeps the Seymour property.
- Odd cycle-contraction keeps the Seymour property.

- **1** If H contains an even subdivision of K_4 then H is not Seymour.
- Star-contraction keeps the Seymour property.
- Odd cycle-contraction keeps the Seymour property.

Lemma

If C is an odd cycle in G and G/C is not Seymour then neither is G.

Lemma

If C is an odd cycle in G and G/C is not Seymour then neither is G.

Ideas of the Proof

• G/C is not Seymour,

- there exist in G/C a join F and two F-tight cycles whose union is an odd K₄ or an odd prism.
- It is easy to extend them to get F' and two F'-tight cycles whose union is an odd K₄ or an odd prism.
- How to guarantee that F' is a join in G?
- What is the certificate for a join?

Lemma

If C is an odd cycle in G and G/C is not Seymour then neither is G.

Ideas of the Proof

- G/C is not Seymour,
- there exist in G/C a join F and two F-tight cycles whose union is an odd K₄ or an odd prism.
- It is easy to extend them to get F' and two F'-tight cycles whose union is an odd K₄ or an odd prism.
- How to guarantee that F' is a join in G?
- What is the certificate for a join?

Lemma

If C is an odd cycle in G and G/C is not Seymour then neither is G.

Ideas of the Proof

- G/C is not Seymour,
- there exist in G/C a join F and two F-tight cycles whose union is an odd K₄ or an odd prism.
- It is easy to extend them to get F' and two F'-tight cycles whose union is an odd K₄ or an odd prism.
- How to guarantee that F' is a join in G?
- What is the certificate for a join?

Lemma

If C is an odd cycle in G and G/C is not Seymour then neither is G.

Ideas of the Proof

- G/C is not Seymour,
- there exist in G/C a join F and two F-tight cycles whose union is an odd K₄ or an odd prism.
- It is easy to extend them to get F' and two F'-tight cycles whose union is an odd K₄ or an odd prism.
- How to guarantee that F' is a join in G?

• What is the certificate for a join?

Lemma

If C is an odd cycle in G and G/C is not Seymour then neither is G.

Ideas of the Proof

- G/C is not Seymour,
- there exist in G/C a join F and two F-tight cycles whose union is an odd K₄ or an odd prism.
- It is easy to extend them to get F' and two F'-tight cycles whose union is an odd K₄ or an odd prism.
- How to guarantee that F' is a join in G?
- What is the certificate for a join?

Complete 2-packing of cuts (for G and $F \subseteq E(G)$)

2|F| cuts so that

- 2 every edge of G belongs to \leq 2 cuts and
- every cut contains exactly one edge of F.

Complete 2-packing of cuts (for G and $F \subseteq E(G)$)

Q 2|F| cuts so that

- 2 every edge of G belongs to \leq 2 cuts and
- every cut contains exactly one edge of F.

Complete 2-packing of cuts (for G and $F \subseteq E(G)$)

Q 2|F| cuts so that

2 every edge of G belongs to ≤ 2 cuts and

every cut contains exactly one edge of F.

Complete 2-packing of cuts (for G and $F \subseteq E(G)$)

Q 2|F| cuts so that

- 2 every edge of G belongs to ≤ 2 cuts and
- every cut contains exactly one edge of *F*.

Complete 2-packing of cuts (for G and $F \subseteq E(G)$)

Q 2|F| cuts so that

2 every edge of G belongs to ≤ 2 cuts and

• every cut contains exactly one edge of *F*.

Example : If Q is a CPC, then 2Q is a C2PC.

Complete 2-packing of cuts (for G and $F \subseteq E(G)$)

2|F| cuts so that

- 2 every edge of G belongs to ≤ 2 cuts and
- every cut contains exactly one edge of *F*.

Theorem (Edmonds-Johnson, Lovász)

F is a join \iff there exists a complete 2-packing of cuts.

Lemma

If C is an odd cycle in G and G/C is not Seymour then neither is G.

Ideas of the Proof

- G/C is not Seymour,
- there exist in *G*/*C* an edge set *F*, a complete 2-packing of cuts *Q* for *F* and two *F*-tight cycles whose union *H* is an odd *K*₄ or an odd prism.
- It is easy to extend them to get F' and two F'-tight cycles whose union is an odd K₄ or an odd prism.
- How to extend Q? The edges in $\delta(c)$ are already covered twice by Q!
- For $d_H(c) = 3$: \mathcal{Q} can be chosen so that it contains $\delta(c)$.
- For $d_H(c) = 2$: it is not true! New idea is needed.

э

17 / 25

- ∢ ≣ ▶

< □ > < 同 >

Lemma

If C is an odd cycle in G and G/C is not Seymour then neither is G.

Ideas of the Proof

- G/C is not Seymour,
- there exist in *G*/*C* an edge set *F*, a complete 2-packing of cuts *Q* for *F* and two *F*-tight cycles whose union *H* is an odd *K*₄ or an odd prism.
- It is easy to extend them to get F' and two F'-tight cycles whose union is an odd K₄ or an odd prism.
- How to extend Q? The edges in $\delta(c)$ are already covered twice by Q!
- For $d_H(c) = 3$: Q can be chosen so that it contains $\delta(c)$.
- For $d_H(c) = 2$: it is not true! New idea is needed.

< □ > < 同 >

Lemma

If C is an odd cycle in G and G/C is not Seymour then neither is G.

Ideas of the Proof

- G/C is not Seymour,
- there exist in *G*/*C* an edge set *F*, a complete 2-packing of cuts *Q* for *F* and two *F*-tight cycles whose union *H* is an odd *K*₄ or an odd prism.
- It is easy to extend them to get F' and two F'-tight cycles whose union is an odd K₄ or an odd prism.
- How to extend Q? The edges in $\delta(c)$ are already covered twice by Q!
- For $d_H(c) = 3$: Q can be chosen so that it contains $\delta(c)$.
- For $d_H(c) = 2$: it is not true! New idea is needed.

< □ > < 同 >

Lemma

If C is an odd cycle in G and G/C is not Seymour then neither is G.

Ideas of the Proof

- G/C is not Seymour,
- there exist in *G*/*C* an edge set *F*, a complete 2-packing of cuts *Q* for *F* and two *F*-tight cycles whose union *H* is an odd *K*₄ or an odd prism.
- It is easy to extend them to get F' and two F'-tight cycles whose union is an odd K₄ or an odd prism.
- How to extend Q? The edges in $\delta(c)$ are already covered twice by Q!
- For $d_H(c) = 3$: Q can be chosen so that it contains $\delta(c)$.
- For $d_H(c) = 2$: it is not true! New idea is needed.

Image: Image:

3 graphs

< 冊

문 🛌 문

3 graphs

and their even subdivisions

э

3 graphs

and their even subdivisions

э

3 graphs

and their even subdivisions

э

K_4 -obstruction

K_4 -obstruction

An odd K_4 subgraph H of G with disjoint sets $U_i \subseteq V(H)$ such that

- $H[U_i \cup N_H(U_i)]$ is an even subdivision of a 3-star,
- ② contracting each $U_i \cup N_G(U_i)$, *H* transforms into an even subdivision of K_4 .

Prism-obstruction

An odd prism subgraph H of G with disjoint sets $U_i \subseteq V(H)$ such that

- $H[U_i \cup N_H(U_i)]$ is an even subdivision of a 2- or 3-star,
- ② contracting each $U_i ∪ N_G(U_i)$, H transforms into an even subdivision of the prism or of the biprism (no edge of G connects the two connected components of the biprism minus its separator).

And some other co-NP characterizations of Seymour graphs

Theorem (Ageev, Benchetrit, Sebő, Szigeti)

The following conditions are equivalent :

- G is not Seymour,
- **2** G can be factor-contracted to a graph that contains an even subdivision of K_4 or of the prism,
- G contains an obstruction,

there exist in G an edge set F, a complete 2-packing of cuts Q for F and two F-tight cycles whose union H is an odd K₄ or an odd prism; and Q contains the stars of all degree 3 vertices in H,

§ G has a STOC-minor that contains an even subdivision of K_4 .

And some other co-NP characterizations of Seymour graphs

Theorem (Ageev, Benchetrit, Sebő, Szigeti)

The following conditions are equivalent :

- G is not Seymour,
- **2** G can be factor-contracted to a graph that contains an even subdivision of K_4 or of the prism,
- G contains an obstruction,

there exist in G an edge set F, a complete 2-packing of cuts Q for F and two F-tight cycles whose union H is an odd K₄ or an odd prism; and Q contains the stars of all degree 3 vertices in H,

§ G has a STOC-minor that contains an even subdivision of K_4 .

And some other co-NP characterizations of Seymour graphs

Theorem (Ageev, Benchetrit, Sebő, Szigeti)

The following conditions are equivalent :

- G is not Seymour,
- **2** G can be factor-contracted to a graph that contains an even subdivision of K_4 or of the prism,
- G contains an obstruction,
- there exist in G an edge set F, a complete 2-packing of cuts Q for F and two F-tight cycles whose union H is an odd K₄ or an odd prism; and Q contains the stars of all degree 3 vertices in H,
- Solution G has a STOC-minor that contains an even subdivision of K_4 .

Lemma

If C is an odd cycle in G and G/C is not Seymour then neither is G.

Ideas of the Proof

- G/C is not Seymour,
- G/C contains an obstruction H,
- For $d_H(c) = 2$:
 - if c ∈ V \ ∪N_H(U_i), then the obstruction can be extended by the even path of C,
 - if c ∈ ∪N_H(U_i), then using the structure of the obstruction, one can find another obstruction.

Lemma

If C is an odd cycle in G and G/C is not Seymour then neither is G.

Ideas of the Proof

- G/C is not Seymour,
- G/C contains an obstruction H,
- For $d_H(c) = 2$:
 - if c ∈ V \ ∪N_H(U_i), then the obstruction can be extended by the even path of C,
 - if c ∈ ∪N_H(U_i), then using the structure of the obstruction, one can find another obstruction.

Lemma

If C is an odd cycle in G and G/C is not Seymour then neither is G.

Ideas of the Proof

- G/C is not Seymour,
- G/C contains an obstruction H,
- For $d_H(c) = 2$:
 - if $c \in V \setminus \bigcup N_H(U_i)$, then the obstruction can be extended by the even path of C,
 - if $c \in \bigcup N_H(U_i)$, then using the structure of the obstruction, one can find another obstruction.

Lemma

If C is an odd cycle in G and G/C is not Seymour then neither is G.

Ideas of the Proof

- G/C is not Seymour,
- G/C contains an obstruction H,
- For $d_H(c) = 2$:
 - if $c \in V \setminus \bigcup N_H(U_i)$, then the obstruction can be extended by the even path of C,
 - if $c \in \bigcup N_H(U_i)$, then using the structure of the obstruction, one can find another obstruction.

Lemma

If C is an odd cycle in G and G/C is not Seymour then neither is G.

Ideas of the Proof

- G/C is not Seymour,
- G/C contains an obstruction H,
- For $d_H(c) = 2$:
 - if $c \in V \setminus \bigcup N_H(U_i)$, then the obstruction can be extended by the even path of C,
 - if $c \in \bigcup N_H(U_i)$, then using the structure of the obstruction, one can find another obstruction.

- Given a graph G, decide whether it is a Seymour graph.
- Q Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

- Given a graph G, decide whether it is a Seymour graph.
- Q Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

- Given a graph G, decide whether it is a Seymour graph.
- Q Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

- Given a graph G, decide whether it is a Seymour graph.
- Q Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G,

- either provide an F-complete packing of cuts
- I or show that G is not Seymour.

- Given a graph G, decide whether it is a Seymour graph.
- Q Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G,

- either provide an F-complete packing of cuts
 - or show that G is not Seymour.

- Given a graph G, decide whether it is a Seymour graph.
- Q Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G,

- either provide an *F*-complete packing of cuts
- **2** or show that G is not Seymour.

NP characterization?

э

NP characterization?

Find a construction for Seymour graphs!

Z. Szigeti (G-SCOP, Grenoble)

Thanks!

э

æ