An excluded minor characterization of Seymour graphs

Zoltán Szigeti
Laboratoire G-SCOP
Grenoble, France

15th November 2011
joint with A. Ageev, Y. Benchetrit, A. Sebő

Outline

(1) Motivation
(2) Definitions: complete packing of cuts, joins
(3) Seymour Graphs
(9) Around Seymour graphs
(3) Old co-NP characterization of Seymour graphs
(3) New co-NP characterization of Seymour graphs
(3) Ideas of the proof
(3) Algorithmic aspects
(O) Open problem

Motivation

Edge-disjoint paths problem

Given a graph $H=(V, E)$ and k pairs of vertices $\left\{s_{i}, t_{i}\right\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_{i}, t_{i}.

Motivation

Edge-disjoint paths problem

Given a graph $H=(V, E)$ and k pairs of vertices $\left\{s_{i}, t_{i}\right\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_{i}, t_{i}.

Reformulation by adding the set F of edges $s_{i} t_{i}$.

Motivation

Edge-disjoint paths problem

Given a graph $H=(V, E)$ and k pairs of vertices $\left\{s_{i}, t_{i}\right\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_{i}, t_{i}.

Reformulation by adding the set F of edges $s_{i} t_{i}$.

Complete packing of cycles

Given a graph $H^{\prime}=(V, E+F)$, decide whether there exist $|F|$ edge-disjoint cycles in H^{\prime}, each containing exactly one edge of F.

Motivation

Edge-disjoint paths problem

Given a graph $H=(V, E)$ and k pairs of vertices $\left\{s_{i}, t_{i}\right\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_{i}, t_{i}.

Reformulation by adding the set F of edges $s_{i} t_{i}$.

Complete packing of cycles

Given a graph $H^{\prime}=(V, E+F)$, decide whether there exist $|F|$ edge-disjoint cycles in H^{\prime}, each containing exactly one edge of F.

Suppose H^{\prime} is planar. The problem in the dual :

Motivation

Edge-disjoint paths problem

Given a graph $H=(V, E)$ and k pairs of vertices $\left\{s_{i}, t_{i}\right\}$, decide whether there exist k edge-disjoint paths connecting the k pairs s_{i}, t_{i}.

Reformulation by adding the set F of edges $s_{i} t_{i}$.

Complete packing of cycles

Given a graph $H^{\prime}=(V, E+F)$, decide whether there exist $|F|$ edge-disjoint cycles in H^{\prime}, each containing exactly one edge of F.

Suppose H^{\prime} is planar. The problem in the dual :

Complete packing of cuts

Given a graph $G=\left(V^{\prime}, E^{\prime}+F^{\prime}\right)$, decide whether there exist $\left|F^{\prime}\right|$ edge-disjoint cuts in G, each containing exactly one edge of F^{\prime}.

An example

Edge-disjoint paths problem

An example

Complete packing of paths

An example

Adding the edges

An example

The graph H^{\prime}

An example

Complete packing of cycles

An example

H^{\prime} is planar

An example

H^{\prime} and his dual

An example

H^{\prime} and his dual

An example

Complete packing of cycles and cuts

Complete packing of cuts

The graphs are not planar anymore!

Complete packing of cuts

The problem

Given a graph $G=(V, E+F)$, decide whether there exist $|F|$ edge-disjoint cuts in G, each containing exactly one edge of F.

Complete packing of cuts

The problem

Given a graph $G=(V, E+F)$, decide whether there exist $|F|$ edge-disjoint cuts in G, each containing exactly one edge of F.

Necessary condition

If the graph $G=(V, E+F)$ admits a complete packing of cuts, then F is a join : for every cycle $C,|C \cap F| \leq|C \backslash F|$.

Complete packing of cuts

The problem

Given a graph $G=(V, E+F)$, decide whether there exist $|F|$ edge-disjoint cuts in G, each containing exactly one edge of F.

Necessary condition

If the graph $G=(V, E+F)$ admits a complete packing of cuts, then F is a join : for every cycle $C,|C \cap F| \leq|C \backslash F|$.

Sufficient condition?

If F is a join, the graph $G=(V, E+F)$ admits a complete packing of cuts?

Complete packing of cuts

The problem

Given a graph $G=(V, E+F)$, decide whether there exist $|F|$ edge-disjoint cuts in G, each containing exactly one edge of F.

Necessary condition

If the graph $G=(V, E+F)$ admits a complete packing of cuts, then F is a join : for every cycle $C,|C \cap F| \leq|C \backslash F|$.

Sufficient condition?

If F is a join, the graph $G=(V, E+F)$ admits a complete packing of cuts?

> NOT :

Complete packing of cuts

The problem

Given a graph $G=(V, E+F)$, decide whether there exist $|F|$ edge-disjoint cuts in G, each containing exactly one edge of F.

Necessary condition

If the graph $G=(V, E+F)$ admits a complete packing of cuts, then F is a join: for every cycle $C,|C \cap F| \leq|C \backslash F|$.

Sufficient condition?

If F is a join, the graph $G=(V, E+F)$ admits a complete packing of cuts?

Theorem (Middendorf, Pfeiffer)

Given a join in a graph, decide whether there exists a complete packing of cuts is an NP-complete problem.

Seymour graphs

Theorem (Seymour)

If G is a bipartite graph, then for every join there exists a complete packing of cuts.

Seymour graphs

Theorem (Seymour)

If G is a bipartite graph, then for every join there exists a complete packing of cuts.

```
Theorem (Seymour)
If G is a series-parallel graph, then for every join there exists a complete packing of cuts.
```


Seymour graphs

Theorem (Seymour)

If G is a bipartite graph, then for every join there exists a complete packing of cuts.

Theorem (Seymour)

If G is a series-parallel graph, then for every join there exists a complete packing of cuts.

```
Definition
G is a Seymour graph
if for every join there exists a complete packing of cuts.
```


Seymour graphs

Theorem (Seymour)

If G is a bipartite graph, (\Longleftrightarrow no odd cycle) then for every join there exists a complete packing of cuts.

Theorem (Seymour)

If G is a series-parallel graph, then for every join there exists a complete packing of cuts.

```
Definition
G is a Seymour graph
if for every join there exists a complete packing of cuts.
```


Seymour graphs

Theorem (Seymour)

If G is a bipartite graph, (\Longleftrightarrow no odd cycle) then for every join there exists a complete packing of cuts.

Theorem (Seymour)

If G is a series-parallel graph, $\left(\Longleftrightarrow\right.$ no subdivision of $\left.K_{4}\right)$ then for every join there exists a complete packing of cuts.

Definition

G is a Seymour graph
if for every join there exists a complete packing of cuts.

Seymour graphs

Theorem (Seymour)

If G is a bipartite graph, (\Longleftrightarrow no odd cycle) then for every join there exists a complete packing of cuts.

Theorem (Seymour)

If G is a series-parallel graph, $\left(\Longleftrightarrow\right.$ no subdivision of $\left.K_{4}\right)$ then for every join there exists a complete packing of cuts.

Definition

G is a Seymour graph \Longleftrightarrow ?
if for every join there exists a complete packing of cuts.

Around Seymour graphs

Subclasses

(1) Seymour : Graphs without odd cycle,
(2) Seymour : Graphs without subdivision of K_{4},
(3) Gerards : Granhs without odd K_{n} and without odd prism,
(4) Szigeti : Graphs without non-Seymour odd K_{4} and without non-Seymour odd prism.

Around Seymour graphs

Subclasses

(1) Seymour : Graphs without odd cycle,
(2) Seymour: Graphs without subdivision of K_{4},
(3) Gerards : Graphs without odd K_{4} and without odd prism,
(4) Szigeti : Graphs without non-Seymour odd K_{4} and without non-Seymour odd prism.

Around Seymour graphs

Subclasses

(1) Seymour: Graphs without odd cycle,
(2) Seymour: Graphs without subdivision of K_{4},
(3) Gerards : Graphs without odd K_{4} and without odd prism,
(4) Szigeti : Graphs without non-Seymour odd K_{4} and without non-Seymour odd prism.

Around Seymour graphs

Subclasses

(1) Seymour: Graphs without odd cycle,
(2) Seymour: Graphs without subdivision of K_{4},
(3) Gerards : Graphs without odd K_{4} and without odd prism, (1) Szigeti : Graphs without non-Seymour odd K_{4} and without

Around Seymour graphs

Subclasses

(1) Seymour: Graphs without odd cycle,
(2) Seymour: Graphs without subdivision of K_{4},
(3) Gerards : Graphs without odd K_{4} and without odd prism,
(1) Szigeti : Graphs without non-Seymour odd K_{4} and without

Around Seymour graphs

Subclasses

(1) Seymour: Graphs without odd cycle,
(2) Seymour: Graphs without subdivision of K_{4},
(3) Gerards : Graphs without odd K_{4} and without odd prism, (1) Szigeti : Graphs without non-Seymour odd K_{4} and without

Around Seymour graphs

Subclasses

(1) Seymour: Graphs without odd cycle,
(2) Seymour: Graphs without subdivision of K_{4},
(3) Gerards : Graphs without odd K_{4} and without odd prism,
(9) Szigeti : Graphs without non-Seymour odd K_{4} and without non-Seymour odd prism.

Around Seymour graphs

Subclasses

(1) Seymour : Graphs without odd cycle,
(2) Seymour: Graphs without subdivision of K_{4},
(3) Gerards : Graphs without odd K_{4} and without odd prism,
(9) Szigeti : Graphs without non-Seymour odd K_{4} and without non-Seymour odd prism.

Superclass

Seymour graph \Longrightarrow no even subdivision of K_{4} and of prism.

Preliminaries

Seymour odd K_{4}

non-Seymour odd K_{4}

Preliminaries

Definition

Given a join F, a cycle C is F-tight if $|C \cap F|=|C \backslash F|$.

Preliminaries

Definition

Given a join F, a cycle C is F-tight if $|C \cap F|=|C \backslash F|$.

Lemma (Sebő)

If for a join F of G there exist two F-tight cycles whose union is not bipartite, then G is not Seymour.

Preliminaries

Seymour

non-Seymour odd K_{4}

Definition

Given a join F, a cycle C is F-tight if $|C \cap F|=|C \backslash F|$.

Lemma (Sebő)

If for a join F of G there exist two F-tight cycles whose union is not bipartite, then G is not Seymour.

Conjecture (Sebő)

G is not Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_{4} or an odd prism.

Preliminaries

Seymour odd K_{4}

non-Seymour odd K_{4}

Definition

Given a join F, a cycle C is F-tight if $|C \cap F|=|C \backslash F|$.

Lemma (Sebő)

If for a join F of G there exist two F-tight cycles whose union is not bipartite, then G is not Seymour.

Conjecture (Sebő)

G is not Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_{4} or an odd prism.

Preliminaries

Seymour

non-Seymour odd K_{4}

Definition

Given a join F, a cycle C is F-tight if $|C \cap F|=|C \backslash F|$.

Lemma (Sebő)

If for a join F of G there exist two F-tight cycles whose union is not bipartite, then G is not Seymour.

Conjecture (Sebő)

G is not Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_{4} or an odd prism.

Preliminaries

Seymour

non-Seymour odd K_{4}

Definition

Given a join F, a cycle C is F-tight if $|C \cap F|=|C \backslash F|$.

Lemma (Sebő)

If for a join F of G there exist two F-tight cycles whose union is not bipartite, then G is not Seymour.

Conjecture (Sebő)

G is not Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_{4} or an odd prism.

Old co-NP characterization of Seymour graphs

Theorem (Ageev, Kostochka, Szigeti)
G is not Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_{4} or an odd prism.

Old co-NP characterization of Seymour graphs

Theorem (Ageev, Kostochka, Szigeti)

G is not Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_{4} or an odd prism.

Examples

non-Seymour odd prism

Old co-NP characterization of Seymour graphs

Theorem (Ageev, Kostochka, Szigeti)

G is not Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_{4} or an odd prism.

Examples

non-Seymour odd prism

Old co-NP characterization of Seymour graphs

Theorem (Ageev, Kostochka, Szigeti)

G is not Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_{4} or an odd prism.

Examples

Old co-NP characterization of Seymour graphs

Theorem (Ageev, Kostochka, Szigeti)

G is not Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_{4} or an odd prism.

Examples

non-Seymour

Old co-NP characterization of Seymour graphs

Theorem (Ageev, Kostochka, Szigeti)

G is not Seymour if and only if G admits a join F and two F-tight cycles whose union is an odd K_{4} or an odd prism.

Examples

non-Seymour odd prism

Forbidden minors?

Attention!

(1) Seymour property is not inherited to subgraphs.

(2) Contraction of an edge does not keep Seymour property.

Seymour graph

non-Seymour odd K_{4}

Forbidden minors?

Attention!

(1) Seymour property is not inherited to subgraphs.
(2) Contraction of an edge does not keep Seymour property.

Seymour graph

non-Seymour odd K_{4}

Forbidden minors?

Attention!

(1) Seymour property is not inherited to subgraphs.
(2) Contraction of an edge does not keep Seymour property.

Special non-Seymour subgraph

(1) A Seymour graph may contain as a subgraph an odd K_{4} or prism.
(2) A Seymour graph may not contain as a subgraph an even subdivision of K_{4} or of prism.

Forbidden minors?

Attention!

(1) Seymour property is not inherited to subgraphs.
(2) Contraction of an edge does not keep Seymour property.

Special non-Seymour subgraph

(1) A Seymour graph may contain as a subgraph an odd K_{4} or prism.
(2) A Seymour graph may not contain as a subgraph an even subdivision of K_{4} or of prism.

A new notion of contraction

Definitions

(1) G is factor-critical if $\forall v \in V, G-v$ admits a perfect matching.
(2) The contraction of a factor-critical subgraph and its neighbors is a factor-contraction.

A new notion of contraction

Definitions

(1) G is factor-critical if $\forall v \in V, G-v$ admits a perfect matching. (2) The contraction of a factor-critical subgraph and its neighbors is a

A new notion of contraction

Definitions

(1) G is factor-critical if $\forall v \in V, G-v$ admits a perfect matching.
(2) The contraction of a factor-critical subgraph and its neighbors is a factor-contraction.

A new notion of contraction

Definitions

(1) G is factor-critical if $\forall v \in V, G-v$ admits a perfect matching.
(2) The contraction of a factor-critical subgraph and its neighbors is a factor-contraction.

Important lemma

Factor-contraction keeps the Seymour property!

A new notion of minor

Definitions

(1) Star-contraction : contraction of all edges incident to a vertex.
(2) Odd cycle-contraction : contraction of an odd cycle.

3 STOC-minor : Granh ohtained by a series of star and odd cycle-contractions.

A new notion of minor

Definitions

(1) Star-contraction : contraction of all edges incident to a vertex.
(3) Odd cycle-contraction : contraction of an odd cycle.
(3) STOC-minor: Graph obtained by a series of star and odd cycle-contractions.

A new notion of minor

Definitions

(1) Star-contraction : contraction of all edges incident to a vertex.
(2) Odd cycle-contraction: contraction of an odd cycle.
(3) STOC-minor: Graph obtained by a series of star and odd cycle-contractions.

A new notion of minor

Definitions

(1) Star-contraction : contraction of all edges incident to a vertex.
(2) Odd cycle-contraction : contraction of an odd cycle.
(3) STOC-minor: Graph obtained by a series of star and odd cycle-contractions.

A new notion of minor

Definitions

(1) Star-contraction : contraction of all edges incident to a vertex.
(2) Odd cycle-contraction : contraction of an odd cycle.
(3) STOC-minor: Graph obtained by a series of star and odd cycle-contractions.

Remark

If G can be factor-contracted to H then H is a STOC-minor of G !

New co-NP characterizations of Seymour graphs

Theorem (Ageev, Benchetrit, Sebő, Szigeti)
The following conditions are equivalent :
(1) G is not Seymour,
(2) G can be factor-contracted to a graph that contains a non-trivial bicritical subgraph,
(3) G can be factor-contracted to a graph that contains an even subdivision of K_{4} or of the prism,
(9) G has a STOC-minor that contains an even subdivision of K_{4} or of the prism,

New co-NP characterizations of Seymour graphs

Theorem (Ageev, Benchetrit, Sebő, Szigeti)

The following conditions are equivalent :
(1) G is not Seymour, Sebő's theorem \Longrightarrow
(2) G can be factor-contracted to a graph that contains a non-trivial bicritical subgraph,
(3) G can be factor-contracted to a graph that contains an even subdivision of K_{4} or of the prism,
(7) G has a STOC-minor that contains an even subdivision of K_{4} or of the prism,

New co-NP characterizations of Seymour graphs

Theorem (Ageev, Benchetrit, Sebő, Szigeti)

The following conditions are equivalent :
(1) G is not Seymour,
(2) G can be factor-contracted to a graph that contains a non-trivial bicritical subgraph, Lovász-Plummer's theorem \Longrightarrow
(3) G can be factor-contracted to a graph that contains an even subdivision of K_{4} or of the prism,
($)$ has a STOC-minor that contains an even subdivision of K_{4} or of the prism,

New co-NP characterizations of Seymour graphs

Theorem (Ageev, Benchetrit, Sebő, Szigeti)

The following conditions are equivalent :
(1) G is not Seymour,
(2) G can be factor-contracted to a graph that contains a non-trivial bicritical subgraph,
(3) G can be factor-contracted to a graph that contains an even subdivision of K_{4} or of the prism, Lovász theorem \Longrightarrow
(9) G has a STOC-minor that contains an even subdivision of K_{4} or of the prism,

New co-NP characterizations of Seymour graphs

Theorem (Ageev, Benchetrit, Sebő, Szigeti)

The following conditions are equivalent :
(1) G is not Seymour,
(2) G can be factor-contracted to a graph that contains a non-trivial bicritical subgraph,
(3) G can be factor-contracted to a graph that contains an even subdivision of K_{4} or of the prism,
(9) G has a STOC-minor that contains an even subdivision of K_{4} or of the prism,
(0) G has a STOC-minor that contains an even subdivision of K_{4}.

Proof of sufficiency :

> (1) If H contains an even subdivision of K_{4} then H is not Seymour.
> (2) Star-contraction keeps the Seymour property.
> (3) Odd cycle-contraction keeps the Seymour property.

Proof of sufficiency :

(1) If H contains an even subdivision of K_{4} then H is not Seymour. (2) Star-contraction keeps the Seymour property. (3) Odd cycle-contraction keeps the Seymour property.

Proof of sufficiency :

(1) If H contains an even subdivision of K_{4} then H is not Seymour.
(2) Star-contraction keeps the Seymour property.
(3) Odd cycle-contraction keeps the Seymour property.

Proof of sufficiency :

(1) If H contains an even subdivision of K_{4} then H is not Seymour.
(2) Star-contraction keeps the Seymour property.
(3) Odd cycle-contraction keeps the Seymour property.

Proof of sufficiency :

Lemma

If C is an odd cycle in G and G / C is not Seymour then neither is G.

Proof of sufficiency :

Lemma

If C is an odd cycle in G and G / C is not Seymour then neither is G.

Ideas of the Proof

- G / C is not Seymour,
- there exist in G / C a join F and two F-tight cycles whose union is an odd K_{4} or an odd prism.
- It is easy to extend them to get F^{\prime} and two F^{\prime}-tight cycles whose union is an odd K_{4} or an odd prism.
- How to guarantee that F^{\prime} is a join in G ?
- What is the certificate for a join?

Proof of sufficiency :

Lemma

If C is an odd cycle in G and G / C is not Seymour then neither is G.

Ideas of the Proof

- G / C is not Seymour,
- there exist in G / C a join F and two F-tight cycles whose union is an odd K_{4} or an odd prism.
- It is easy to extend them to get F^{\prime} and two F^{\prime}-tight cycles whose union is an odd K_{4} or an odd prism.
- How to guarantee that F^{\prime} is a join in G?
- What is the certificate for a join ?

Proof of sufficiency :

Lemma

If C is an odd cycle in G and G / C is not Seymour then neither is G.

Ideas of the Proof

- G / C is not Seymour,
- there exist in G / C a join F and two F-tight cycles whose union is an odd K_{4} or an odd prism.
- It is easy to extend them to get F^{\prime} and two F^{\prime}-tight cycles whose union is an odd K_{4} or an odd prism.
- How to guarantee that F^{\prime} is a join in G ?
- What is the certificate for a join?

Proof of sufficiency :

Lemma

If C is an odd cycle in G and G / C is not Seymour then neither is G.

Ideas of the Proof

- G / C is not Seymour,
- there exist in G / C a join F and two F-tight cycles whose union is an odd K_{4} or an odd prism.
- It is easy to extend them to get F^{\prime} and two F^{\prime}-tight cycles whose union is an odd K_{4} or an odd prism.
- How to guarantee that F^{\prime} is a join in G ?
- What is the certificate for a join?

Proof of sufficiency :

Lemma

If C is an odd cycle in G and G / C is not Seymour then neither is G.

Ideas of the Proof

- G / C is not Seymour,
- there exist in G / C a join F and two F-tight cycles whose union is an odd K_{4} or an odd prism.
- It is easy to extend them to get F^{\prime} and two F^{\prime}-tight cycles whose union is an odd K_{4} or an odd prism.
- How to guarantee that F^{\prime} is a join in G ?
- What is the certificate for a join?

Complete 2-packing of cuts

Complete 2-packing of cuts (for G and $F \subseteq E(G)$)

(1) $2|F|$ cuts so that
(2) every edge of G belongs to ≤ 2 cuts and
(3) every cut contains exactly one edge of F.

Complete 2-packing of cuts

Complete 2-packing of cuts (for G and $F \subseteq E(G)$)

(1) $2|F|$ cuts so that
(3) every edge of G belongs to ≤ 2 cuts and
(0) every cut contains exactly one edge of F.

Complete 2-packing of cuts

Complete 2-packing of cuts (for G and $F \subseteq E(G)$)

(1) $2|F|$ cuts so that
(2) every edge of G belongs to ≤ 2 cuts and
(3) every cut contains exactly one edge of F.

Complete 2-packing of cuts

Complete 2-packing of cuts (for G and $F \subseteq E(G)$)

(1) $2|F|$ cuts so that
(2) every edge of G belongs to ≤ 2 cuts and
(3) every cut contains exactly one edge of F.

Complete 2-packing of cuts

Complete 2-packing of cuts (for G and $F \subseteq E(G)$)

(1) $2|F|$ cuts so that
(2) every edge of G belongs to ≤ 2 cuts and
(3) every cut contains exactly one edge of F.

Example: If \mathcal{Q} is a CPC , then $2 \mathcal{Q}$ is a C 2 PC .

Complete 2-packing of cuts

Complete 2-packing of cuts (for G and $F \subseteq E(G)$)

(1) $2|F|$ cuts so that
(2) every edge of G belongs to ≤ 2 cuts and
(3) every cut contains exactly one edge of F.

Theorem (Edmonds-Johnson, Lovász)

F is a join \Longleftrightarrow there exists a complete 2-packing of cuts.

Proof of sufficiency :

Lemma

If C is an odd cycle in G and G / C is not Seymour then neither is G.

Ideas of the Proof

- G / C is not Seymour,
- there exist in G / C an edge set F, a complete 2-packing of cuts \mathcal{Q} for F and two F-tight cycles whose union H is an odd K_{4} or an odd prism.
- It is easy to extend them to get F^{\prime} and two F^{\prime}-tight cycles whose union is an odd K_{4} or an odd prism.
- How to extend \mathcal{Q} ? The edges in $\delta(c)$ are already covered twice by \mathcal{Q} ! - For $d_{H}(c)=3: \mathcal{Q}$ can be chosen so that it contains $\delta(c)$ - For $d_{H}(c)=2$: it is not true! New idea is needed.

Proof of sufficiency :

Lemma

If C is an odd cycle in G and G / C is not Seymour then neither is G.

Ideas of the Proof

- G / C is not Seymour,
- there exist in G / C an edge set F, a complete 2-packing of cuts \mathcal{Q} for F and two F-tight cycles whose union H is an odd K_{4} or an odd prism.
- It is easy to extend them to get F^{\prime} and two F^{\prime}-tight cycles whose union is an odd K_{4} or an odd prism.
- How to extend \mathcal{Q} ? The edges in $\delta(c)$ are already covered twice by \mathcal{Q} !
- For $d_{H}(c)=3: \mathcal{Q}$ can be chosen so that it contains $\delta(c)$
- For $d_{H}(c)=2$: it is not true! New idea is needed.

Proof of sufficiency :

Lemma

If C is an odd cycle in G and G / C is not Seymour then neither is G.

Ideas of the Proof

- G / C is not Seymour,
- there exist in G / C an edge set F, a complete 2-packing of cuts \mathcal{Q} for F and two F-tight cycles whose union H is an odd K_{4} or an odd prism.
- It is easy to extend them to get F^{\prime} and two F^{\prime}-tight cycles whose union is an odd K_{4} or an odd prism.
- How to extend \mathcal{Q} ? The edges in $\delta(c)$ are already covered twice by \mathcal{Q} !
- For $d_{H}(c)=3: \mathcal{Q}$ can be chosen so that it contains $\delta(c)$.
- For $d_{H}(c)=2$: it is not true! New idea is needed.

Proof of sufficiency :

Lemma

If C is an odd cycle in G and G / C is not Seymour then neither is G.

Ideas of the Proof

- G / C is not Seymour,
- there exist in G / C an edge set F, a complete 2-packing of cuts \mathcal{Q} for F and two F-tight cycles whose union H is an odd K_{4} or an odd prism.
- It is easy to extend them to get F^{\prime} and two F^{\prime}-tight cycles whose union is an odd K_{4} or an odd prism.
- How to extend \mathcal{Q} ? The edges in $\delta(c)$ are already covered twice by \mathcal{Q} !
- For $d_{H}(c)=3: \mathcal{Q}$ can be chosen so that it contains $\delta(c)$.
- For $d_{H}(c)=2$: it is not true! New idea is needed.

Graphs

3 graphs

Graphs

3 graphs

K_{4}

prism

bi-prism

and their even subdivisions

Graphs

3 graphs

K_{4}

prism

bi-prism

and their even subdivisions

Graphs

3 graphs

K_{4}

prism

bi-prism

and their even subdivisions

K_{4}-obstruction

K_{4}-obstruction

An odd K_{4} subgraph H of G with disjoint sets $U_{i} \subseteq V(H)$ such that
(1) $H\left[U_{i} \cup N_{H}\left(U_{i}\right)\right]$ is an even subdivision of a 3-star,
(2) contracting each $U_{i} \cup N_{G}\left(U_{i}\right), H$ transforms into an even subdivision of K_{4}.

Prism-obstruction

Prism-obstruction

An odd prism subgraph H of G with disjoint sets $U_{i} \subseteq V(H)$ such that
(1) $H\left[U_{i} \cup N_{H}\left(U_{i}\right)\right]$ is an even subdivision of a 2- or 3-star,
(2) contracting each $U_{i} \cup N_{G}\left(U_{i}\right), H$ transforms into an even subdivision of the prism or of the biprism (no edge of G connects the two connected components of the biprism minus its separator).

And some other co-NP characterizations of Seymour graphs

Theorem (Ageev, Benchetrit, Sebő, Szigeti)

The following conditions are equivalent :
(1) G is not Seymour,
(2) G can be factor-contracted to a graph that contains an even subdivision of K_{4} or of the prism,
(3) G contains an obstruction,
(9) there exist in G an edge set F, a complete 2-packing of cuts \mathcal{Q} for F and two F-tight cycles whose union H is an odd K_{4} or an odd prism and \mathcal{Q} contains the stars of all degree 3 vertices in H,
(5) G has a STOC-minor that contains an even subdivision of K_{4}.

And some other co-NP characterizations of Seymour graphs

Theorem (Ageev, Benchetrit, Sebő, Szigeti)

The following conditions are equivalent :
(1) G is not Seymour,
(2) G can be factor-contracted to a graph that contains an even subdivision of K_{4} or of the prism,
(3) G contains an obstruction,
(9) there exist in G an edge set F, a complete 2-packing of cuts \mathcal{Q} for F and two F-tight cycles whose union H is an odd K_{4} or an odd prism ; and \mathcal{Q} contains the stars of all degree 3 vertices in H,
(5) G has a STOC-minor that contains an even subdivision of K_{4}.

And some other co-NP characterizations of Seymour graphs

Theorem (Ageev, Benchetrit, Sebő, Szigeti)

The following conditions are equivalent :
(1) G is not Seymour,
(2) G can be factor-contracted to a graph that contains an even subdivision of K_{4} or of the prism,
(3) G contains an obstruction,
(3) there exist in G an edge set F, a complete 2-packing of cuts \mathcal{Q} for F and two F-tight cycles whose union H is an odd K_{4} or an odd prism; and \mathcal{Q} contains the stars of all degree 3 vertices in H,
(3) G has a STOC-minor that contains an even subdivision of K_{4}.

Proof of sufficiency :

Lemma

If C is an odd cycle in G and G / C is not Seymour then neither is G.

Ideas of the Proof

- G / C is not Seymour,
- G/C contains an obstruction H,
- For $d_{H}(c)=2$

Proof of sufficiency :

Lemma

If C is an odd cycle in G and G / C is not Seymour then neither is G.

Ideas of the Proof

- G / C is not Seymour,
- G / C contains an obstruction H,
- For $d_{H}(c)=2$

Proof of sufficiency :

Lemma

If C is an odd cycle in G and G / C is not Seymour then neither is G.

Ideas of the Proof

- G / C is not Seymour,
- G / C contains an obstruction H,
- For $d_{H}(c)=2$:

```
- if c\inV\\cupN NH}(\mp@subsup{U}{i}{})\mathrm{ , then the obstruction can be extended by the even
path of C,
- if c}\in\cup\mp@subsup{N}{H}{}(\mp@subsup{U}{i}{\prime})\mathrm{ , then using the structure of the obstruction, one can
find another obstruction.
```


Proof of sufficiency :

Lemma

If C is an odd cycle in G and G / C is not Seymour then neither is G.

Ideas of the Proof

- G / C is not Seymour,
- G / C contains an obstruction H,
- For $d_{H}(c)=2$:
- if $c \in V \backslash \cup N_{H}\left(U_{i}\right)$, then the obstruction can be extended by the even path of C,
- if $c \in \cup N_{H}\left(U_{i}\right)$, then using the structure of the obstruction, one can find another obstruction.

Proof of sufficiency :

Lemma

If C is an odd cycle in G and G / C is not Seymour then neither is G.

Ideas of the Proof

- G / C is not Seymour,
- G / C contains an obstruction H,
- For $d_{H}(c)=2$:
- if $c \in V \backslash \cup N_{H}\left(U_{i}\right)$, then the obstruction can be extended by the even path of C,
- if $c \in \cup N_{H}\left(U_{i}\right)$, then using the structure of the obstruction, one can find another obstruction.

Algorithmic aspects

What we can not do

(1) Given a graph G, decide whether it is a Seymour graph.
2) Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

Algorithmic aspects

What we can not do

(1) Given a graph G, decide whether it is a Seymour graph.
(2) Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

Algorithmic aspects

What we can not do

(1) Given a graph G, decide whether it is a Seymour graph.
(2) Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

Algorithmic aspects

What we can not do

(1) Given a graph G, decide whether it is a Seymour graph.
(2) Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G,
(1) either provide an F-complete packing of cuts
(2) or show that G is not Seymour.

Algorithmic aspects

What we can not do

(1) Given a graph G, decide whether it is a Seymour graph.
(2) Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G,
(1) either provide an F-complete packing of cuts
(2) or show that G is not Seymour.

Algorithmic aspects

What we can not do

(1) Given a graph G, decide whether it is a Seymour graph.
(2) Given a graph G and a join F in G, decide whether there exists an F-complete packing of cuts.

What we can do

Given a graph G and a join F in G,
(1) either provide an F-complete packing of cuts
(2) or show that G is not Seymour.

Open problem

NP characterization?

Open problem

NP characterization?

Find a construction for Seymour graphs!

Thanks!

