Packing mixed hyperarborescences

Zoltán Szigeti

Combinatorial Optimization Group, Laboratory G-SCOP, Grenoble INP-Grenoble Alpes University, France

Results 1

Results 2

Packing spanning arborescences: fixed roots

Theorem 1 (Edmonds 1973)

Let D=(V,A) be a digraph and S a multiset of V. There exists a packing of spanning s-arborescences $(s \in S)$ $|S_X| + d_{\Delta}^-(X) \ge |S|$ for all $\emptyset \ne X \subseteq V$.

Definitions

- **1** s-arborescence: unique (s, v)-dipath for all $v \in V$.
- 2 spanning subgraph: contains all the vertices.
- packing subgraphs: pairwise arc-disjoint subgraphs.
- **3** S-branching: unique (S, v)-dipath for all $v \in V$.
- multiset of vertex set with multiplicities.
- **6** S_X for $X \subseteq V$: restriction of S in X.

Packing spanning arborescences : flexible roots

Theorem 2 (Frank 1978)

Let D = (V, A) be a digraph and $k \in \mathbb{Z}_+$. There exists a packing of k spanning arborescences $k \ge \sum_{X \in \mathcal{P}} (k - d_A^-(X))$ for every subpartition \mathcal{P} of V.

Theorem 2 implies Theorem 1.

Regular packing of arborescences

Definition

k-regular packing of arborescences:each vertex belongs to k arborescences in the packing.

Theorem 3 (Edmonds 1973)

Let D=(V,A) be a digraph, S a multiset of V and $k\in\mathbb{Z}_+$. There exists a k-regular packing of s-arborescences ($s\in S'\subseteq S$) $|S_X|+|d_A^-(X)|\geq k$ for all $\emptyset\neq X\subseteq V$.

There exists a k-regular packing of s-arborescences ($s \in S$) there exists a packing of k S_i -branchings with $\bigcup S_i = S$.

Theorem 3 implies Theorem 1.

(f,g)-bounded packing of spanning arborescences

Definition

(f,g)-bounded packing of arborescences: number of v-arborescences in the packing is at least f(v) and at most $g(v) \ \forall v \in V$.

Theorem 4 (Frank 1978, Cai 1983)

Let D = (V, A) be a digraph, $f, g : V \to \mathbb{Z}_+$ functions and $k \in \mathbb{Z}_+$. There exists an (f, g)-bounded packing of k spanning arborescences \iff

- **2** $\min\{k f(\overline{\cup P}), g(\cup P)\} \ge \sum_{X \in P} (k d_A^-(X))$ for every subpartition P of V.

Theorem 4 implies Theorem 2.

Packing spanning mixed arborescences: fixed roots

Definition

- mixed s-arborescence:it can be oriented to obtain an s-arborescence.
- $e_{\mathcal{E}}(\mathcal{P})$: number of edges entering at least one member of a subpartition \mathcal{P} of V.

Theorem 5 (Frank 1978)

Let $F = (V, E \cup A)$ be a mixed graph and S a multiset of V. There exists a packing of spanning mixed s-arborescences ($s \in S$) \iff $\mathbf{e}_E(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} (|S| - |S_X| - d_A^-(X))$ for every subpartition \mathcal{P} of V.

Theorem 5 implies Theorem 1.

Packing spanning mixed arborescences: fixed roots

Definition

- mixed s-arborescence:it can be oriented to obtain an s-arborescence.
- **2** $e_{\mathcal{E}}(\mathcal{P})$: number of edges entering at least one member of a subpartition \mathcal{P} of V.

Theorem 5 (Frank 1978)

Let $F = (V, E \cup A)$ be a mixed graph and S a multiset of V. There exists a packing of spanning mixed s-arborescences ($s \in S$) $e_E(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} (|S| - |S_X| - d_A^-(X))$ for every subpartition \mathcal{P} of V.

Theorem 5 implies Theorem 1.

Packing spanning hyperarborescences

Definition

(spanning) (s-)hyperarborescence:

dypergraph that can be trimmed to a (spanning) (s-) arborescence.

Theorem 6 (Frank, T. Király, Z. Király 2003)

Let $\mathcal{D}=(V,\mathcal{A})$ be a dypergraph and S a multiset of V. There exists a packing of spanning s-hyperarborescence $(s \in S)$ $|S_X|+d_{\mathcal{A}}^-(X)\geq |S|$ for all $\emptyset \neq X \subseteq V$.

 \iff

Theorem 6 implies Theorem 1.

Packing spanning mixed hyperarborescences

Definition

(spanning) mixed (s-)hyperarborescence: mixed hypergraph that can be oriented to a (spanning) (s-)hyperarborescence.

Theorem 7 (Fortier, Cs. Király, Léonard, Szigeti, Talon 2018)

Let $\mathcal{F}=(V,\mathcal{E}\cup\mathcal{A})$ be a mixed hypergraph, S a multiset of V. There exists a packing of spanning mixed s-hyperarborescence $(s\in S) \iff e_{\mathcal{E}}(\mathcal{P}) \geq \sum_{X\in\mathcal{P}}(|S|-|S_X|-d_{\mathcal{A}}^-(X))$ for every subpartition \mathcal{P} of V.

Theorem 7 implies Theorems 5 and 6.

(f,g)-bounded packing spanning mixed arborescences

Theorem 8 (Gao, Yang 2021)

Let $F = (V, E \cup A)$ be a mixed graph, $f, g : V \to \mathbb{Z}$ functions and $k \in \mathbb{Z}_+$. An (f, g)-bounded packing of k spanning mixed arborescences exists \iff

- $e_{E}(\mathcal{P}) + \min\{k f(\overline{\cup \mathcal{P}}), g(\cup \mathcal{P})\} \ge \sum_{X \in \mathcal{P}} (k d_{A}^{-}(X))$ for every subpartition \mathcal{P} of V.

Theorem 8 implies Theorems 4 and 5.

(f,g)-bounded packing spanning mixed hyperarborescences

Theorem 9 (Hörsch-Szigeti 2021)

Let $\mathcal{F}=(V,\mathcal{E}\cup\mathcal{A})$ be a mixed hypergraph, $f,g:V\to\mathbb{Z}$ functions, $k\in\mathbb{Z}_+$. An (f,g)-bounded packing of k spanning mixed hyperarborescences exists \iff

- $e_{\mathcal{E}}(\mathcal{P}) + \min\{k f(\overline{\cup \mathcal{P}}), g(\cup \mathcal{P})\} \ge \sum_{X \in \mathcal{P}} (k d_{\mathcal{A}}^{-}(X))$ for every subpartition \mathcal{P} of V.

Theorem 9 implies Theorems 8 and 7.

(f,g)-bounded regular (ℓ,ℓ') -limited packing arborescences

Definition

 (ℓ,ℓ') -limited packing of arborescences: packing of at least ℓ and at most ℓ' arborescences.

Theorem 10 (Bérczi, Frank 2018)

Let D=(V,A) be a digraph, $f,g:V\to\mathbb{Z}_+$ functions and $k,\ell,\ell'\in\mathbb{Z}_+$. An (f,g)-bounded k-regular (ℓ,ℓ') -limited packing of arborescences exists \iff

- **3** min{ $\ell' f(\overline{\cup P}), g_k(\cup P)$ } ≥ $\sum_{X \in P} (k d_A^-(X))$ for every subpartition P of V.

Theorem 10 implies Theorems 3 and 4.

(f,g)-bounded regular (ℓ,ℓ') -limited packing mixed hyperarborescences

Theorem 11 (Szigeti 2022+)

Let $\mathcal{F}=(V,\mathcal{E}\cup\mathcal{A})$ be a mixed hypergraph, $f,g:V\to\mathbb{Z}$ functions, $k,\ell,\ell'\in\mathbb{Z}_+$. An (f,g)-bounded k-regular (ℓ,ℓ') -limited packing of mixed hyperarborescences exists \iff

- **3** $e_{\mathcal{E}}(\mathcal{P}) + \min\{\ell' f(\overline{\cup \mathcal{P}}), g_k(\cup \mathcal{P})\} \ge \sum_{X \in \mathcal{P}} (k d_{\mathcal{A}}^-(X))$ for every subpartition \mathcal{P} of V.

Theorem 11 implies Theorems 9 and 10.

(f,g)-bounded regular (ℓ,ℓ') -limited packing mixed hyperarborescences

Sketch of the proof

- characteristic vectors of the dyperedge sets of the (f,g)-bounded k-regular (ℓ,ℓ') -limited packings of hyperarborescences in orientations of $\mathcal{F}=$ integer points of the intersection of the two generalized polymatroids
 - $\sum_{v \in V} (Q(0, r_v) \cap K(k g_k(v), k f(v)))$ and
 - $\bullet \qquad Q(0, r_{\mathsf{M}_{\pm}^k}) \cap K(k|V| \ell', k|V| \ell).$
- Prank's theorem on intersection of two generalized polymatroids provides the result.

Open problems

Open problems

- **①** Packing of mixed branchings with given root set sizes ℓ_i .
 - For directed graphs: (Bérczi, Frank).
 - 2 For undirected graphs: (easy exercise).
 - **3** For each $\ell_i = \ell$: (Szigeti).
- 2 Packing of k mixed hyperbranchings each of root set size ℓ .
 - For mixed graphs: (previous observation).
 - For dypergraphs: (Bérczi, Frank).
 - For hypergraphs: (Martin, Szigeti).

Open problems

Open problems

- **1** Packing of mixed branchings with given root set sizes ℓ_i .
 - For directed graphs: (Bérczi, Frank).
 - 2 For undirected graphs: (easy exercise).
 - **3** For each $\ell_i = \ell$: (Szigeti).
- ② Packing of k mixed hyperbranchings each of root set size ℓ .
 - For mixed graphs: (previous observation).
 - For dypergraphs: (Bérczi, Frank).
 - For hypergraphs: (Martin, Szigeti).

Thanks for your attention!