Augmenting a hypergraph to have a matroid-based (f,g)-bounded (α,β) -limited packing of rooted hypertrees

Zoltán Szigeti

Combinatorial Optimization Group, Laboratory G-SCOP, University Grenoble Alpes - Grenoble INP, France

Joint work with

Pierre Hoppenot

Prior work

Packing trees

- Nash-Williams (1961), Tutte (1961),
- Peng, Chen, Koh (1991),
- Frank, T. Király, Kriesell (2003),
- 4 Kaiser (2012), Katoh, Tanigawa (2013),
- 6 Hoppenot, Martin, Szigeti (2025), Hoppenot, Szigeti (2026)

Packing arborescences

- Edmonds (1973), Lovász (1976), Frank (1978),
- Frank, T. Király, Z. Király (2003), Bérczi, Frank (2008), Frank (2009), Kamiyama, Katoh, Takizawa (2009),
- Sérczi, Frank (2010, 2018), Durand de Gevigney, Nguyen, Szigeti (2013), Cs. Király (2016), Fortier, Cs. Király, Léonard, Szigeti, Talon (2018), Matsuoka. Szigeti (2019).
- Fortier, Cs. Király, Szigeti, Tanigawa (2020), Cs. Király, Szigeti, Tanigawa (2020), Gao, Yang (3 in 2021), Hörsch, Szigeti (2021, 2022), Szigeti (2023, 2024), Hörsch, Peyrille, Szigeti (2026) Hoppenot, Szigeti (2026)

Plan

Previous results

- Packing spanning trees (Nash-Williams, Tutte),
- Augmentation for packing spanning trees (Frank),
- Packing spanning hypertrees (Frank, Király, Kriesell),
- Complete matroid-based packing of rooted trees (Katoh, Tanigawa),

New result

- Matroid-based (f,g)-bounded packing of k rooted trees $(\alpha \leq k \leq \beta)$,
- Generalization to hypergraphs, Augmentation version.

Tools

- Generalized partition/Katoh-Tanigawa matroids, Matroid intersection,
- Trimming a hypergraph covering two supermodular functions on partitions,
- Overing two supermodular functions on partitions.

Packing spanning trees

Theorem (Nash-Williams 1961, Tutte 1961)

Let G = (V, E) be a graph and $k \in \mathbb{Z}_+$.

There exists a packing of k spanning trees in G

$$e_E(\mathcal{P}) \geq k(|\mathcal{P}|-1)$$
 for every partition \mathcal{P} of V .

Definition

 $e_{E}(\mathcal{P})$: number of edges between the members of a partition \mathcal{P} of V.

Theorem (Frank 2006)

Let G = (V, E) be a graph and $k, \gamma \in \mathbb{Z}_+$.

We can add γ edges to ${\it G}$ to have a packing of ${\it k}$ spanning trees

$$\gamma + e_F(\mathcal{P}) \geq k(|\mathcal{P}| - 1)$$
 for every partition \mathcal{P} of V .

Packing of k spanning hypertrees

Theorem (Frank, Király, Kriesell 2003)

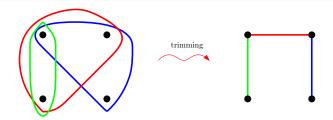
Let $\mathcal{G} = (V, \mathcal{E})$ be a hypergraph and $k \in \mathbb{Z}_+$. There exists a packing of k spanning hypertrees in \mathcal{G}

 \iff

 $e_{\mathcal{E}}(\mathcal{P}) \geq k(|\mathcal{P}|-1)$ for every partition \mathcal{P} of V.

Definition

hypertree: a hypergraph that can be trimmed to a tree.



(f,g)-bounded packing of spanning arborescences

Theorem (Frank 1978, Cai 1983)

Let D = (V, A) be a digraph, $f, g : V \to \mathbb{Z}_+$, $k \in \mathbb{Z}_+$. There exists an (f, g)-bounded packing of k spanning arborescences \iff

- **1** $g(v) \ge f(v)$ for every $v \in V$,
- $e_A(\mathcal{P}) \geq k|\mathcal{P}| \min\{k f(\overline{\cup \mathcal{P}}), g(\cup \mathcal{P})\}\$ for every subpart. \mathcal{P} of V.

Definition

(f,g)-bounded packing of arborescences : number of v-arborescences in the packing is at least f(v) and at most g(v) for every $v \in V$.

Matroid-based packing of rooted trees

Theorem (Katoh, Tanigawa 2013)

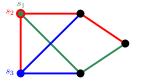
Let G = (V, E) be a graph, S a multiset of V, $M = (S, r_M)$ a matroid.

- **1** There exists a complete M-based packing of rooted trees in $G \iff$
 - S_v is independent in M for every $v \in V$,
 - $e_E(\mathcal{P}) \ge \sum_{X \in \mathcal{P}} (r_M(S) r_M(S_X))$ for every partition \mathcal{P} of V.
- 2 $r_{KT}(F) = r_{M}(S)|V| |S| + \min_{P \text{ part. of } V} \{e_{F}(P) \sum_{X \in P} (r_{M}(S) r_{M}(S_{X}))\}$ is the rank function of a matroid M_{KT} .
- $oldsymbol{\circ}$ F is the edge set of a complete M-based packing of rooted trees
 - F is independent in M_{KT} ,
 - $|F| = r_{\mathsf{M}}(S)|V| |S|$.

Definition

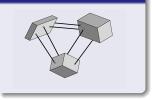
Matroid-based packing of rooted trees :

the root set of the rooted trees containing v forms a basis of the matroid M for every $v \in V$.



Application: Rigidity

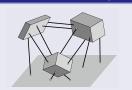
Body-Bar Framework



Theorem (Tay 1984)

"Rigidity" of a Body-Bar Framework can be characterized by the existence of a spanning tree decomposition.

Body-Bar Framework with Bar-Boundary



Theorem (Katoh, Tanigawa 2013)

"Rigidity" of a Body-Bar Framework with Bar-Boundary can be characterized by the existence of a complete matroidbased rooted tree decomposition.

Augmentation for M-based (f, g)-bounded (α, β) -limited packing of rooted hypertrees

Theorem (Hoppenot, Szigeti 2026)

Let $\mathcal{G}=(V,\mathcal{E})$ be a hypergraph, S a multiset of V, $M=(S,r_M)$ a matroid, $\alpha,\beta,\gamma\in\mathbb{Z}_+,f,g:V\to\mathbb{Z}_+$. We can add γ edges to \mathcal{G} to have M-based (f,g)-bounded (α,β) -limited packing of rooted hypertrees \iff

$$\begin{array}{rcl} f(v) & \leq & \min\{r_{\mathsf{M}}(S_{v}), g(v)\} & \text{for every } v \in V, \\ \alpha & \leq & \min\{\beta, \sum_{v \in V} \min\{r_{\mathsf{M}}(S_{v}), g(v)\}\}, \\ r_{\mathsf{M}}(S) - r_{\mathsf{M}}(S_{Y}) & \leq & \min\{\beta - f(Y), g(\overline{Y})\} & \text{for every } Y \subseteq V, \\ \gamma + g(V) + e_{\mathcal{E}}(\mathcal{P}) & \geq & \sum_{X \in \mathcal{P}} \max\{r_{\mathsf{M}}(S) - r_{\mathsf{M}}(S_{Y}) + g(Y) : Y \subseteq X\}, \\ \gamma + \beta + e_{\mathcal{E}}(\mathcal{P}) & \geq & \sum_{X \in \mathcal{P}} \max\{r_{\mathsf{M}}(S) - r_{\mathsf{M}}(S_{Y}) + f(Y) : Y \subseteq X\} \\ & & \text{for every partition } \mathcal{P} \text{ of } V. \end{array}$$

Definition

 (α, β) -limited : number of roots is at least α and at most β .

Proof of necessity

Proof

Let \mathcal{B} be such a packing with root set T after adding the edge set F.

$$f(v) \leq |T_{v}| \leq \min\{r_{\mathsf{M}}(S_{v}), g(v)\} \quad \text{for every } v \in V,$$

$$\alpha \leq |T| \leq \min\{\beta, \sum_{v \in V} \min\{r_{\mathsf{M}}(S_{v}), g(v)\}\},$$

$$r_{\mathsf{M}}(S) - r_{\mathsf{M}}(S_{Y}) \leq |T_{\overline{Y}}| \leq \min\{\beta - f(Y), g(\overline{Y})\} \quad \text{for every } Y \subseteq V,$$

$$\gamma + e_{\mathcal{E}}(\mathcal{P}) \geq e_{\mathcal{E} \cup F}(\mathcal{P}) \geq \sum_{X \in \mathcal{P}} (r_{\mathsf{M}}(S) - r_{\mathsf{M}}(T_{X}))$$

$$\geq \sum_{X \in \mathcal{P}} \max\{r_{\mathsf{M}}(S) - r_{\mathsf{M}}(T_{Y}) - |T_{X \setminus Y}| : Y \subseteq X\}$$

$$(\text{by } g(v) \geq |T_{v}|) \geq \sum_{X \in \mathcal{P}} \max\{r_{\mathsf{M}}(S) - r_{\mathsf{M}}(S_{Y}) + g(Y) : Y \subseteq X\} - g(V),$$

$$(\text{by } |T_{v}| \geq f(v), \quad \geq \sum_{X \in \mathcal{P}} \max\{r_{\mathsf{M}}(S) - r_{\mathsf{M}}(S_{Y}) + f(Y) : Y \subseteq X\} - \beta.$$

$$\text{and } \beta \geq |T|)$$

Generalized partition / Katoh-Tanigawa matroids

Theorem

Let S be a multiset of V, $k \in \mathbb{Z}_+$, $f, g : V \to \mathbb{Z}_+$. Let

$$\mathcal{B} = \{ T \subseteq S : f(v) \leq |T_v| \leq g(v) \text{ for every } v \in V, |T| = k \}.$$

Then \mathcal{B} forms the set of bases of a matroid

$$\iff$$

$$f(v) \leq \min\{|S_v|, g(v)\}$$
 for every $v \in V$,

$$f(V) \leq k \leq \sum_{v \in V} \min\{|S_v|, g(v)\}.$$

Theorem (Hoppenot, Szigeti 2026)

Let G = (V, E) be a graph, S a multiset of V, $M = (S, r_M)$ a matroid.

- **2** M-based packing of rooted trees exists with edge set F, root set $T \iff$
 - $F \cup T$ is independent in M'_{KT} ,
 - $\bullet |F \cup T| = r_{\mathsf{M}}(S)|V|.$

Intersection and union of partitions

Definitions

- Uncrossing : For a family \mathcal{F} of subsets of V, while $X, Y \in \mathcal{F}$, $X \cap Y, X \setminus Y, Y \setminus X \neq \emptyset$ replace X and Y by $X \cap Y$ and $X \cup Y$.
- For $\mathcal{P}_1, \mathcal{P}_2$ partitions of V, let $\mathcal{F} := \mathcal{P}_1 \cup \mathcal{P}_2$ (with multiplicities).
- By uncrossing \mathcal{F} we obtain a laminar family \mathcal{F}' .
- The minimal and maximal sets in \mathcal{F}' form partitions \mathcal{P}'_1 and \mathcal{P}'_2 of V.
- $\mathcal{P}_1 \sqcap \mathcal{P}_2 := \mathcal{P}'_1$ (depends on execution of uncrossing).
- $\mathcal{P}_1 \sqcup \mathcal{P}_2 := \mathcal{P}'_2$ (uniquely defined).

Definitions

Function p on partitions of V is supermodular if \forall partitions $\mathcal{P}_1, \mathcal{P}_2$ of V,

$$p(\mathcal{P}_1) + p(\mathcal{P}_2) \leq p(\mathcal{P}_1 \sqcap \mathcal{P}_2) + p(\mathcal{P}_1 \sqcup \mathcal{P}_2).$$

Example : $p(\mathcal{P}) = \sum_{X \in \mathcal{P}} p^*(X)$, p^* intersecting supermod. set function.

Trimming to cover 2 supermodular functions on partitions

Theorem (Hoppenot, Szigeti 2026)

Let p_1 , p_2 be supermodular functions on the partitions of V, $\mathcal{G} = (V, \mathcal{E})$ a hypergraph. Then \mathcal{G} can be trimmed to a graph G = (V, E) such that

$$e_E(\mathcal{P}) \geq \max\{p_1(\mathcal{P}), p_2(\mathcal{P})\}$$
 for every partition \mathcal{P} of $V \iff$

$$e_{\mathcal{E}}(\mathcal{P}) \geq \max\{p_1(\mathcal{P}), p_2(\mathcal{P})\}$$
 for every partition \mathcal{P} of V .

Remark

Let S be a multiset of V, $\beta \in \mathbb{Z}_+$, $f,g:V\to \mathbb{Z}_+$, $M=(S,r_M)$ a matroid. Then $\hat{\rho}_1$ and $\hat{\rho}_2$ are supermodular on partitions of V.

$$\begin{array}{lcl} \hat{p}_1(\mathcal{P}) & = & -g(V) + \sum_{X \in \mathcal{P}} \max\{r_{\mathsf{M}}(S) + g(Y) - r_{\mathsf{M}}(S_Y) : Y \subseteq X\}, \\ \hat{p}_2(\mathcal{P}) & = & -\beta + \sum_{X \in \mathcal{P}} \max\{r_{\mathsf{M}}(S) + f(Y) - r_{\mathsf{M}}(S_Y) : Y \subseteq X\}. \end{array}$$

Covering 2 supermodular functions on partitions

Theorem (Hoppenot, Szigeti 2026)

Let p_1 , p_2 be supermodular functions on the partitions of a set V, $\gamma \in \mathbb{Z}_+$. There exists an edge set F on V of size γ such that

$$e_F(\mathcal{P}) \geq \max\{p_1(\mathcal{P}), p_2(\mathcal{P})\}$$
 for every partition \mathcal{P} of $V \iff$

$$\gamma \geq \max\{p_1(\mathcal{P}), p_2(\mathcal{P})\}$$
 for every partition \mathcal{P} of V ,
$$0 \geq \max\{p_1(\{V\}), p_2(\{V\})\}.$$

Remark

Let $\mathcal{G} = (V, \mathcal{E})$ be a hypergraph, S multiset of V, $\beta \in \mathbb{Z}_+$, f, $g : V \to \mathbb{Z}_+$, $M = (S, r_M)$ a matroid. Then p_1 , p_2 are supermodular on partitions of V.

$$p_1(\mathcal{P}) = \hat{p}_1(\mathcal{P}) - e_{\mathcal{E}}(\mathcal{P}),$$

$$p_2(\mathcal{P}) = \hat{p}_2(\mathcal{P}) - e_{\mathcal{E}}(\mathcal{P}).$$

Conclusion

Summary

- Augmentation for matroid-based (f, g)-bounded (α, β) -limited packing of rooted hypertrees.
- 2 Submodular technique works not only for set functions and biset functions, but also for functions on partitions.

Remarks on directed counterparts

- Complete matroid-based packing of arborescences (Durand de Gevigney, Nguyen, Szigeti 2013),
- 2 Augmentation for matroid-based (f, g)-bounded packing of hyperarborescences (Szigeti 2024+),
- **3** Matroid-based (α, β) -limited packing of hyperarborescences, (Hörsch, Peyrille, Szigeti 2026).
- **1** Open problem: Matroid-based (f, g)-bounded (α, β) -limited packing of arborescences.

