& Third talk in Bonn

“There are two ways of being happy: We must either diminish our wants or augment our means - either m
ay do - the result is the same and it is for each man to decide for himself and to do that which happens to

be easier.” Benjamin Franklin

Story for augmentation :

A telecommunication network company possesses some transmission antennas that are connected
by communication channels. Between two antennas there may be none, one or more channels,
each channel being assigned a separate frequency bandwidth.

This telecommunication network is considered to be functional if any two antennas can
communicate via the channels, eventually through other antennas of the network.

For technical reasons some channels may be out of service. The network should be functional after
these failures. Unfortunately, today this is not the case, the company must hence augment the reliability of
the network by assigning new frequencies, and consequently by creating new channels between
antennas. Frequency assignment has no real cost, so the number of assignments is to be minimized. (G)

The antennas are not of the same importance, for different pairs of antennas the network should
tolerate different numbers of failures. Can the company augment the reliability of the network optimally
under these conditions? (@)

The company has recently understood that they can use satellites for communications between

given number of antennas. How can they solve the above problems? (Q, Q)

Problems in the story :
adding edges :
() Global edge-connectivity augmentation,
& Local edge-connectivity augmentation,
adding stars
& Global edge-connectivity augmentation,

& Local edge-connectivity augmentation.

Global edge-connectivity augmentation :
LJ Problem : Given a graph G=(V,E) and keZ_+, what is the minimum number

OPT of new edges whose addition results in a k-edge-connected graph?

Remark : Min cost k-edge-connected augmentation is NP-complete :
c(e)=1 for all non edges of a graph G and 0 for all edges,
min cost augmentation of empty graph is 0 iff G has a hamiltonian cycle.

Remark : min cost subgraph problem solvable = augmentation problem trivial

Example : Minimum rooted k-arc-connectivity augmentation is polynomial, because min

cost rooted k-arc-connected subgraph (min cost matroid intersection) is polynomial.



() Lower bound : deficiency of a subpartition is the sum of the deficiencies k-d(X_i) of the X_i’s,
Opt 2 [ half of the maximum deficiency of a subpartition of V] .
& Theorem of Watanabe-Nakamura :

Opt = [ half of the maximum deficiency of a subpartition of V'] .
“Every extension of knowledge arises from making the conscious the unconscious.” Friedrich Nietzsche

3 Algorithm of Frank :
() Minimal extension :
@ Add a new vertex s to G and connect it to each vertex of G by k edges.
The resulting graph is k-edge-connected in V.
& Delete as many new edges as possible preserving k-edge-connect. in V to get G'=(V,EuF").
& if d_G'(s) is odd, then add an arbitrary new edge incident to s obtaining G"=(V+s,EuF")
that is k-edge-connected in V with d_G”(s)=even.
2 complete splitting off :

Execute a complete splitting of to obtain a k-edge-connected graph G*=(V,EuF) .

&) Optimality :
) Each edge ecF' enters a maximal tight set, thatis, d_G(X_e)+d_F '(X_e)=k
(by minimality of the extension).
(4 These sets provide a subpartition {X_1, . .., X_I} of V if ¥|X_i| minimal (by uncrossing lemma).
We also need : d(X)+d(Y)=d(X-Y)+d(Y-X)+2d(XnY,V-(XUY)).
@ opt<|FI=TI|F |27 = 123 d_F (X_i) 1= [1/25(k-d_G(X_i)) T <a<Opt.

Minimal extension :
Theorem of Frank :
& True for global arc-connectivity. Proof
(& True for symmetric skew-supermodular functions in graphs. Proof
Exercise (Z.Kiraly) : Prove that covering symmetric skew-supermodular functions by edges is

NP-complete (by 3D matching).

Splitting off theorems:
& Lovasz : Global undirected : d(s) even, k=2,
Bang-Jensen, Gabow, Jordan, Szigeti : Global undirected :
d(s)/2(-1) admissible pairs for every edge, k=2.
&2 Mader : Local undirected : d(s)#3, no cut edge incident to s.
Szigeti : Local undirected : d(s)/3 admissible pairs for some edge.
&) Mader : Global directed : p_é(s)=5_(_§(s), k=1.

Q Local directed : no result is known.



"He who would be serene and pure needs but one thing, detachment.” Meister Eckhart

Detachment theorems :
&) B. Fleiner : Detachment global undirected
yd_i=d_G(s), k=2, d_i=2, G-sis k-3 Ld_i/2) ] -edge-connected.
L) Jordan-Szigeti : Detachment local undirected «
yd_i=d_G(s), r=2, d_i=2, A_{G-s}(u,v)2r(u,v)-3 Ld_i/2)] vu,veV.
& Nash-Williams : Detachment global undirected in whole graph, k=2 &
YdMv_i=d_G(v), d*v_i2k vveV,
except : ) k=odd, cut vertex v, d?v_1=d”v_2=k, no loop on v,
@ k=odd, |V|=2, d*v_1=d?v_2=k, no loop on v vveV.
() Berg-Jackson-Jordan : Detachment global directed in whole digraph <
SV _i=p_G(v), Ygrv_i=8_G(v), fAV_i, g*v_izk wveV.

Augmentation results :
) Watanabe-Nakamura : OPT = [ half of the maximum k-deficiency of a subpartition of V] (k=2).
& Frank : OPT = [half of the maximum R-deficiency of a subpartition of V] (r=2).
&) Frank : OPT = maximum of in-k-deficiency, out-k-deficiency of a subpartition of V (k=1).
) Exercise : Prove that the local arc-connectivity augmentation is NP-complete (by set covering) :
T subset of V-s, r(s,v)=1if vin T and 0 otherwise.
&) B. Fleiner : (k22, d_i22) &
(1] >d_i 2maximum k-deficiency of a subpartition of V,
& Gisk-y Ld_i/2)] -edge-connected.
Jordan-Szigeti : (r22, d_i22) &
) >d_i = maximum R-deficiency of a subpartition of V,
& A_G(u,v)2r(u,v)-3 Ld_i2)] vu,veV.

Vertex-connectivity augmentation :
& directed graphs :
Q Frank-Jordan : min-max theorem,
(& Frank-Végh : polynomial by one.
& undirected graphs :
Q Jackson-Jordan : polynomial for fixed k,

(2] Végh : polynomial by one.

Augmentation in Hypergraphs :
@ Bang-Jensen, Jackson : Global undirected
OPT = maximum of [ half of the k-deficiency of a subpartition of V] ,

number of connected components -1 after deleting at most k-1 hyperedges.



T. Kiraly : Global undirected, adding hyperdges of size t
& Cosh-Jackson-Z. Kiraly : Local undirected, adding edges (NP-complete)
3] Szigeti : Local undirected, adding hyperedges of minimum total size
OPT = maximum R-deficiency of a subpartition of V.
& Berg-Jackson-Jordan : Global directed, (adding dyperarcs of size most t)
OPT = maximum of in-k-deficiency, [ out-k-deficiency(/(t-1)) ] of a subpartition of V.

Augmentation with partition constraints :
Q Bang-Jensen, Gabow, Jordan, Szigeti : Graph
OPT = maximum of [ half of the k-deficiency of a subpartition of V] and
k-deficiency of a subpartition of P_ie? if k=even
this lower bound or plus 1 (can be characterized) if k=odd. (example : C_4 and C_6, k=3).
& Gabow-Jordan : Bipartite Digraphs

Augmentation in Hypergaphs with partition constraints :
& Cosh : Bipartite Hypergraph
& Bernath-Grappe-Szigeti : Hypergraph
3 lower bounds, 2 configurations
Remark : Bernath-Grappe-Szigeti : symmetric crossing supermodular function

3 lower bounds, 3 configurations

OPEN problems :
& Local edge-connectitivity augmentation in graphs with partition constraints
= splitting preserving Local edge-connectivity with partition constraints

(Frank : that would imply Detachment preserving local edge-connectivity)



