
 First talk in Bonn

"I was thinking that we all learn by experience, but some of us have to go to summer school.”

Peter De Vries

Theme : 

     Submodular Functions

          Connectivity Problems

Framework :

     !  Graphs : Undirected, Directed

     "  Hypergraphs : Undirected, Directed

     #  Set functions : Submodular, Supermodular (intersecting, crossing, skew)

Topics :

     !  Touching :  !  Orientation "  Augmentation 

     "  little bit touching : !  vertex-connectivity, "  weighted versions (usually NP-complete)

     #  Not touching : !  Edge-disjoint paths "  spanning subgraph #  packing problems,

Reminders :

     Exemple : 

          Undirected graph G=(V,E),

          Directed graph G⃗G⃗=(V,A).

     Notation :

          Undirected cut : δ_G(X) = # of edges leaving X in G,

          Directed cut :     δ_G⃗G⃗(X) = # of arcs leaving X in G⃗, ρ_G⃗G⃗(X) = # of arcs entering X in G⃗.

     Definition :

          Undirected local edge-connectivity : λ_G(u,v) = maximum # of edge-disjoint paths from u to v in G, 

          Directed local arc-connectivity :        λ_G⃗G⃗(u,v) = maximum # of arc-disjoint paths from u to v in G⃗.

    Results :

          Undirected Menger : λ_G(u,v) ≥ k ⇔ if  δ_G(X) ≥ k for all v∈X⊆V-u.

          Directed Menger :     λ_G⃗(u,v) ≥ k ⇔ ρ_G⃗(X) ≥ k for all v∈X⊆V-u.

     Remark : 

          Undirected version follows from directed version (by replacing the edges by opposite arcs)

          Directed version follows easily from flows (c≣1 : k paths ⇔ flow of value k)

     Definition :

          Undirected global edge-connectivity : G is k-edge-connected ⇔



          !  if λ_G(u,v) ≥ k ∀u,v ∈ V, "  δ_G(X) ≥ k ∀∅≠X⊂V, #  G-F is connected ∀F⊆E, |F|<k.

          Directed global arc-connectivity :        G⃗ is k-arc-connected ⇔
          !  if λ_G⃗(u,v)≥k ∀(u,v) ∈ V×V, "  ρ_G⃗(X)≥k ∀∅≠X⊂V, #  G⃗-F is strongly-connected ∀F⊆A, |F|<k.

     Definition :

        Undirected vertex-connectivity : G-X is connected for all X⊆V, |F|<k.

        Directed vertex-connectivity : G⃗-X is strongly-connected for all X⊆V, |F|<k.

"Method is much, technique is much, but inspiration is even more.” Benjamin Cardozo

Methods : !  Uncrossing, "  Splitting off.

     Definition : Function b: 2^V→ Z (p: 2^V→ Z) is

          !  Submodular :    if b(X) + b(Y) ≥ b(X⋂Y) + b(X⋃Y) for all X,Y⊆V,

                Exemple : !  degree functions : δ_G, δ_G⃗, ρ_G⃗, "  rank function of a matroid.

                    Remark : Useful inequalities about degree functions :

                         !  d(X) + d(Y) = d(X⋂Y) + d(X⋃Y) + 2d(X-Y,Y-X)

                         "  d(X) + d(Y) = d(X-Y) + d(Y-X) + 2d(X⋂Y,V-(X⋃Y))

                         #  d(A)+d(B)+d(C)≥d(A∩B∩C)+d(A−(B∪C))+d(B−(A∪C))+d(C−(A∪B))

                                                    +2d(A∩B∩C,V−(A∪B∪C))

                         $  ρ(X) + ρ(Y) = ρ(X∩Y) + ρ(X ∪ Y ) + d(X-Y,Y-X)

                         %  ρ(X)+ρ(Y)=ρ(X−Y)+ρ(Y−X)+d(V-(X∪Y),X∩Y) +ρ(X∩Y)-δ(X∩Y)

                         &  ∑_{v∈X}(ρ(v)-δ(v)) = ρ(X)-δ(X)

          "  Supermodular : if p(X) + p(Y) ≤ p(X⋂Y) + p(X⋃Y) for all X,Y⊆V,

               Exemple : !  i_G(X)  = number of edges in X.         

          #  Intersecting supermodular : Supermodular on intersecting sets (X⋂Y≠∅),

          $  Crossing supermodular : Supermodular on crossing sets (X⋂Y, X-Y, Y-X, V-(X⋃Y)≠∅).

    "Uncrossing can handle just about any situation you will come across in your Magical life.”

      Definition :

          !  G covers a function p: 2^V→ Z if d_G(X) ≥ p(X) for all X ⊆ V.

          "  X is tight if d_G(X) = p(X).

     !  Uncrossing Lemma : If G covers a crossing supermodular function p then intersection and union

                                               of crossing tight sets are tight.

               Proof : p(X) + p(Y) = d(X) + d(Y) ≥ d(X⋂Y) + d(X⋃Y) ≥ p(X⋂Y) + p(X⋃Y) ≥ p(X) + p(Y). ☐

          Application (Theorem of Mader) : A minimally k-edge-connected graph has a vertex of degree k.

                    Proof : '  G covers p(X)={k if ∅≠X⊂V, 0 otherwise}; p is crossing supermodular.

                                 !  Each edge belongs to a tight cut (by minimality of G).

                                 "  Let δ_G(S) be a minimal tight cut. Suppose that S is not a vertex.

                                 #  There exists an edge e in S (by minimality of S).



                                 $  Let δ_G(T) be a tight cut containing e.

                                 %  Note that S and T are crossing (by minimality of S).

                 &  Then S⋂T is a smaller tight cut, ↯.      ☐

Exercise (Theorem of Mader) : A minimally k-arc-connected digraph contains a vertex of

in- and out-degree k.

     Proof by uncrossing but much more complicated. 

               OPEN problem : Minimally k-vertex-connected digraph contains a vertex of

                                            in- and out-degree k. (Mader) (for k=2 it is proved by Mader)

“When I split an infinitive, God damn it, I split it so it will stay split.” Raymond Chandler

    Definition :

          Splitting off at s : G=(V+s,E), su, sv∈E. G_uv:=(V+s, E-su-sv+uv).

          Complete Splitting off at s : Executing a sequence of splitting off and deleting the vertex s

                                                       when its degree becomes 0.

      "  Splitting Theorem (Lovász) : If G=(V+s,E) is k-edge-connected (k≥2) and d(s) is even, then  ∃ a

                                                            complete splitting off at s that preserves k-edge-connectivity.

               Proof : !  We show that for every su there exists sv so that G_uv is k-edge-connected in V. 

                           "  If not, there exists a dangerous set (d(X) ≤ k+1) containing u and v.

                           #  Let M be a minimal set of such dangerous sets containing all the neighbors of s.

                           $  Any set X of M contains at most d(s)/2 neighbors of s.

                                 (k+1≥d(X)=d(V-X)-d(s,V-X)+d(s,X)≥k-d(s)+2d(s,X).) 

                           %  For A,B,C in M, 3(k+1)≥d(A)+d(B)+d(C)≥d(A∩B∩C)+d(A−(B∪C))+d(B−(A∪C))

                                                                      +d(C−(A∪B))+2d(A∩B∩C,V+s−(A∪B∪C))≥k+k+k+k+2, ↯.☐

               Application :

              !  Theorem of Lovász : constructive characterization of 2k-e-c graphs, starting from

                                                      K_2^2k, by !  adding edges, "  pinching k edges.  

                    Proof : G must be reduced to K_2^2k via 2k-e-c graphs by the inverse operations :

                           !  deleting an edge and "  splitting of at a vertex of degree 2k. 

                           This can be done by Mader’s and by Lovász’ theorems.    ☐

                    Exercice : Prove Mader’s directed splitting off theorem.

        Exercice : Theorem of Mader : constructive characterization of k-arc-connected

                          digraphs, starting from K_2^(k,k) by !  adding arcs, "  pinching k arcs.

               OPEN problem : Construction of 2-vertex-connected digraphs.

              "  Weak Orientation theorem of Nash-Williams : G has a k-arc-connected orientation G⃗
                    if and only if G is 2k-edge-connected.

                   Proof : Necessity : For all ∅≠X⊂V, d_G(X)=ρ_G⃗(X)+δ_G⃗(X)≥k+k.

                               Sufficiency : By constructive characterization.

                                   '  K_2^2k has trivially a k-arc-connected orientation. 



                                   !  If an edge is added then it can be oriented in any direction.

                                   "  If a pinching is executed then the natural orientation is OK.☐

              #  Augmentation (see later).

"Every orientation presupposes a disorientation." Hans Magnus Enzensberger

Story for orientation :

          Mr. Orient, the Mayor of the city called ”The Edges”,

having wanted to make the main street a one way street,

unfortunately made a mistake by ordering the ONE WAY sign

and received 100 signs, as many as the number of streets in the city.

To be justified, he decides to use all the signs, i.e. to make all the streets of the city one way (' ).

          Having finished his plan, he realizes that it does not enable him to go home.

He thus goes back to work while keeping in mind that he must be able,

from the City Hall, to reach any point of the city (! ).

After one moment of reflexion, he realizes that he must be able,

from any point of the city, to reach all the others (# ).

          Being proud of himself, he presents his project to his assistant, a well-

balanced man, who reminds him that during summer,

some streets of the city may be blocked by floods, they thus try to conceive a plan where

blocking any street does not make a district inaccessible ($ ).

          But they are still not satisfied ; examining their plan, they see that

there are far too many paths from the downtown to the shopping center

and not enough in the other direction.

They try an ultimate improvement : to place the ”one way” signs so that

the orientation of the streets be well-balanced (& ).

          Since then, the city was renamed ”The Arcs”.

Problems in the story : 

     '  Orientation, !  rooted-connected, ("  k-rooted-connected,) #  strongly-connected,

     $  2-arc-connected, (%  k-arc-connected,) &  well-balanced. 

!  Rooted-connected orientation :

          Given an undirected graph G and a vertex s of G,

                there exists a root-connected orientation of G at s ⇔
                there exists an orientation of G containing an s-arborescence ⇔
                there exists a spanning tree of G ⇔
                G is connected.



"  k-rooted-connected orientation : (Frank)

          Given an undirected graph G, a vertex s of G and an integer k ≥ 1,

               there exists G⃗ of G that is k-root-connected at s ⇔ (Menger)

               there exists G⃗ of G with ρ_G⃗ (X) ≥ k ∀X⊆V−s ⇔ (Edmonds)

               there exists G⃗ of G containing k arc-disjoint s-arborescences ⇔
               there exist k edge-disjoint spanning trees of G ⇔ (Nash-Williams)

               G is k-partition-connected for every partition P of V, |E(P)|≥ k(|P| − 1).

#  strongly-connected orientation (Robbins)

          Given an undirected graph G,

                there exists a strongly-connected orientation of G ⇔
                there is an orientation of G having a directed ear-decomposition ⇔
                there exists an ear-decomposition of G ⇔
                G is 2-edge-connected.     

$  2-arc-connected orientation, %  k-arc-connected orientation, already seen

&  well-balanced orientation, see later.


