Packing forests

Zoltán Szigeti

Combinatorial Optimization Group, Laboratory G-SCOP, University Grenoble Alpes - Grenoble INP, France

Joint work with

Pierre Hoppenot

Mathis Martin

Laboratory G-SCOP, University Grenoble Alpes, France École des mines de Saint-Etienne, France

Combinatorial Optimization Workshop 2024, Aussois

Prior work

Packing trees

- Nash-Williams (1961), Tutte (1961),
- Peng, Chen, Koh (1991),
- Frank, T. Király, Kriesell (2003),
- 🔮 Katoh, Tanigawa (2013),
- Hoppenot, Martin, Szigeti (2023+)

Packing arborescences

- Edmonds (1973), Lovász (1976), Frank (1978),
- Frank, T. Király, Z. Király (2003), Bérczi, Frank (2008), Frank (2009), Kamiyama, Katoh, Takizawa (2009),
- Bérczi, Frank (2010, 2018), Durand de Gevigney, Nguyen, Szigeti (2013), Cs. Király (2016), Fortier, Cs. Király, Léonard, Szigeti, Talon (2018), Matsuoka, Szigeti (2019),
- Fortier, Cs. Király, Szigeti, Tanigawa (2020), Cs. Király, Szigeti, Tanigawa (2020), Gao, Yang (2021, 2021), Hörsch, Szigeti (2021, 2022)

Theorem 1 (Nash-Williams (1961), Tutte (1961))

There exists in a graph G = (V, E) a packing of k spanning trees

 $e_{E}(\mathcal{P}) \geq k(|\mathcal{P}|-1) \quad \forall \text{ partition } \mathcal{P} \text{ of } V.$

Definition

 $e_{E}(\mathcal{P})$: number of edges between the members of a partition \mathcal{P} of V.

Theorem 2 (Peng, Chen, Koh (1991))

There exists in a graph G = (V, E) a packing of k spanning forests each with ℓ connected components \iff

$$egin{array}{rcl} |V| &\geq \ell, \ e_{E}(\mathcal{P}) &\geq k(|\mathcal{P}|-\ell) &orall \ ext{ partition } \mathcal{P} \ ext{of } V. \end{array}$$

Remark

For $\ell = 1$, Theorem 2 reduces to Theorem 1.

Packing spanning forests of given sizes

Theorem 3

There exists in a graph G = (V, E) a packing of k spanning forests with $\ell(1), \ldots, \ell(k)$ connected components \iff

$$\begin{split} |V| &\geq \ell(i) \quad \forall i, \\ \sum_{1 \leq i \leq k} \min\{\ell(i), |\mathcal{P}|\} + e_{\mathcal{E}}(\mathcal{P}) &\geq k |\mathcal{P}| \quad \forall \text{ partition } \mathcal{P} \text{ of } V, \\ \text{or equivalently} \quad e_{\mathcal{E}}(\mathcal{P}) &\geq \sum_{1 \leq i \leq k} \max\{0, |\mathcal{P}| - \ell(i)\}. \end{split}$$

- For $\ell(i) = \ell \, \forall i$, Theorem 3 reduces to Theorem 2.
- O Theorem 3 can easily be proved using matroid theory.
- We did not find Theorem 3 in the literature.

Packing spanning branchings of given sizes

Theorem 4 (Bérczi, Frank (2018))

There exists in a digraph D = (V, A) a packing of k spanning branchings with $\ell(1), \ldots, \ell(k)$ connected components \iff

 $|V| \geq \ell(i) \quad \forall i,$ $\sum_{1 \leq i \leq k} \min\{\ell(i), |\mathcal{P}|\} + e_{\mathcal{A}}(\mathcal{P}) \geq k|\mathcal{P}| \quad \forall \text{ subpartition } \mathcal{P} \text{ of } V.$

Definitions

- Branching : each connected component is an arborescence,
- $e_A(\mathcal{P})$: number of arcs entering a member of a subpartition \mathcal{P} of V.

Packing spanning branchings with bounded sizes

Theorem 5 (Bérczi, Frank (2018))

There exists in a digraph D = (V, A) an (ℓ, ℓ') -bordered (α, β) -limited packing of k spanning branchings \iff

 $\min\{\sum_{1\leq i\leq k}\ell'(i),\beta\}\geq \alpha,\qquad \min\{|V|,\ell'(i)\}\geq \ell(i)\quad\forall\ i,$

 $\beta + \sum_{1 \le i \le k} \min\{0, |\mathcal{P}| - \ell(i)\} + e_{\mathcal{A}}(\mathcal{P}) \ge k|\mathcal{P}| \quad \forall \text{ subpartition } \mathcal{P} \text{ of } V,$

 $\sum_{1 \le i \le k} \min\{\ell'(i), |\mathcal{P}|\} + e_{\mathcal{A}}(\mathcal{P}) \ge k|\mathcal{P}| \quad \forall \text{ subpartition } \mathcal{P} \text{ of } V.$

Definitions

(ℓ, ℓ')-bordered : ℓ(i) ≤ conn.comp(B_i) ≤ ℓ'(i) ∀ branching B_i,
(α, β)-limited : α ≤ ∑_{i=1}^k conn.comp(B_i) ≤ β.

Packing spanning branchings with bounded sizes

Theorem 5 (Bérczi, Frank (2018))

There exists in a digraph D = (V, A) an (ℓ, ℓ') -bordered (α, β) -limited packing of k spanning branchings \iff

$$\min\{\sum_{1\leq i\leq k}\ell'(i),\beta\}\geq \alpha, \qquad \min\{|V|,\ell'(i)\}\geq \ell(i) \quad \forall i,$$

 $\beta + \sum_{1 \le i \le k} \min\{0, |\mathcal{P}| - \ell(i)\} + e_{\mathcal{A}}(\mathcal{P}) \ge k|\mathcal{P}| \quad \forall \text{ subpartition } \mathcal{P} \text{ of } V,$

 $\sum_{1 \le i \le k} \min\{\ell'(i), |\mathcal{P}|\} + e_{\mathcal{A}}(\mathcal{P}) \ge k|\mathcal{P}| \quad \forall \text{ subpartition } \mathcal{P} \text{ of } V.$

Remark

For $\ell(i) = \ell'(i) \ \forall i, \ \alpha = \beta = \sum_{i=1}^{k} \ell(i)$, Theorem 5 reduces to Theorem 4.

Packing spanning forests with bounded sizes

Theorem 6 (Hoppenot, Martin, Szigeti (2023+))

There exists in a graph G = (V, E) an (ℓ, ℓ') -bordered (α, β) -limited packing of k spanning forests \iff

$$\min\{\sum_{1 \le i \le k} \ell'(i), \beta\} \ge \alpha, \qquad \min\{|V|, \ell'(i)\} \ge \ell(i) \quad \forall i,$$

+
$$\sum_{1 \le i \le k} \min\{0, |\mathcal{P}| - \ell(i)\} + e_{\mathcal{E}}(\mathcal{P}) \ge k|\mathcal{P}| \quad \forall \text{ partition } \mathcal{P} \text{ of } V,$$
$$\sum_{1 \le i \le k} \min\{\ell'(i), |\mathcal{P}|\} + e_{\mathcal{E}}(\mathcal{P}) \ge k|\mathcal{P}| \quad \forall \text{ partition } \mathcal{P} \text{ of } V.$$

Remarks

ß

For ℓ(i) = ℓ'(i) ∀i, α = β = ∑_{i=1}^k ℓ(i), Theorem 6 reduces to Thm 3.
Theorem 6 can be proved using Theorem 3.

Regular packing of trees

Theorem 7 (Katoh, Tanigawa (2013))

There exists in a graph G = (V, E) an *h*-regular packing of *k* trees

$$|V| \ge k,$$

 $e_E(\mathcal{P}) \ge h|\mathcal{P}| - k \quad \forall \text{ partition } \mathcal{P} \text{ of } V.$

Definition

h-regular packing of trees : every vertex belongs to h of them.

Remarks

•
$$e_E(\mathcal{P}) \geq \sum_{T \in \mathcal{T}} (|\mathcal{P}_T| - 1) = \sum_{X \in \mathcal{P}} |\mathcal{T}_X| - k \geq h|\mathcal{P}| - k.$$

2 For h = k, Theorem 7 reduces to Theorem 1.

Thm 7 is a special case of Thm 6 : ∃ an *h*-regular packing of *k* trees ⇐⇒ ∃ a packing of *h* spanning forests with *k* total number of conn. comp.

Z. Szigeti (G-SCOP, Grenoble)

Regular packing of forests of given size

Theorem 8 (Szigeti (2023))

There exists in a graph G = (V, E) an *h*-regular packing of *k* forests each with ℓ connected components \iff

 $k \ge h, \qquad h|V| \ge k\ell,$ $e_E(\mathcal{P}) \ge h|\mathcal{P}| - k\ell \quad \forall \text{ partition } \mathcal{P} \text{ of } V.$

Remarks

$$\bullet \ e_{\mathcal{E}}(\mathcal{P}) \geq \sum_{F \in \mathcal{F}} (|\mathcal{P}_F| - \ell) = \sum_{X \in \mathcal{P}} |\mathcal{F}_X| - k\ell \geq h|\mathcal{P}| - k\ell.$$

- **2** For h = k, Theorem 8 reduces to Theorem 2.
- For $\ell = 1$, Theorem 8 reduces to Theorem 7.
- The decision problem whether there exists in G an h-regular packing of k forests each with ℓ edges is NP-complete.

 $k = 3, h = 2, \ell = 2$

Regular packing of forests of given sizes

Theorem 9 (Hoppenot, Martin, Szigeti (2023+))

There exists in a graph G = (V, E) an *h*-regular packing of *k* forests with $\ell(1), \ldots, \ell(k)$ connected components \iff

$$|V| \ge \ell(i) \quad \forall i, \qquad h|V| \ge \sum_{1 \le i \le k} \ell(i),$$

 $\sum_{1 \leq i \leq k} \min\{\ell(i), |\mathcal{P}|\} + e_{\mathcal{E}}(\mathcal{P}) \geq h|\mathcal{P}| \quad \forall \text{ partition } \mathcal{P} \text{ of } V.$

Remark • For h = k, Theorem 9 reduces to Theorem 3. • For $\ell(i) = \ell \ \forall i$, Theorem 9 reduces to Theorem 8. k = 3, h = 2, 1, 2, 3

Sketch of the proof

Z. Szigeti (G-SCOP, Grenoble)

Packing forests

COW 2024, Aussois

11/15

Regular packing of forests with bounded sizes

Theorem 10 (Hoppenot, Martin, Szigeti (2023+))

There exists an *h*-regular (ℓ, ℓ') -bordered (α, β) -limited packing of *k* forests in a graph $G = (V, E) \iff$

$$\min\{\sum_{1 \le i \le k} \ell'(i), \beta, h|V|\} \ge \alpha, \qquad \min\{|V|, \ell'(i)\} \ge \ell(i) \quad \forall i,$$

+
$$\sum_{1 \le i \le k} \min\{0, |\mathcal{P}| - \ell(i)\} + e_{\mathcal{E}}(\mathcal{P}) \ge h|\mathcal{P}| \quad \forall \text{ partition } \mathcal{P} \text{ of } V,$$

$$\sum_{1 \le i \le k} \min\{\ell'(i), |\mathcal{P}|\} + e_{\mathcal{E}}(\mathcal{P}) \ge h|\mathcal{P}| \quad \forall \text{ partition } \mathcal{P} \text{ of } V.$$

Remarks

В

• For h = k, Theorem 10 reduces to Theorem 6.

2 For $\ell(i) = \ell'(i) \ \forall i, \ \alpha = \beta = \sum_{i=1}^{k} \ell(i)$, Thm 10 reduces to Thm 9.

3 Theorem 10 can be proved using Theorem 9.

12/15

Regular packing of hyperforests with bounded sizes

Theorem 11 (Hoppenot, Martin, Szigeti (2023+))

There exists an *h*-regular (ℓ, ℓ') -bordered (α, β) -limited packing of *k* hyperforests in a hypergraph $\mathcal{G} = (V, \mathcal{E}) \iff$

$$\min\{\sum_{1\leq i\leq k} \ell'(i), \beta, h|V|\} \ge \alpha, \qquad \min\{|V|, \ell'(i)\} \ge \ell(i) \quad \forall i,$$

$$B + \sum_{1\leq i\leq k} \min\{0, |\mathcal{P}| - \ell(i)\} + e_{\mathcal{E}}(\mathcal{P}) \ge h|\mathcal{P}| \quad \forall \text{ partition } \mathcal{P} \text{ of } V,$$

$$\sum_{1\leq i\leq k} \min\{\ell'(i), |\mathcal{P}|\} + e_{\mathcal{E}}(\mathcal{P}) \ge h|\mathcal{P}| \quad \forall \text{ partition } \mathcal{P} \text{ of } V.$$

Definition

 $e_{\mathcal{E}}(\mathcal{P})$: number of hyperedges between the members of a partition \mathcal{P} of V.

Regular packing of hyperforests with bounded sizes

Theorem 11 (Hoppenot, Martin, Szigeti (2023+))

There exists an *h*-regular (ℓ, ℓ') -bordered (α, β) -limited packing of *k* hyperforests in a hypergraph $\mathcal{G} = (V, \mathcal{E}) \iff$

$$\begin{split} \min\{\sum_{1\leq i\leq k}\ell'(i),\beta,h|V|\} &\geq \alpha, \qquad \min\{|V|,\ell'(i)\} \geq \ell(i) \quad \forall i, \\ R + \sum_{1\leq i\leq k}\min\{0,|\mathcal{P}| - \ell(i)\} + e_{\mathcal{E}}(\mathcal{P}) \geq h|\mathcal{P}| \quad \forall \text{ partition } \mathcal{P} \text{ of } V, \\ \sum_{1\leq i\leq k}\min\{\ell'(i),|\mathcal{P}|\} + e_{\mathcal{E}}(\mathcal{P}) \geq h|\mathcal{P}| \quad \forall \text{ partition } \mathcal{P} \text{ of } V. \end{split}$$

- **(**) For \mathcal{G} is a graph, Theorem 11 reduces to Theorem 10.
- **2** Theorem 11 can be proved by the trimming operation using Thm 10.

Regular packing of hyperbranchings with bounded sizes

Theorem 12 (Hoppenot, Martin, Szigeti (2023+))

There exists an *h*-regular (ℓ, ℓ') -bordered (α, β) -limited packing of *k* hyperbranchings in a dypergraph $\mathcal{D} = (V, \mathcal{A}) \iff$

$$\min\{\sum_{1\leq i\leq k} \ell'(i), \beta, h|V|\} \geq \alpha, \qquad \min\{|V|, \ell'(i)\} \geq \ell(i) \quad \forall i,$$

$$\beta + \sum_{1\leq i\leq k} \min\{0, |\mathcal{P}| - \ell(i)\} + e_{\mathcal{A}}(\mathcal{P}) \geq h|\mathcal{P}| \quad \forall \text{ subpartition } \mathcal{P} \text{ of } V,$$

$$\sum_{1\leq i\leq k} \min\{\ell'(i), |\mathcal{P}|\} + e_{\mathcal{A}}(\mathcal{P}) \geq h|\mathcal{P}| \quad \forall \text{ subpartition } \mathcal{P} \text{ of } V.$$

Definition

 $e_{\mathcal{A}}(\mathcal{P})$: number of hyperedges entering a member of subpartition \mathcal{P} of V.

Regular packing of hyperbranchings with bounded sizes

Theorem 12 (Hoppenot, Martin, Szigeti (2023+))

There exists an *h*-regular (ℓ, ℓ') -bordered (α, β) -limited packing of *k* hyperbranchings in a dypergraph $\mathcal{D} = (V, \mathcal{A}) \iff$

$$\min\{\sum_{1 \le i \le k} \ell'(i), \beta, h|V|\} \ge \alpha, \qquad \min\{|V|, \ell'(i)\} \ge \ell(i) \ \forall i,$$

$$\beta + \sum_{1 \le i \le k} \min\{0, |\mathcal{P}| - \ell(i)\} + e_{\mathcal{A}}(\mathcal{P}) \ge h|\mathcal{P}| \ \forall \text{ subpartition } \mathcal{P} \text{ of } V,$$

$$\sum_{1 \le i \le k} \min\{\ell'(i), |\mathcal{P}|\} + e_{\mathcal{A}}(\mathcal{P}) \ge h|\mathcal{P}| \ \forall \text{ subpartition } \mathcal{P} \text{ of } V.$$

Remarks

Q For h = k and \mathcal{D} is a digraph, Theorem 12 reduces to Theorem 5.

2 The proof of Bérczi, Frank works for this general version as well.

- Directed hypergraphs : *h*-regular (*ℓ*, *ℓ'*)-bordered (*α*, *β*)-limited packing of *k* hyperbranchings,
- Hypergraphs : h-regular (ℓ, ℓ')-bordered (α, β)-limited packing of k hyperforests,
- Mixed hypergraphs : natural generalization to
 - *h*-regular packing of k mixed hyperbranchings each with ℓ connected components holds,
 - **2** packing of k spanning mixed branchings with $\ell(1), \ldots, \ell(k)$ connected components does not hold. Counterexample :

$$k = 2$$

 $\ell(1) = 1$
 $\ell(2) = 3$

- Directed hypergraphs : *h*-regular (*ℓ*, *ℓ'*)-bordered (*α*, *β*)-limited packing of *k* hyperbranchings,
- Hypergraphs : h-regular (ℓ, ℓ')-bordered (α, β)-limited packing of k hyperforests,
- Mixed hypergraphs : natural generalization to
 - *h*-regular packing of k mixed hyperbranchings each with ℓ connected components holds,
 - **2** packing of k spanning mixed branchings with $\ell(1), \ldots, \ell(k)$ connected components does not hold. Counterexample :

$$k = 2$$

 $\ell(1) = 1$
 $\ell(2) = 3$

- Directed hypergraphs : *h*-regular (*ℓ*, *ℓ'*)-bordered (*α*, *β*)-limited packing of *k* hyperbranchings,
- Hypergraphs : h-regular (ℓ, ℓ')-bordered (α, β)-limited packing of k hyperforests,
- Mixed hypergraphs : natural generalization to
 - *h*-regular packing of k mixed hyperbranchings each with ℓ connected components holds,
 - **2** packing of k spanning mixed branchings with $\ell(1), \ldots, \ell(k)$ connected components does not hold. Counterexample :

$$k = 2$$

 $\ell(1) = 1$
 $\ell(2) = 3$

Remarks

- Directed hypergraphs : *h*-regular (*ℓ*, *ℓ'*)-bordered (*α*, *β*)-limited packing of *k* hyperbranchings,
- Hypergraphs : h-regular (ℓ, ℓ')-bordered (α, β)-limited packing of k hyperforests,
- Mixed hypergraphs : natural generalization to
 - *h*-regular packing of k mixed hyperbranchings each with ℓ connected components holds,
 - **2** packing of k spanning mixed branchings with $\ell(1), \ldots, \ell(k)$ connected components does not hold. Counterexample :

$$k = 2$$

 $\ell(1) = 1$
 $\ell(2) = 3$

Thank you for your attention !