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Packing spanning trees

Theorem 1 (Nash-Williams (1961), Tutte (1961))
There exists in a graph G = (V/, E) a packing of k spanning trees <=

ee(P) > k(|P|—1) V¥ partition P of V.

Definition

ee(P) : number of edges between the members of a partition P of V.

Z. Szigeti (G-SCOP, Grenoble) Packing forests COW 2024, Aussois 2/15



Packing spanning forests of given size

Theorem 2 (Peng, Chen, Koh (1991))

There exists in a graph G = (V, E) a packing of k spanning forests each
with ¢ connected components <=

vl = ¢,
ee(P) > k(|P|—¢) V partition P of V.

For £ = 1, Theorem 2 reduces to Theorem 1. \
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Packing spanning forests of given sizes

Theorem 3
There exists in a graph G = (V/, E) a packing of k spanning forests with
{(1),...,0(k) connected components <=
V| > i) Vi,
> min{£(i),|P|} + ee(P) > K|P| V¥ partition P of V,
1<i<k
or equivalently ee(P) > Z max{0, |P| — £(i)}.
1<i<k

@ For /(i) = ¢ Vi, Theorem 3 reduces to Theorem 2.
© Theorem 3 can easily be proved using matroid theory.
© We did not find Theorem 3 in the literature. 12
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Packing spanning branchings of given sizes

Theorem 4 (Bérczi, Frank (2018))
There exists in a digraph D = (V, A) a packing of k spanning branchings
with £(1),...,4(k) connected components <=

Vi = i) Vi,

Z min{¢(),|P|} + ea(P) > k|P| V subpartition P of V.
1<i<k

Definitions

@ Branching : each connected component is
an arborescence,

@ ea(P) : number of arcs entering a member
of a subpartition P of V.

1 2 3
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Packing spanning branchings with bounded sizes

Theorem 5 (Bérczi, Frank (2018))

There exists in a digraph D = (V, A) an (¢, ¢)-bordered («, 3)-limited
packing of k spanning branchings <=

min{ Y £(i),8} > a, min{|V|,£()} > £(i) Vi,

1<i<k

B+ Y min{0,|P| - (i)} + ea(P) > K|P| V subpartition P of V,

1<i<k

> min{€'(i),|P|} + ea(P) > K|P| V subpartition P of V.

1<i<k

Definitions

@ (¢, 0")-bordered : ¢(i) < conn.comp(B;) < ¢'(i) V branching B;,
Q (o, B)-limited : o < YK i_y conn.comp(B;) < .
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> min{€'(i),|P|} + ea(P) > K|P| V subpartition P of V.
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RENEILS

| A\

For £(i) = £'(i) Vi, « = 8 = S_%_, £(i), Theorem 5 reduces to Theorem 4.

v
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Packing spanning forests with bounded sizes

Theorem 6 (Hoppenot, Martin, Szigeti (2023+))

There exists in a graph G = (V, E) an (¢, ¢')-bordered («, 3)-limited
packing of k spanning forests <=

min{ > £(i),8} > a, min{|V/|,Z'(\} > £(i) Vi,

1<i<k
B+ Z min{0, |P| — £(i)} + ee(P) > k|P| V partition P of V,
1<i<k
E min{¢'(i),|P|} + ee(P) > k|P| V partition P of V.
1<i<k

RENEIS

| A\

Q@ Forl(i)=0(i)Vi,a=p= Zf'(:l £(i), Theorem 6 reduces to Thm 3.
@ Theorem 6 can be proved using Theorem 3.
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Regular packing of trees

Theorem 7 (Katoh, Tanigawa (2013))

There exists in a graph G = (V, E) an h-regular packing of k trees <=

h|V|
eE(P)

k,

>
> h|P|—k ¥ partition P of V.

Definition
h-regular packing of trees : every vertex belongs to h of them.

Remarks
Q ec(P)= > (IPr[—=1)= X |Tx|—k = hP|-k.
TeT XeP
@ For h =k, Theorem 7 reduces to Theorem 1.

© Thm 7 is a special case of Thm 6 : 9 an h-regular
packing of k trees <= 3 a packing of h spanning
forests with k total number of conn. comp.
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Regular packing of forests of given size

Theorem 8 (Szigeti (2023))

There exists in a graph G = (V/, E) an h-regular packing of k forests each
with ¢ connected components <= * »

k> h, V| > ke,
ee(P) > h|P|— k¢ V¥ partition Pof V. ., ,,,

QO ec(P)> > ([Pel— €)= > |Fx|— kt > h|P| — k¢.
FeF XeP

© For h = k, Theorem 8 reduces to Theorem 2.
© For /=1, Theorem 8 reduces to Theorem 7.

@ The decision problem whether there exists in G an h-regular packing
of k forests each with ¢ edges is NP-complete.

\
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Regular packing of forests of given sizes

Theorem 9 (Hoppenot, Martin, Szigeti (2023+))

There exists in a graph G = (V/, E) an h-regular packing of k forests with
{(1),...,0(k) connected components <=

V| > (i) Vi, WV = > ),

1<i<k

Z min{¢(i), |P|} + ee(P) > h|P] V partition P of V.
1<i<k

@ For h =k, Theorem 9 reduces to Theorem 3.
@ For ¢(i) = ¢ Vi, Theorem 9 reduces to Theorem 8.
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Sketch of the proof

1. Instance : h =5k = 6, 2. Packing of 5 spanning forests

of 5,5,4,4,4 conn. comp. :

(4 [ ]

(4 0000

00000 0000

00000 | 0000

(X XN X J 0000
553333 ® @ 5544 4

4. b-regular packing of 6 forests

© ©
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Regular packing of forests with bounded sizes

Theorem 10 (Hoppenot, Martin, Szigeti (2023+))

There exists an h-regular (¢, ¢')-bordered («, §)-limited packing of
k forests in a graph G = (V,E) <+

min{ Z i), B, AV} > a, min{| V|, ¢'(i)} > ¢(i) Vi,

1<i<k
B+ Y min{0,[P| - (i)} +ee(P) > h|P| V¥ partition P of V,
1<i<k
> min{l(i),|P|} + ee(P) > h|[P| V partition P of V.
1<i<k

Remarks
@ For h = k, Theorem 10 reduces to Theorem 6.
@ For ((i) = '(i) Vi, « = 8 = 3%, £(i), Thm 10 reduces to Thm 9.
© Theorem 10 can be proved using Theorem 9.

|

v
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Regular packing of hyperforests with bounded sizes

Theorem 11 (Hoppenot, Martin, Szigeti (2023+))

There exists an h-regular (¢, ¢')-bordered («, 3)-limited packing of
k hyperforests in a hypergraph G = (V,€) <<

min{ Y £(i), 8, hV]} > a min{|V|, (i)} > £(i) ¥ i,

1<i<k

B+ Y min{0,[P| - £(i)} + ec(P)

> h|P| V partition P of V,
1<i<k
> min{l'(i),|P|} + e(P) > h|P| V partition P of V.
1<i<k
Definition

es(P) : number of hyperedges between the members of a partition P of V.
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Regular packing of hyperforests with bounded sizes

Theorem 11 (Hoppenot, Martin, Szigeti (2023+))

There exists an h-regular (¢, ¢')-bordered («, §)-limited packing of
k hyperforests in a hypergraph G = (V,€) <+

min{ Y £(i), 8, hV]} > a, min{|V|, (i)} > £(i) ¥ i,

1<i<k
B+ Y min{0,[P| — (i)} +es(P) > h[P| V partition P of V,
1<i<k
Z min{¢'(i),|P|} + es(P) > h|P| V partition P of V.
1<i<k

V.
RENEIS

@ For G is a graph, Theorem 11 reduces to Theorem 10.

© Theorem 11 can be proved by the trimming operation using Thm 10.
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Regular packing of hyperbranchings with bounded sizes

Theorem 12 (Hoppenot, Martin, Szigeti (2023+))

There exists an h-regular (¢, ¢')-bordered («, 3)-limited packing of
k hyperbranchings in a dypergraph D = (V, A) <=

min{ Y £(i), 8, hV]} > a, min{|V|, (i)} > £(i) ¥ i,
1<i<k

B+ Z min{0, |P| — £(i)} + ea(P) > h|P| V subpartition P of V,

1<i<k

Z min{¢'(i),|P|} + ea(P) > h|P| V subpartition P of V.
1<i<k

Definition

eA(P) : number of hyperedges entering a member of subpartition P of V.
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Regular packing of hyperbranchings with bounded sizes

Theorem 12 (Hoppenot, Martin, Szigeti (2023+))

There exists an h-regular (¢, ¢')-bordered («, §)-limited packing of
k hyperbranchings in a dypergraph D = (V, A) <=
min{ Z (i), B, bV} > «, min{|V|, ¢ (i)} > £(i) Vi,
1<i<k
B+ Y min{0,[P| - £(i)} + ea(P) > h|P| V subpartition P of V,
1<i<k
Z min{¢'(i),|P|} + ea(P) > h|P| V subpartition P of V.
1<i<k

@ For h =k and D is a digraph, Theorem 12 reduces to Theorem 5.
@ The proof of Bérczi, Frank works for this general version as well.

4
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Conclusion

© Directed hypergraphs : h-regular (¢, ¢')-bordered («, 3)-limited
packing of k hyperbranchings,
@ Hypergraphs : h-regular (¢, ¢')-bordered (v, 8)-limited packing of k
hyperforests,
© Mixed hypergraphs : natural generalization to
@ h-regular packing of k mixed hyperbranchings each with ¢ connected
components holds,

@ packing of k spanning mixed branchings with ¢(1), ..., ¢(k) connected
components does not hold. Counterexample :

k=2
o1y =1
02) =3
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Thank you for your attention !
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