On minimally 2-T-connected directed graphs

Olivier Durand de Gevigney a, Zoltán Szigiét $^b, ^*$

a Routific, Vancouver, British Columbia, Canada
b University Grenoble Alpes, Grenoble INP, CNRS, G-SCOP, 48 Avenue Félix Viallet, Grenoble, 38000, France

ARTICLE INFO

Article history:
Received 14 December 2017
Accepted 2 April 2018
Available online 26 April 2018

Keywords:
Arc-connectivity
Vertex-connectivity

ABSTRACT

We prove that in a minimally 2-T-connected directed graph, that contains no parallel arcs entering or leaving a vertex in T, there exists a vertex of in-degree and out-degree 2. This is a common generalization of two earlier results of Mader (1978, 2002).

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let $D = (V, A)$ be a directed graph, or more briefly, a digraph. As usual, ρ_D and δ_D denote the in- and out-degree functions of D. For $U, W \subseteq V$, $\overline{U} = V \setminus U$, $D[U]$ denotes the subgraph of D induced by U and $d_D(U, W)$ denotes the number of arcs with tail in $U \setminus W$ and head in $W \setminus U$.

We say that D is k-arc-connected if $|V| \geq 2$ and for every ordered pair (u, v) of vertices, there exist k arc disjoint paths from u to v. We call D minimally k-arc-connected if D is k-arc-connected and the deletion of any arc destroys this property. Instead of 1-arc-connected we will use strongly-connected.

Mader [1] provided a constructive characterization of k-arc-connected digraphs. To prove that result he showed the following theorem. The special case of Theorem 1 when $k = 2$ will be generalized in this paper.

Theorem 1 (Mader [1]). Every minimally k-arc-connected digraph D contains a vertex v with $\rho_D(v) = \delta_D(v) = k$.

The digraph D is said to be k-vertex-connected if $|V| \geq k + 1$ and for every ordered pair (u, v) of vertices, there exist k internally vertex disjoint paths from u to v. We say that D is minimally k-vertex-connected if D is k-vertex-connected and the deletion of any arc destroys this property.

Mader [2] conjectured that a result similar to Theorem 1 also holds for vertex-connectivity.

Conjecture 1 (Mader [2]). Every minimally k-vertex-connected digraph D contains a vertex v with $\rho_D(v) = \delta_D(v) = k$.

Theorem 2 (Mader [3]). Every minimally 2-vertex-connected digraph D contains a vertex v with $\rho_D(v) = \delta_D(v) = 2$.

For $T \subseteq V$, the digraph D is called 2-T-connected if $|V| \geq 3$ and for every ordered pair (u, v) of vertices, there exist two paths from u to v that are arc disjoint and internally vertex disjoint in T. This notion generalizes both 2-arc-connectivity ($T = \emptyset$) and 2-vertex-connectivity ($T = V$). It is easy to see that D is 2-T-connected if and only if upon deleting any arc or

* Corresponding author.
* E-mail addresses: odegvigney@gmail.com (O. Durand de Gevigney), zoltan.szigeti@grenoble-inp.fr (Z. Szigiét).

https://doi.org/10.1016/j.dam.2018.04.003
0166-218X/© 2018 Elsevier B.V. All rights reserved.
any vertex in T, the remaining digraph is strongly-connected. We call D minimally 2-T-connected if D is 2-T-connected and the deletion of any arc destroys this property.

We provide a common generalization of Theorem 1 for $k = 2$ and Theorem 2. The proof will follow the ideas of Mader [3].

Theorem 3. Every minimally 2-T-connected digraph D, that contains no parallel arcs entering or leaving a vertex in T contains a vertex v with $\rho_D(v) = \delta_D(v) = 2$.

Note that Theorem 3 implies Theorem 1 for $k = 2$ (when $T = \emptyset$) and Theorem 2 (when $T = V$, since no parallel arc exists in a minimally 2-vertex-connected digraph).

We present a short proof of Theorem 3, which is due to an application of the language of bi-sets. For $X_f \subseteq X_0 \subseteq V$, $X = (X_f, X_0)$ is called a bi-set. The set X_f is called the inner-set, X_0 is the outer-set and $W(X) = X_0 \setminus X_f$ is the wall of X. If $X_f = \emptyset$ or $X_0 = V$, the bi-set X is called trivial. The complement of X is defined by $\overline{X} = (\overline{X_f}, \overline{X_0})$. The intersection and the union of two bi-sets $X = (X_f, X_0)$ and $Y = (Y_f, Y_0)$ are defined as follows:

$$X \cap Y = (X_f \cap Y_f, X_0 \cap Y_0),$$
$$X \cup Y = (X_f \cup Y_f, X_0 \cup Y_0).$$

An arc xy enters X if $x \in V \setminus X_0$ and $y \in X_f$. The in-degree $\hat{\rho}_D(X)$ of X is the number of arcs entering X.

Let $T \subseteq V$ and g^T be the modular function defined on subsets of V by $g^T(\emptyset) = 0$, $g^T(v) = 1$ for $v \in T$ and $g^T(v) = 2$ for $v \in V \setminus T$. Let w be the following function:

$$f^T_\emptyset(X) = \hat{\rho}_D(X) + g^T(w(X)).$$

The following Menger-type result can be readily proved.

Claim 1. D is 2-T-connected if and only if for all nontrivial bi-sets X of $V(D)$,

$$f^T_\emptyset(X) \geq 2. \tag{1}$$

A bi-set X is called tight if $f^T_\emptyset(X) = 2$. It is easy to verify the following characterization of minimally 2-T-connected digraphs.

Claim 2. D is minimally 2-T-connected if and only if (1) and the following condition are satisfied:

Every arc of D enters a tight bi-set of T. \tag{2}

The main contribution of the present note is to provide a compact proof simultaneously for Theorem 1 when $k = 2$ and for Theorem 2.

2. Proof of Theorem 3

Proof. Suppose that the theorem is false and let $D = (V, A)$ be a counterexample. Let us define the following set: $A_0 = \{xy \in A : \rho_D(y) > 2$ and $\delta_D(x) > 2\}$.

Lemma 1. $A_0 \neq \emptyset$.

Proof. Suppose that $A_0 = \emptyset$. If an arc a enters a vertex u of in-degree 2 or leaves a vertex u of out-degree 2, then we say that u covers a. By $A_0 = \emptyset$, every arc is covered by at least one of its end-vertices. Since D is a counterexample of the theorem, a vertex can cover at most 2 arcs and, for all $v \in V$, $\rho_D(v) + \delta_D(v) \geq 5$. Hence, since $|V| \geq 3$, we have the following contradiction: $2|V| > |A| = \frac{1}{2} \sum_{v \in V}(\rho_D(v) + \delta_D(v)) \geq \frac{5}{2}|V|$. \hfill \Box

Let T be the set of bi-sets T so that either T or \overline{T} is a tight bi-set entered by an arc of A_0. By Lemma 1 and (2), $T \neq \emptyset$. Let $X = (X_f, X_0)$ be an element of T such that $|X_f| + |X_0|$ is minimum. Without loss of generality we may assume that X is a tight bi-set entered by the arc ab of A_0. Indeed, if \overline{X} is a tight bi-set entered by an arc ab of A_0, then let us consider the reversed digraph $D' = (V, \overline{A})$. Then D' is a counterexample to Theorem 3, $A_0' = \{xy \in \overline{A} : \rho_D^{-1}(x) > 2$ and $\delta_D^{-1}(y) > 2\} = \overline{A}_0$ and X is a tight bi-set entered by the arc ba of A_0'.

Note that either $w(X) = \emptyset$ and $\hat{\rho}_D(X) = 2$, or $w(X) \in T$ and $\hat{\rho}_D(X) = 1$.

Lemma 2. There exists no arc xy in A_0 such that $y \in X_f$ and $x \in X_0$.

Proof. Suppose there exists an arc xy in A_0 such that $y \in X_f$ and $x \in X_0$. By (2), there exists a tight bi-set $Y = (Y_0, Y_1)$ entered by xy, so $Y \in T$.

Claim 3. $X_0 \cup Y_0 = V$.

Proof. If the claim is false, then $X \sqcup Y$ is a nontrivial bi-set. Since $y \in X \cap Y$, $X \cap Y$ is a nontrivial bi-set. Then, by the tightness of X and Y, (1) applied for $X \sqcup Y$ and $X \cap Y$ and the submodularity of f^D_T (since $\hat{\rho}_D$ is submodular and g^T is modular), we have
\[
2 + 2 - 2 \geq f^D_T(X) + f^D_T(Y) - f^D_T(X \sqcup Y) \geq f^D_T(X \cap Y) \geq 2.
\]
Hence equality holds everywhere, so $X \cap Y$ is tight. Moreover, $X \cap Y$ is entered by xy, that is $X \cap Y \in T$ and, by $x \in X_0 \setminus Y_0$, we have $|X \cap Y||0| + |(|X \cap Y||0)|| < |X_0||0| + |X_0||, a contradiction. \hfill \Box

Claim 4. $X_i \cap Y_i = y$, $w(X \cap Y) = \emptyset$ and $|w(X)| = |w(Y)| = 1$.

Proof. By $\overline{V} = (\overline{V_1}, \overline{V_2}) \in T$ and the tightness of X_i, we have
\[
|\overline{V_1}| + |\overline{V_2}| \geq |X_0||0| + |X_0||1|.
\]
Since $X, Y \in T$, $1 \geq |w(X)|$ and $1 \geq |w(Y)|$. Then, by (3), Claim 3 and $y \in X_i \cap Y_i$, we have
\[
2 \geq |\overline{V_0} \cap w(X)| + |w(Y) \cap \overline{V_2}| \geq |X_i \cap w(Y)| + 2|X_i \cap Y_i| + |w(X) \cap Y_i| \geq 2.
\]
Thus we have equality everywhere and the claim follows. \hfill \Box

Lemma 3. $D[X_i]$ is strongly-connected.

Proof. Suppose there exists $\emptyset \neq U \subset X_i$ with $\rho_D(U)(U) = 0$. Then, by (1) applied for $Z = (Z_0, Z_1) = (U \cup w(X), U)$, $w(Z) = w(X)$ and the tightness of X, we have
\[
2 \leq \hat{\rho}_D(Z) + g^T(w(Z)) \leq \hat{\rho}_D(X) + g^T(w(X)) = 2.
\]
Hence, equality holds everywhere, so Z is a tight bi-set with $\hat{\rho}_D(Z) = \hat{\rho}_D(X)$ thus entered by ab, that is $Z \in T$. By $Z_i \subset X_i$ and $w(X) = w(Z)$, we have $|Z_0||0| + |Z_1||1| < |X_0||0| + |X_1||1|$, a contradiction that completes the proof of Lemma 2. \hfill \Box

Lemma 4. The following statements hold for $V_+ = \{v \in V : \rho_D(v) > 2 = \delta_D(v)\}$:

(a) If $\rho_D(v) > 2$ and $uv \in A \setminus A_0$, then $u \in V_+$.
(b) If $X_i \neq b$, then $X_i \subseteq V_+$.
(c) If $X_i \neq b$ and $w(X) \neq \emptyset$, then $w(X) \subseteq V_+$.

Proof. (a) By $\rho_D(v) > 2$ and $uv \in A \setminus A_0$, we have $\delta(u) = 2$, and then, since D is a counterexample, $\rho_D(u) > 2$ and hence $u \in V_+$. (b) By $\rho_D(b) > 2$ and (a), all vertices from which b is reachable in $D - A_0$ by a nontrivial path are in V_+. Thus, by Lemmas 2 and 3, $X_i - b \subseteq V_+$. By $X_i \neq b$ and Lemma 3, there exists an arc bc in $D[X_i]$. By Lemma 2, $c \in V_+$ and (a), we get $b \in V_+$. (c) If $w(X) \neq \emptyset$, then, by $\hat{\rho}_D(X) = 1$ and (1) applied for (X_i, X_i), we have $d_D(w(X), X_i) \geq 1$, so, by Lemma 2, (b) and (a), we obtain $w(X) \subseteq V_+$. \hfill \Box

We finish the proof by considering the in-degree of X_i. We distinguish two cases.

Case 1. If $X_i = b$, then, by $ab \in A_0$, the assumption of the theorem and the fact that X is tight, we have the following contradiction:
\[
2 < \rho_D(b) = \hat{\rho}_D(X) + d_D(w(X), b) \leq \hat{\rho}_D(X) + g^T(w(X)) = 2.
\]

Case 2. If $X_i \neq b$, then, by the fact that X is a tight bi-set entered by ab, Lemma 4(c), (1) applied for $(\overline{X_i}, \overline{X_i})$ and Lemma 4(b), we have the following contradiction.
\[
3 - 2 \geq \hat{\rho}_D(X_i) + 2|w(X)| - 2 \geq \hat{\rho}_D(X) + d_D(w(X), X_i) - \delta_D(X_i)
\]
\[
= \rho_D(X_i) - \delta_D(X_i) = \sum_{v \in X_i} (\rho_D(v) - \delta_D(v)) \geq |X_i| \geq 2.
\]
These contradictions complete the proof of the theorem. \hfill \Box

References