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Abstract: The aim of this paper is twofold. We first provide a new orientation theorem
which gives a natural and simple proof of a result of Gao, Yang [11] on matroid-reachability-
based packing of mixed arborescences in mixed graphs by reducing it to the corresponding
theorem of Cs. Kirdly [17] on directed graphs. Moreover, we extend another result of Gao,
Yang [12] by providing a new theorem on mixed hypergraphs having a packing of mixed
hyperarborescences such that their number is at least ¢ and at most £/, each vertex belongs
to exactly k of them, and each vertex v is the root of least f(v) and at most g(v) of them.
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1 Introduction

This paper is not a survey on packing arborescences. Such a survey is in preparation, see [22]. We only
present here those theorems of the topic that are closely related to the new results of this paper. A
preliminary version of the paper appeared in [21].

Edmonds [5] characterized digraphs having a packing of spanning arborescences with fixed roots.
Frank [7] extended it for a packing of spanning arborescences whose roots are not fixed. The result of
Frank [7], and independently Cai [3], answers the question when a digraph has an (f, g)-bounded packing
of spanning arborescences, that is when each vertex v can be the root of at least f(v) and at most g(v)
arborescences in the packing. Bérczi, Frank [2] entends it for an (f, g)-bounded, k-regular, (¢, ¢’)-limited
packing of not necessarily spanning arborescences, where k-regular means that each vertex belongs to
exactly k arborescences in the packing and (¢, ¢’)-limited means that the number of arborescences in
the packing is at least ¢ and at most ¢/. Kamiyama, Katoh, Takizawa [16] provided a different type of
generalization of Edmonds’ theorem in which they wanted to pack reachability arborescences, that is
each arborescence in the packing must contain all the vertices that can be reached from its root in the
digraph. Durand de Gevigney, Nguyen, Szigeti [4] gave a generalization of Edmonds’ theorem where a
matroid constraint was added for the packing. More precisely, given a matroid M on a multiset of vertices
of a digraph D, we wanted to have a matroid-based packing of arborescences, that is for every vertex v
of D, the set of roots of the arborescences in the packing containing v must form a basis of M. In [17]
Cs. Kirély proposed a common generalization of the previous two results. He characterized pairs (D, M)
of a digraph and a matroid that have a matroid-reachability-based packing of arborescences, that is for
every vertex v of D, the set of roots of the arborescences in the packing containing v must form a basis
of the subset of the elements of M from which v is reachably in D.

All of these results hold for dypergraphs, see [10], [14], [22], [1], [6], and for mixed graphs, see [7],
[11], [22], [20], [6], [12]. In fact, all of these results, except the one of Bérczi, Frank [2], are known to
hold for mixed hypergraphs, see [6], [14], [15]. The present paper will fill in this gap by showing that this
result also holds for mixed hypergraphs. More precisely, we will characterize mixed hypergraphs having
an (f,g)-bounded, k-regular, (¢, ¢')-limited packing of mixed hyperarborescences. Our result naturally
generalizes a result of Gao, Yang [12] on (f,g)-bounded packing of k spanning mixed arborescences.
The other aim of this paper is to provide a new proof of another result of Gao, Yang [11] on matroid-
reachability-based packing of mixed arborescences. Our approach is to reduce the result to the result of
Cs. Kirdly [17] on matroid-reachability-based packing of arborescences via a new orientation theorem.

2 Definitions

A multiset of V' may contain multiple occurrences of elements. For a multiset S of V' and a subset X of
V', Sx denotes the multiset consisting of the elements of X with the same multiplicities as in S.



Let D = (V, A) be a directed graph, shortly digraph. For a subset X of V, the set of arcs in A entering
X is denoted by pa(X) and the in-degree of X is d4(X) = |pa(X)]|. For a subset X of V. we denote by
PX (QF) the set of vertices from (to) which there exists a path to (from, respectively) at least one vertex
of X. We say that D is an arborescence with root s, shortly s-arborescence, if s € V' and there exists a
unique path from s to v for every v € V'; or equivalently, if D contains no circuit and every vertex in V' —s
has in-degree 1. We say that D is a branching with root set S if S C V and there exists a unique path from
S to v for every v € V. A subgraph of D is called spanning if its vertex set is V. A subgraph of D is called
a reachability s-arborescence if it is an s-arborescence and its vertex set is Q7,. By a packing of subgraphs
in D, we mean a set of subgraphs that are arc-disjoint. A packing of subgraphs is called k-regular if
every vertex belongs to exactly k& subgraphs in the packing. For two functions f,g: V — Z,, a packing
of arborescences is called (f, g)-bounded if the number of v-arborescences in the packing is at least f(v)
and at most g(v) for every v € V. For £,¢' € 7, a packing of arborescences is called (¢, ')-limited if the
number of arborescences in the packing is at least £ and at most ¢/. For a multiset S of V' and a matroid
M on S, a packing of arborescences in D is called matroid-based (resp. matroid-reachability-based) if every
s € S is the root of at most one arborescence in the packing and for every v € V, the multiset of roots
of arborescences containing v in the packing forms a basis of S (resp. Spy ) in M.

Let FF = (V,E U A) be a mized graph, where E is a set of edges and A is a set of arcs. A mixed
subgraph F’ of F is a mized path if the edges in F’ can be oriented in such a way that we obtain a
directed path. For a subset X of V, we denote by PX (Q%) the set of vertices from (to) which there
exists a mixed path to (from, respectively) at least one vertex of X. We say that F is strongly connected
if there exists a mixed path from s to t for all (s,¢) € V2. The maximal strongly connected subgraphs of
F are called the strongly connected components of F'. A mized s-arborescence is a mixed graph that has
an orientation that is an s-arborescence. A mixed subgraph of F' is called a spanning (resp. reachability)
mized s-arborescence if it is a mixed s-arborescence and its vertex set is V' (resp. Q% ). By a packing of
subgraphs in F', we mean a set of subgraphs that are edge- and arc-disjoint. All the packing problems
considered in digraphs can also be considered in mixed graphs.

Let D = (V, A) be a directed hypergraph, shortly dypergraph, where A is the set of dyperedges of
D. A dyperedge e is an ordered pair (Z,z), where z € V is the head and ) # Z C V — z is the set of
tails of e. For X C V, a dyperedge (Z,z) enters X if z € X and Z N X # (). The set of dyperedges
in A entering X is denoted by pa(X) and the in-degree of X is d4(X) = |[pa(X)|. By trimming a
dyperedge e = (Z, z), we mean the operation that replaces e by an arc yz where y € Z. We say that D is
a hyperarborescence with root s, shortly s-hyperarborescence, if D can be trimmed to an s-arborescence.
We say that D is a hyperbranching with root set S if D can be trimmed to a branching with root set
S. A packing of subdypergraphs in D is a set of subdypergraphs that are dyperedge-disjoint. We say
that D has a matroid-based/(f, g)-bounded/k-regular/(¢,£')-limited packing of hyperarborescences if D
can be trimmed to a digraph that has a matroid-based/(f, g)-bounded/k-regular/(¢, ¢')-limited packing
of arborescences.

Let F = (V,€ U A) be a mized hypergraph, where £ is the set of hyperedges and A is the set of
dyperedges of F. A hyperedge is a subset of V' of size at least two. A hyperedge e enters a subset Y of V
ifenNY # 0 #enY. By orienting a hyperedge e, we mean the operation that replaces the hyperedge e
by a dyperedge (e — x, x) for some 2 € e. For ZC A, Z denotes the set of underlying hyperedges of Z.
For Z C £ and X C V, we denote by V(Z) the set of vertices that belong to at least one hyperedge in
Z and by Z(X) the set of hyperedges in Z that are contained in X. A mized s-hyperarborescence is a
mixed hypergraph that has an orientation that is an s-hyperarborescence. A mixed s-hyperarborescence
is called spanning in F if its vertex set is V. For a family P of subsets of V, we denote by egua(P)
the number of hyperedges in £ and dyperedges in A that enter some member of P. For X C V., we
use egua(X) for esua({X}). A packing of mixed subhypergraphs in F is a set of mixed subhypergraphs
that are hyperedge- and dyperedge-disjoint. We say that F has an (f, g)-bounded/k-regular/ (£, ¢")-limited
packing of mixed hyperarborescences if £ has an orientation & such that the dypergraph (V, Eu A) has
an (f, g)-bounded/k-regular/ (¢, ¢')-limited packing of hyperarborescences.

3 Known results

In this section we list the results on packing arborescences that are related to the new results. We start
with the fundamental result of Edmonds [5] on packing spanning arborescences with fixed roots.

Theorem 1 (Edmonds [5]) Let D = (V, A) be a digraph and S a multiset of V. There exists a packing



of spanning s-arborescences (s € S) in D if and only if
d,(X) > |Syv_x| for every ) # X C V.

Theorem 1 was extended for the case when the roots of the arborescences are not fixed but the number
of arborescences in the packing rooted at any vertex is bounded. For a subpartition P of V', UP denotes
the set of elements of V' that belong to some member of P.

Theorem 2 (Frank [7], Cai [3]) Let D = (V, A) be a digraph, f,g : V — Z4 functions and k € Z.
There exists an (f,g)-bounded packing of k spanning arborescences in D if and only if

glv) > fv) for every v €'V, (1)
ea(P) > k|P|—min{k — f(UP),g(UP)}  for every subpartition P of V. (2)

If S is a multiset of V' and f(v) = g(v) = |S,| for every v € V, then Theorem 2 reduces to Theorem

Theorem 2 can be generalized for the case when the arborescences are not necessarily spanning but
every vertex must belong to the same number of arborescences in the packing. For g : V. — Z, and
k € Z4, let g (v) = min{k, g(v)} for every v € V. For convenience, we present not the original version of
the result of [2] which is about packing branchings but one that fits better to our framework.

Theorem 3 (Bérczi, Frank [2]) Let D = (V, A) be a digraph, f,g: V — Zy functions and k, {0 €
Zy. There exists an (f, g)-bounded k-reqular (£,¢")-limited packing of arborescences in D if and only if

gr(v) = f(v) for every v €'V, (3)
min{gi(V),0'} > ¢ (4)
ea(P) > k[P|—min{¢' — f(UP),g(UP)}  for every subpartition P of V. (5)

For k = ¢ = {', Theorem 3 reduces to Theorem 2.

An elegant extention of Theorem 1 for packing reachability arborescences was provided in [16].

Theorem 4 (Kamiyama, Katoh, Takizawa [16]) Let D = (V, A) be a digraph and S a multiset of
V. There exists a packing of reachability s-arborescences (s € S) in D if and only if

dy(X) = |Spx _x| for every X C V.
When each vertex is reachable from every vertex of S, Theorem 4 reduces to Theorem 1. Theorem 4
can be proved by induction and using Edmonds’ result on packing branchings, see Horsch, Szigeti [15].

Another type of generalizations of Theorem 1 was obtained by adding a matroid constraint.

Theorem 5 (Durand de Gevigney, Nguyen, Szigeti [4]) Let D = (V, A) be a digraph, S a multiset
of Vand M = (S,rm) a matroid. There exists a M-based packing of arborescences in D if and only if

rm(Sx) + d 4 (X) > rm(S) for every ) # X C V.

For the free matroid M, Theorem 5 reduces to Theorem 1.

A common generalization of Theorems 4 and 5 was found by Cs. Kirély [17].

Theorem 6 (Cs. Kirdly [17]) Let D = (V, A) be a digraph, S a multiset of V. and M = (S,rm) a
matroid. There exists a matroid-reachability-based packing of arborescences in D if and only if

rm(Sx) +dy(X) = rm(Spx)  for every X C V. (6)
For the free matroid M, Theorem 6 reduces to Theorem 4. When each vertex is reachable from a basis
of M, Theorem 6 reduces to Theorem 5.

Gao, Yang [11] provided another characterization of the existence of a matroid-reachability-based
packing of arborescences.

Theorem 7 (Gao, Yang [11]) Let D = (V, A) be a digraph, S a multiset of V. and M = (S,rm) a
matroid. There exists a matroid-reachability-based packing of arborescences in D if and only if for every
strongly connected component C' of D and every X C P§ such that X NC # 0 and d (X — C) = 0,

mm(Sx) +dy(X) = rm(Spg)- (7)



Let us show that Theorems 6 and 7 are equivalent.
PROOF: We have to prove that (6) and (7) are equivalent.

(6) == (7): If (6) holds, then let C' be a strongly connected component of D and X C P§ such that
XNC#0andd;(X —C)=0. Then, we have P = P§ and (6) implies (7).

(7) = (6): Now if (7) holds, then let X be a subset of V. Let Cy,...,C} be the strongly connected
components of D in a topological ordering that is if there exists an arc from C; to C; then ¢ < j. Let

J = {1<j<k:XnNC;#0},
X; = (Xn¢Cju U Pgi for every j € J.
ieJ—{j}
Ci,CPyY

Note that X; C ng, X;NCj #0and d,(X; —Cj) =0 for every j € J.

Claim 8 d(X) > >, d (X;).

PRrROOF: If uv enters X, thenv e XNC; C X and u ¢ X,. If u € X, then uw € X N Cy for some j' € J.

Since Cjs is strongly connected, u € Cj and v € X N C}, we have Cj C ng, so u € X; which is a
contradiction. It follows that u ¢ X, so uv enters X. Since (X NC;)N (X NCj) = for distinct j, ' € J,
the claim follows. [

Claim 9 Zje-](rM(Sng) — ’I“M(ij)) > TM(SPL;)() — TM(S)().

PROOF: We prove it by induction on |J|. For |J| = 1, say J = {j}, the claim follows from ng = ng.

Suppose that the inequality holds for |J| — 1. Let £ be the largest value in J. Note that we have
Py (XU Py )
PYCU (X U Py YY)

Xy, PN X
Py, PYXuX

X*le

)
) X,u Py X

2
2

Then, by induction, submodularity and monotonicity of ry, we have

> (rm (Spei) =mm(9x,)) = (rm(Spxe) = mm(Sx,)) + (rm(Spx-x.) — m(Sx—x,))
jeJ

Y

(rm(Spx) —mm(Sy, px-x)) + (m(Sy,  px—xe) = Tm(9x))
= ™(Spy) —rm(Sx),
and the claim follows. [
By Claims 8, 9 and (7), we get that (6) holds. [

Theorem 1 was generalized for dypergraphs as follows.

Theorem 10 (Frank, T. Kiraly, Z. Kiraly [10]) Let D = (V,.A) be a dypergraph, s € V and k € Z..
There exists a packing of k spanning s-hyperarborescences in D if and only if

dy(X) > k  forevery) #X CV —s.
Theorem 10 easily implies the following corollary.

Corollary 11 Let D = (V, A) be a dypergraph and S a multiset of V. There exists a k-regular packing
of s-hyperarborescences (s € S) in D if and only if

|Sy] < Kk for every v €V, (8)
dy(X) > k—|Sx| foreveryl#XCV. 9)

Theorem 2 was generalized for mixed graphs as follows.



Theorem 12 (Gao, Yang [12]) Let F = (V,E U A) be a mized graph, f,g:V — Z functions, and
k € Z. There exists an (f, g)-bounded packing of k spanning mized arborescences in F if and only if (1)
holds and

epuA(P) > k|P| — min{k — f(UP), g(UP)} for every subpartition P of V.

If F' is a digraph, then Theorem 12 reduces to Theorem 2.

Theorem 12 can be generalized for mixed hypergraphs.

Theorem 13 (Horsch, Szigeti [14]) Let F = (V,E U .A) be a mized hypergraph, f,g :V — Zy func-
tions, and k € Zy. There exists an (f,g)-bounded packing of k spanning mized hyperarborescences in F
if and only if (1) holds and

ecua(P) > k|P|—min{k — f(UP),g(UP)}  for every subpartition P of V.

If F is a mixed graph then Theorem 13 reduces to Theorem 12. Theorem 13 is derived from matroid
intersection in [14]. One of the main contribution of this paper is to provide a generalization of Theorem
13 in Subsection 4.2. The new result will be obtained from the theory of generalized polymatroids.

Now a generalization of Theorem 4 for mixed graphs follows. For convenience, we present not the
original version of the result but one due to Gao, Yang [11] that fits better to our framework.

Theorem 14 (Matsuoka, Tanigawa [20]) Let F' = (V, EUA) be a mized graph and S a multiset of V.
There exists a packing of reachability mized s-arborescences (s € S) in F if and only if for every strongly
connected component C' of F and every set P of subsets of P& such that ZNC # 0 and epua(Z —C) =0
for every Z € P and ZNZ'NC =0 for every Z, 7' € P,

ceoa(P) = [Spe P~ 3 1521,

ZeP
If F is a digraph, then Theorem 14 reduces to Theorem 4.

A common generalization of Theorems 7 and 14 was provided by Gao, Yang [11].

Theorem 15 (Gao, Yang [11]) Let F = (V, EUA) be a mized graph, S a multiset of V- and M = (S, rw)
a matroid. There exists a matroid-reachability-based packing of mixed arborescences in F if and only if
for every strongly connected component C' of F' and every set P of subsets of Pg such that ZNC # 0
and egua(Z — C) =0 for every Z € P and ZNZ' NC =0 for every Z,Z' € P,

epua(P) = ma(Spe)[Pl= > mu(Sz). (10)
ZeP

For E = (), Theorem 15 reduces to Theorem 7. For the free matroid M, Theorem 15 reduces to
Theorem 14. Horsch, Szigeti [15] pointed out that Theorem 15 holds for mixed hypergraphs. That
more general result was proved in [15] by induction using a result on matroid-based packing of mixed
hyperbranchings in mixed hypergraphs from [6]. Here we propose another approach to prove Theorem
15. It will be derived from Theorem 18, a new orientation result.

We need a matroid construction for hypergraphs and one for mixed hypergraphs. Given a hypergraph
H=WV,E),let Tyy ={Z CE:|V(Z')| > |2'| for all § # Z' C Z}. Lorea [19] showed that Zy is the set
of independent sets of a matroid My on &, called the hypergraphic matroid of the hypergraph H. We
also need the k-hypergraphic matroid M’,j_t of H which is the k-sum matroid of My, that is the matroid
on ground set £ in which a subset of £ is independent if it can be partitioned into k£ independent sets
of My, Horsch, Szigeti [14] extended the previous construction for mixed hypergraphs as follows. Let
F = (V,AUE) be a mixed hypergraph. For a subpartition P of V, A(P) and E(P) denote the set of
dyperedges and the set of hyperedges that enter some member of P. Let Hx = (V, E4UE) the underlying
hypergraph of 7 and Dz = (V, AU Ag) the directed extension of F where Ag = |J, ¢ Ae and for e € £,
A= {(e — z,x) : © € e}. The extended k-hypergraphic matroid M.’;_- of F on AU Ag is obtained from
Mﬂftf by replacing every e € £ by |e| parallel copies of itself, associating these elements to the dyperedges
in A, and associating every hyperedge of £4 to the corresponding dyperedge in A. It is shown in [14]
that the rank function of the extended k-hypergraphic matroid M ’]“_- satisfies for all Z2 C AU Ag,

ry (2) = min{[Z2 N A(P)| + [{e € E(P) : ZNAe # 0} + k(|V| = |P|) : P partition of V}. (11)



Generalized polymatroids were introduced by Hassin [13] and independently by Frank [8]. A set
function p (resp. b) on S is called supermodular (resp. submodular) if (12) (resp. (12)) holds. If
the supermodular (resp. submodular) inequality holds for intersecting sets then p (resp. b) is called
intersecting supermodular (resp. intersecting submodular).

p(X)+p(Y) < p(XNY)+p(XUY)forall X,Y C S,
HX)+bY) > bXNY)+bXUY) forall X, Y CS.

For a pair (p,b) of set functions on S and «, 8 € R, let us introduce the polyhedra

Q(p,b) = {zeR%:p(Z)<x(Z)<b(Z) forall ZC S},
K(a,3) {r e RY:a < z(S) <A}

If p(0) = b(0) = 0, —p and b are submodular and b(X)—p(Y) > b(X —Y)—p(Y — X) for all X, Y C S, the
polyhedron Q(p, b) is called a generalized-polymatroid, shortly g-polymatroid. The polyhedron K («, f3) is
called a plank. The Minkowski sum of the n g-polymatroids Q(p;,b;) is denoted by Y7 Q(ps, b;). We
will need the following results on g-polymatroids, for more details see [9].

Theorem 16 (Frank [9]) The following hold:
1. Let Q(p,b) be a g-polymatroid, K(a, B) a plank and M = Q(p,b) N K («, ).
(i) M %0 if and only if p<b, a <, B> p(S) and o < b(S).
(ii) M is a g-polymatroid.
(ii) If M # 0, then M = Q(p§,b3) with
p3(2) = max{p(Z),a = b(S - 2)}, b5(Z) =min{b(2),5 - p(S - 2Z)}. (12)
2. Let Q(p1,b1) and Q(p2,b2) be two non-empty g-polymatroids and M = Q(p1,b1) N Q(p2, b2).
(i) M # 0 if and only if p1 < by and pa < by.
(i) If p1,b1,p2,ba are integral and M # (), then M contains an integral element.

3. Let Q(p;,b;) be n non-empty g-polymatroids. Then > 7 Q(pi,bi) = QX1 pi, > bi)-

4 Main results

4.1 A new orientation result

To prove the new orientation result, Theorem 18, we need a result of Frank, see Theorem 15.4.13 in [9].

Theorem 17 (Frank [9]) Let G = (V, E) be a graph and h an integer-valued, intersecting supermodular
function such that h(V) = 0. There exists an orientation G = (V, E) of G such that

d=(X) > h(X) foreveryXCV

7 >
if and only if
eg(P) > Z hMX)  for every subpartition P of V. (13)
XeP

We can now extend an orientation theorem which is implicitly contained in Gao, Yang [11] as follows.

Theorem 18 Let F = (V,EU A) be a mized graph and h an integer-valued, intersecting supermodular
function on V. There exists an orientation E of E such that

déuA(X) > h(X)—h(PX) forevery X CV (14)

if and only if for every strongly connected component C' of F' and every set P of subsets of PS such that
ZNC #0,egualZ —C)=0 for every Z € P; and ZNZ' NC =0 for every Z,Z' € P,

epua(P) > Y (W(Z)—h(PF)). (15)

ZeP



PROOF: Let (F = (V, EU A), h) be a minimum counterexample for Theorem 18. Let C be a strongly
connected component of I such that epua(C) = 0. Let (Fy = (Vi, E; U Ay), hy) be obtained from
(F,h) by deleting the elements in C. As egua(C) = 0, we have eg,ua,(X) = epua(X), Pp = PX
and hqi(X) = h(X) for every X C V;i. Then, since (F, h) satisfies (15), so does (F1, hy). Hence, by the
minimality of (F, k), there exists an orientation E_"l of F such that

d 4 (X) = h(X)—h(PE)  forevery X C V1. (16)
Let us now consider the subgraph Fp = (C, Ex U A3) of F induced by C. Moreover, let us define
h2(X) = max{h(Y) —d;(Y): Y C PS,YNC = X,epua(Y — C) = 0} for every ) # X C C. For any
non-empty set X; in C, let Y; be a set that provides ho(X;). Gao, Yang [11] proved that

Claim 19 hs is an intersecting supermodular function on C.
PROOF: For intersecting sets X7 and Xs in C, let X3 = X7 N Xy, X4 = X7 U Xy, Y3’ =Y, NY; and

Y, =Y; UY5. Note that, for i = 3,4, we have Y C PPQ,Yi’ NC =X, and egua(Y) — C) =0, and hence
h(Y/) —d;(Y]) < ho(X;) Then, by the intersecting supermodularity of h and —d,, we get that

ho(X1) +ho(X2) = h(Y1) —d (Y1) + h(Y2) — d(Y2)
< YY) —dy(Ys) + h(Y)) — dy(Y))
< he(X3) + ho(X4)

= hg(Xl n XQ) + hg(Xl U Xg),

so ho is intersecting supermodular. [

Let A/ be defined by h'(X) = ha(X)—h(PS) for every § ## X C C and k() = 0. By the Claim 19, /' is
intersecting supermodular on C. Let P = {X1,..., X} be a subpartition of C' and P’ = {Y; : X, € P}.
Then P’ is a set of subsets of Pg such that Y; N C # 0 and epua(Y; —C) = 0 for 1 <4 < ¢ and
Y;NnY;NC =0 for 1 <i<j<t. It follows, by (15), that

em,(P) = epua(P’) —ea(P')
> > (h(Ya) = h(PF) — d5(Y2)

Yi;eP’
Z (ha(X:) — h(PF))

Y;€P/

= > (X))

X, eP

Thus the graph (C, E») satisfies (13). In particular, we get that 0 = eg,(C) > h'(C). Moreover, b/ (C) =
ha(C)—h(PE) > h(PE)—h(PE) = 0. Hence h/(C) = 0. Then, by Theorem 17, there exists an orientation
E, of E, such that d;j2 (X) > h'(X) = ha(X) = h(PE) for every X C C. Tt follows that for every Y C P&
with Y N C' # 0 and egua(Y — C) = 0, we have

d (¥) = dy (Y NC) > h(Y) — h(PE) — d5(Y). (17)

Let F = (V,EUA), where E = E; U E,. To finish the proof we show that F satisfies (14). If X C V4,
then, by (16), (14) holds. Otherwise, X NC # (). If X C C, then, by (17) applied for X, (14) holds. We
suppose from now on that X NC # () # X — C. Let Z = PX*C Y=ZNPfand W =Y U(XNO).
Then XNZ =X — C,Pg N(XUZ)=W and PC U (X UZ) PF , eEuA(Y) = 0. Thus, by (16) for
X —C, (17) for W and the intersecting supermodularlty of h, we have

- (X)) > d;j (X C')—i—cl;J UA(W)
(A(X = C) = (2)) + (W(W) = h(PF))
(h(X ) h(X U Z)) + (X U Z) — h(Py))
h(X) = h(Pp),

(
(

IV v

o (14) holds. O

Theorem 15 now easily follows from Theorems 6 and 18.



PRrROOF: Let (F,S,M) be an instance of Theorem 15 that satisfies (10). Then, for h(X) = —ru(Sx)
for all X C V, (15) holds, so by Theorems 18 applied for (F,h), there exists an orientation E of E
such that in F = (V, E U A) (14) holds. Let X C V. Since Pg C P¥ and 7y is non-decreasing, we have
TM(SPI;() < rm(Spx). By (14) applied for Pg, we have 7y (Spg) > rm(Spx). Hence ry (Spg) =rm(Spx).
Thus (14) implies that (6) holds in (ﬁ ,S,M). Then, by Theorems 6, there exists a matroid-reachability-
based packing of arborescences in (F, S, M). Since ry (SP;,() = rm(Spx), by replacing the arcs in E by

the edges in E, we obtain a matroid-reachability-based packing of mixed arborescences in (F,S,M). O

We mention that Theorem 17 and hence Theorem 18 also works for mixed hypergraphs. This shows
that the result of Horsch, Szigeti [15] can also be obtained from a theorem of Fortier et al. [6] on
matroid-reachability-based packing of hyperarborescences.

4.2 A new result on packing mixed hyperarborescences

The main contribution of the present paper is a common generalization of Theorems 3 and 13.

Theorem 20 Let F = (V,EUA) be a mized hypergraph, f,q:V — Z functions, and k, ¢, ¢ € Z, —{0}.
There exists an (f,g)-bounded k-regular (¢,0")-limited packing of mized hyperarborescences in F if and
only if (3) and (4) hold and

esua(P) > k|P|—min{l' — f(UP), gx(UP)}  for every subpartition P of V. (18)

If F is a digraph, then Theorem 20 reduces to Theorem 3. If k = ¢ = ', then Theorem 20 reduces to
Theorem 13. Theorem 20 will follow from Theorem 21.

Theorem 21 Let F = (V,EU.A) be a mized hypergraph, f,qg:V — Z, functions, and k,¢,¢' € Z, —{0}.
Let My = (pauag (v),70) be the free matroid for all v € V' and M% the extended k-hypergraphic matroid
of F on AU Ag. Let us define the following polyhedron

T = (D (Q0,r,) NK (k= gi(v),k = f(0)))) N K (K[V| =€, k[V| =) N QO0,rys ).
veV

(a) The characteristic vectors of the dyperedge sets of the (f, g)-bounded k-regular (£, ¢")-limited packings
of hyperarborescences in orientations of F are exactly the integer points of T.

(b) T # 0 if and only if (3) and (4) hold and for every Z C AU Ag,

S max{0,k - gu(v) —dz (0)} < 1y (2), (19)
veV
RVI—€ = min{dz(0), k= f(0)} < rus(Z). (20)
veV

(c) (19) and (20) are equivalent to (18).

PROOF: (a) To prove the necessity, let By,...,Bex be an (f, g)-bounded k-regular packing of hyperar-
borescences in an orientation F of F , wherg £ < 0* < /. Let S be the root set of the hyperarborescences
in the packing. Note that |S| = ¢*. Let Z be the dyperedge set of the packing. Since the packing is
k-regular, we have k = d_(v) + [Sy| for all v € V. Then k[V| = |Z| 4 |S|. Since the packing is (f, g)-
bounded, we have f(v) < |S,| < gr(v) for all v € V. Let m be the characteristic vector of Z and m,, the
restriction of m on paua,(v) for all v € V. Then m, is a characteristic vector, so m, € Q(0,r,) for all
v € V. Since for all v € V, d-(v) = my(pavac (v)), we have my € K(k — g (v), k — f(v)). It follows that
m e Y (Q0,ry) N K(k—gr(v),k— f(v))). Since £ < |S| <V, k|V| = |Z|+ S| and |Z] = m(AU Ag),
we have m € K(k|V|— ¢, k|V| — £). By Theorem 10, since Z is the dyperedge set of a k-regular packing
of hyperarborescences in F , Z is the dyperedge set of a packing of k spanning hyperbranchings in F.
Note that the underlying hypergraph of each hyperbranching is independent in My .. It follows that Z
is independent in M’frtf. Then, since Z is in the orientation F of F, Z is independent in Mﬁ-. Thus, since

m is the characteristic vector of Z, m € Q(0, TMI}). By consequence, m is an integer points of 7.



To prove the sufficiency, let m = (m,),cy be an integer point of T, that is m, € Q(0,7,) N K (k —
gr(v), k= f(v)) for all v € V and m € K(k|V| =, k|V| =€) N Q(0, ryx ). Since m,, is an integer point in

Q(0,7,), my is the characteristic vector of a subset Z, of paua. (v). Since my € K(k — gr(v), k — f(v)),
we have

k= gr(v) < mu(pavac (V) = |2, = my(pavac (V) < k= f(v). (21)

Let Z = U,ey Zo- Note that d(v) = |Z,| for all v € V. Then, by f > 0, we have k —d(v) > f(v) > 0
for all v € V. Since m € K (k|V| — ¢/, k|V| — {), we have

EV] =0 <m(AUAg) = |Z] = m(AU Ag) < k|V| — 1. (22)

Since m € Q(0, TMI}), we get that Z is independent in ME. Tt follows that Z is a subset of the dyperedge
set of an orientation F of F and in the hypergraph Hz = (V,E4 UE) we have for all X CV,

[Z(X)] < g

= o

(2(X)) < k(]X]|=1). (23)

Let S be the multiset of V' such that |Sy| = k — d(v) for all v € V. Since d- = 0, (8) holds. Since for
all X CV, by (23), we have

dZ(X) =Y dz(v) = |Z(X)| = Y (k= [Su]) = |2(X)| = k|X| = |Sx| — k(1 X]| = 1) = k — |Sx],

veX veX

(9) holds for Fl = (v, Z ). Then, by Corollary 11, there exists a k-regular packing of s-hyperarborescences
(s € §) in F’ and hence in F. Since the number of dyperedges irj the packing is k|V| — [S| =", oy (k —
1Sul) = > pev d%(v) = | Z], the dyperedge set of the packing is Z. Since for all v € V| by (21), we have

) < k|| =k — do(0) = [So] = b — d5(0) = b — | Z,] < gulv) < g(0),
the packing is (f, g)-bounded. Since, by (22), we have
C<KVI-|Z| =S| =kV|-|2] < ¥,

the packing is (¢, ¢')-limited. Finally, since F is an orientation of F, the proof is complete.

(b) By Theorem 16.1, for allv € V, Q(0, r, )NK (k—gi(v), k— f(v)) # 0 if and only if k—gi(v) < k—f(v)
that is (3) holds and 0 < k — f(v) (that holds by the previous inequality) and k — gx(v) < dj 4, (v)-
Then Q(0,7r,) N K(k — gx(v),k — f(v)) = Q(puv, by) where, by (12), we have for all Z C AU Ag,

Py (Zy) = max{0,k — gx(v) — dz (v)}, by(Z2,) =min{dz (v),k— f(v)}. (24)

By Theorem 16.3, >, oy Q(pv, by) = Q(px, bs) where pxs = 7, pv, b =3 1, by. By Theorem 16.1,
Qlps,bs) N K K|V~ £, k|V| — €) # 0 if and only if Q(py,by) # 0 for all v € V, k|V| — ¢ < k|V| — ¢
(which is equivalent to one of the conditions in (4)), pn(A U Ag) < k|V| — £ (which is equivalent to the
other condition in (4)) and b (AU Ag) > k|V| — ¢'. Then the intersection is equal to Q(p,b) where, by
(12), (24), ps = > ey Pv, and by = >y, by, we have for all Z C AU Ag,

p(Z) = max{z max{0, k — gx(v) — dz ()} EV] =0 — Z min{d%v (v), k — f(v)}} . (25)

veV veV

b(Z) = min {Z min{dz (v),k— f(v)}, kIV|—£— Z max{0, k — gi(v) — dz, (v)}} . (26)
veV veV

By Theorem 16.2, Q(p, b) NQ(0, TM;) # () if and only if Q(p,b) # 0, p < ry,. which, by (25), is equivalent

to (19) and (20), and b > 0 (which holds by b > p > 0). Note that k — gi(v) < d 4. (v) for all v € V

and bg (AU Ag) > k|V| — ¢’ follow from p < ry applied for Z = () and the proof is complete.

(c) We note that (19) is equivalent to

ElV|—ge(V) — Z min{dz(v),k - gr(v)} < vy (2). (27)



First we show that (19) and (20) imply (18). Let P be a subpartition of V. Let Z = |J,c5p pa(v) U
Ueee(z@p)) Ae and P’ =P U {v}, 5. Note that dz(v) =0 for all v € UP,

> min{dz(v), k — h(v)} < k[UP| — h(UP) for h € {gi. f}, (28)

P’ is a partition of V', and, by (11), we have
vt (2) < [ZNAP)|+[{e € E(P) : ZNAe # 0} +E([V]=P']) = eavac (P)+k(|V|=[P| - [UP]). (29)

Then (27), (28) applied for h = g; and (29) imply egua(P) > k[P|— gx(UP). Similarly, (20), (28) applied
for h = f and (29) imply egua(P) > k|P| — ' + f(UP). Hence (18) follows.

We now show that (18) implies (20) and (27) and hence (19). Let Z C AU Ag. By (11), there exists
a partition P of V such that for I = {e € E(P) : ZN A, # 0}, we have
v (Z) =20 AP)| + K]+ k(V] = [P). (30)

For h € {gk, [}, let Pn ={X € P:dz(v) <k —h(v) for all v € X}. Note that P}, is a subpartition of V
and for every X € P — P, there exists a vertex vx € X such that dZ(vx) > k — h(vx). By the definition
of IC, we have

Agpy-k € 20 Agp,).- (31)

Claim 22 rM;]CE(?) + > ey min{dz (v),k = h(v)} > ecua(Pr) — k|Pn| — h(UPy) + E|V].
PRrROOF: By (30), the definitions of Py, and vx, dz > 0,k —h >0, (31), and h > 0, we have
ras (B)+ S min{dz (v), & — h(v)}

veV

= [ZnAP)+IKI+k(VI = [P)+ Y min{dz(v),k—h(v)}+ Y min{dz(v),k—h(v)}

vEUP), veUP;,
> [ZnAP)+ Y dz)+ > Y min{dz(v),k - h(v)} + K| + k([V] - |P])
veEUP), XeP—PrveX
> Z0APY)I+IZNAPY)|+1Z20Agp,l+ > (k= h(vx)) + K|+ k([V] - [P])
XeP-Py
> AP+ Me@n-xl+ D (k=h(X)+IK|+k(V|—[P])
XeP—-Py
> ecua(Pn) = Kl + k(|P| = [Pn]) = R(UPy) + [K| + k(|V] = [P])
> egua(Pn) — k|Pp| — R(UPy) + k|V],

and the claim follows. [

Claim 22, applied for h = f, and (18) provide that TM;}(§)+ZUGV min{d}(ﬁ), k—f(v)} > k|V|-¢,so
(20) holds. Similarly, Claim 22, applied for h = gk, and (18) provide that ryx (2)+3 ey min{dz (v), k—
g (0)} > k|V| = gx(V), so (27) holds. The proof of the theorem is complete. [

We finish the paper by showing that Theorems 16 and 21 imply Theorem 20.

Proor: Let (F = (V,EUA), f,g,k,£,¢) be an instance of Theorem 20 that satisfies (3), (4) and (18).
Since (18) holds, by Theorem 21(c), (19) and (20) hold. Since (3) and (4) also hold, by Theorem 21(b),
the polyhedron T, defined in Theorem 21, is not empty. Then, by Theorem 16.2(ii), 7' contains an integral
element z. By Theorem 21(b), « is the characteristic vector of the dyperedge set of an (f, g)-bounded
k-regular (¢, ¢')-limited packing of hyperarborescences in an orientation F = (v, EU A) of F. By replacing
the dyperedges in g by the underlying hyperedges in £, we obtain the required packing. O
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