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We give a simple and short proof for the two ear theorem on matching-covered
graphs which is a well-known result of Lovasz and Plummer. The proof relies only
on the classical results of Tutte and Hall on perfect matchings in (bipartite)
graphs.  © 1998 Academic Press

1. INTRODUCTION

We consider only finite undirected loopless graphs in this note. A set M
of edges is called matching if no two edges in M have a common end
vertex. A matching M of a graph G is perfect if M covers all the vertices
of G. We shall denote the number of perfect matchings of a graph G by
@(G). Let M be a matching of G. A path P is said to be alternating if the
edges of P are alternately in and not in M. For a subgraph F of G, the
subset of M contained in F is denoted by M(F).

A graph G with a perfect matching is called elementary if the edges which
belong to some perfect matching of G form a connected subgraph. Note
that if G is elementary, then after adding some edges to G the resulting
graph remains elementary. G is matching-covered if it is connected and each
edge belongs to a perfect matching of G. Clearly, if G is matching-covered
then it is elementary.

Let G be an arbitrary graph. A subgraph H of G is nice if G— V(H) has
a perfect matching. A sequence of subgraphs of G, (Gy, Gy, .., G,,) is a
graded ear-decomposition of G if G, is an edge, G, =G, every G, for
i=0,1,..,m is a nice matching-covered subgraph of G and G,,, is
obtamed from G; by adding at most two disjoint odd paths which are

* This work was done while the author was visiting Laboratoire Leibniz, Institut IMAG,
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openly disjoint from G, but their end-vertices belong to G,;. Clearly, if G
possesses a graded ear-decomposition, then it is matching-covered. Lovasz
and Plummer [6, 7] proved the following important result on matching-
covered graphs.

THEOREM 1. Every matching-covered graph has a graded ear-decomposition.

The proof of this theorem relies on the following theorem of Lovasz and
Plummer [7]. For the sake of completeness we shall show in Section 3
how Theorem 2 implies Theorem 1.

THEOREM 2. Let G be an elementary graph and let e, ..., e, be edges not
in G but having both end-vertices in V(G). Suppose that (G +e;+ --- +¢e;)
> @(G). Then there existiand j, 1 <i< j<k suchthat ®(G +e;+¢;) > P(G).

Theorem 2 can be easily derived from the case when k = 3. However, the
original proof of this case in [ 7] is involved and it is far from being simple.
Here we shall derive Theorem 2 from the following theorem, which was
formulated by Cheriyan and Geelen. The main contribution of this note is
a new proof of Theorem 3 which relies only on Tutte’s theorem and Hall’s
theorem.

THEOREM 3. Let G be an elementary graph and let e, e,, e5 be edges not
in G but having both end-vertices in V(G) so that G+e;+e,+e; has a
perfect matching M containing e, e,, e5. Suppose that for each e; (1 <i<3),
no perfect matching of G + e; contains e;. Then for each e; (1 <i<3) there
exists an e; (1< j<3) i#j such that G+e;+e; has a perfect matching
containing e; and e;.

However, we mention that the obvious generalization of Theorem 3 for
more than three edges is not true, here is a counterexample. Let G be the
cycle (1,2, ...,8) on eight vertices and let 15, 24, 37, 68 be the four new
edges. Then for the edge 15 the generalization of Theorem 3 does not hold.

Little and Rendl [ 8] have given a shorter proof for Theorem 1 than the
original one, but our proof is even shorter and simpler. Recently, Carvalho
et al. [2] generalized Theorem 1 by showing that a matching-covered
graph of maximum degree 4 has at least 4! graded ear-decompositions.

2. PRELIMINARIES

Let us recall the two classical and basic results in matching theory due
to Hall [3] and Tutte [9].
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THEOREM 4 [3]. A bipartite graph B= (U, V; E) possesses a perfect
matching if and only if |\U|=|V| and |I'(X)| = |X| for all X< U, where
I'(X) denotes the set of neighbors of X.

THEOREM 5 [9]. A graph G has a perfect matching if and only if for
every X< V(G), co(G—X)<|X|, where co(G— X) denotes the number of
odd components of the graph obtained from G by deleting a vertex set X.

We shall use the following easy corollary of Hall’s theorem; see [ 7].

Cram 1. If for a bipartite graph B= (U, V; E), |U| = |V| and |I'(X)| =
| X| + 1 for all & +# X < U, then B is matching-covered.

For a graph G let def(G) :=max{co(G—X)— |X|: XS V(G)}. A vertex
set X of G is called barrier if X attains this maximum, that is if G — X has
exactly | X| + def(G) odd components. By a maximal barrier we mean one
that is inclusionwise maximal. A graph G is called factor-critical if for each
vertex v of G there exists a perfect matching in G —v. A barrier X is called
strong if each odd component of G — X is factor-critical. For more results
on strong barriers see Kiraly [4].

The following well-known corollary of Tutte’s Theorem can be found for
example in [1].

CLAaM 2. Let G be a graph so that it has an even number of vertices
and it has no perfect matching. Let X be a maximal barrier of G. Then
co(G—X)=|X|+2 and X is a strong barrier.

The following claim is obvious.

CLamM 3. Let G be an elementary graph. Then for any barrier X # (& of
G, G— X has no even components.

In fact, elementary graphs can be characterized this way. A graph with
a perfect matching is elementary if and only if for any barrier X # &
of G, G— X has no even components (see [7]), but we shall not use this
characterization. We mention that by Claim 3 the notion of maximal
barriers and strong barriers coincide for elementary graphs.

Lovasz [5] proved that for elementary graphs (i) the maximal barriers
form a partition of the vertex set and (ii) an edge belongs to a perfect
matching if and only if its end-vertices lie in different maximal barriers. We
do not want to rely on these results, instead we prove the following claim.
This claim will be applied frequently in our proof.

CLAM 4. Let X be a strong barrier of an elementary graph G. Then each
edge leaving X belongs to some perfect matching of G.
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Proof. Since all the components of G — X are factor-critical by Claim 3
it suffices to prove that each edge e of the bipartite graph B, obtained from
G by deleting the edges spanned by X and contracting each component of
G — X into one vertex, belongs to a perfect matching of B, that is B is
matching-covered. Let us denote the colour class of B different from X
by Y. Clearly, |X|=|Y|. Furthermore, for any set g#Zc Y, |I'(Z)| =
|Z| + 1, otherwise I'(Z) would violate in G either the Tutte’s condition or
Claim 3, both cases lead to contradiction. Then, by Claim 1, B is matching-
covered which was to be proved. ||

3. THE PROOF

Proof of Theorem 3. Let us assume that there is no perfect matching of
G' :=G+ e, + e, containing e; and e,. We shall prove that there is a
perfect matching of G+ e, + e; containing e¢; and e;. Let us denote the
vertices of e; by x;, y;.

(1) There exists a strong barrier P in G’ containing x; and y,.
G’ — x; — y; has no perfect matching by assumption; thus by Claim 2 there
exists a barrier of G' containing x; and y,. Let P be a maximal barrier of
G’ containing x; and y,. Then, by Claim 2 P is a strong barrier; that is,
by Claim 3 each component F; of G— P (1 <i<|P]) is factor-critical.

(2) e, is in one of the factor-critical components (say in Fy) of G' — P.
Indeed, by Claim 4, e, does not enter P. Moreover, x, and y, cannot
be contained in P; otherwise P—x;— y; —x,— y, violates the Tutte’s
condition in G+e;—x; — ¥y, — X, — y,, contradicting the assumption that
G" := G+ e, + e, + e; has the perfect matching M containing e,, e,, and e;.

(3) x5 and y5 are in different factor-critical components of G'— P.
This follows from the fact that G’ —x;— y,+e; contains the perfect
matching M —e,. It also follows that

(4) for each F; (1 <i<|P|) exactly one edge m; of M leaves F; in G'.
Now, suppose that m, enters P. P is a strong barrier in G + e,; thus, by
Claim 4 m, belongs to a perfect matching M, of G + e,. Then (M, — M(F,))
U M(F,) is a perfect matching of G + ¢, containing e¢,. This contradiction
shows that

(5) in G"e5 leaves the factor-critical component of G' — P that contains
ey; that is m, = e;.

Assume without loss of generality that x; is in F;. We know that
H :=F, — x; has a perfect matching, for example M(H).

(6) H—e, has a perfect matching M,. Otherwise, for a maximal
barrier X of H — e,, we have by Claim 2 ¢o(H — e, — X) > | X| + 2. Then, by
Claim 2 P':=PuU XuUXx; is a strong barrier in G + ¢, and e; enters P’;
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thus by Claim 4 G +e; contains a perfect matching containing e;, a
contradiction.

(7) M(G"—H)uM, is a perfect matching of G+ e, + e containing
ey and e, as we claimed. |

THEOREM 3 = THEOREM 2.

Proof. We may suppose that (%) no proper subset of {e, .., e}
satisfies the conditions of the theorem. Then we claim that £ <3. Assume
that k>4 and let G' :=G+e,+ -+ +¢;. Then, by (%), &(G')=P(G) and
DG +e,)=P(G") i=1,2,3, but O(G +e,+e,+e;3)>D(G)=D(G").
Theorem 3 implies that for some 1<i<;j<3, &(G'+e¢;+e¢;) > D(G'); that
is, D(G' +e;+e;+e,+ - +e)>D(G), contradicting (*). If k<3, then
Theorem 3 directly implies Theorem 2. |

THEOREM 2 = THEOREM 1.

Proof. Assume that for some i the nice matching-covered subgraph G;
has already been contructed. (G, can be chosen as an arbitrary edge of G.)
If G; does not span V(G) then let e be an edge connecting V(G;) and
V(G) — V(G,). Let M, be a perfect matching of G — V(G;) and M, a perfect
matching of G containing e. The symmetric difference of M, and M,
consists of vertex disjoint cycles and a set (P, .., P;) of alternating paths
connecting vertices in V(G,;). If G; spans V(G) but does not contain all the
edges of G then the edges in E(G)— E(G;) are denoted by (P, ..., Py).
Clearly, after adding all these paths to G;, the resulting graph is a nice
matching-covered subgraph of G. We have to show that G,,; can be
constructed by adding at most two of these paths to G,. We define
for i=1,..,k e; to be the edge connecting the two end-vertices of P,.
Clearly, for a subset (P;,..P;,) of (Py,.., Py), Gi+P;+ -+ +P; is
matching-covered if and only if G,+e; + --- +e; is matching-covered.
Thus Theorem 2 implies the theorem. |]
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