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Abstract

Nash-Williams’ well-balanced orientation theorem [C.St.J.A. Nash-Williams, On orientations, connec-
tivity and odd-vertex-pairings in finite graphs, Canad. J. Math. 12 (1960) 555–567] is extended for orienting
several graphs simultaneously.

We prove that if G1, . . . ,Gk are pairwise edge-disjoint subgraphs of a graph G, then G has a well-
balanced orientation

−→
G such that the inherited orientations

−→
Gi of Gi are well-balanced for all 1 � i � k.

We also have new results about simultaneous well-balanced orientations of non-disjoint subgraphs of an
Eulerian graph as well as those of different contractions of a graph.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

This paper concerns undirected and directed graphs, more precisely we consider orientations
of undirected graphs. Multiple edges are allowed, but loops are forbidden. The starting point
is Robbins’ theorem [13] which states that an undirected graph G has a strongly connected
orientation if and only if G is 2-edge-connected. The following generalization was proved by
Nash-Williams in [11]: An undirected graph G has a k-arc-connected orientation if and only if G

is 2k-edge-connected (see Theorem 2 below). This result about global edge-connectivity can be
easily proved by applying Lovász’ splitting off theorem [8]. Nash-Williams [11] also provided
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the following extension on local edge-connectivity (for a stronger statement see Theorem 3):
Any undirected graph G has a well-balanced orientation

−→
G, that is for every ordered pair of

vertices (u, v), if the maximum number of edge disjoint (u, v)-paths was λG(u, v) in G, then the
maximum number of arc disjoint directed (u, v)-paths is at least �λG(u, v)/2� in the resulting
directed graph

−→
G. The well-balanced orientation may also be required to be smooth, that is the

in-degree and the out-degree of every vertex differ by at most one. A smooth well-balanced
orientation is called best-balanced. In fact, Nash-Williams proved an even stronger result in [11]
the so-called odd vertex pairing theorem (see Theorem 5).

Nash-Williams [12] formulated an extension of his orientation theorem: For an arbitrary sub-
graph H of an undirected graph G there exists a best-balanced orientation of H that can be
extended to a best-balanced orientation of G (see Theorem 4). He mentioned that

“Given Theorem 5, the proof of Theorem 4 is not unreasonably difficult. At a certain stage in
the proof of Theorem 3 . . . we had occasion to select an arbitrary di-Eulerian orientation Δ

of the finite Eulerian graph G+P. . . . the proof of Theorem 4 depends essentially on the idea
of modifying this step . . . by choosing Δ to be, not just any di-Eulerian orientation of G + P,

but one which satisfies certain additional restrictions.”

The main contribution of the present paper is to provide a simple proof for a generalization of
this result, namely if G1, . . . ,Gk are pairwise edge-disjoint subgraphs of a graph G, then G has a
best-balanced orientation

−→
G such that the inherited orientations

−→
Gi are best-balanced orientations

of Gi for all 1 � i � k. We also have a new result about simultaneous best-balanced orientations
of contractions of G.

For an Eulerian graph G we can prove more: There exist simultaneous best-balanced orienta-
tions of G−v for all v ∈ V . This solves a conjecture of Frank [2], a special case of an interesting
conjecture about k-vertex-connected orientations (see Conjecture 1), and generalizes a theorem
of Berg and Jordán [1]. We also provide a couple of consequences of the theorems.

2. Notation, definitions

We denote a directed graph by
−→
G = (V ,A) and an undirected graph by G = (V ,E). For a

directed graph
−→
G, a set X ⊆ V and u,v ∈ V, let δ−→

G(X) := |{uv ∈ A: u ∈ X, v /∈ X}|, �−→
G(X) :=

δ−→
G(V −X), f−→

G(X) := �−→
G(X)− δ−→

G(X), λ−→
G(u, v) := min{δ−→

G(Y ): u ∈ Y, v ∈ V −Y }, and
←−
G :=

(V , {vu: uv ∈ A}).
For an undirected graph G, a set X ⊆ V and u,v ∈ V, let dG(X) := |{uv ∈ E: u ∈ X,

v /∈ X}|, TG := {v ∈ V : dG(v) is odd}, λG(u, v) := min{dG(Y ): u ∈ Y, v ∈ V − Y }, RG(X) :=
max{λG(x, y): x ∈ X, y ∈ V − X} (let RG(∅) = RG(V ) = 0), bG(X) := dG(X) − 2 ·
�RG(X)/2�, G[X] := G − (V − X).

Observe that for all X ⊆ V, we have 0 � bG(X) � dG(X) and

f−→
G(X) =

∑
v∈X

f−→
G(v). (1)

Let G = (V ,E) be an undirected graph. G is called k-edge-connected if G − F is connected for
all F ⊆ E with |F | � k−1. In this paper, if it is not explicitly stated, graphs may be disconnected,
and we use the notion Eulerian graph for a possibly disconnected graph with all degrees even.
Similarly, a directed graph is called Eulerian if at every vertex the in-degree equals the out-
degree. Let D = (V ,A) be a directed graph. D is strongly connected if for every ordered pair
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(u, v) ∈ V × V of vertices there is a directed (u, v)-path in D. D is called k-arc-connected if
G − F is strongly connected for all F ⊆ A with |F | � k − 1. D is called k-vertex-connected if
|V | > k and G − X is strongly connected for all X ⊆ V with |X| � k − 1. An orientation

−→
G of

G is called well-balanced if

λ−→
G(x, y) �

⌊
λG(x, y)

2

⌋
for all (x, y) ∈ V × V, (2)

and
−→
G is called smooth if

∣∣f−→
G(v)

∣∣ � 1 for all v ∈ V. (3)

A smooth well-balanced orientation is called best-balanced. Note that if
−→
G is best-balanced then

so is
←−
G.

A pairing M of G is a new graph on vertex set TG in which each vertex has degree one. Let
M be a pairing of G. An orientation

−→
M of M is called good if

f−→
M(X) � bG(X) for all X ⊆ V. (4)

M is well-orientable if there exists a good orientation of M, M is strong if every orientation of
M is good and M is feasible if

dM(X) � bG(X) for all X ⊆ V. (5)

Clearly an oriented pairing
−→
M is good if and only if

←−
M is good. We say that two arc disjoint

directed graphs
−→
G and

−→
H on the same vertex set V are compatible if

f−→
G(v) = f−→

H (v) for all v ∈ V (6)

or equivalently if
−→
G + ←−

H is Eulerian.

3. Eulerian graphs

The following statements are well known and/or are easy exercises.

Proposition 1. Every undirected Eulerian graph G has an Eulerian orientation and every
Eulerian orientation of G is best-balanced.

Proposition 2. If
−→
G1 and

−→
G2 are Eulerian orientations of a graph G, then

−→
G2 can be obtained

from
−→
G1 by reversing the orientation of some directed cycles.

Proposition 3. The edge-set of an undirected graph G can be partitioned into some cycles and
|TG|/2 paths. Hence, every graph G has a pairing M such that dM(X) � dG(X) for all X ⊂ V .

Proposition 4.
−→
G is Eulerian if and only if f−→

G(X) = 0 for all X ⊆ V . Hence if
−→
G is Eulerian

then the contracted graph
−→
G/X is also Eulerian for all X ⊆ V .

For an Eulerian graph G, an edge-pairing at vertex v is an arbitrary partition of the edges
incident to v into pairs. Suppose that we are given an edge-pairing at each vertex. An Eulerian
orientation is called admissible if at each vertex every edge-pair becomes a directed path.
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Proposition 5. We are given an Eulerian graph G and an edge-pairing at every vertex. Then
there exists an admissible Eulerian orientation of G.

A nice theorem of Ford and Fulkerson [3] about Eulerian orientations of mixed graphs implies
easily the following theorem that plays an important role in this paper.

Theorem 1. Let M be a pairing of an undirected graph G and
−→
M be a good orientation of M .

Then G has an orientation
−→
G compatible with

−→
M .

4. Equivalent forms

Claim 1. An orientation
−→
G of an undirected graph G is well-balanced if and only if

f−→
G(X) � bG(X) for all X ⊆ V. (7)

Proof. Note that bG(X)−f−→
G(X) = (dG(X)−2�RG(X)/2�)− (�−→

G(X)− δ−→
G(X)) = 2(δ−→

G(X)−
�RG(X)/2�). If

−→
G is well-balanced then clearly δ−→

G(X) � �RG(X)/2�, i.e. bG(X) � f−→
G(X) for

all X. If δ−→
G(X) � �RG(X)/2� for all X, then, by Menger’s theorem [10] and the definition of R,−→

G is well-balanced. �
Claim 2. A pairing M of G is strong if and only if M is feasible.

Proof. If M is feasible, then for each orientation
−→
M, f−→

M(X) � dM(X) � bG(X) for all X by (5),
that is

−→
M is good so M is strong. If M is not feasible, then let X ⊆ V with dM(X) > bG(X). Let−→

M be an orientation of M with δ−→
M(X) = 0. Then f−→

M(X) = dM(X) > bG(X), that is
−→
M is not

good so M is not strong. �
Claim 3. An undirected graph G has a best-balanced orientation if and only if there exists a
well-orientable pairing M of G. If

−→
M is a good orientation of pairing M then there exists an

orientation
−→
G compatible with

−→
M , and every such orientation is best-balanced.

Proof. We start by proving the second statement, in which the first part is the repetition of
Theorem 1. As

−→
G is compatible with the oriented pairing

−→
M , it is clearly smooth. By (1), (6)

and (4), f−→
G(X) = f−→

M(X) � bG(X) so
−→
G is best-balanced by Claim 1.

To prove the first statement, suppose that
−→
G is best-balanced. Let u1, . . . , ut be the vertices

with δ−→
G(ui) = �−→

G(ui) + 1 and v1, . . . , vt the vertices with δ−→
G(vi) = �−→

G(vi) − 1. Then the ori-
ented pairing consisting of arcs uivi (1 � i � t) is compatible with

−→
G and is good by (1) and by

Claim 1. The other direction follows from the second statement. �
5. Theorems

The following four theorems are due to Nash-Williams [11,12].

Theorem 2 (Nash-Williams). A graph G has a k-arc-connected orientation if and only if G is
2k-edge-connected.

Theorem 3 (Nash-Williams). Every graph has a best-balanced orientation.
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Theorem 4 (Nash-Williams). Every subgraph H of G has a best-balanced orientation that can
be extended to a best-balanced orientation of G.

Theorem 5 (Nash-Williams). Every graph has a feasible pairing.

We present in the following claim the global case of the above “odd vertex pairing” theorem.
A short proof of Claim 4 is given in the next section.

Claim 4. Every 2k-edge-connected graph G = (V ,E) has a pairing M so that

dM(X) � dG(X) − 2k for all X ⊂ V, X 
= ∅. (8)

By Claim 2, Theorem 5 is equivalent to Theorem 6.

Theorem 6. Every graph has a strong pairing.

By Theorem 3 and Claim 3, every graph has a well-orientable pairing. In the following theo-
rem we generalize this result.

Theorem 7. Every pairing is well-orientable.

The main results of this paper are the following generalizations of Theorems 4 and 3.

Theorem 8. Let G = (V ,E) be a graph, {E1, . . . ,Ek} be an arbitrary partition of E and let
Gi := (V ,Ei), 1 � i � k. Then G has a best-balanced orientation

−→
G such that the inherited

orientation
−→
Gi of each Gi is also best-balanced.

Theorem 9. For every partition {X1, . . . ,Xl} of V = V (G), G has an orientation
−→
G such that−→

G and its contractions ((
−→
G/X1) . . .)/Xl and

−→
G/(V − Xi) for all 1 � i � l, are best-balanced

orientations of the corresponding graphs.

For Eulerian graphs we have the following result.

Theorem 10. Every Eulerian graph G = (V ,E) has a best-balanced orientation
−→
G such that−→

G − v is a best-balanced orientation of G − v for all v ∈ V .

The statement of Theorem 10 is not necessarily true for non-Eulerian graphs, as the example
of K4 shows.

6. Proofs

In this section we apply Theorem 6 (or equivalently, Theorem 5) to prove all the other results
in the previous section. For a relatively simple proof for Theorem 5 see [4]. A polynomial time
algorithm to find a feasible pairing can be found in [6].

First, we mention that Theorems 2, 3 and 4 are easy consequences of Theorems 3, 6 and 8,
respectively. We must emphasize that we do not have a new proof neither for Theorem 5 nor for
Theorem 3. However, for Claim 4 we have the following simple proof.
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Proof of Claim 4. If k = 0 then the claim is true by Proposition 3. From now on we assume that
k � 1. We prove the statement by induction on |E|.

Case 1. There is s ∈ V with d(s) even. Then, by Lovász’ splitting off theorem [8], there exists an
edge-pairing {uis, svi}d(s)/2

i=1 at s such that replacing each non-parallel pair uis, svi by a new edge
uivi and then deleting the vertex s, the new graph G′ is 2k-edge-connected. Note that TG′ = TG

and |E(G′)| < |E| so by induction there is a pairing M of G′ that satisfies (8) for G′. Then M is
a pairing of G and, since dG′(X) � dG(X) for all X ⊂ V, clearly M satisfies (8) for G as well
and we are done.

Case 2. Otherwise, TG = V . By a result of Mader [9], since there is no vertex v with d(v) = 2k,

there exists an edge uv ∈ E such that G′ := G−uv is 2k-edge-connected. Note that TG′ = TG −
{u,v} and |E(G′)| < |E| so by induction there is a pairing M ′ of G′ so that (8) is satisfied for G′
and M ′. Let M := M ′ ∪uv. Then M is a pairing of G and for all X ⊆ V either dM(X) = dM ′(X)

and dG(X) = dG′(X) or dM(X) = dM ′(X) + 1 and dG(X) = dG′(X) + 1 so (8) is satisfied for G

and M and this completes the proof. �
Proof of Theorem 7. Let M1 be an arbitrary pairing and M2 be a strong pairing of G. M2 exists
by Theorem 6. The graph M1 ∪ M2 is Eulerian so it has an Eulerian orientation

−→
M1 ∪ −→

M2. Then
f−→

M1(v) = f←−
M2(v) for all v ∈ V . Thus, by (1) and using that

←−
M2 is a good orientation of M2,

f−→
M1(X) = f←−

M2(X) � bG(X) for all X ⊆ V, so
−→
M1 is a good orientation of M1. �

By the above proof, if we know a feasible pairing, then for every pairing we can find a good
orientation in polynomial time. Note that if we apply Theorem 4 with H ′ = G and G′ = G + M

we get another proof for Theorem 7.

Proof of Theorem 8. Let M0 and Mi be strong pairings of G and of Gi for 1 � i � k, provided
by Theorem 6. Note that for K := ⋃k

0 Mi, dK(v) = ∑k
0 dMi

(v) ≡ dG(v) + ∑k
1 dGi

(v) = 2dG(v)

is even for all v ∈ V, so K has an Eulerian orientation
−→
K = ⋃k

0
−→
Mi that is

⋃k
1

−→
Mi and

←−
M0 are

compatible. For 1 � i � k,
−→
Mi is a good orientation of Mi , so, by Claim 3, Gi has a best-balanced

orientation
−→
Gi compatible with

−→
Mi . Let

−→
G := ⋃k

1
−→
Gi . Then

−→
G and

⋃k
1

−→
Mi are compatible hence

so are
−→
G and

←−
M0. Since the orientation

←−
M0 is good,

−→
G is a best-balanced orientation of G by

Claim 3. �
Proof of Theorem 9. Let G0 := (((G/X1)/X2)/ . . .)/Xl and Gi := G/(V − Xi) for 1 � i � l.
Let Mi be a strong pairing of Gi (0 � i � l) provided by Theorem 6. It is easy to see that G has
a unique pairing M whose restriction in Gi is Mi for all 0 � i � l. By Theorem 7, M has a good
orientation

−→
M . By Claim 3, G has a best-balanced orientation

−→
G compatible with

−→
M .

−→
G and

−→
M

define the orientations
−→
Gi of Gi and

−→
Mi of Mi for 0 � i � l. Then, by Proposition 4,

−→
Gi and

−→
Mi

are compatible. Since
−→
Mi is a good orientation of Mi ,

−→
Gi is a best-balanced orientation of Gi by

Claim 3. �
Proof of Theorem 10. We define an edge-pairing for all v ∈ V as follows. Take a maximum
number of disjoint pairs of parallel edges incident to v. Since G is Eulerian, the other edges from
v go to TG−v . These edges can be naturally paired, defined by a strong pairing Mv of G − v,
where Mv exists by Theorem 6. By Proposition 5 there is an admissible Eulerian orientation

−→
G
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of G. Let
−→
Mv be the natural orientation of Mv (for all v ∈ V ) defined by

−→
G; as Mv is strong,−→

Mv is good. Now
−→
G − v + −→

Mv is an Eulerian orientation of G − v + Mv , so by Claim 3,
−→
G − v

is a best-balanced orientation of G − v for all v ∈ V . �
7. Corollaries

Theorem 4 implies the following result for global edge-connectivity.

Corollary 1. For a subgraph H of G, H has an l-arc-connected orientation that can be extended
to a k-arc-connected orientation of G if and only if H is 2l-edge-connected and G is 2k-edge-
connected.

Note that the simple proof given for Claim 4, together with the short proof of Theorem 8 gives
a direct proof for Corollary 1.

Corollary 2. If H is an Eulerian subgraph of G, then any Eulerian orientation of H can be
extended to a best-balanced orientation of G.

Proof. By Theorem 4, H has a best-balanced orientation
−→
H that can be extended to a best-

balanced orientation of G. Since
−→
H is smooth and H is Eulerian,

−→
H is an Eulerian orientation. By

Proposition 2, any other Eulerian orientation of H can be reached by reversing directed cycles,
and this operation cannot make the best-balanced orientation of G wrong by Claim 1. �

More generally, we may consider the following problem: Given two graphs G1 = (V1,E1)

and G2 = (V2,E2) with E1 ∩ E2 
= ∅, decide whether there exist simultaneous best-balanced
orientations of G1 and G2. This problem is NP-complete even if both G1 and G2 are restricted
to be Eulerian [7]. By Corollary 2, if E1 ∩ E2 defines an Eulerian graph then such orientations
always exist.

Corollary 3. Let x, y ∈ V (G) with λG(x, y) = 2k + 1. Then G has a best-balanced orientation−→
G such that λ−→

G(x, y) = k + 1.

Proof. Let G′ = G+ xy and H ′ = G. Note that λG′(x, y) = 2k + 2. By applying Theorem 4 for
G′ and H ′ the corollary follows (either

−→
G or

←−
G is appropriate). �

By Proposition 3 the edge-set of any undirected graph G can be decomposed into cycles and
|TG|/2 paths. Theorem 8 easily implies the following.

Corollary 4. Let us fix a decomposition of the edge-set of an undirected graph G into cycles and
paths. There exists a best-balanced orientation of G where all the prescribed cycles and paths
become directed cycles and paths.

As a counterpart to Theorem 9 we have the following result by Theorem 8.

Corollary 5. For every partition {X1, . . . ,Xl} of V (G), G has an orientation
−→
G such that

−→
G and−→

G[Xi] for all 1 � i � l, are best-balanced orientations of the corresponding graphs.
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Finally we mention a conjecture on vertex-connectivity orientation (see in [5]), and prove a
special case of it and some related statements.

Conjecture 1. Let G = (V ,E) be an undirected graph with |V | > k. Then G has a k-vertex-
connected orientation if and only if for all X ⊆ V with |X| < k, G − X is (2k − 2|X|)-edge-
connected.

Corollary 1 implies at once the following.

Corollary 6. Let G = (V ,E) be an undirected graph and v ∈ V . Then G has a k-arc-connected
orientation

−→
G such that

−→
G − v is (k − 1)-arc-connected if and only if G is 2k-edge-connected

and G − v is (2k − 2)-edge-connected.

Concerning global edge-connectivity we can replace Theorem 6 by Claim 4 in the proof of
Theorem 10 and hence we have short simple proofs for the following corollaries of Theorem 10.

Corollary 7. An Eulerian graph G = (V ,E) has a k-arc-connected orientation
−→
G such that−→

G − v is (k − 1)-arc-connected for all v ∈ V if and only if
−→
G is 2k-edge-connected and G − v is

(2k − 2)-edge-connected for all v ∈ V .

The statement of Corollary 7 is not necessarily true for non-Eulerian graphs, as an example,
consider the graph obtained from K4 by replacing each edge by three parallel edges.

The following result was conjectured by Frank in [2].

Corollary 8. An Eulerian graph G = (V ,E) has an Eulerian orientation
−→
G such that

−→
G − v is

k-arc-connected for all v ∈ V if and only if G − v is 2k-edge-connected for all v ∈ V .

For the special case of Conjecture 1 when the graph is Eulerian and k = 2, Berg and Jordán
[1] provided a sophisticated proof. Their result below follows immediately from Corollary 8.

Corollary 9 (Berg–Jordán). Let G = (V ,E) be a 4-edge-connected Eulerian graph such that
|V | � 3 and G−v is 2-edge-connected for all v ∈ V . Then G has a 2-vertex-connected Eulerian
orientation.

The interested readers may find many counter-examples for problems related to well-balanced
orientations in [7].
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