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much is known about their relationship to other subjects in graph theory. We investigated
many approaches to find a more transparent proof for these theorems and possibly
generalizations of them. In many cases we found negative answers: counter-examples
and NP-completeness results. For example we show that the weighted and the degree-

K ds: . X . .

V\zll‘lv—(l))ralfmced orientation constrained versions of the well-balanced orientation problem are NP-hard. We also show

Odd-vertex pairing that it is NP-hard to find a minimum cost feasible odd-vertex pairing or to decide whether
two graphs with some common edges have simultaneous well-balanced orientations or
not.

Nash-Williams’ original approach was to define best-balanced orientations with
feasible odd-vertex pairings: we show here that not every best-balanced orientation can
be obtained this way. However we prove that in the global case this is true: every smooth
k-arc-connected orientation can be obtained through a k-feasible odd-vertex pairing.

The aim of this paper is to help to find a transparent proof for the Strong Orientation
Theorem. In order to achieve this we propose some other approaches and raise some open
questions, too.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In 1960 Nash-Williams proved his Strong Orientation Theorem about the existence of well-balanced (and best-balanced)
orientations. In fact, he proved a stronger result, the so-called Odd-Vertex Pairing Theorem. There are many intriguing
questions related to these two theorems, some of which are answered in this paper. For example we show that it is NP-
hard to find a minimum cost well-balanced orientation (given the cost of the two possible orientations of each edge) or a
well-balanced orientation satisfying lower and upper bounds on the out-degrees at each vertex. Analogous results are given
for best-balanced orientations. We also prove that it is NP-hard to find a minimum cost feasible odd-vertex pairing (where
the cost of choosing a pair of odd-degree vertices is given for each pair). We examine several properties of k-arc-connected
orientations and in most of the cases we show by counter-examples that these do not extend to well-balanced orientations.
Many of the results presented in this paper (although not all of them) have already appeared in two technical reports [16,2],
in some cases we omit details and refer the reader to those reports. In order to make the paper easier to read, the presentation
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of our results begins with the most natural and straightforward questions and then moves on to the more involved and
sophisticated topics.

Let us give a more detailed overview of the results in this paper. Let G = (V, E) be an undirected (or a directed) graph.
For two vertices u, v € V of G the local edge-connectivity (local arc-connectivity) A (u, v) from u to v in G is defined as the
maximum number of pairwise edge (arc resp.) disjoint paths from u to v in G. The global edge-connectivity (global arc-
connectivity) of a graph (digraph) G is min{As(u, v) : u, v € V}. Gis k-edge-connected (k-arc-connected resp.) if A¢(u, v) > k
forevery (u, v) € V x V (i.e. its global edge- (arc-) connectivity is at least k). More generally, for U C V, G is k-edge-connected
(k-arc-connected resp.) in U if A;(u, v) > k for every (u,v) € U x U.

Nash-Williams’ Strong Orientation Theorem [22] states that for any undirected graph G there exists an orientation G of
G for which Az(u, v) > L%Ac(u, v)| for every (u, v) € V x V. An orientation with this property will be called well-balanced.
For global edge-connectivity this reduces to the following Weak Orientation Theorem: G has a k-arc-connected orientation
if and only if G is 2k-edge-connected. In this paper we will always refer to the global case when we want to specialize a
question to global edge- (or arc-) connectivity.

Let G = (V+s, E) be an undirected graph. The operation splitting off is defined as follows: two edges rs, st incident
to s are replaced by a new edge rt. The splitting-off theorem of Lovasz [18] concerns global edge-connectivity: if G is k-
edge-connected in V and d(s) is even, then there exists a pair of edges rs, st incident to s whose splitting off maintains the
k-edge-connectivity in V, where k > 2. Lovasz [ 18] also showed that the Weak Orientation Theorem is an easy consequence
of his splitting-off theorem. Mader [20] generalized Lovasz’ result to local edge-connectivity: if d(s) > 4 and no cut-edge of G
isincident to s, then there exists a pair of edges rs, st incident to s whose splitting off maintains the local edge-connectivities
in V. A simple proof for Mader’s theorem can be found in [9]. Mader [20] provided a new proof for the Strong Orientation
Theorem by applying his splitting-off theorem.

Let G = (V+s, A) be a directed graph. Splitting off can be naturally reformulated for directed graphs: two arcs rs, st are
replaced by a single arc rt. Mader [21] proved a splitting-off theorem preserving global arc-connectivity in directed graphs: if
G is k-arc-connected in V and o(s) = 8(s) then there exists a pair of arcs rs, st incident to s whose splitting off maintains the k-
arc-connectivity in V. An example of Enni [6] shows that there is no splitting-off theorem preserving local arc-connectivities
in directed graphs. In Question 2 we provide a smaller example showing that even if G is a well-balanced orientation of G
there is no splitting off that preserves local arc-connectivities in V.

Nash-Williams’ Odd-Vertex Pairing Theorem [22] states that every undirected graph G has a pairing M (a set of new
edges on the set T; of odd degree vertices of G such that dy,(v) = 1 for every v € T;) that is feasible (dy(X) < bs(X) for every
X C V, where b¢(X) is the number of “extra” edges leaving X, for the formal definition see the next section). A simpler proof
of the Odd-Vertex Pairing Theorem can be found in [10]. For the global case, let us call a pairing M k-feasible (where k is
a nonnegative integer) if dy(X) < dc(X) — 2k for every # # X C V. It was shown in [17] that in this case the Odd-Vertex
Pairing Theorem (i.e. the existence of a k-feasible pairing in a 2k-edge-connected graph) can be proven easily by the global
splitting-off theorem.

The Strong Orientation Theorem is trivial for Eulerian graphs (any Eulerian orientation will do), nevertheless this special
case plays an important role in the theory. It was shown in [17] that for Eulerian graphs, an orientation is well-balanced if
and only if it is Eulerian.

Nash-Williams [22] showed that if M is a feasible pairing of G then for every Eulerian orientation G + M of G + M, G
is well-balanced and furthermore it is smooth, that is, the in-degree and the out-degree of every vertex differ by at most
one. A smooth well-balanced orientation is called best-balanced. A related result in [ 17] states that for each (not necessarily
feasible) pairing M of G there exists an Eulerian orientation G+ M of G+M such that G is best-balanced. We show (Question 7)
that not every best-balanced orientation can be obtained from a feasible pairing this way. On the other hand, we prove in
Theorem 8.2 that in the global case every smooth k-arc-connected orientation can be obtained from some k-feasible pairing
using this construction.

The above mentioned two proofs of the odd-vertex pairing theorem (the original due to Nash-Williams and that of Frank)
both imply a polynomial algorithm to find a feasible odd-vertex pairing, though it is not explicitly stated in either of them.
An explicit algorithm for this problem is sketched in [13], where it is stated that an odd-vertex pairing (and consequently a
best-balanced orientation) can be found in 0(nm?) time in a graph and in 0(n®) time in a multigraph. It is a natural question to
look for a feasible odd-vertex pairing of minimum cost where the cost for any pair of odd-degree vertices is given. However
we show (Corollary 9.2) that this problem is NP-complete, even for the global case. Another natural question is whether one
can find a well-balanced orientation of minimum cost (with costs given for the two possible orientations of every edge) or
whether one can find a well-balanced orientation satisfying some other constraints, for example lower and upper bounds
on the out-degrees at each vertex. In his survey paper [10] Frank mentions these questions when he writes the following
about his proof of the odd-vertex pairing theorem: I keep feeling that there must be an even more illuminating proof which
finally will lead to methods to solve the minimum cost and/or degree-constrained well-balanced orientation problem. Here we
present negative answers in this direction: we prove the NP-completeness of these problems (see Theorem 4.3). We have
similar results for best-balanced orientations.

Nash-Williams [23] formulated the following extension of the Strong Orientation Theorem for a subgraph chain of length
two: if H is a subgraph of G, then there exists a best-balanced orientation of H that can be extended to a best-balanced
orientation of G. A simple proofis given in [17]: it is shown there that the Odd-Vertex Pairing Theorem easily implies this and
that the global case of this extension has a simple proof. We show that the general subgraph-chain property is not valid, that
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is, this extension cannot be generalized for a subgraph chain of length three, not even in the case of global edge-connectivity
(see Question 5).

The authors of [ 17] generalized further the above extension by showing that the following edge disjoint subgraphs property
is valid: if {Gy, G,, .. ., Gy} is a partition of G into edge disjoint subgraphs then there is an orientation G of G such that each G;
and G are best-balanced orientations of G; and of G. We show that, for two non-edge-disjoint graphs, deciding whether they
have simultaneous best-balanced orientations is NP-complete, even for two Eulerian graphs (see Question 6).

Both the original proof of the Odd-Vertex Pairing Theorem in [22] and Frank’s proof [10] rely heavily on the skew-
submodularity of the set function bg. We show (Question 8) that the existence of a feasible pairing cannot be generalized to
arbitrary skew-submodular functions. Skew-submodular functions correspond to local edge-connectivity, while crossing
submodular functions can be considered as generalizations of global edge-connectivity. It is an open question whether
there exists a feasible pairing for such a function. However the corresponding orientation theorem can be proved easily
(see Theorem 10.1).

Frank [8] proved the following reorientation property for k-arc-connected orientations: given two k-arc-connected
orientations of G, there exists a series of k-arc-connected orientations of G (leading from the first to the second given
orientation), such that in each step we reverse a directed path or a circuit. For well-balanced (or best-balanced) orientations
it is not known whether the reorientation property is valid.

The proof of Frank in [8] easily implies the following matroid property for smooth k-arc-connected orientations: the family
of sets, over smooth k-arc-connected orientations, consisting of vertices whose in-degree is larger than the out-degree, forms
the family of bases of a matroid. We show that this is not true in general for best-balanced orientations (see Question 12).

Frank [7] also proved that the linkage property is valid for the k-arc-connected orientation problem, i.e. there exists a
k-arc-connected orientation whose in-degree function satisfies lower and upper bounds if and only if there is one satisfying
the lower bound and one satisfying the upper bound. E. Tardos [24] showed that the linkage property is not valid for the
well-balanced orientation problem. Here we present another example (see Question 14).

The rest of the paper is organized as follows. In Section 2 we introduce some further notations. In Section 3 we summarize
known results on well-balanced orientations and odd-vertex pairings. In Section 4 we consider well-balanced orientations
with extra requirements: we prove the NP-completeness of questions such as finding a well-balanced orientation of
minimum cost or one satisfying lower and upper bounds on the out-degrees. In Section 5 we consider mixed graphs and
their well-balanced orientations. Section 6 is devoted to the splitting-off operation. In Section 7 we consider the question
of orienting several graphs with possibly some common edges, resulting in an orientation that is simultaneously well-
balanced. Section 8 asks whether every best-balanced orientation can be obtained from a feasible odd-vertex pairing. In
the next section we investigate the structure of feasible pairings. In Section 10 we introduce a more general setting and
investigate feasible pairings for connectivity functions. In the last section we show that the matroid property, which is valid
for k-arc-connected orientations, does not extend to well-balanced orientations.

2. Notation

A directed graph is denoted by G = (V, A) and an undirected graph by G = (V, E). For a directed graph G and a set
X CVlietéz(X) = [{uv € A: u € X,v ¢ X}| (the out-degree of X in G), 0¢(X) = 8z(V — X) (the in-degree of X in G), and
fe®) = 0e(X) —8z(X).If z: A — R thenlet §2(X) := > (uven: uex,vexy Z(uv) and QG(X) = 62 %(V —X). For adigraph Gandu,veV
let Az (u,v) := min{6z(Y) : Y C V,u € Y,v ¢ Y} (by Mengers theorem, this is 1r1deed an equivalent definition of the local
arc-connectivity from u to v in E?) and G = (V, {vu : uv € A}). Observe that VX C vV

fe ) =) _fe (). (1)

vexX

For an undirected graph Gand aset X C Vletdg(X) := [{uv € E : u € X, v & X}| (the degree of Xin G)and ic(X) := |{uv € E :
u, v € X}| (the number of edges induced by X). For two sets X, Y C Vletd¢s(X,Y) = |{uve E:ueX—-Y,veY—X}.Ifu,veV,
then let Aq(u, v) ;== min{ds(Y) : Y C V,u € Y, v ¢ Y}, (again by Menger’s theorem, this is indeed an equivalent definition of
the local edge-connectivity between u and v in G). Let us introduce the set functions Rs(X) := max{Aq(x,y) : x € X, y & X} (with
Re(®) = Ro(V) = 0), Re(X) == 2|Re(X) /2], bo(X) := dc(X) — Rs(X) and let T¢ := {v € V : ds(v) is odd}. The undirected graph
G = (V, E) is connected if, for every pair of vertices u, v, there is a (u, v)-path in G. It is k-edge-connected if G — F is connected
for any F C E with |[F| < k — 1. For a functionr : V x V — ZJ, we say that G is r-edge-connected if A¢(u, v) > r(u, v) for
every pair u, v of vertices.

The directed graph G = (V,A) is strongly connected if, for every ordered pair (u,v) € V x V of vertices, there is a
directed (u, v) path in G.1ti is k-arc-connected if G-—Fis strongly connected for any F € A with |F| < k — 1. For a function
r:VxV— z{, wesay that G is r-arc-connected if Ag(u,v) > r(u,v) for every ordered pair u, v of vertices.

An orientation G of G is called well-balanced if G satisfies (2), smooth if G satisfies (3) and best-balanced if it is smooth
and well-balanced. Note that if G is best-balanced then sois G . Let us denote by 0,,(G) and O, (G) the set of well-balanced and
best-balanced orientations of G.
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re(y) = LAe(x,¥)/2] YV (x,y) eV xV, (2)
W] <1 VveV. (3)

Apairing M of G is a new graph on the set of odd-degree vertices T in which each vertex has degree one. Let M be a pairing
of G. An orientation M of M that satisfies (4) is called good. Note that, by Claim 3.5 of the next section, if M is good then every
Eulerian orientation G + M of G + M that extends M defines a best-balanced orientation of G. Pairing M is well-orientable if
there exists a good orientation of M, M is strong if every orientation of M is good and M is feasible if (5) is satisfied. Clearly
an oriented pairing M is good if and only if M is good. Let us denote by £+(G) the set of feasible pairings of G.

X)) <be(X) VX CV, (4)
du(X) < bs(X) VX CV. (5)
We shall use the fact that for an undirected graph G and subsets X, Y, Z C V we have

de(X) +de(Y) =de(XNY) +de(XUY) + 2dc(X, Y), (6)
de(X) +dc(Y) +dc(2) > dc(XNYNZ)+de(X—(YUZ)) +de(Y — (XUZ)) +de(Z— (XUY)). (7)

3. Known results

The following four theorems are due to Nash-Williams [22,23]. First we state the Odd-Vertex Pairing Theorem: this
theorem is particularly interesting since it has practically no known connection to any other result in graph theory.

Theorem 3.1 (Odd-Vertex Pairing Theorem). Every graph has a feasible pairing.

The Odd-Vertex Pairing Theorem easily implies the following Strong Orientation Theorem.

Theorem 3.2 (Strong Orientation Theorem). Every graph has a best-balanced orientation.

In fact, the Odd-Vertex Pairing Theorem also implies the following, stronger result (for a proof see [17]).

Theorem 3.3. For every subgraph H of G, there exists a best-balanced orientation of H that can be extended to a best-balanced
orientation of G.

A simple consequence of the Strong Orientation Theorem is the Weak Orientation Theorem that concerns global edge-
connectivity instead of local edge-connectivity. While the only proof of the Strong Orientation Theorem is via the Odd-Vertex
Pairing Theorem, for the Weak Orientation Theorem we have several different proofs and polyhedral generalizations, and
we understand much better the relationships with submodular functions and polymatroids.

Theorem 3.4 (Weak Orientation Theorem). A graph G has a k-arc-connected orientation if and only if G is 2k-edge-connected.

In [17] Kiraly and Szigeti proved the following results.

Claim 3.5. The following statements are equivalent:

G € 0,(G), (8)
8(%) > LR(TX)J VX CV, (9)
fe(X) <bs(X) ¥XCV. (10)

Claim 3.6. A pairing is feasible if and only if it is strong.

Theorem 3.7. Every pairing is well-orientable.

Using these observations they also proved in [17] the following two generalizations of Theorem 3.2.

Theorem 3.8. For every partition {Eq, E, ..., Ex} of E(G), if G; = (V, E;), then G has a best-balanced orientation G, such that the
inherited orientation of each G; is also best-balanced.

Theorem 3.9. For every partition {X1, ..., X} of V. = V(G), G has an orientation G such that G, ((a/xl) ...)/X and 5/(V -
Xi) (1 <i <) are best-balanced orientations of the corresponding graphs.
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4. Well-balanced orientations with extra requirements

It is a natural question whether one can find a well-balanced orientation of minimum cost (with costs given for the two
possible orientations of every edge) or whether one can find a well-balanced orientation satisfying some other constraints,
for example lower and upper bounds on the out-degrees at each vertex. Here we present negative answers in this direction:
we prove the NP-completeness of these problems. Let us introduce the problems we want to consider and give some
motivation.

For well-balanced orientations we look at the following problems:

Problem 1 (MINCOSTWELLBALANCED).
INSTANCE: A graph G, nonnegative integer costs for the two possible orientations of each edge, and an integer bound K.

QUESTION: Is there a well-balanced orientation of G with total cost at most K?

Problem 2 (BOUNDEDWELLBALANCED).
INSTANCE: A graph G = (V,E),l,u : V — Z, bounds with < u.

QUESTION: Is there a well-balanced orientation G of G with I(v) < 8z(v) < u(v) foreveryv e v?

Problem 3 (MINVERTEXCOSTWELLBALANCED).
INSTANCE: A graph G, integer costs ¢ : V — Z, integer B.

QUESTION: Is there a well-balanced orientation G of G with 3", c(v) - 8z(v) < B?

For best-balanced orientations we define problems MINCOSTBESTBALANCED, BOUNDEDBESTBALANCED and MINVERTEX-
CosTBESTBALANCED similarly, by changing the phrase well-balanced to best-balanced.

Problems MINCOSTWELLBALANCED and MINCOSTBESTBALANCED are quite natural weighted versions of the original prob-
lem, the problem of finding a well-balanced or a best-balanced orientation. The constrained versions BOUNDEDWELLBAL-
ANCED and BOUNDEDBESTBALANCED also arise naturally: they are mentioned in the survey paper of Andras Frank [10] and a
related problem, when we have only bounds from one side (say, upper bounds) in a best-balanced orientation, is still an open
problem mentioned in [5] (though we have to mention that a related question was shown to be hard, namely it has been
shown by [1] that it is NP-hard to decide whether or not a graph has an r-arc-connected orientation with upper bounds on
the out-degrees, even for a 0-1-valued symmetric functionr). The third approach is motivated by the following observation:
in an orientation problem with arc-connectivity requirements, finding the out-degree function of a solution is polynomially
equivalent with finding a solution. The authors of [ 16] introduce the following polyhedron for a graph G = (V, E) (see Section
9in [16]):

P:={x € R :xX(2) > ic(2) + [Re(2)/2/VZ S V, x(V) = |E|, [dc(v)/2] < x(v) < [dG(v)/2]Vv € V}.

The integer hull of this polyhedron is the convex hull of the out-degree functions of all best-balanced orientations
of G. However it is proved in [16] that this polyhedron is not necessarily integral: here we prove that optimization
over the integer hull of this polyhedron (that is, problem MINVERTEXCOSTBESTBALANCED) is NP-hard. Problem
MINVERTEXCOSTWELLBALANCED is just the counterpart of this problem for well-balanced orientations.

Now we give some known results that will be needed later. The following is a simple observation: the proof is left to the
reader.

Lemma4.1. If Gand G are two orientations of a graph G = (V, E) with éz(x) = §z (x) for all x € V then G can be obtained from
G by reversing directed cycles. O

Corollary 4.2. If G and G are two orientations of a graph G = (V, E) with §z(x) = 8z (x) for all x € V then

G is well-balanced <= G’ is well-balanced.

Proof. Directly from Lemma 4.1. Alternatively, we can show that Az(x,y) = Az (x,y) for all x,y € V using the fact
8z(X) = Yyex 02(x) —ic(X) =8z (X) foranyX Cc V. O

For well-balanced orientations we have the following results.

Theorem 4.3. Problems MINCOSTWELLBALANCED, BOUNDEDWELLBALANCED and MINVERTEXCOSTWELLBALANCED are NP-
complete.

Proof. The problems are clearly in NP. In order to show their completeness we will give a reduction from VERTEX
COVER (see [14], Problem GT1). For a given instance G' = (V', E’) and k € N of the VERTEX COVER problem (where we can
assume that the minimum degree in G is at least 2) consider the following undirected graph G = (V, E). The vertex set V will
contain one designated vertexs, do (v) + 1 vertices xg, x}, x5, ..., XZ,G, ") forevery v € V/, and one vertex x, for every e € E'. Let

V1

us fix an ordering of V', say V' = {v1, v, ..., v,}. The edge set E contains a circuit ons, x,', x}’f ..., " in this order, one edge
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1 d 4

Fig. 1. Construction of graph G.

Fig. 2. The partial orientation and the cut.

from s to x} for every v € V’, edges between x{ and x},, for every v € V' and every i between 0 and dg (v) — 1, two parallel
edges between s and x, for every e € E’ and finally for each v € V' take an arbitrary order of the d¢ (v) = d edges of G’ incident
tov,saye', e, ..., e and include the edge x'x,i—1 forany 2 < i < d — 1 and the edges x'x,«-1 and x/x.« (i.e. distribute the
edges of G’ incident to v arbitrarily among vertices x}, . . ., x} resulting in d¢(x{) = 3 foreach 2 <i < d).

The construction is illustrated in Fig. 1. The edges drawn bold indicate a multiplicity of 2.

Notice that for every v € V' and 0 < i < dg (v) we have dq(x) = 3 and for every e € E' we have d¢(x.) = 4. What is more,
it is easy to check that A¢(x, y) = min(dg(x), dc(y)) for every x, y € V (for example, one can check that this is true if y = s,
from which it follows for arbitrary x, y).

Define a partial orientation of G: orient the circuit s, xgl s xgz ..., X" to become a directed circuit in this order, orient the
edges from x} to x{, , for every v € V" and every i between 0 and d¢ (v) — 1, orient the two parallel edges from x, towards s for
every e € F' and finally, for eachv € V/,2 <i < d¢(v) and e € E/, if there is an edge between x} and x, then orient this edge
from x} to x. (so we have given the orientation of every edge except those of form sx} for v € V’). Fig. 2 is an illustration.

Let us denote the subgraph G — {sx] : v € V’} by G; and the orientation of this graph given above by G,. Observe that G,
is a strongly connected graph and Az, (Xe,5) =2 foreache e E.

Claim 4.4. Problem MINCOSTWELLBALANCED is NP-complete.
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Proof. For a given instance ¢ = (V,E) and k € N of VERTEX COveR consider the following instance of
MINCOSTWELLBALANCED: let the graph G be as described above, let K = k be the bound on the total cost and define the
orientation-costs as follows: orienting the edges of G; as in G costs nothing, but giving any edge the reverse orientation will
cost k + 1. It remains to define the costs of orientations of edges between s and x} for each v € V': such an edge costs 1 if
oriented from s to x}, and 0 in the other direction. So we only have freedom to choose the orientation of these edges if we
don’t want to exceed the cost limit k.

First we claim that if there is a vertex cover S € V' of size not more than k then there is a well-balanced orientation G of
G of cost not more than k: for each v € S orient the edge sxj from s to x} and orient the other edges in the direction which
costs nothing. This has clearly cost at most k and it is easy to check that Az(s, x,) = 2 for each e € F’ which, together with
the former observations, gives that G is well-balanced.

On the other hand, suppose that we have found a well-balanced orientation G of G of cost at most k: this is possible
only if there are at most k vertices in V' such that the edges sx} are oriented from s to x} exactly for these edges and all the
other edges are oriented in the direction which costs 0. We claim that these vertices form a vertex cover of G': if the edge
e = vv; € E' was not covered (where j < [ are the indices of the vertices in the fixed ordering), then ¢z(X) = 1 would
contradict the well-balancedness of G, where

X=xIJg i<i= U 1 <i<de YUK : 1 <i < de ).
(Fig. 2 illustrates the cut, too). O

Claim 4.5. Problem BOUNDEDWELLBALANCED is NP-complete.

Proof. For an instance G' = (V/, E') and k € N of VERTEX CoVER consider the following instance of BOUNDEDWELLBALANCED:
let the graph G be as described above and the upper bound on the out-degree of s be given by u(s) = k + 1, and the lower
bounds I(x}) = 2 foreachv € V' andi € {0,2,3,...,dy(v)} (observe that these are in fact exact prescriptions for these
out-degrees and notice that we excluded i = 1). The other bounds can be trivial, that is, I(x) = 0 and u(x) = ds(x), if it was
not specified otherwise. We refer the reader to [2] for the details. O

Claim 4.6. Problem MINVERTEXCOSTWELLBALANCED is NP-complete.

Proof. For an instance ¢ = (V,E) and k € N of VERTEX CoveER consider the following instance of
MINVERTEXCOSTWELLBALANCED: let the graph G be as described above and vertex-costs the following: let c¢(s) = 1 and
c(x}) = —kforeachv e V'andi € {0, 2,3, ...,dg(v)} (and zero for the rest of the vertices). Finally, let B = —4k|E'| + k + 1.
For more details see [2]. O

These claims finish the proof of the theorem. O

For best-balanced orientations we have the following corresponding results.

Theorem 4.7. Problems MINCOSTBESTBALANCED, BOUNDEDBESTBALANCED and MINVERTEXCOSTBESTBALANCED are NP-complete.

Proof. The problems are clearly in NP. To show completeness we give a reduction from VERTEX COVER as before, but we need
to change the construction a bit. For a given instance ¢’ = (V', E’) and k € N of the VERTEX COVER problem (where dg (v) > 2
is again assumed for any v € V'), modify the construction of the graph G = (V, E) as follows: add 2|E'| 4+ |V'| — 2k = N new
vertices zq, z, . . ., zy and connect each of these vertices with s. So these new vertices will have degree 1 and s will have
degree 4|E'| 4+ 2|V'| + 2 — 2k in G. Denote this modified graph with G = (V, E).

Define again a partial orientation of G: this is the same as the one defined above in the first construction, with the addition
that for each i between 1 and N orient the edge sz; from s to z;.

Again call the subgraph G — {sx} : v € V'} by Gy and the above given orientation of this graph by G1. Again we have
Ac(x,y) = min(d¢(x), de(y)) for every x,y € V, Az, (x,y) > 1foreveryx,y € V —{z1,22, ..., zy} and Ag, (x,, s) = 2 for each
eck.

Claim 4.8. Problem MINCOSTBESTBALANCED is NP-complete, even for 0-1 orientation costs.

Proof. For a given instance ¢ = (V,E') and k € N of VERTEX Cover consider the following instance of
MINCOSTBESTBALANCED: let the graph G be as described above, let K = 0 be the bound on the total cost and define the
orientation-costs as follows: orienting the edges of G; as in G; costs nothing, but giving any edge the reverse orientation will
cost 1. It remains to define the costs of orientations of edges between s and x} for each v € V’; these edges can be oriented
in any direction with 0 cost. Details again can be found in[2]. O

Claim 4.9. Problem BOUNDEDBESTBALANCED is NP-complete.

Proof. For an instance G' = (V/, E') and k € N of VERTEX CoVER consider the following instance of BOUNDEDBESTBALANCED:
let the graph G be as described above and bounds on the out-degrees of odd degree vertices of G given as follows (of course,
for even-degree vertices x € V one has I(x) = dg(x)/2 = u(x)):
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o I(x') =2 =u(x}) foreachv e V'andi € {0, 2, 3, ..., dx(v)} (exact prescriptions),
e l(z) =0=u(z)foreachi= 1,2, ..., N(exact prescrlptlons)
e I(x{) = 1and u(x}) = 2 foreachv e V’ (so we only have freedom here).

For the details see [2]. O

Claim 4.10. Problem MINVERTEXCOSTBESTBALANCED is NP-complete.

Proof. For an instance ¢ = (V,E) and k € N of VERTEX CoveErR consider the following instance of
MINVERTEXCOSTWELLBALANCED: let the graph G be as described above and vertex-costs the following: let c¢(z;) = 1 for each
i=1,2,...,Nand c(x}) = —1foreachv € V' andi € {0, 2, 3, ..., dz(v)} (and zero for the rest of the vertices). Finally, let
B=-2(>(dg(v) : v e V")) = —4|F'|. Details again can be found in [2]. O

These claims finish the proof of the theorem. 0O
5. Mixed graphs

A mixed graph is determined by the triple (V, E, A) where V is the set of vertices, E is the set of undirected edges and A is
the set of directed arcs. The underlying undirected graph is obtained by deleting the orientation of the arcs in A. An orientation
of a mixed graph means that we orient the undirected edges (and keep the orientation of directed arcs).

A possible way to prove the Strong Orientation Theorem could be to characterize mixed graphs whose undirected
edges can be oriented to have a well-balanced orientation of the underlying undirected graph. The following problem was
mentioned in Section 4.2 of [ 16]:

Problem 4. Given a mixed graph, decide whether or not it has an orientation that is a well-balanced orientation of the
underlying undirected graph.

At the time of the submission of the present paper the status of this problem was unknown, but during the revision
process it was shown to be NP-complete in [3]. However, the proof of Claim 4.8 immediately gives the NP-completeness of
the following, related problem.

Problem 5. Given a mixed graph, decide whether or not it has an orientation that is a best-balanced orientation of the
underlying undirected graph.

We have to mention that the global edge-connectivity version of these questions can be solved: one can decide whether
a mixed graph has a k-arc-connected orientation, even with the presence of lower and upper bounds on the out-degrees of
the required orientation, see [12].

6. Splitting off

For an undirected graph G = (V+s, E), let the graph obtained by splitting-off the edges rs, st € E be denoted by Gy, i.e.
Gre := G — {rs, st} + rt. Similarly, for a directed graph G = (V+s,A) withrs, st € A, let G, = G — {rs, st} + rt. Alternatively, G
can also mean an orientation of G,; with rt € A(Grt)

We have seen in the introduction that splitting-off theorems are very useful in the proof of the Strong and the Weak
Orientation Theorem. We also mention that Mader’s proof [20] for the Strong Orientation Theorem as well as Frank’s
proof [10] for Theorem 3.1, uses Mader’s splitting-off theorem.

The Odd-Vertex Pairing Theorem would be an easy task if the following were true:

Question 1. For every 2-edge-connected graph G there exists a pair of incident edges rs, st such that

be(X) > bg, (X) VX CV. (11)

Counter-example 1. Let G = (U, V; E) be the complete bipartite graph K3 4. Let us denote the vertices as follows: U :=
{a, b, c,d} and V := {x, y, z}. By symmetry, {rs, st} is either {xd, dy} or {az, zb}. In the first case bs(z) = 0 < 2 = b, (z) and in
the second case bg({a, x,y}) = 3 < 5 = bg,, ({a, x, y}). In both cases (11) is violated. O

Question 2. If G is a best-balanced orientation of G= (V+s,E) and pz(s) = 8z(s) then there exist rs, st € A(G) so that

Ao, %, y) Z Ag(x,y) V(x,y) eV xV. (12)

Counter-example 2. Let G = (V +s5,E) and G = (V+s,A) be defined as follows (see Fig. 3): V == {u,v,w,z}, E =
{uv, us, uz, vz, vs, vw, ws, wz, zs}, A = {uv, us, zu, vz, sv, vw, ws, zw, sz}. It is easy to check that G e 0,(G), in particular
Az(v,z) = Xz(z,v) = 2. Suppose that for some (r,t) € {(u,2), (u,v), (w,2), (w,v)}, (12) is satisfied, then, by (12),
3 =0, (r.t}) + 8, (r ) = Az, (v,2) + Ag, (2, V) = Az(v, 2) + Az(z, v) = 4, a contradiction. O
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Fig. 4. Counterexample for Question 4.

We note that the example given above also provides a counter-example to a conjecture of Jackson containing fewer
vertices than previous examples due to Enni, for details see [6].

Question 3 (Open Problem). If G is a best-balanced orientation of G = (V+s, E) and 0¢z(s) = 8z(s), then there exist rs, st € A(G)
so that G,, is a best-balanced orientation of Gy

Though Question 3 is an open problem, a related question can be answered affirmatively.

Theorem 6.1. For every pair s, st of edges of a graph G = (V +s, E) there exists a best-balanced orientation G of G so that
rs, st € A(G) and G, is a best-balanced orientation of G,,.

Proof. By Theorem 3.1, there exists a feasible pairing M of G. Then M is a pairing of G, and hence, by Theorem 3.7, G,; +M has
an Eulerlan orientation Gn +M so that Gn € 0 (Gy) (we can assume that rtis directed as rt in G,r) Then, for G := G, —rt+rs+st,
G + M is Eulerian, that is, since M € Pr(G), Ge 0,(G). O

For another similar problem we have a negative answer.

Questlon 4. Forevery graph G = (V+s, E) with d(s) > 4 there exist rs, st € E such that for every best-balanced orientation Cre of
G, withrt € A(G,[) G := G, — rt + rs + st is a best-balanced orientation of G.

Counter-example 4. In Fig. 4(a) the graph G = (V+s, E) is given. By symmetry there are two different choices of the pair
{r, t}. Fig. 4(b) and (c) show best-balanced orientations Gy, for the two corresponding choices. A cut indicated in Fig. 4(b)
and (c) has the property (X) = 1 in both cases, consequently G := G, — rt + rs + st cannot be best-balanced because
Ag(s,2)=1<2=2%¢(s,2)/2. O

7. Simultaneous well-balanced orientations
In this section we consider some possible generalizations of Theorems 3.3 and 3.8. Here we consider the statements of
these theorems as assuring simultaneous (compatible) best-balanced orientations of some graphs.

The first two questions correspond to the local and global cases related to Theorem 3.3, i.e. the subgraph-chain property.

Question 5. Let G3 be a subgraph of G, and G, a subgraph of G;. There exist orientations G; of G fori= 1,2, 3, such that 5]- isa
restriction of G; if j > i, and for all i
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Fig. 5. Counterexamples to the subgraph-chain property.

(a) Local case : G; € Oy (G)).
(b) Global case : if G; is 2k;-edge-connected for some integers kq, ko, k3 then G; is a k;-arc-connected orientation of G;.

Counter-example 5. Let G; := (V;, E;) (i = 1, 2, 3) be defined as in Fig. 5, that is

(a) V] = V2 = V3 = {Cl],b1,C1,d1},E3 = {ald],a]dl,b]C1,b1C]},E2 = E3 U {a1b1,C1d1},E] = E2 @] U{Cl]C],bld]}. Let
X = {111, bl}, Y = {(11, dl}

(b) Vi = V, = V3 = {ay,az,a3, by, b2, b3,C1,0,03,d1,dz,d3},  Es = {axhy, bacs, c3bs3, b3cy, Cada, dras, asds, d3az} U
{x3x1,x3%1 : x € {a,b,c,d}},E; = E3 U {aiby, c1d1} U {x1x2, x1X2, X2X3, X2x3 : x € {a, b, c,d}}, Ey := E; U {ajcq, b1dq}
and k3 =1, ky = 2, ki = 3.LetX .= {a1, a, as, b1, by, b3}, Y = {a1, a, as, dq, dy, d3}

We prove at the same time for (a)and (b) that the required orientations do not exist. Suppose that they do exist. It is easy to
check that G; and G are Eulerian orientations of G; and Gs, whence, by (1), fz, X) = 0 = f, (Y) and fz, (X) = 0. G, is 2k-edge-
connected and dg, (Y) = 2k, s0fg, (Y) = 0.Thenfz, g, (X) = fz, g, (X) = fe, X)—fe, X) = Oandfal,az(Y) =fe,(V)—fe,(Y) = 0.
Note that E(G; — Gy) = E; — E» = {ay¢1, bidi}anda; € XNY, ¢ € V—(XUY), by € X—Y, d; € Y—X, which s a contradiction.

O

Regarding general simultaneous orientations, we may ask the following question:

Question 6. Given two graphs (neither edge-disjoint nor containing each other), is there a good characterization for having
simultaneous best-balanced orientations?

The next theorem and corollary show that this problem is NP-complete even for Eulerian graphs.

Theorem 7.1. Deciding whether two Eulerian graphs, G = (V1, E1) and G, = (V3, E;) have Eulerian orientations that agree on
the common edges E1 N E;, is NP-complete.

Proof. The problem is clearly in NP. For the completeness we show a reduction from ONE-IN-THREE 3SAT (see [14], Problem
LOA4). For a given 3SAT formula, n denotes the number of variables, the clauses are denoted by G4, G . .., G, and J; denotes
the set of indices of the clauses that contain the variable x; (we assume that every clause contains 3 different variables).

Construct first the graph G; = (V1, E1) as follows: each connected component G, = (Vi, E}) of G; corresponds to a clause
C;, namely V| contains the vertices {C;, C/} and the 6 vertices {x}’i, XJi : x; or X; occurs in G;} and E} contains the edge C;C,, the
edges {leﬁRJ': : xj’? € Vi}, the edges {Cx], C{xj} if x; occurs in G; and the edges {C,-Rj‘:, C,.’xj’i} if X; occurs in C;. Note that vertices
corresponding to literals are of degree-two and vertices corresponding to clauses are of degree four.

The graph G, = (V», E2) is constructed in such a way that each connected component of G, is a cycle of even length. One
cycle contains Cy, C}, G2, G, ... Gy, C,, in this order. We also have cycles for every variable: for any 1 <i < n, there is a cycle
onx',x', x2,%2,...,x % in this order, where {j, ja, . . ., ji} is the set of the indices of the clauses that contain x; or x;. First
we claim that if there is a truth assignment such that in each clause exactly one literal is TRUE then the required Eulerian
orientations exist. Orient first G, it is enough to declare the orientation of one edge in each cycle. Let C;C; be oriented from
C} to Cy, and for each i let the edge x{iﬁ (for any j € J;) be oriented from the FALSE value to the TRUE value. Now G; has a
unique orientation that extends the orientation of the common edges and that makes each vertex of degree two Eulerian.
Since each clause C; contains exactly one literal of value TRUE, this orlentatlon is Eulerian.

On the other hand suppose that we have Eulerian orientations G; and G, that agree on the common edges. If edge C;C; is
oriented from C; to C; then reverse both Eulerian orientations. The Eulerian orientation G, first ensures that (/G isadirected

edge for all i. Second, it also ensures that for all i either xjx{ is a directed edge for all j, or x{x{ is a directed edge for all j. Assign
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[

Fig. 6. A best-balanced orientation which can not be defined with a feasible pairing.

the value TRUE to variable x; if and only if Zx{ is adirected edge. We claim that this assignment makes TRUE exactly one literal
in each clause. Indeed, from the three edges between C; and the three literal-copies exactly one is directed towards ;, and
exactly the corresponding literal has value TRUE. [

We remark that another construction can be made by adding some extra vertices, in which both graphs are connected:
add vertices y; and z; to graph G; (fori = 1, 2), and connect them to one degree two vertex of each component, then connect
yi to z; if they have odd degree. To see that the above reasoning goes through, observe that if both y;v and zyv are directed
towards v then there is no Eulerian orientation extending it.

Corollary 7.2. Deciding whether or not two graphs have simultaneous best-balanced orientations is NP-complete.

8. Feasible pairing defining a best-balanced orientation

Nash-Williams’ original idea was that every feasible pairing provides a best-balanced orientation. In fact every feasible
pairing provides lots of best-balanced orientations. A natural question is whether every best-balanced orientation can be
defined by a feasible pairing.

Question 7. For every best-balanced orientation G of G there exists a feasible pairing M and an orientation M of M such that
G + M is Eulerian.

Counter-example 7. Let G = (V, E) and G = (V, A) be defined as follows (see Fig. 6):
v = {ab,cp,qnxYy2, E = {ap,aq,ar, bp,bgq, br, cx, cy, cz, xp, py, yq, qz, zr,rx}, A =  {ap, qa, ra, bp, gb,
b, xc, yc, cz, px, py, ¥q, 2q, zr, xr}. It is easy to check that Ge 0,(G).

We show that if M € £(G), then ab € M. Note that T = {a, b, c,x,y,2z}. Let X = {a,b,p,1,x}, Y := {a,b,p, q,y},
Z = {a,b,q,r z}. Note that dg(W) = 5 and R(W) = 4, hence bc(W) = 1 for W € {X,Y,Z}. Then, by (5) and (7),
3 = b(X) +be(Y) +be(Z) = du(X) +du(Y) + du(Z) = du(XNYNZ) +duX — (YUZ)) +du(Y — (XU2Z)) +du(Z — (XUY)) =
dy({a, b}) + dy(x) + du(y) +dy(z) > 0+ 1+ 14+ 1= 3,s0dy({a, b}) = 0, thatis, ab € M.

Then for every orientation M of any feasible pairing M of G either 85;(a) = 0 or 85 (b) = 0. Then, since fz(a) = f=(b) = 1,
G+ M cannot be Eulerian. O

The following Theorem 8.2 shows that the answer for Question 7 is affirmative for global edge-connectivity. For the proof
we need the following stronger version of Mader's splitting-off theorem [21] due to Frank [11].

Theorem 8.1. Let H = (U+s, F) be k-arc-connected in U. If 85(s) — 05(s) < 05 (s) < 28;(s), then there exist rs, st € F, so that
H,; is k-arc-connected in U.

Theorem 8.2. Let G = (V, E) be a 2k-edge-connected graph and let G = (V, A) be a smooth k-arc-connected orientation of G.
Then there is a pairing M of G and an orientation M of M so that

dy(X) <dc(X) —2k V@ #X C Vand (13)
G + M is Fulerian. (14)
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Proof. By induction on |A|.

Case 1If there is s € V with d(s) > 2k + 2. Then, by (3) and Theorem 8.1, there exist rs, st € A so that G, is k-arc-connected
in V — s. It follows, by the assumption of Case 1 and (3), that G, is k-arc-connected. Note that Te,, = To. IA(Go)| < IA] so by
induction there is a pairing M of G and an orientation M of M so that (13) and (14) are satisfied for (G,;, M) and for (G,t, M)
and hence for (G, M) and for (G, M) and we are done.

Case 2 If there is s € V with d(s) = 2k. This case can be handled in the same way as Case 1 but here we have to make a
complete splitting off at s.

Case 3 Otherwise, d(s) = 2k + 1 for all s € V.Then T¢ = V. By a result of Mader [19], since there is no vertex v with
0¢(v) = &¢(v), there exists uv € A such that G = G—uvis k-arc-connected, obviously u and v have in-degree and out-degree
kinG, so G’ is also smooth. As |A(C))| < |A|, by induction there is a pairing M" on T¢' = T¢ —{u, v} and an orientation M of M’ so
that (13)and (14) are satisfied for (G’, M") and for (G, M').LetM := M'+uvand M := M'+vu. Then G+M = (G +M')+uv+vuis
Eulerian. Moreover, for all ¥ # X C V, either dy (X) = dy (X) and d¢(X) = dg (X), ordy(X) = dyw (X)+1and d¢(X) = do (X)+1,
so (13)is satisfied forGand M. O

9. The structure of feasible pairings

We call a feasible pairing M a feasible matching (in G), if for every edge uv of M, uv is also an edge of G. A k-feasible
matching is defined analogously for a positive integer k.

Theorem 9.1. Deciding whether or not a graph has a feasible matching is NP-complete, even for planar three-regular graphs.

Proof. We claim that a 2-connected 3-regular graph G = (V, E) has a feasible matching if and only if G is Hamiltonian.
Indeed, for a perfect matching M of G, the 2-regular graph G — M is Hamiltonian if and only if G — M is 2-edge-connected,
that is, if and only if d¢_y(X) > 2 for all @ # X C V, or equivalently if M is feasible.

It is known that deciding whether or not a graph has a Hamiltonian cycle is NP-complete even for planar 2-connected
3-regular graphs [15]. O

Corollary 9.2. We are given a graph G and a weight on each pair of distinct odd-degree vertices. Finding the minimum weight
strong pairing is NP-hard, even for planar 3-regular graphs and for 0- 1-valued weighting.

We mention that the proof given here shows that the minimum weight feasible pairing problem and the feasible
matching problem are NP-hard even for the global case with k = 1 (i.e. it is NP-hard to find a minimum weight 1-feasible
pairing or to decide whether there is a 1-feasible matching in a given graph).

10. Feasible pairing for connectivity functions
A set function b : 2" — R is called skew-submodular if for every X, Y C V, at least one of the following two inequalities
is satisfied:
b(X) +b(Y) > b(XNY) +b(XUY), (15)
b(X) + b(Y) > b(X —Y) + b(Y — X). (16)

A set function p is called skew-supermodular if —p is skew-submodular. We mention that, by [22], R¢ is skew-supermodular
and hence b is skew-submodular. A set function b on V is called crossing submodular if (15) is satisfied for every X, Y C V
withXNY,X—Y,Y—X,V— (XUY) # @.For a set function b we define T, = {v : b(v) is odd}.

Question 8. Let b : 2V — Z{ be a symmetric, skew-submodular function with b(@) = 0 and b(X) = |X N T,| mod 2. Then there
exists a pairing M on T, that satisfies

du(X) <b(X) ¥YXCV. (17)

Counter-example 8. Let b(X) be defined on V with |V| = 6 as follows: b(X) := 0if X = ¢, or X = V; 1if |X| is odd and 2
otherwise. It is easy to see that b satisfies all the conditions. Note that T, = V. For any pairing M on T,, we may choose X C V
with dy(X) = 3 but then X violates (17). O

Note that, by Theorem 3.1, the answer to Question 8 is affirmative for b(X) = bs(X).
The problem corresponding to the global case is the following open problem.

Question 9 (Open Problem). Let b : 2 — 7zg be a symmetric crossing submodular function with b(#) = 0 and b(X) =
|X N Ty| mod 2. Then there exists a pairing M on T, that satisfies (17).

If the answer to Question 9 is affirmative then it would imply the following theorem that can be proved directly.
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Theorem 10.1. Let G = (V, E) be an undirected graph. Let b : 2V — Z{ be a crossing submodular function with b(X) + d¢(X)
even for every X C V. Then there exists an orientation G of G satisfying

feX) =bX) VXCV. (18)

Proof. Let G = (V, A) be an arbitrary orientation of G. Let P :== {z € R* : 0 < z(a) < 1 Va € A, (SZE(X) — Qé(x) <
(b(X)—f=(X))/2 ¥X < V}.By the modularity of fz and by the assumptions, (b(X)—fz(X))/2 is integral and crossing submodular.
Then, by the Edmonds-Giles theorem [4], P is an integral polyhedron. The vector %]1 belongs to P because b is non-negative.
Then P contains an integral vector z. Let G’ be the orientation obtained from G by reversing the arcs a € A(é) for which
z(a) = 1. Then, since zis a 0-1 vector in P, fz: (X) = 0¢/ (X) — 8¢ (X) = (0z(X) — 05(X) + 82(X)) — (5e(X) — 82(X) + 0%(X)) =
fe(X) 4 2(84(X) — 0%(X)) < b(X) VX €V, and hence G is the desired orientation. O

Note that if G is 2k-edge-connected and b(X) = d¢(X) — 2k for all @ # X C V and b(#) = b(V) = 0, then Theorem 10.1 is
equivalent to Theorem 3.4. We remark that Theorem 10.1 also follows from a theorem of Frank [7] on orientations covering
a G-supermodular function.

Question 10. Let d : 2V — 7} be a symmetric function that satisfies d(@) = 0 and forallX,Y C V

dX) +d(Y) +dXAY)=dXNY)+dXUY)+dX—Y)+d(Y —X), (19)
dX) +d(Y) —dXUY)isevenif XNY = @. (20)

LetR:2" — z¢ be an even valued, symmetric, skew-supermodular function. Suppose that R(X) < d(X) for all X C V, then there
exists a pairing M on T, that satisfies

du(X) <dX) —R(X) VXCV. (21)

Counter-example 10. Let V := {u, v, w, z}, G := (V, {uw, uz, vw, vz, wz}), H := (V, {uv}), d(X) = de(X) — dy(X), R(X) = 2 if
XN {w, z}| = 1, and 0 otherwise. Since for a proper subset X, ds(X) > 1and d,(X) < 1, d(X) > 0 VX C V. Clearly, d is integer
valued and symmetric. d; and dy satisfy (19) and (20), consequently d also satisfies them. It is easy to see that R satisfies all
the conditions. Note that T, = V. Let M be an arbitrary pairing on T,. Let e be the edge of M incident to w. Let X := {u, w} and
let Y := {v, w}, then e leaves either X or Y but d(X) — R(X) = 0 = d(Y) — R(Y) so either X or Y violates (21). O

Note that, by Theorem 3.1, the answer for Question 10 is affirmative for d(X) = d¢(X) and R(X) = R¢(X).

Question 11 (Open Problem). Let G = (V, E) be a graph and R : 2V — Z¢ an even valued, symmetric, skew-supermodular
function. Suppose that R(X) < d¢(X) ¥X C V, then there exists a pairing M on T that satisfies

du(X) < de(X) —R(X) VYXCV. (22)

Question 11 is an open problem. If R satisfies R(X U Y) < max{R(X), R(Y)} for all X, Y C V then R(X) = max{r(x,y) : x €
X, y € V — X} for some symmetric, even valued r : V x V — Z{ and hence, by Theorem 3.1, such a pairing exists.

11. Matroid property

If G is an orientation of G, then let T := {v € V(G) : 0z(v) > &z(v)). Note that if G is smooth, then TS| = |Tel /2.

The following strict reorientation property was proved for k-arc-connected orientations by Frank in [8]: if G; and G, are k-
arc-connected orientations of a graph G = (V, E) and g¢, (1) < gg,(u) atavertexu € V, then there exists a directed path in G
from u to some vertex v € V with gz, (v) > g¢, (v) such that reversing this path in Gy results in a k-arc-connected digraph. This
result has interesting consequences, for example, when restricted to smooth k-arc-connected orientations (which property
is not destroyed by such a reorientation) then it is equivalent to the following statement: for a 2k-edge-connected graph G
the family 7 := {Tgr : G is a smooth k-arc-connected orientation of G} is the base family of a matroid. Another consequence
of the strict reorientation property is that k-arc-connected orientations of a graph satisfy the so called linkage property. In
this section we investigate whether any of the above properties hold for well-balanced orientations.

First we investigate the matroid property:

Question 12. 7 = {Tér : G € 0,(G)} is the base family of a matroid.

Counter-example 12. Let G, 6, X, Y and Z be as in Fig. 6. Then T e 0,(G) hence By := {a, b, c} and B, := {x,y,z} arein 7.
Suppose that 7 is the base family of a matroid. Then for ¢ € By — B, there must exist u € B, — By such that By — {c} + {u} € T,
by symmetry we may suppose that {a, b, x} € 7. Then there exists G’ € 9,(G) so that Tg’, = {a, b, x}. Whence, by (10) and
(1), 1 =be(X) > for (X) = Xexfer(u) = 3, a contradiction. O
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We can see from the previous proof that the reorientation property,in the strict sense as introduced above, is not true
for well-balanced orientations. Furthermore, a weaker reorientation property was shown not to hold in [1], namely the
following statement was disproved there: if G1, G, € 0,,(G), such that there is an x € V(G) with g¢, (x) # 0g, (%), then there

exist u, v € V(G) with o¢ (1) < 0g,(w) and g¢, (v) > 0g, (v), such that reversing a directed path in G; from u to v results
in another well-balanced orientation. We formulate here an even weaker reorientation property and pose the following
question:

Question 13 (Open Problem). Let G°, G* € O,,(G), then there exist C° = G, G', ..., G = G’ such that G* € 0,,(G) and G is
obtained from G*=1 by reversing a directed path or a directed cycle (1 < k < I).

This is an open problem, but it is known that, by Frank [8], the answer for Question 13 is affirmative for the case of global
edge-connectivity.
Now we investigate whether the linkage property holds for well-balanced orientations.

Question 14. Let I, u : V — Z{ such that I(v) < u(v) for all v € V, then there exists G € 0,(G) such that I(v) < oz(v) <
u(v) ¥v € Vifand only if there exist G', G> € 0,(G) such that I(v) < gz (v) Yv € Vand oz (v) <u(v) Vv e V.

Counter-example 14. LetG, G' := G, G2 := G € 0,(G), X, Y and Z as in Fig. 6. Let the functions ! and u be defined as follows:
I(a) = I(b) =: 2 and I(t) :=qLdGZﬁJ Vt e V—a—b,u(c) := Tand u(t) := [%42] Vt € V — c. Then I(v) < g1 (v) Vv € V and
02(v) < u(v) Vv e V.Let GG € 0,(G) such that I(v) < gz (v) Vv € V. Recall that bg(X) = be(Y) = bg(Z) = 1. Then, by
Claim 3.5, 1 = be(X) > fe3(X) = fas (%) + fzs (p) + fez(a) + fzs (b) + fes(r) = faa(x) + 0+ 1+ 140, 50 fea(x) < —1 and hence
fea(x) = —1. Similarly, fz3 (y) = fz3(z) = —1. Then, since fz3 (V) = 0, fza(c) = 1, that s, oz (c) = 2 > 1 = u(c). Thus there is
no well-balanced orientation of G whose in-degree function satisfies both the lower and upper bounds. O

Question 14 is valid for the global case by Frank [7]. This follows from the facts that the in-degree vectors of k-arc-
connected orientations form a base-polyhedron and for such polyhedra the linkage property holds. As mentioned above,
this also follows easily from the strict reorientation property.
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