JOURNAL OF COMBINATORIAL THEORY, Series B 61, 263-271 (1994)

Notes

On Packing 7-Cuts*
ANDRAS Frank'

Research Institute for Discrete Mathematics,
University of Bonn, Nassestr. 2, Bonn — 1, Germany, D-5300

AND

ZOLTAN SZIGETI

Department of Computer Science, Eétvos University,
Muzeum krt. 6-8, Budapest, Hungary, H-1088

Received July 2, 1992
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min-cut property is given. € 1994 Academic Press, [nc.

1. INTRODUCTION

The Chinese postman problem, in other words the minimum 7-join
problem, consists of finding a minimum cardinality subset of edges of a
graph satisfying prescribed parity constraints on the degrees of nodes. This
minimum is bounded from below by the maximum value of a (fractional)
packing of T-cuts. In the literature there are several min-max theorems for
cases when equality actually holds. In this paper we list some of these
results and exhibit new relationships among them.

To be more specific, P. D. Seymour’s theorem [7] on binary matroids
with the max-flow min-cut property, when specialized to 7-joins, provides
a characterization of pairs (G, T') for which the minimum weight of a 7-join
is equal to the maximum packing of T-cuts for every integer weighting.
Motivated by Seymour’s theorem, A. Seb6 [6] proved a min-max theorem
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concerning minimum 7-joins and maximum packing of T-borders. He also
observed that his result, combined with a simple-sounding lemma on
bi-critical graphs (Theorem 7 below), immediately implies Seymour’s theorem.

The purpose of this note is twofold. We show first that Sebd’s theorem is
an easy consequence of an earlier min-max theorem [2] and, second, we
provide a simple proof of the above-mentioned statement on bi-critical
graphs. This way we will have obtained a simple proof of Seymour’s theorem.
Along the line, we will point out that Tutte’s theorem on perfect matchings
is a direct consequence of the result from [2].

A graft (G, T) is a pair consisting of a connected undirected graph
G=(V, F) and a subset T of V of even cardinality. A subset J of edges is
called a T-join if d,(v) is odd precisely when ve T. Here d,(v) denotes the
number of elements of J incident to v. J is called a perfect matching if
d;(v)=1 for every ve V. Note that a perfect matching is a 7-join for which
T=V. Let G=(V, E) be a graph with non-empty edge-set E. G is called
bi-critical if for every pair of nodes u, v, the graph G — {u, v} contains a
perfect matching. It follows immediately from Tutte’s theorem (see
Theorem O below) that G is bi-critical if and only if

g(X)<\|Xx| -2 for every subset X< Vwith {X| 22, {1

where ¢(X) denotes the number of odd-cardinality components of G — X.

Let us call a set X& V T-odd if | X~ T| is odd. Given a partition 2 =
Vi, Vs, o, Vi) of ¥, by a multicut B= B(#) we mean the set of edges
connecting different parts of 2. If each V', is 7-odd and induces a connected
subgraph, B is called a T-border. Then clearly k is even and val(B) :=k/2
is called the value of the T-border. When k=2 a T-border B is called a
T-cut. Note that the value of a 7T-cut is one.

The border graph G of a T-border B= B(#) is one obtained by con-
tracting each V, into one node. Let us call a T-border bi-critical if its
border graph is bi-critical.

Note that the cardinality of the intersection of a 7-cut and a T-join is
always odd, in particular, at least one. Hence the cardinality of the intersec-
tion of a 7-border B and a T-join J is always at least val(B) and equality
holds precisely when the edges in J connecting distinct Vs form a perfect
matching in the border graph of B.

A list #={B, .., B,;} of T-borders is called a packing (2-packing) if
each edge of G belongs to at most one (two) member(s) of #. The value
of a packing is Y (val(B):Be#) and the value of a 2-packing is
> (val(B) : Be #)/2. Note that a T-border of value ¢ determines a 2-pack-
ing of T-cuts of value .

For an edge e=ur we define the elementary T-contraction as a graft
(G, T'), where G’ arises from G by contracting e and 7" :=7T— {u, v} if
[{u, v} N Tl is even and T':=T— {u, v} + x,, if [{u, v} n T| is odd, where
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x,, denotes the contracted node. The T-contraction of a graph means a
sequence of elementary T-contractions. If X < V induces a connected sub-
graph of G, then by T-contracting X we mean the operation of T-contract-
ing a spanning tree of X.

Let K, denote the graft (K,, V(K,)), where K, is a complete graph on
four nodes. Note that a graft (G, T) can be T-contracted to K, precisely
when there is a partition {V,, V,, V3, V,} of V into T-odd sets so that
each V¥, induces a connected subgraph and there is an edge connecting V,
and V; whenever 1 <i<j<4.

For a general account on matchings and T-joins, see [4].

II. ResuLTS ON 7-CUTS aND 7-JOINS
Our starting point is Tutte’s theorem [9] on perfect matchings.

THEOREM 0. A graph G = (V, E) contains no perfect matching if and only
if there is a set X of nodes so that G — X includes more than | X| components
of odd cardinality.

The perfect matching problem can be reformulated in terms of T-joins.
Namely, by chosing 7 :=V, one observes that G has a perfect matching
precisely if the minimum cardinality of a T-join is |V|/2. Therefore it was
natural to ask for theorems concerning the minimum cardinality of a
T-join. Let us list some known results concerning this minimum. The first
one was proved by L. Lovasz [3] (and was stated earlier in a more general
form by J. Edmonds and E. Johnson [17).

THEOREM 1. The minimum cardinality of a T-join is equal to the maxi-
mum value of a 2-packing of T-cuts.

For example, in K, a perfect matching is a T-join of two elements and
a 2-packing of T-cuts with value 2 is provided by taking each T-cut once.
Note that the value of the best T-cut packing is 1.

Although this theorem, when applied to T := V, provides a good charac-
terization for the existence of a perfect matching (namely, a graph
G =(V, E) with | V| even has no perfect matching if and only if there is a list
of more than | V| V-cuts so that every edge belongs to at most two of them),
Tutte’s theorem does not seem to follow directly.

For bipartite graphs P. D. Seymour [8] proved a stronger statement.

THEOREM 2. In a bipartite graph the minimum cardinality of a T-join is
equal to the maximum number of disjoint T-cuts.
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This theorem immediately implies Theorem 1 by subdividing each
edge by a new node. In [2] the following sharpening of Theorem 2 was
proved.

THEOREM 3. In a bipartite graph D = (U, V; F) the minimum cardinality
of a T-join is equal to max Y. ¢(V,), where the maximum is taken over all
partitions |V, ...V} of V and q,(X) denotes the number of T-odd com-
ponents of D — X.

Let G=(V, E) be an arbitrary graph. Subdivide each edge by a new
node and let D= (V, U; F) denote the resulting bipartite graph (where U
denotes the set of new nodes). By applying Theorem 3 to this graph one
can easily obtain the following.

THEOREM 4. [In a graph G =(V, E) the minimum cardinality of a T-join
is equal to max 'y qr(V;)/2, where the maximum is taken over all partitions
(Vi,..V,} of V.

Observe that Theorem 3 implies Seymour’s Theorem 2. In 2] we
pointed out via an elementary construction that Theorem 3 also implies the
Berge—Tutte formula, a slight generalization of Tutte’s theorem. Let us
show now an even simpler dertvation of the (non-trivial part of) Tutte’s
theorem.

THEOREM 4 — THEOREM O.

Proof. Apply Theorem 4 with the choice T := V. Note that in this case
a subset of V' is T-odd if its cardinality is odd. If there is no perfect match-
ing, then the minimum cardinality of a 7-join is larger than [V|/2. By
Theorem 4 there is a partition {V, .., V,} of V' so that 3. ¢(V,)/2> |V]/2,
that is, 3 gq,(V;)>3 |V,|. Therefore there must be a subscript / so that
qr(V,)>|V,|; that is, the number of components in G — V, with odd
cardinality is larger than |V;|, as required. ||

A. Sebd [6] determined the minimal totally dual integral linear system
defining the conical hull of T-joins. As a by-product, he derived the
following integer min-max theorem concerning 7-joins.

THEOREM 5. In a graph G = (V, E) the minimum cardinality of a T-join
is equal to the maximum value of a T-border packing {B,, .., B,}. Further-
more, if an optimal packing is chosen in such a way that r is as large as
possible, then each B, is bi-critical.

Note that both Theorems 4 and 5 imply Theorem 1. The last theorem of
our list is also due to P. D. Seymour [7].
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THEOREM 6. If a graft (B, T) cannot be T-contracted to K,, then the
minimum cardinality of a T-join is equal to the maximum number of disjoint
T-cuts.

This theorem is a special case of a very difficult result of Seymour
concerning binary matroids with the max-flow min-cut property. It can be
formulated in an apparently stronger form:

A graft (G, T) cannot be T contracted to K, if and only if for
every integer weight-function w the minimum weight of a T-join
is equal to the maximum number of T-cuts so that every edge
belongs to at most w(e) T-cuts.

Note, however, that the “if” part is trivial and the “only if” part easily
follows from Theorem 6 if we contract each edge ¢ with w(e)=0 and sub-
divide each edge e by w(e) — 1 new nodes when wie) > 0.

III. PrROOFS

We show first that Sebd’s Theorem S is also an easy consequence of
Theorem 3 and, second, using Seb&’s theorem we provide a simple proof of
Seymour’s Theorem 6.

Let G=(V, E) be an arbitrary graph and let D = (V, U; F) be a bipartite
graph arising from G by subdividing each edge by a new node. Here sets
E and U are in a one-to-one correspondence and we will not distinguish
between their corresponding elements. In particular, a subset of U will be
considered as a subset of E and vice versa.

Observe that in Theorem 3 the two parts U and V of the bipartite graph
play an asymmetric role. When one applies Theorem 3 to D and the maxi-
mum is taken over the partitions of ¥, Theorem 4 can be obtained. Sebd’s
theorem will foliow from Theorem 3 by taking the maximum over the
partitions of U.

Proaf of Theorem 5. We have already seen that the value of a 7-border
packing is a lower bound for the minimum cardinality of a T-join. We are
going to prove that there is a T-join J of G and a packing # of T-borders
of G so that

|| = val(F). (2)

By Theorem 3 there is a partition % of U and a T-join J' of D for which

1= (gr(X): XeU). (3)

582b/61,2-9
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Assume that /:=|%| is a large as possible and let Z be an arbitrary
member of # with ¢,(Z)>0. Let K, K,, .., K, be the components of
D—Z, V. :=VnK,and 2 :={V,,., V,}.

Clearly, Z = B(#) and, in fact, we have equality here since if an edge e
induced by V,; belonged to Z, then |Z| =2 and in % we could replace Z by
two sets Z—e and {e} without destroying (3), contradicting the maxi-
mality of /. We also claim that each V', is T-odd for otherwise |Z| > 2 and
for an edge ee Z leaving V,; we could replace Z by Z —e and {e} without
destroying (3), contradicting again the maximality of /.

Let F :={Ze% :q,(Z)>0}. We have seen that each member Z of #
is a T-border of G with val(Z)=q,(Z)/2. Hence (2) and the first half of
Theorem S follow by noting that J’ corresponds to a T-join J of G with
[JI=1J"1/2.

To prove the second half of the theorem let # be a T-border packing
of maximum value such that r:=|#| is as large as possible. Suppose
indirectly, that a member Be # is not bi-critical. That is, the border graph
G of B includes a subset X of nodes with |X| =2 for which g(X) = |X].
(Here g(X) denotes the number of odd-cardinality components of Gz — X.)

For any odd component K of Gz — X let us define a partition of V(G )
consisting of the elements of K as singletons and a set V(Ggz)— K. This
partition defines a T-border of G with value (| K] + 1)/2. For any even com-
ponent L of Gy— X let us define a partition of V(Gj) consisting of the
elements of L —v as singletons and the set V(Gz)— (L —v), where v is an
arbitrary element of L having a neighbour in X. This partition defines a
T-border of G with value |L|/2. The T-borders defined this way are
pairwise disjoint subsets of B and their total value is |V(Gg)l/2, the value
of B. This contradicts the maximal choice of r. |

The following Theorem 7, interesting for its own right, was stated by
A. Sebd. He noted that it follows from Seymour’s Theorem 6 and observed
that, conversely, Theorem 6 is an easy consequence of Theorems 5 and 7.
We provide here a simple proof.

THEOREM 7. The node set of an arbitrary bi-critical graph Gg on k>4
nodes can be partitioned into four subsets V|, V,, V;, V, of odd cardinality
so that each V', induces a connected subgraph and there is an edge connecting
V,and V; whenever 1 i< j<4.

Proof. Let M be a perfect matching of Gz, wve M, and M, .= M —uv.
Let z (#v) be a neighbour of w. Since G is bi-critical Gz — {v, z} contains
a perfect matching M,,. The symmetric difference M, @® M, consists of
node-disjoint circuits and a path P connecting z and u. Now C:=P+uz is
an odd circuit of G4 so that, starting at # and going along C, every second
edge of C belongs to M.
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Let u, u,, ..., u, be the nodes of C (in this order). Because of the existence
of M, the component K of Gg— V(C) containing v is of odd cardinality
while all the other components are of even cardinality.

Let V, := K. It follows from (1) that G is two-connected and, moreover,
contains no separating set X of two elements for which ¢(X)> 0. Hence K
must have at least three distinct neighbours u, u,, u; in C.

If there is a matching edge xy€ M on C so that u, u;, x, y, u; reflects the
order of these nodes around C (where both u; = x and u; = y are possible),
then define V4 :={u, 4y, 0y x}, Vii={p, s up_(, u,}, Vi:=1{u}

If there is no such matching edge, that is, j=i+ 1 and i is even, then
define V4 :={u;}, Vy:={u; .1}, Vi:=V(C)— {u; 0y}

In both cases { V5, V3, V,} is a partition of V(C). Let & denote the set
of even components of Gz— V(C). For each Le ¥ choose a subscript
s=s(L) (=2,3,4) so that L is connected to a node in V. For t=2,3,4
define V,:=V,ulJ (Le.Z :s(L)=1t). The partition {V,, V,, V5, V,} con-
structed this way satisfies the requirements. |

Proof of Theorem 6. let # be an optimal packing of bi-critical
T-borders provided by Theorem 5. We claim that each member of # is a
T-cut. Indeed, if Be # is a T-border determined by a partition # of V
(|2 = 4) into T-odd sets, then the graft (G, V(Gp)) arises from (G, T) by
T-contracting each member of 2 and then, by Theorem 7, (G, T') can be
T-contracted to K, a contradiction. {

In order for the paper to be self-contained, we include here a proof of
Theorem 3, due to A. Sebd [5].

Proof of Theorem 3. We prove only the non-trivial direction max > min.
Let J be a T-join of minimum cardinality. Let w denote a weighting on F
for which w(e)= —1 if eeJ and w(e)=1 if ee F—J. Then w is clearly
conservative; that is, there is no circuit of negative total weight. Actually,
we prove the following.

THEOREM 3. Let D=(U,V;F) be a bipartite graph and w:F—
{+1,—1} a conservative weighting. There is a partition & of V so that for
each part Pe % and for each component C of D — P there is at most one
negative edge connecting P and C.

Proof. We use induction on |J|, where J denotes the set of negative
edges. If J is empty, & := {V'} will do. Assume that J is non-empty and let
s be an arbitrary node incident to an element of J. Let P be a path of D
starting at s so that its weight m := w(P) is minimum and, in addition, P
has as few edges as possible. Let 1 denote the other end-node of P, xt the
last edge of P and B the set of edges of D incident to ¢. Since B is a cut
of D, the graph D' := D/B:=(U’, V; F’) arising from D by contracting the
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elements of B is bipartite. Let +' denote the contracted node of D’ corre-
sponding to ¢ and let w’ denote the weighting of D’ determined by w. We
call a subpath P[y, ¢] of P an end-segment. Clearly m <0 by the choice of
s and

each end-segment of P has negative weight, (*)
in particular, w(xt)<0.

Cramm. (i) xt is the only negative edge incident to t. (ii) In D —t there
is no negative path R connecting two neighbours u, v of t.

Proof. (i) Let tz be another negative edge. If ze P, then Pz, t]+ ¢z
would form a negative circuit contradicting that w is conservative. If z¢ P,
then P’ := P+ 1z would be a path with w(p') <w(P), contradicting the
minimal choice of P. Thus (i) follows.

(1) Let R be a path in D — ¢ connecting u, v for which w(R) is mini-
mum and suppose for a contradiction that w(R) <0. Clearly » and v are
distinct from x since otherwise R+ ut+ tv would form a negative circuit
in G.

An arbitrary node y of R subdivides R into two segments R[ y, #] and
R[ y, v]. Since w(R) <0, at least one of the two segments has negative
weight.

Suppose first that P and R have a node y in common. Choose y so
that P[y,¢] has as few edges as possible. Assume that w(R[u, y])<0.
Property () implies that P[t, y]+ R[y, u]+ ut is a negative circuit in D,
a contradiction.

Now let P and R be disjoint. Since D is bipartite, R has even length from
which w(R)< —2. Hence P’ := P+ tu+ R is a simple path starting at s
such that w(P') <m, contradicting the minimal choice of P. |

The claim is equivalent to saying that w’ is a conservative weighting of
D’. By the inductional hypothesis, there is a partition ¥’ of V' satisfying
the requirement of the theorem with respect to w’. If re U (that is, t' € V'),
then %’ determines a partition & of V. If 1 V, then define & := %" U {1}.
In both cases it is easily seen that ¥ satisfies the requirements of the
theorem. |
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