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We prove that every (6k 4 2¢, 2k)-connected simple graph contains
k rigid and ¢ connected edge-disjoint spanning subgraphs.
This implies a theorem of Jackson and Jordan [7] providing a suffi-
cient condition for the rigidity of a graph and a theorem of Jordan
[8] on the packing of rigid spanning subgraphs. Both these results
generalize the classic result of Lovasz and Yemini [10] saying that
every 6-connected graph is rigid. Our approach provides a trans-
parent proof for this theorem.
Our result also gives two improved upper bounds on the con-
nectivity of graphs that have interesting properties: (1) in every
8-connected graph there exists a packing of a spanning tree and a
2-connected spanning subgraph; (2) every 14-connected graph has
a 2-connected orientation.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider sufficient conditions for the existence of a packing of spanning sub-
graphs in a given undirected graph G = (V, E), where by a packing we mean a set of pairwise
edge-disjoint subgraphs of G. Let us present a few examples in this area.

A first example is the existence of a packing of ¢ spanning trees in every 2¢-edge-connected graph.
This result is an easy consequence of the classic theorem of Tutte [13] and Nash-Williams [11] that
characterizes the existence of such a packing. It is well known that this characterization can be de-
rived from matroid theory as follows. The spanning trees of G correspond to the bases of the graphic
matroid C(G) of G. Hence, by matroid union [4], the packings of ¢ spanning trees of G correspond to
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the bases of the matroid Ny ((G) defined as the union of ¢ copies of C(G). Thus, the existence of the
required packing is characterized by the rank of E in Ny ¢(G). Finally, using the formula of Edmonds
[4] for the rank function of N ¢(G) gives the theorem of Tutte and Nash-Williams.

A more recent example, due to Jordan [8], is the existence of a packing of k rigid spanning sub-
graphs in every 6k-connected graph. The definition of rigidity is postponed to the next section but we
mention here that the minimally rigid spanning subgraphs of G correspond to the bases of a matroid,
namely the rigidity matroid R(G) of G. So, as in the previous argument, the existence of a packing
of k rigid spanning subgraphs is characterized by the rank of E in the matroid N o(G) defined as
the union of k copies of R(G). Jordan [8] used the formula of Edmonds [4] for the rank function of
Nk.o(G) to prove that 6k-connectivity implies the desired lower bound on the rank of E.

Our main contribution is to provide a new example that gives a sufficient connectivity condition
for the existence of a packing of k rigid spanning subgraphs and ¢ spanning trees. To prove this result,
we naturally introduce the matroid N ((G) defined as the union of k copies of the rigidity matroid
R(G) and ¢ copies of the graphic matroid C(G).

As a packing of rigid spanning subgraphs turns out to be a packing of spanning 2-connected sub-
graphs, the packing result of Jordan [8] allowed him to settle the base case of a conjecture of Kriesell
(see in [8]) on removable spanning trees and that of a conjecture of Thomassen [12] on orientation
of graphs. Our result on the packing of rigid spanning subgraphs and spanning trees enables us to
improve the results of Jordan on these conjectures.

2. Definitions

Let G = (V, E) be a graph. For X C V, denote by dg(X) the degree of X, that is, the number of
edges of G with one end vertex in X and the other one in V \ X. We say that G is Eulerian if each
vertex of G is of even degree.

A graph G’ = (V’, E’) is a subgraph of G if V' C V and E’ C E. The subgraph G’ is called spanning
if V' =V. A set of pairwise edge-disjoint subgraphs of G is called a packing.

Let F C E. We denote by Gr the spanning subgraph of G with edge set F, that is, Gr = (V, F).
Let us denote by c(F) the number of connected components of Gr and by Kg the set of connected
components of G of size 1.

Let T € V. We denote by F(T) the set of edges of Gr induced by T. We say that F is a T-join
if the set of odd degree vertices of Gr coincides with T. It is well known that if Gf is a connected
graph and T is of even cardinality then G contains a T-join.

For a collection G of subsets of V, we say that (V,G) is a hypergraph. We denote by V(G) the
set of vertices that belong to at least one element of G. We will use the following well-known fact:

the sum of the sizes of the elements of G is equal to the sum,
for each vertex, of the number of elements of G containing it. (1)

A set X of vertices is called connected in (V, G) if, for any partition of X into two non-empty parts,
there exists an element of G intersecting both parts. In (V, G) a connected component is a maximal
connected vertex set. The number of connected components of this hypergraph is denoted by ¢(G).
Let ICg be the set of connected components of (V, G) of size 1.

For X € G, we define the border Xp of X as the set of vertices of X that belong to another element
of G, that is, Xp =X N (UY€Q\{X} Y). We also define the inner part X; of X as the set of vertices
of X that belong to no other element of G, that is, X; = X \ Xp. Let Zg be the set of elements of G
whose inner part is not empty, that is, Zg = {X € G: X; # ¢J}. Since every vertex of V(G) is contained
in at least two elements of G U {X;: X € Zg}, we have, by (1),

DXl DY X =2v@). (2)
XeG XeIg

A graph G = (V, E) is called rigid if ) y .5 (2|X| —3) > 2|V| — 3 for every collection G of sets of
V such that {E(X), X € G} partitions E. More details about rigid graphs will be given in Section 4.
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Fig. 1. A non-rigid (6, 3)-connected simple graph G = (V, E). The collection G of the four grey vertex-sets provides a partition
of E. Hence, since ZXEQ(2|X\ —3)=4(2x8—-3)=52<53=2x28—-3=2|V|—3, G is not rigid. The reader can easily check
that G is (6, 3)-connected.

We will use the following connectivity concepts. The graph G is called p-edge-connected if
dg(X) > p for every non-empty proper subset X of V. We say that G is p-connected if |V| > p
and G — X is connected for all X ¢ V with |X| < p—1. As in [1], for a pair of positive integers (p, q),
G is called (p, q)-connected if |V | > 5 and G — X is (p — q|X|)-edge-connected for all X C V, that is,
if for every pair of disjoint subsets X and Y of V such that Y #@ and X UY # V, we have

de—x(Y) = p —qlX|. (3)

For a better understanding we mention that G is (6, 2)-connected if G is 6-edge-connected, G — v is
4-edge-connected for all v e V and G — {u, v} is 2-edge-connected for all u,v € V. It follows from
the definitions that p-edge-connectivity is equivalent to (p, p)-connectivity. Moreover, since loops and
parallel edges do not play any role in vertex connectivity, by the definition of (p, q)-connectivity, we
have the following remark.

Remark 1. Every p-connected graph contains a (p, 1)-connected simple spanning subgraph and
(p, 1)-connectivity implies (p, q)-connectivity for all g > 1.

Let D = (V,A) be a directed graph. We say that D is strongly connected if for every ordered
pair (u,v) € V x V of vertices there is a directed path from u to v in D. The digraph D is called
p-arc-connected if D — F is strongly connected for all F € A with |F| < p — 1. We say that D is
p-connected if |V| > p and D — X is strongly connected for all X ¢ V with |[X|<p—1.

3. Results
Lovasz and Yemini proved the following sufficient condition for a graph to be rigid.
Theorem 1. (See Lovdsz and Yemini [10].) Every 6-connected graph is rigid.
The following result of Jackson and Jordan is, by Remark 1, a sharpening of Theorem 1.
Theorem 2. (See Jackson and Jorddn [7].) Every (6, 2)-connected simple graph is rigid.
Note that in Theorem 2 the connectivity condition is the best possible since there exist non-rigid

(5, 2)-connected simple graphs (see [10]) and non-rigid (6, 3)-connected simple graphs, for an exam-
ple see Fig. 1.
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Jordan generalized Theorem 1 by giving the following sufficient condition for the existence of a
packing of rigid spanning subgraphs.

Theorem 3. (See Jorddn [8].) Let k > 1 be an integer. In every 6k-connected graph there exists a packing of k
rigid spanning subgraphs.

The main result of this paper (Theorem 4) contains a common generalization of Theorems 2 and 3.
It provides a sufficient condition to have a packing of rigid spanning subgraphs and spanning trees.
The proof of Theorem 4 will be given in Section 5.

Theorem 4. Let k > 1 and ¢ > 0 be integers. In every (6k + 2¢, 2k)-connected simple graph there exists a
packing of k rigid spanning subgraphs and ¢ spanning trees.

Note that Theorem 4 applied for k =1 and ¢ = 0 provides Theorem 2. By Remark 1, every
6k-connected graph contains a (6k, 2k)-connected simple spanning subgraph, thus Theorem 4 also
implies Theorem 3. Let us see some corollaries of the previous results.

One can easily prove that rigid graphs with at least 3 vertices are 2-connected (see Lemma 2.6
in [6]) and so connected. Thus, Theorem 4 gives the following corollary.

Corollary 1. Let k > 1 and ¢ > 0 be integers. In every (6k + 2¢, 2k)-connected simple graph there exists a
packing of k 2-connected and ¢ connected spanning subgraphs.

Corollary 1 allows us to improve two results of Jordan [8]. The first one deals with the following
conjecture of Kriesell, see in [8].

Conjecture 1 (Kriesell). For every positive integer p, there exists a (smallest) integer f(p) such that every
f (p)-connected graph G contains a spanning tree T for which G — E(T) is p-connected.

As Jordan [8] pointed out, Theorem 3 answers this conjecture for p =2 by showing that f(2) < 12.
Corollary 1 applied for k=1 and ¢ =1 directly implies that f(2) <8.

Corollary 2. Every 8-connected graph G contains a spanning tree T such that G — E(T) is 2-connected.
The other improvement deals with the following conjecture of Thomassen.

Conjecture 2. (See Thomassen [12].) For every positive integer p, there exists a (smallest) integer g(p) such
that every g(p)-connected graph G has a p-connected orientation.

By applying Theorem 3 and an orientation result of Berg and Jordan [2], Jordan [8] proved the
conjecture for p =2 by showing that g(2) < 18. Applying the same approach, that is, using a packing
theorem (Corollary 1) and an orientation theorem (Theorem 5), we can prove a more general result
(Corollary 3) that, in turn, implies g(2) < 14.

Theorem 5. (See Kirdly and Szigeti [9].) An Eulerian graph G = (V, E) has an orientation D such that D — v
is p-arc-connected for all v € V if and only if G — v is 2p-edge-connected forall v € V.

Corollary 1 and Theorem 5 imply the following corollary which, specialized for p =1, gives, by
Remark 1, the claimed upper bound for g(2).

Corollary 3. Every (12p + 2, 4p)-connected simple graph G has an orientation D such that D — v is p-arc-
connected forallv e V.
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Proof. Let G = (V,E) be a (12p + 2, 4p)-connected simple graph. By Theorem 5 it suffices to prove
that G contains an Eulerian spanning subgraph H such that H — v is 2p-edge-connected for all
v € V. By Corollary 1, in G there exists a packing of 2p 2-connected spanning subgraphs H; = (V, E;)
(i=1,...,2p) and a spanning tree F. Define H' = (V,Uiz:pl E;). For all i =1,...,2p, since H;j is
2-connected, H; — v is connected; hence H' — v is 2p-edge-connected for all v € V. Let T be the set
of vertices of odd degree in H and F’ a T-join in the tree F. Now, adding the edges of this T-join F’
to H’ provides the required spanning subgraph of G. O

Finally, we mention the following conjecture of Frank that would imply g(2) =4.
Conjecture 3. (See Frank [5].) A graph has a 2-connected orientation if and only if it is (4, 2)-connected.
4. Preliminaries

Let G = (V, E) be a graph. In this section we present some simple facts about the graphic matroid
C(G), the rigidity matroid R(G) and the matroid N} ¢(G) introduced in the Introduction.

We will denote by C(G) the graphic matroid of G on ground-set E, that is an edge set F of G is
independent in C(G) if and only if Gf is a forest. Let n = |V| be the number of vertices in G. It is
well known that the rank function r¢ of C(G) satisfies the following:

re(F)=n—c(F). (4)

We will denote by R(G) the rigidity matroid of G on ground-set E with rank function rr (for a
definition we refer the reader to [10]). For F C E, by a theorem of Lovasz and Yemini [10], we have

rr(F)=min ) (2|X| —3), (5)

Xeg

where the minimum is taken over all collections G of subsets of V such that {F(X), X € G} parti-
tions F. Note that

rR(E) <2|V[ -3 (6)

and equality holds if and only if G is rigid.

For a subset F of E, let G be a collection of subsets of V such that {F(X), X € G} partitions F
that minimizes the right hand side of (5). It is well known that each element of G induces a rigid
subgraph of Gr. (For example, see the proof of Lemma 2.4 in [6].) Note also that, if G is simple, then
every element of G of size 2 induces at most one (in fact exactly one) edge and contributes exactly
one to the sum. So we have the following simple but very useful observation.

Remark 2. If G is simple, then

rr(F)=min Y (2|X| —3)+|F \ H|, (7)
XeH

where the minimum is taken over all subsets H C F and all collections H of subsets of V such that
{F(X), X € H} partitions H and each element of H induces a rigid subgraph of Gy of size at least 3.

The following claim provides insight into the structure of the minimizers of (7).

Claim 1. Let G = (V, E) be a simple graph and F C E. Let H C F and H be a collection of subsets of V that
minimize the right hand side of (7).

(i) Forevery H* CH, rr (Uxeps F(X)) = xen+IX| = 3).
(ii) For every non-empty H* C H, there exists a vertex in V (H*) that is contained in a single element of H*.
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(iii) |Zy| + 1Ky | = c(H).
(iv) The connected components of (V, H) and those of Gy coincide.

Proof. (i) Since {F(X), X € H} partitions H, we have, by (7) and subadditivity of rg,
> (21X =3) +|F \ H| = rr(F)

XeH
<T72< U F(X))+TR< U F(X))+TR(F\H)

XeH* XeH\H*
<Y r(FXO)+ Y. rr(FOO)+|F\H|
XeH* XeH\H*
<Y @XI=-3)+ ) (21X =3)+|F\H|.
XeH* XeH\H*

So equality holds everywhere and (i) follows.

(ii) By contradiction, suppose that every vertex of V(H*) is contained in at least two elements
of H*. Hence, by (5), (i), since the size of each element of #* is at least 3 and by (1), we have
2lV(HN| =3 > rr (Uxers FOXO) = Cxepr IX1=3) = Xxepe X1+ L xepe (1X1=3) = 2]V (HH)|+0,
a contradiction.

(iii) Let C be a connected component of (V,H) that is not in 3 and H* the elements of H
contained in C. By (ii), there exists in C a vertex v contained in a single element X of H*. Hence, by
definition of H*, v € X; and so X € Z4;. Thus we proved that C contains an element of Zy;. Since the
connected components of (V,H) are disjoint, (iii) follows.

(iv) Let U be a connected component of Gy and ¥ # W C U. Then, there exists an edge of H with
one end in W and the other end in U \ W. Since {F(X), X € H} partitions H, this edge is contained
in an element of H that intersects both W and U \ W. So U is connected in (V, H).

Let U be a connected component of (V,#) and ¥ # W C U. Then, there exists an element X of
‘H intersecting both W and U \ W. Since X C U and X induces a rigid, and so connected, subgraph
of Gy, there exists an edge of H with one end in XN'W C W and the other in X\ W C U\ W. So U
is connected in Gy. This ends the proof of (iv). O

As we mentioned in the Introduction, to have a packing of k rigid spanning subgraphs and ¢ span-
ning trees in G, we must find k bases in the rigidity matroid R(G) and ¢ bases in the graphic matroid
C(G) all pairwise disjoint. To do that we will need the following matroid. For k > 0 and ¢ > 0, define
N k,¢(G) as the matroid on ground-set E, obtained by taking the matroid union of k copies of the
rigidity matroid R(G) and £ copies of the graphic matroid C(G). Let ry ¢ be the rank function of
Nk.¢(G). By a theorem of Edmonds [4], for the rank of matroid unions,

rk,e(E)=Fcil;krR(F)+£rc(F)+|E\F|~ (8)
Observe that

ke (E) <krr(E) +€rc(E) <k2n—3)+£¢(n—1). (9)

Jordan [8] used the matroid N ¢(G) to prove Theorem 3 and pointed out that using N ¢(G) one
could prove a theorem on the packing of rigid spanning subgraphs and spanning trees. We tried to
fulfill this gap by following the proof of [8] but we failed. To achieve this aim we had to find a new
proof technique.

5. Proofs
In this section we provide the proofs of our results. Let us first demonstrate our proof technique

by giving a transparent proof for Theorems 1 and 2. We emphasize that in the first two proofs we
use only Remark 2 from the Preliminaries.
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Proof of Theorem 1. By Remark 1, we may assume that G is simple. Then, by (7), there exist a subset
H C E and a collection H of subsets of V of sizes at least 3 such that {E(X), X € H} partitions H and
rR(E) =Y xen 2IX| —3)+ |E\ H|. If V € H, then rg (E) > 2|V| — 3, hence, by (6), G is rigid. So in
the following we assume that V ¢ H and find a contradiction.

Recall that, for X e H, Xg =X N (Uyey_x Y), X1 =X\ Xp and Zy; = {X € H: X; #0).

Each edge of H being induced by an element of H, it contributes neither to dg_x, (X;) for X € Ty
nor to dg(v) for v e V \ V(H). Thus, since for X € Zy;, ¥ # X; # V \ Xp, we have, by 6-connectivity
of G,

1
|E\H|>5(chfx3<x1)+ > dc<v)>

XeIy veV\V(H)
1
>§(Z(s—|x3|)+ > 6> (*)
XeTy veV\V(H)
> > (B=1Xsl)+2(1VI—[VH)]). (10)
XEI’H

By |X| >3 for X € H\ Z3, (10) and (2), we have

rR(E)= Y (21X| —3) +|E\ H]|

XeH
> (Z X1+ > (X —3)) +< > B—1Xsl)+2(1VI— |V(H)|)>
XeH Xely Xely
> Y X+ Y X+ 2(lVI= VD))
XeH Xely
>2|V]|.

Hence, by (6), we have 2|V| —3 >rr(E) > 2|V|, a contradiction. O

Proof of Theorem 2. The proof of Theorem 2 is obtained from the proof of Theorem 1 by replacing
dc—xz (X1) > 6 —|Xp| by dg—x, (X1) > 6 — 2| Xp| in the inequality (). This means that in the proof of
Theorem 1 we used (6, 2)-connectivity instead of 6-connectivity. O

Here comes the proof of the main result.

Proof of Theorem 4. Let k > 1 and ¢ > 0 be integers and G = (V, E) a (6k + 2¢, 2k)-connected simple
graph. To prove the theorem we use the matroid A ¢(G) defined in Section 4 and show that

rke(E)=k2n—-3)+£n —1). (11)

Choose F a smallest-size set of edges that gives the rank of E in N ¢(G), that is, which minimizes
the right hand side of (8). By (7), there exist a subset H C F and a collection H of subsets of V of
sizes at least 3 such that {F(X), X € A} partitions H and

rR(F)= Y (21X| —3) +|F \ H|. (12)

XeH

Claim2. H=F.

Proof. Since H is a collection of subsets of V of sizes at least 3 such that {H(X), X € H} partitions H,
we have, by (12), rr(H) <> xey;2IX| —3) =rRr(F) — |F \ H|. Hence, since the rank function r¢ is
non-decreasing and k > 1, we have
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krr (H) +€re(H) + |E\ H| < krr(F) + &re(F) + |[E\ H| —k|F \ H|
< krg(F) +£re(F) + |E\ F|.
Thus H also minimizes the right hand side of (8) and, by H € F and the minimality of F, H=F. O

If V e H, then, by (12), rr(F) > 3y (21X| —3) > 2n — 3 and, by Claim 2 and Remark 2, G is
connected, that is, r¢(F) =n — 1. Hence, by (9), we have (11) and the theorem is proved. From now
on, we assume that V ¢ H and we will show a contradiction.

Recall the definitions of the border Xp = X N ((Uycy_x Y), the inner part X; = X\ Xp for X € ,
Ty ={X € H: X; # 0} and the sets Kr and Ky of connected components of Gr and (V, H) of size 1.
By Claim 1 (iv), Kr = Ky.

Let us use the connectivity condition on G to show a lower bound on |E \ F|.

Claim 3. |E\ F| > k(ZXEIH (3 = 1Xg]) +3IKFD + (T3] + ICED.

Proof. By V ¢ H, for X € T3y, ¥ # X; # V \ Xp. Then, for X € 73y and for v € K, we have, by
(6k + 2¢, 2k)-connectivity of G,

dc_x, (X1) > (6k +20) — 2k| X3, (13)
de(v) = 6k + 2¢. (14)

Since, by Claim 2, every edge of F is induced by an element of # and by definition of X, for X € 74,
no edge of F contributes to dg_x, (X1). Each v € Kf is a connected component of the graph G, thus
no edge of F contributes to dg(v). Hence, by (13), (14) and £ > 0, we obtain the required lower bound
on |E\ F|,

1
|E\ F| > 5( D dexy XD+ Y dG(V)>

Xely veKr

1
25((61<+2{Z)|IH|—21< > |XB|+(61<+2E)|ICF|)
X€Z'H

>k< Z B- IXB|)+3|/CF|> +¢(|Zul + IKFl). O
XEI’H

Thus, by (12), Claims 2, 3, |X| >3 (X € H \ Zx), Claim 1 (iv), (iii) and (2), we get

Mee(E)=k > (21X] = 3) + [E\ F| +£(n — c(F))

>k(€2 X1+ > (1X] —3)) +k< > (3—|XB|)+3IICF|>

+2(1Zx| + IKFl) + £(n — c(F))

>I<(Z X1+ D |X1|+2|KH|)+z(c(H)+n—c(F))
XeH

XEI’H
> 2kn + £4n.

By k> 1 and ¢ > 0, this contradicts (9). O
Remark that the proof actually shows that if G is simple and (6k + 2¢, 2k)-connected and if F C E

is such that |F| <3k + ¢, then in G’ = (V, E \ F) there exists a packing of k rigid spanning subgraphs
and ¢ spanning trees.
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We mention that Theorem 4 was slightly generalized by Durand de Gevigney and Nguyen [3] for
finding bases of a particular count matroid and spanning trees pairwise edge-disjoint. Their proof
applies the discharging method.
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