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Abstract

Edmonds’ arborescence packing theorem characterizes directed graphs that have arc-
disjoint spanning arborescences in terms of connectivity. Later he also observed a
characterization in terms of matroid intersection. Since these fundamental results,
intensive research has been done for understanding and extending these results. In this
paper we shall extend the second characterization to the setting of reachability-based
packing of arborescences. The reachability-based packing problem was introduced by
Cs. Kirdly as a common generalization of two different extensions of the spanning
arborescence packing problem, one is due to Kamiyama, Katoh, and Takizawa, and the
other is due to Durand de Gevigney, Nguyen, and Szigeti. Our new characterization
of the arc sets of reachability-based packing in terms of matroid intersection gives an
efficient algorithm for the minimum weight reachability-based packing problem, and it
also enables us to unify further arborescence packing theorems and Edmonds’ matroid
intersection theorem. For the proof, we also show how a new class of matroids can be
defined by extending an earlier construction of matroids from intersecting submodular
functions to bi-set functions based on an idea of Frank.
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1 Introduction
1.1 Edmonds’ arborescence packing theorem and its extensions

An arborescence is a rooted directed tree in which each vertex has in-degree one
except for one vertex called the root. In this paper we are interested in packing of
arborescences, where throughout the paper a packing in a digraph means arc-disjoint
subgraphs.

Edmonds’ arborescence packing theorem (or disjoint branching theorem) is one
of the fundamental results in combinatorial optimization. This theorem gives a good
characterization for directed graphs having a given number of arc-disjoint spanning
arborescences (see Fig. 1a).

Theorem 1.1 (Edmonds|[7]). Let D = (V, A) be adigraph, and {s,, . .., si}amultiset
of vertices in V. Then there exists a packing of spanning arborescences Ty, ..., Ty in
D such that the root of T; is s; if and only if

10X = [{i e {l,....k} s ¢ X}

for every nonempty X C V, where 9(X) denotes the set of arcs entering X in D.

Since Edmonds’ seminal paper [7], numerous extensions and algorithmic improve-
ments are proposed, see e.g., [1,11,28]. In this paper we are interested in two different
lines of generalizations; one is due to Kamiyama, Katoh, and Takizawa [19], and the
other is due to Durand de Gevigney, Nguyen, and Szigeti [4].

Let D = (V, A) be a digraph with a multiset set {s, ..., sx} of vertices. The set
of vertices reachable from s; in D is denoted by U;. If U; is not equal to V for some
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Fig. 1 Examples of arborescence packings, where the left figure is a given digraph with the root set
{s1, $2, s3} and the right figure indicates a packing. The uniform matroid M of rank two is given on
{s1,s2, s3}. a A packing of spanning arborescences, b a reachability packing of arborescences, ¢ an M-
based packing of arborescences, and d an M-reachability-based packing of arborescences
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i, Theorem 1.1 only says that there is no spanning arborescence packing. Kamiyama,
Katoh, and Takizawa [19] proved that Theorem 1.1 can be extended in a nontrivial
way even in the setting that U; # V holds for some i (see Fig. 1b).

Theorem 1.2 (Kamiyama, Katoh, and Takizawa [19]). Let D = (V, A) be a digraph,
and {s1, ..., sy} a multiset of vertices in V. Then there is a packing of arborescences
T1, ..., Ti in D such that the root of T; is s; and V (T;) = U; for every i if and only if

10X > i €{l,....k}:si ¢ X, Ui N X # @]

for every nonempty X C V.

Durand de Gevigney, Nguyen, and Szigeti [4] obtained another extension of
Edmonds’ arborescence packing theorem. Suppose that a matroid M is given on
a multiset {s1, ..., s} of vertices in V. Instead of asking that every vertex is spanned
by each arborescence, it is asked to find an arborescence packing in such a way that
every vertex “receives a base” of M from the root set. Formally, a packing 71, ..., Tk
of arborescences is called M-based if the root of 7; is s; for every i and the multiset
{s; : v € V(T;)} forms a base in M for every v € V. The following generalization of
Theorem 1.1 was shown in [4] (see Fig. 1c).

Theorem 1.3 (Durand de Gevigney, Nguyen, and Szigeti [4]). Let D = (V, A) be
a directed graph, {si, ..., sy} a multiset of vertices in V, and M a matroid with
ground set {sy, ..., sx} and rank function r. Then there exists an M-based packing of
arborescences in D if and only if the multiset {s; : s; = v} is independent in M for
everyv € V and

PO = r(M) —r({si :si € X})

for every nonempty X C V, where r (M) denotes the rank of M.

Cs. Kirdly [21] further considered a common generalization: a packing 71, ..., Tk
of arborescences is said to be M-reachability-based if the root of 7; is s; for every
iand {s; : v € V(T;})}isabase of {s; : s; € P(v)} for every v € V, where P(v)
denotes the set of vertices from which v is reachable by a directed path in D. It was
proved that a natural combination of the conditions in Theorems 1.2 and 1.3 still gives
a good characterization (see Fig. 1d).

Theorem 1.4 (Cs. Kirdly [21]). Let D = (V, A) be a directed graph, {si, ..., s}
a multiset of vertices in V, and M a matroid with ground set {s1, ..., si} and rank
function r. Then there exists an M-reachability-based packing of arborescences in D
if and only if the multiset {s; : s; = v} is independent in M for every v € V and

10(X)] = r(P(X)) —r({si :si € X})

for every X €V, where P(X) = U cx P (V).

The proofs of all of the above results are algorithmic, i.e., one can find a packing of
arborescences satisfying the specified property in polynomial-time. In [21], Cs. Kirdly
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also posed a question whether one can efficiently find a minimum weight arc set of a
reachability-based packing of arborescences if a weight function is given on the arc
set. Recently, Bérczi, T. Kirdly, and Kobayashi [2] showed that this minimum weight
packing problem can be reduced to the submodular flow problem, which leads to a
polynomial-time algorithm.

1.2 Contributions

For the original setting of packing spanning arborescences, there is another well-
known characterization due to Edmonds [8]. Namely the arc set of a packing of k
spanning arborescences is exactly a common independent set of two matroids of size
k| V| — k; one matroid is the union of k copies of the graphic matroid of the underlying
undirected graph and the other is the direct sum of uniform matroids on d(v) of rank
k—|{i €{l,...,k}:s; = v} over v € V. This observation enables us to reduce the
minimum weight packing problem of spanning arborescences to the minimum weight
matroid intersection problem. In this paper we extend this fundamental observation to
the setting of reachability-based packing of arborescences. We show that the arc set of
areachability-based packing is exactly a common independent set of two matroids of
a certain size. One matroid we used is the direct sum of uniform matroids on d(v) as
in the original setting. The other matroid, which is new to the best of our knowledge,
is constructed by exploiting the underlying submodular bi-set function.

The application of bi-sets for arborescence packings was introduced by Bérczi
and Frank [1] and then later developed by Bérczi, T. Kiraly, and Kobayashi [2]. We
continue this development by showing how the matroid induced by an intersecting
submodular bi-set function plays a fundamental role. Such a matroidal view was in
fact motivated by the work by Frank [13], where he used the same approach to reduce
a rooted k-connection problem to the matroid intersection problem.

Our new characterization of reachability-based packing not only implies a faster
algorithm for the minimum weight version of the problem but also unifies the
reachability-based packing with the matroid restricted packing introduced by Frank
[13] (or explicitly by Bernath and T. Kirdly [3]). Suppose that a matroid M, is given
on d(v) for all v € V, and let M’ be the directed sum of M, over v € V. Then
a packing is said to be M’-restricted if the arc set of the packing is independent in
M. Frank [13] observed that the arc set of an M’-restricted packing of k spanning
arborescences is exactly a common independent set of size k|V | — k of the union of k
copies of the graphic matroid and M’. Following Frank’s idea, we can also consider
the reachability-based matroid-restricted packing problem and give a good character-
ization of the existence of a packing as well as an efficient algorithm for finding the
minimum weight packing. In this way, we obtain a common generalization of three
different generalizations of Edmonds’ arborescence packing theorem.

As we will explain formally in Sect. 3, the reachability-based matroid-restricted
packing problem also includes the matroid intersection problem. Hence our result
unifies not only the extensions of Edmonds’ arborescence packing theorem but also
Edmonds’ matroid intersection theorem.
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In order to solve the weighted reachability-based packing problem, we shall use a
weighted matroid intersection algorithm. In the weighted matroid intersection prob-
lem, we are given two matroids M| = (S, r1) and My = (S, rp), a weight function
w : § — R, and an integer k, and are asked to find a minimum weight common
independent set of cardinality k of M and M>. Edmonds [9], Lawler [23], and Iri-
Tomozawa [18] independently gave algorithms that run in polynomial time, given
an efficient independence oracle for M| and M. Since then there are number of
improvements, see Sect. 41.3 of [28] and [16,24] for a recent development.

Our contributions are summarized as follows:

e A good characterization of M-reachability-based M’ -restricted packings of
arborescences in the form of connectivity (Theorem 3.4).

e A characterization of the arc sets of M-reachability-based M’-restricted packings
of arborescences in the form of matroid intersection (Theorem 5.7).

e An efficient algorithm for the problem of minimum weight M-reachability-based
M -restricted packing of arborescences (Theorem 5.3).

e A polyhedral description of the characteristic vectors of the arc sets of M-
reachability-based M’ -restricted packings of arborescences (Theorem 5.16).

1.3 Organization

The paper is organized as follows. In Sect. 2 we review a construction of matroids from
intersecting submodular functions and then extend it to bi-set functions on digraphs.
This matroid construction is a key tool in the development of our new results. In
Sect. 3 we reformulate our packing problem in terms of rooted digraphs, which is
more convenient in the subsequent technical discussion, and give a full description
of our characterization of M-reachability-based M’-restricted packing. In Sect. 4 we
consider the matroid-based packing problem and show how to solve the minimum
weight packing problem via matroid intersection. The result is a special case of that in
Sect. 5, but we believe that understanding this special case would be helpful to capture
the high level idea. In Sect. 5 we develop new results on reachability-based packings
listed above. In the remaining part of this section we introduce some notations used
throughout the paper.

1.4 Notations

Let D = (V, A) be a digraph. For B C A, let V(B) be the set of the endvertices of
the arcs in B while let H (B) be the set of heads of the arcs in B. For X, Z C V and
B C A, 3§(X) denotes the set of arcs in B from Z — X to X, B(X) denotes the set
of arcs in B induced by X, i g(X):= |B(X)|, and D[X]:= (X, A(X)).

The notation can be extended for bi-sets. A bi-setisapairX = (X, X) with X; C
Xo CV.If X = (Xo, Xy) is a bi-set, Xp and X; denote the outer-set X and the
inner-set X; of X, respectively. The set of all bi-sets {X = (X, X1) : X7 € Xo € V}
is denoted by P2(V) or simply by P>. ForX € P>, Z C Vand B C A, 312; (X) denotes
the set of arcs in B from Z — Xp to X;, B(X):= {uv € B : u € Xp,v € X;}, and
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i g(X):= |B(X)|. Note that, for X € V, 35(X) = a2 (X, X)), B(X) = B((X, X))
and ip(X) = ip((X, X)).

Throughout the paper we use the following basic terminologies from matroid theory.
Let S be a finite set. A set function f : 25 — Z, is called monotone non-decreasing
if f(X) < f(Y)forevery X C Y C S and submodular if

JX)+ )= f(XUY)+ f(XNY) ey

forevery X, Y C S. A pair M = (S, r) of a finite set and a set function r : 25 — 7,
is called a matroid if () = 0, r({s}) < 1 for every s € S, and r is monotone
non-decreasing and submodular. The members of Z = {Q € S : r(Q) = |Q]} are
called the independent sets of the matroid and r is called the rank function of the
matroid. It is well known that a matroid can also be defined by its independent sets.
Let QO C S. The maximal independent sets in Q are called bases of Q. A base of S is
called a base of M. An element s € S is called a loop if s is not included in any base
of M. We define Spanjq (Q) :={s € S: r(Q U {s}) =r(0)}.

For a finite set S and a positive integer k, the family of subsets Q C S with |Q| <k
forms the independent set family of a matroid, which is called the uniform matroid
on S of rank k. If k = |S], it is called the free matroid on S. For a graph G with the
edge set S, the graphic matroid of G is defined such that Q C § is independent if
and only if Q is the edge set of a forest.

Let M = (S, r) be a matroid. For Q C S, the restriction M| g to Q is the matroid
with rank function r|g obtained from M by restriction on Q. Fors € §, M — s
is the matroid obtained from M by deletion of s, that is, a matroid on S — s with
rank function r|s_;. For a positive integer k, M | is the matroid obtained from M by
truncation at k, that is, a matroid on S with a rank function r p ), (Q) = min{r(Q), k}.
For matroids M and M; on disjoint sets S} and Sy with rank functions r; and rp,
their direct sum M; & M, is the matroid on S| U S with rank function rg(Q) =
ri(QNSy)+r(QNSy) forall 0 C S1US,. For matroids My, ..., MjonasetS, the
family of subsets O C S which can be partitioned into independent sets Q1, ..., Ok
of My, ..., My forms the independent set family of a matroid on S. This matroid is
known as the union of My, ..., M.

2 Constructing matroids from submodular functions
In this section we review a matroid construction based on intersecting submodular
set functions and then extend it to bi-set functions, which will play a key role in

the development of our new result. The result in this section seems to have more
applications, and is interesting in its own right.

2.1 Matroids from set functions

Let S be a finite set. Two sets X, Y C S are intersecting if X NY # @J. The family Q
of subsets of S is said to be intersecting if X UY, X NY € Q for every intersecting

@ Springer



Packing of arborescences with matroid constraints... 91

X,Y € Q. A function f : Q@ — R on an intersecting family Q is called intersecting
submodular if (1) holds for every intersecting X, Y € Q. A function f on a family
Q is called monotone non-decreasing if f(X) < f(Y) for every X,Y € Q with
X C Y. Asetfunction f is called (intersecting) supermodular if — f is (intersecting)
subglodular. For a function f : S — R, we will denote its modular extension to 25
by f, thatis, f(X) =Y .y f(x) for X C S.

Initiated by Edmonds and Rota [10] or Edmonds [5], several authors gave construc-
tions of matroids from (intersecting) submodular functions. We use the following form
(see [14, Section 13.4.1], or [15, Section 3.4c]).

Theorem 2.1 Let Q be an intersecting family of subsets of a finite set S, and h : Q —
Z>o a monotone non-decreasing intersecting submodular set function. Then

Zp={Y CS:|X| <h(X)forevery X € QwithX C Y}

forms the independent set family of a matroid My, with rank function

t t
ru(Z) :=min { Y " h(X)) +|Z — | J Xi| : (X1..... X,) S Qis a subpartition of Z { .
i=1 i=1

and
P, ={x¢e RS X(X) <h(X)forX € Q, 0<x(v) <1forvesS)}

is the convex hull of the incidence vectors of the independent sets of Mj,.

2.2 Matroids from bi-set functions

Let D = (V, A) be a digraph. For bi-sets X,Y € P>(V), we denote by X C Y if
X; € Yy and Xp C Y. The intersection N and the union U of bi-sets X, Y € P, are
defined by XNY:= Xo NYp,X; NYr) and XUY:= (Xp UYp, X7 UY)). Bi-sets X
and Y are said to be intersecting if X; NY; # 0.

Note that for X, Y € P>,

AX) NAY) = AXNY), 2)
AX) U A(Y) C AXUY). A3)

Using the above definition of N and U and intersecting bi-sets, we can extend the
notions of intersecting families to bi-set families and the notions of intersecting
sub- or supermodular set functions to bi-set functions.

Frank [13, Theorem 3.3] proved the following statement for modular bi-set func-
tions. The same argument works for intersecting submodular bi-set functions.

Theorem 2.2 Let D = (V, A) be a digraph, F an intersecting bi-set family on 'V , and
[+ F — Zxg an intersecting submodular bi-set function. Then
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Z:={BCA:ip(X) < f(X) forevery X € F}

Sforms the family of independent sets of a matroid M § on A with rank function

XL XY S EXNX =06 £ ),

t
r ¢ (F) := min {Z FOXD +
i=1

t
F— U AXD
i=1

and
Pp:={x eRY:X(AX) < fX) forX e F, 0 < x(a) < 1 fora € A)

is the convex hull of the incidence vectors of the independent sets of M.

Proof The proof is done by applying Theorem 2.1. To do so we define a set family A
and a set function 4 : A — Zxq as follows:

A={FCA:3IXeF, FCAX), (4)
h(F) =min{f(X): F C AX),X e F} (F € A). (5)

We first show that A is an intersecting family and / is intersecting submodular on A.
Take any Fi, F> € A, and let Y! € F be a minimizer in the definition of h(F;) for
i =1,2.By (2)and (3)
FINF C AY'NnY?)

L w (6)
FilUF, CANY UYY).

To see that A is an intersecting family, suppose that F; N F» # (. Then, by (6),
Y} N Y% # (. As F is an intersecting family, Y!' N Y? € F and Y! UY? € F. Therefore
(6) implies that F1 N F, € Aand F] U F, € A, and A is indeed an intersecting family.

Also (6) and the intersecting submodularity of f imply the intersecting submodu-
larity of & as follows:

h(F1) 4+ h(F) = fYY + £ > fYNY?) + £(Y U Y?)
> h(F1NF)+h(F1UF).

We next show that B € Z if and only if |F| < h(F) for every F C B with
F € A. Indeed, if B € Z, then for any F € B with F € A and for any X € F
with F € A(X), |F| < ip(X) < f(X) and hence |F| < h(F). On the other hand, if
|F| < h(F) forevery F C B with F € A, then for any X € F, B(X) € A and hence
ig(X) = |B(X)| = h(B(X)) = f(X).

Thus Z forms the independent set family of a matroid by Theorem 2.1, which
completes the proof of the first statement.

We next derive the rank formula given in the statement. By Theorem 2.1, M ¢ has
the following formula for the rank of each F' C A:
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t t
r+(F) = min Zh(F,-HIF—UFiI} )
i=1 i=1

where the minimum is taken over subpartitions {F}, ..., F;} of F such that F; € A.
Take a minimizer {F1, ..., F;} for ry(F), and let X' € F be a minimizer jn (5) for
h(F;). We claim that such aminimizer { F, . .., F;} (and the corresponding X', . . ., X')
can be taken in such a way that X"[ N Xf = {Jfori # j.Suppose that X} ﬂX% # (). Then
FIUF € AX'UX?) and fF(XD + £(XP) = FXInXD) + FXPux?) = Fxtux?)
by the intersecting submodularity and non-negativity of f. Hence if we remove F
and F> and insert F| U F; to the family, the value on the right hand side of (7) does
not increase. _

Therefore, we can take {F1, ..., F;} such that X’} N Xf = (@ fori # j. Then observe
that Ui, Fi = Ui_; A(X). Indeed, by definition, F; € A(X/) for I < j < t.
By replacing F; by AXY), Yi_, h(F) + |F — Ui, Fi| can only decrease, but
{F1, ..., F;} was already a minimizer of r¢(F), so we obtain that F;; = A(X/) for
1 < j <t. Thus (7) can be written in the form of the statement.

Finally, for the polyhedral description, Theorem 2.1 implies Py = {x € RA :
X(F) < h(F)for F € A, 0 < x(a) < 1fora € A}. By the same argument as above,
we have that X(F) < h(F) for every F € A if and only if X(A(X)) < f(X) for every
X € F. Thus the description can be converted in the form of the statement. O

3 Characterizations in rooted digraphs
3.1 Rooted digraphs

Itis a standard technique to convert the problem of packing arborescences with multiple
root vertices to that with single root vertex by inserting a designated super vertex. Since
the latter formulation would be technically easier to handle, in subsequent discussion
we shall always work in directed graphs with a designed vertex, called rooted digraphs.
Specifically, a rooted digraph is a directed graph D = (V + s, A) (with s ¢ V) with
a designated root vertex s of in-degree zero. The arcs leaving s are called root arcs.
An arborescence is said to be an s-arborescence if its root is s.

Let D = (V +s, A) be arooted digraph. Recall thatfor X, Z € V+sand B C A,
ag (X) denotes the set of arcs in B from Z — X to X. For simplicity, in the subsequent
discussion, Z is often omitted from the subscript if Z = V + s, and similarly B is
omitted from the superscript if B = A. By consequence, |d(X)| denotes the in-degree
of the set X. Note also that d;(V') denotes the set of the root arcs in D. The omission
rule is also applied to 8? (X) for a bi-set X € Po(V).

3.2 Packing in rooted digraphs
Suppose that a digraph D’ = (V, A’) and a multiset § = {sy, ..., s¢} of vertices in V

are given as in Theorem 1.1. We consider a rooted digraph D = (V + s, A) obtained
from D’ by adding a new vertex s and a root arc ss; for each s; € S. See Fig. 2.
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94 Cs. Kirdly et al.

(b)

Fig.2 a A digraph D’ with a multiset of roots and b the corresponding rooted digraph D

Through this construction, one can see that Theorem 1.1 is equivalent to the fol-
lowing.

Theorem 3.1 (Edmonds [7]). Let D = (V + s, A) be a rooted digraph. Then there
exists a packing of k spanning s-arborescences in D if and only if |0(X)| > k for
every X with) X C V.

Now we consider applying the same trick to the matroid-based packing or the
reachability-based packing problem. Since each root in S corresponds to a root arc in
D, we should consider a matroid M on the set d;(V) of the root arcs in D. Then a
packing T4, . .., Ty of s-arborescences is M -based if

(M1) each T; contains exactly one root arc, denoted by e;;
(M2) {e; : v € V(T;)}is abase of M forevery v € V.

Theorem 1.3 is equivalent to the following.

Theorem 3.2 (Durand de Gevigney, Nguyen, and Szigeti [4]). Let D = (V +s, A) be
a rooted digraph, and M| = (3;3(V), r1) a matroid. Then there exists an M -based
packing of s-arborescences in D if and only if

r1(95(X)) + [0y (X)| = ri(My)

for every nonempty X C V.

To see the counterpart of Theorem 1.4 we recall the following notation introduced
in the introduction. Let P p(v) denote the set of vertices in V from which v can be
reached by a directed path in D, and let Pp(X) = Uvex Pp(v) for X € V. Note
that, by definition, Pp(X) contains X and does not contain the root s. We will omit
the subscript D when it is clear from the context.

A packing T1, ..., Ty of s-arborescences is M |-reachability-based if

(R1) each T; contains exactly one root arc, denoted by e;;
(R2) {e; : v e V(T;)}is abase of 9;(P (v)) in M forevery v € V.

Theorem 1.4 is equivalent to the following.
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Fig.3 Packings of s-arborescences in rooted digraphs corresponding to the examples in Fig. 1. The uniform
matroid M of rank two is given on the set {e1, €3, e3} of root arcs

Theorem 3.3 (Cs. Kirdly [21]). Let D = (V + s, A) be a rooted digraph, and
My = (05(V), r1) a matroid. Then there exists an M -reachability-based packing of
s-arborescences in D if and only if

r1(95(X)) + [9v (X)| = r1(3s(P(X)))

forevery X C V.

See Fig. 3 for examples.

3.3 Main theorem

Recall that a packing 71, ..., T; of arborescences is said to be M;-restricted if
Ule A(T;) is independent in a matroid M>. One of the main results of this paper is
the following extension of Theorem 3.3.

Theorem3.4 Let D = (V + s, A) be a rooted digraph, and M| = (3(V), r1) and
My = (A, ) two matroids such that M is the direct sum of the matroids M, =
@), ry) for v € V. Then there exists an M-reachability-based M-restricted
packing of s-arborescences in D if and only if

ri(F)+r0(X)—F)>r0s(P(X))) forall X CVand F C 95(X). (8)

The proof is given in Sect. 5.4.

Note that, if D is arooted digraph with two vertices, then D has an M -reachability-
based Mj-restricted packing if and only if M and M have a common independent
set of size equal to the rank of M. Hence, for this special input, Theorem 3.4 is
equivalent to the following matroid intersection theorem of Edmonds.

Theorem 3.5 (Edmonds [5]) Let My = (S, r1) and My = (S, r2) be two matroids,
and k a positive integer. Then there exists a common independent set of M1 and M
of size k if and only if

r(X)+rS—X)>kforall X CS. )

When we require M -based packings, Theorem 3.4 can be simplified as follows.
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Corollary3.6 Let D = (V + s, A) be a rooted digraph, and M| = (9(V), ry)
and My = (A, ry) two matroids such that My is the direct sum of the matroids
My = (0(v), ry) for v € V. There exists an M-based My-restricted packing of
s-arborescences in D if and only if

r(F)+r@X)—F)>ri0s(V)) forall® #X C Vand F C 9,(X). (10)

We also remark that by using the technique of [11], one can extend Theorem 3.4 to
directed hypergraphs.

4 Matroid-based packing

As a warm-up for the next section, in this section we consider the minimum weight
matroid-based packing problem, a special case of the reachability-based packing prob-
lem.

Let D = (V + s, A) be a rooted digraph, and let M| = (95(V), r1) be a matroid
of rank k. Our goal is to find a minimum weight arc set of an M -based packing
of s-arborescences. We show how to reduce the problem to the weighted matroid
intersection problem.

As explained in Sect. 1.2, Edmonds showed that the minimum weight arc set of a
packing of k spanning arborescences can be found by a matroid intersection algorithm,
where one matroid is the sum of uniform matroids and the other is the union of k copies
of the graphic matroid of the underlying graph G. It is well-known that the union of
k copies of the graphic matroid can be obtained by applying Theorem 2.1 for the set
function h(H) :=k|V(H)| —k (W # H € E(G)). As a counterpart we consider the
following set function &’ on 24~}

b'(H) :=k|V(H) —s| —k+ri(HNd(V))

for each nonempty H C A. The function 2’ is derived from /4 by taking into account
of the dependency among the root arcs in M. It should be also remarked that this
function has been already introduced in [20] for a completely different purpose.

Observe that b’ is non-negative integer valued, monotone and intersecting submod-
ular on 24 — {#}, and hence by Theorem 2.1,

Iy ={B C A:|H| < b'(H) for every nonempty H C B}

forms the independent set family of a matroid M}, on A. Section 4 of [20] provides
a polynomial algorithm to decide whether a set B belongs to Z; or not.

Theorem4.1 Let D = (V + s, A) be a rooted digraph, and M = (35(V), r1)
a matroid of rank k. Then B C A is the arc set of an M-based packing of s-
arborescences if and only if B is a common independent set of Mo and M,y of size
k| V|, where M denotes the direct sum of the uniform matroids on 0(v) of rank k for
velV.
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Proof We first prove that, in both directions,
108 (v)| = k foreach v € V. (11)

Indeed, if B is the arc set of a packing, then (11) follows from the definition of M-
based packings. If B is acommon independent set of size k| V|, thenk|V| = )", k >
> ey 70@8 ) =3, oy 188 (v)| = |B| = k|V|. Thus (11) follows.

By (11), the following holds in both directions: for any X € V,

kx| =Y 8% =BX)UdX)l. (12)
veX

Suppose first that B C A is the arc set of an M |-based packing of s-arborescences.
Then, by (11), B is independent in M of size k|V|. In this case, by Theorem 3.2,

r1 8 (X) + 188 (X)| >k for every nonemptyX C V. (13)
Asr1(3B(X)) < ri(F) + |08 (X) — F| forevery F € 38(X), (13) is equivalent to
r(F)+108(X)|—|F| = k  forevery X C V with X # @ and FCa8(X). (14)

To show that B € Z;y, we prove that |H| < b’(H) for every nonempty H C B. Take
any H € Bwith H # {,andlet X := V(H) —s and F := H N d3(V). Then

IBX) VP ()| = |H|+10° ()| — |F|. 15)

By adding (12), (14), and (15), we get the inequality |H| < b’(H), implying that
B e Ib/.

Suppose now that B is a common independent set of M and M, of size k|V|.
To verify that B satisfies (14) [and hence (13)], take any X € V with X # ) and
F C BSB (X) and let H := B(X) U F. Then we have (15) with equality. Also since B
is independent in M and H C B,

|H| < b'(H) = kIX| =k +ri(F). (16)

By adding (12), (15) (with equality) and (16), we get (14) and hence (13). By The-
orem 3.2, the digraph (V + s, B) contains an M -based packing of s-arborescences
and, since |B| = k| V|, the arc set of the packing coincides with B. O

We now consider M -based M-restricted packing, i.e., the set of arcs in the
packing is independent in M.

Theorem 4.2 Let D = (V + s, A) be a rooted digraph, My = (3(V), r1) a matroid
of rank k, and My = (A, r2) a matroid which is the direct sum of the matroids
My = (0(v), ry) of rank k for v € V. Then B C A is the arc set of an M -based
Ma-restricted packing of s-arborescences if and only if B is a common independent
set of My and My of size k|V|.
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Proof If B is the arc set of an M -based Mp-restricted packing of s-arborescences,
then it is a base of My, that is an independent set in M, of size k|V|, and is the
arc set of an M -based packing of s-arborescences. Hence, by Theorem 4.1, B is
independent in M,y.

If B is acommon independent set of M»> and M,y of size k| V|, then it is independent
in M and is also a common independent set of My and M, of size k|V|. Hence,
by Theorem 4.1, it is the arc set of an M -based packing of s-arborescences. As B
is independent in M3, it is also the arc set of an M -based M-restricted packing of
s-arborescences. O

Theorem 4.3 Let D = (V +s, A) be a rooted digraph, ¢ : A — R a weight function,
and M| = (0(V), r1) and M> = (A, ry) two matroids such that M is the direct
sum of matroids M, = (3(v), ry) for v € V. There exists a polynomial algorithm to
decide whether D has an M-based Mj-restricted packing of s-arborescences and
to find one of minimum weight if D has at least one packing.

Proof Let k be the rank of M. If M, has rank less than k for some v € V, then
we can immediately conclude that there is no M-based M-restricted packing. If
each M, has rank at least k, then we may suppose that each M, has rank exactly k
by truncating it at k. Hence by Theorem 4.2, we can decide whether D has an M-
based M-restricted packing of s-arborescences and find a minimum weight arc set
by using any efficient algorithm for the weighted matroid intersection problem. A
polynomial-time independence oracle for M, was already shown in [20], and thus
one can implement the algorithm in polynomial time. Once we determined the arc set
of a packing, the decomposition of it into s-arborescences that satisfy (M1) and (M2)
can be done by the polynomial algorithm in [4]. O

5 Reachability-based packing

Let D = (V + s, A) be a rooted digraph, M| = (95(V), r1) and My = (A, r2) two
matroids such that M is the direct sum of the matroids M, = (3(v), ry) forv € V.
Suppose also that a weight function ¢ : A — R s given. In this section we shall give a
characterization of M -reachability-based M -restricted packings and derive several
corollaries.

The high level idea is the same as that in Sect. 4. Our main theorem (Theorem 5.7)
characterizes the arc sets of M -reachability-based M;-restricted packings in terms
of common bases of two matroids. However, deriving a matroid corresponding to M,
will be much more involved in the reachability-based case.

The characterization is given assuming that the instance (D, ¢, M, M>) satisfies
three conditions given below. In Sect. 5.1 we shall explain how to convert a general
instance to that satisfying those conditions. In Sect. 5.2 we introduce a new matroid
and prove the main theorem (Theorem 5.7). Based on Theorem 5.7, in Sect. 5.3 we
give an efficient algorithm for the minimum weight packing problem. In Sect. 5.4 we
also give a proof of Theorem 3.4 using lemmas in Sect. 5.2. In Sect. 5.5 we finally
remark a polyhedral aspect of M -reachability-based M>-restricted packings.
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For simplicity of description, throughout this section we shall call an M-
reachability-based M -restricted packing a feasible packing.

5.1 Preprocessing

Our result will be established assuming that a given instance (D, ¢, M, M>) satisfies
the following three conditions:

(A1) 9,(v) is independent in M for every v € V;
(A2) each root arc belongs to every base of Mo;
(A3) r(0(v)) <r1(8s(P(v))) foreachv € V.

(Recall that 71 (35 (P (v))) denotes the number of arborescences that span v in a feasible
packing.)

In this subsection we shall show how to convert a general instance to that satisfying
those three conditions, (A1)—(A3).

Reduction 1: To achieve (A1) and (A2) we construct anew instance (D', ¢/, M/, M})
from a given (D, ¢, M|, M3) as follows. We first remove from D and from M; all
the root arcs that are loops in M. D’ = (V' + s, A’) is obtained from the remaining
digraph by subdividing each root arc sv to sv’ and v'v by inserting a new vertex v’,
and we set ¢’ (v'v) = c(sv), ¢’(sv") = 0 and ¢(a) = c(a) for all non-root arcs. M is
obtained from M by replacing its ground set by 8SA,(V’). Each new vertex v' in D’
has in-degree one, and we assign a free matroid M’ to each such v'. For the original
vertices u of D, M/, is obtained from M, by replacing each root arc su by u'u. Then
(A1) and (A2) are satisfied for the new instance. The two instances are equivalent in
the sense that from a feasible packing for (D', ¢/, M/, M) one can easily construct
a feasible packing for (D, ¢, M1, M) of the same weight and vice versa.

Reduction 2: To achieve (A3) we construct a new instance (D, ¢, My, M)) from a
given (D, ¢, M|, M>) by truncating M as follows. Recall that M is the direct sum
of M, over v € V. We truncate each matroid M, at r1(d;(P(v)), and let M/, be
their direct sum. Since r1(d; (P (v)) denotes the number of arborescences that span v
in a feasible packing, a packing in (D, ¢, M, M}) is feasible if and only if so is in
(D, c, M|, M5).

Note that (A1) and (A2) are maintained during Reduction 2. Hence by using Reduc-
tions 1 and 2 at a preprocessing stage, we may always assume that the input satisfies
(A1), (A2) and (A3). The following technical lemmas will be used later in the proof
of Theorem 3.4.

Lemma5.1 Let (D, c, My, M) be an instance of the packing problem, and let
(D, ¢, My, M}) be obtained from (D, ¢, M1, M2) by Reduction 2. Then (8) holds
in (D, c, My, My) if and only if (8) holds in (D, c, My, M)).

Proof Since M), is obtained from M, by truncation, if (8) fails in (D, ¢, M1, M),
then (8) fails in (D, ¢, M1, M5}).
To see the converse, suppose that (8) fails in (D, ¢, M, ./\/1’2), ie.,

ri(F) +r3(3(X) = F) < ri(3;(P(X))) a7)
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for some X C V and F C d;(X). We claim that, if X is an inclusionwise minimal set
satisfying (17) for some F, then

r((X) = F) = r(3(X) — F). (18)

Suppose that this does not hold. Then X contains v such that 7 (dy — x4 (v)—asF v)) <
20y —x4s(v) — Bf(v)) as My (and, resp., M) is the direct sum of matroids M,
(and, resp., M) on 9(u). This means that M, is truncated at r{(3s(P (v))), and
50y —x+s() — 3F () = r1(@s(P(v))) < r2(Qy—x+5(v) — 3] (v)). Hence if we
remove v from X (and remove BSF (v) from F'), then the left side of (17) decreases by
at least r1 (d5(P (v))). On the other hand, as 9;(P (X)) — d;(P(X — v)) C 9;,(P(v)),
the submodularity and the monotonicity of r; implies

r1(9s (P (X)) —r1(3s(P(X —v))) = r1 (9;(P(X)) — 85(P(X —v))) =r1(8s (P (v))).

Hence the right side of (17) decreases by at most 1 (35 (P (v))) when we remove v from
X. Consequently there is a smaller set than X satisfying (17), which is a contradiction
to the minimality of X.

Take an inclusionwise minimal set X with (17) in (D, ¢, My, M}). Then by (18)
X also violates (8) in (D, ¢, M1, M>). O

Consider the following weaker version of the cut condition (8):
r1(9s(X)) + r2(0v (X)) = r1(9;(P(X))) forall X C V. (19)

The following lemma says that after Reduction 1 the cut condition (8) is simplified in
the weaker form.

Lemma5.2 Let (D, c, My, M) be an instance of the packing problem, and let
(D', ', My, M}) be obtained from (D, ¢, My, M2) by Reduction 1. Then (8) holds
in (D, c, My, My) if and only if (19) holds in (D', ¢', M}, M}).

Proof Recall the construction of D": D’ is obtained from D by subdividing each root
arc e by adding a new vertex v,.

Suppose that (8) is violated for X € V(D) and F C BSD(X). By the correspondence
between the two instances, one can easily check that X’ := X U {v, : ¢ € F} violates
(19).

Conversely, if X’ violates (19) in (D', ¢/, M, M}), then let X = X' N V(D)
and F be the set of root arcs ¢ in D with v, € X. Then X and F violates (8) in
(D, c, M1, M»). 0O

5.2 Reducing to the weighted matroid intersection problem

In this subsection we shall characterize the arc set of a feasible packing in terms of
common independent sets of two matroids.

Let (D, c, M1, M>) be as above. Let m(v) = r1(d;(P(v))), that is, the number
of arborescences that span v in a feasible packing. By Reductions 1 and 2, we may
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focus on instances satisfying (A1), (A2) and (A3). Moreover, if (3 (v)) < m(v) for
some v € V,then (D, ¢, M, My) clearly has no feasible packing. So we may further
assume the following stronger condition than (A3):

(A3) r(8(v)) =m(v) forallv € V.

The characterization is based on the following clever setting of a bi-set family and
a bi-set function introduced by Bérczi and Frank [1] to understand the theorem by
Kamiyama et al [19], and further developed by Bérczi et al. [2].

Let us define ~ as follows: for u,v € V, u ~ v if and only if 8‘;4(P(u)) =
8;‘(P(v)). Then ~ is an equivalence relation. We call the equivalence classes
Ay, ..., Ay as atoms of D. For every root arc ¢;, let U; be the set of vertices in
V which can be reached from s via the arc ¢; in D. Let

Fi=XePy(V):0#£X CAj, Xo —X)NAj =0} (1<j<o),

12
F=J7F
j=1

Ix:={e; € 92(V) : X; C Ui ei ¢ 32(X)). Xo =X NU; =B} (X e F),
Ix :={ei € 3} (V) : X; C Ui} — I
pX) :=r1(Ix U Jx) — ri(Jx) X e F).

Note that for any X € F,
IxU Jx =3 (P(Xp)). (20)

Hence the first term in the definition of p(X) is equal to the number of arborescences
that reach to each vertex in X7, and from the definition of Jx one can easily see that
|8§ (X)] = p(X)isanecessary condition for the existence of an M | -reachability-based
packing. The next lemma shows that this necessary condition is in fact equivalent to
the cut condition given in Theorem 3.3. (Although the lemma follows implicitly from
Bérczi et al. [2], we give a simpler (specialized) proof for completeness.)

Lemma5.3 Let B C A foragiven D = (V +s, A). The following two conditions are
equivalent:

108 (X)| = r1 (32 (Pp (X)) — r1 (32 (X)) foreveryX €V (21)
188X > pX) foreveryX e F (22

For the polyhedral description discussed in Sect. 5.5, we shall prove a slightly
generalized statement:

Lemma5.4 Let x : A — Rx. The following two conditions are equivalent:

Xy (X)) = r1(9s(P(X))) — r1(ds(X)) Jorevery X €V (23)
Xy (X)) = p(X) forevery X € F (24)
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Proof (23) = (24): This direction is discussed in [2] and the proof goes as follows.
Suppose that (23) holds. For (24), consider any X = (Xp, X;) € F. Let Y =

XU — Ue_,-%]x Uj).
By definition, for every rootarce;, e; ¢ Jximpliese; ¢ 0;(Y). This in turn implies

9;(Y) C Jx. (25)

We also claim
Iy (Y) C oy (X). (26)

To see this, take any arc e = uv in dy (¥). Since no arc leaves Ue,-¢1x U, the definition
of Y implies that there is some e; ¢ Jx suchthatu € U;andv € X;. AsU;NX; =0
fore; ¢ Ix U Jx, we have ¢; € Ix. This in turn implies (Xo — X;) N U; = ¥, and
u ¢ Xo.In other words, e € dy (X) and (26) follows.

Therefore, by using the non-negativity of x and the monotonicity of 7|, we get

X0y (X)) = X(3v (Y) = r(3:(P(Y))) —r1(05(Y))  (by (26) and (23))

> r1(9s(P(Y))) — ri(Jx) (by (25))
> r1(9s(P (X)) — ri(Jx) (byX; € Y)
= p(X). (by (20))

(24)= (23): Suppose that (24) holds. To verify that (23) holds, take any X € V. We
construct a directed graph Dyom On the set of all atoms obtained from D by contracting
the set of vertices of each atom to a vertex. For atoms A; # Aj, there exists a set Uy
that contains exactly one of them, say A ;. Since no arc leaves Uy in D, no arc leaves
the corresponding set in Dygom. It follows that the two vertices corresponding to A; and
A in Dyeom can not belong to a circuit. Thus Dygom is acyclic. Let vg = s, vy, ..., vg
be a topological order of this graph. Since, by assumption, no arc enters s, s can be
chosen as vg. We denote the atoms so that atom A; corresponds to vertex v;. Suppose
that the atoms that intersect X are Ay, ... Ap,, and let

Xj = (P(Ay) N X, Ay, N X) for 1 < j <k,
J
Kj:=o || JPw|.
i=1
J
Lj:=a | xn|JA
i=1
With this setting of X;, we have X; € F and

k
@y (X)) = Y X(@v (X)) 27

Jj=1
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We prove by induction on i for 1 <i < k that

i
Y pX)) = ri(Ki) — ri(Ly). (28)
j=1
If i = 1, then s is the only vertex proceeding vy, in Dgaom, and hence
B, = XD = 82An N X). By (20), we also have Ix, U

Jx, = dA(P(Ap, N X)) = dA(P(Ap,)). Therefore
pO&1) = riIx, U Jx,) = ri(Jx,) = ri@ (P(An,)))

—r1 XX N Ap)) = r1(K1) — ri(Ly).

Suppose that (28) is satisfied for i’ with 1 < i’ < i. The submodularity and the
monotonicity of r; give

ri(Ix, U Jx;,) +ri(Jx, UKi—1) = ri(Jx,) +ri(x, UJx, UK;_1). (29)

Also,by L;_1 € K;_1,wehave K;_1 U (L;—1 U (Jx, — Ki—1)) = Jx, U K;_1 and
Ki_1N(Li—1U(Jx, — Ki—1)) = L;—1. Hence, by the submodularity of r|, we have

ri(Ki—1) +ri(Li-i Uy, — K1) = ri(Li—1) +ri(JUx; UK;—p). (30)

Combining those inequalities we get

i—1

> p(X)) =iy, Udx) = rilx) + 3 p(X))

j=1 j=1
> ri(Ix; U Jyx,) —ri(Jx;) +r1(Ki—1) —ri(Li—1)  (by induction)
> ri(Ix; U Jx; UKi—1) —ri(Li-1 U (Jx; — Ki—1)) (by (29) and (30))
=ri(K;) —ri(Li) (by definition).

Thus (28) holds. In particular, by setting i = k, we get

k
(v (X)) =Y X(@v (X)) (by (27))
j=1
k
>y p(X)) (by (24))
Jj=1
> ri(Kg) — ri(Lg) (by (28))
= r1(8;(P(X))) — r1(9;(X)) (by definition)
as we stated. O
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We also remark one more technical lemma.

Lemma5.5 Let B C A fora given D = (V + s, A) with 8SA(V) C B, and let D' =
(V+s, B) be a subgraph of D. Suppose that (22) holds for B. Then r| (BSB (Pp(v))) =
rl(ag“(PD(v)))for everyv € V.

Proof By Lemma 5.4, B also satisfies (21).
By 98 (Pp(v)) € 01 (Pp(v)), we have r1 (35 (Pp (v))) < r1 (32 (Pp(v))). To see
the reverse inequality, let X := Pp/(v) and consider (21) for X. We then get

108 (X)| = r1 02 (Pp(X))) — r1 (32 (X)).
By X = Pp/(v) we have 85 (X) = @, implying
r(00(X)) = r1 (31 (Pp(X))).

Moreover, the definition of X and BSA(V) C B € Aimply Pp(v) = Pp(X) and
IMX) = 9Z(Pp (). Thus (02 (Ppr(v) = r(BA(X)) = rn@}(Pp(X))) =
r (BSA(PD (v))), and we obtain the equality. O

In order to extend Edmonds’ idea, we need to define an appropriate variant of the
union of k copies of the graphic matroid. Following the argument in Sect. 4 this will
be done by giving a submodular function but in this case we would define it over the
bi-set family F and use Theorem 2.2. The bi-set function b : F — Z is defined as
follows: for X € F,

b(X) = i (Xp) — [0} Xp)| — p(X). 31)

Here the first and second terms are derived from the fact that each vertex is spanned by
m(v) arborescences in a feasible packing and each root arc is used by an arborescence
of the packing by (A2). The last term is motivated by the fact that in a feasible packing
there are at least p(X) arcs from the outside of Xp to X;. (In the case of a packing of
k spanning arborescences the corresponding number would be &.)

Lemma5.6 For every j € {1,...£}, F; is an intersecting family. Furthermore, F
is also an intersecting family and b is a non-negative intersecting submodular bi-set
Sfunction on F.

Proof Let X = (X, X;) and Y = (Yp, ¥7) be two intersecting bi-sets in F; for a
given j € {1, ...£}. By the definition of F;, X;,¥; € Aj, and consequently § #
XiNYy CAjandf # X;UY; C Aj.Since (Xo—X)NA; =0 =Yo—-Y1)NAj,
we have (Xo NYo) — (X1 NY))NAj =0 =((XoUYp)— (X;UY)NA;,
and hence XNY, XUY € F;, thatis, F; is an intersecting family. Since the atoms are
disjoint, two intersecting bi-sets in F belong to the same F; for some j € {1, ... ¢}
and hence F is also an intersecting family.

To see the intersecting submodularity of b, it suffices to show, by the modularity of
m(Xy) — |8SA (X1)], that p is intersecting supermodular. Take any intersecting X, Y € F
and we may assume X; NY; € A;. By the definition of an atom and (20), we have

IA(P(A)) = IxUJx = Iy U Jy = Ixay U Jxay = Txuy U Jxuy, (32)
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Also by the definition of J,
Jx U Jy = Jxuy and Jx N Jy 2 Jxny. (33)

Thus

pX) + p(Y) = ri(Ix U Jx) —ri(Jx) +ri(ly U Jy) —r1(Jy)
<rxUJx)+ridyUdy) —ri(JxNJy) —ri(JxUJy) (bysubmodularity)
< ri(xny U Jxny) +71(Ixuy U Jxuy) =71 (Ixny) —r1(Jxuy) — (by (32) and (33))
— p(XNY) + p(XUY).

Finally, to see that b is non-negative, take any X € F. Letd = rl(asA(P(X 1))). By

(20), r1(Ix U Jx) = d. Also, since X; is contained in an atom, the definition of atoms
implies rq (BSA(P(U))) = d for every v € X;. Hence, picking any v € X;, we have

b0 = 3 (@GP @) — 31 a)l) — pX)

uEXI
> r @} P@)) =19 )| — ri(Ix U J)+r1(Jx) by 9} )| < 13 (P (u))) from (A1)
=r1(Jx) — 32 (v)] (by ri (2 (P(v))) = d = r1(Ix U Jx))
> r1 (32 (v) — 132 (v)] (by 32 (v) € Jx)
=0 (by (A1)).
Thus b is non-negative. O

Let ZT%:= {B C A : ip(X) < b(X) for every X € F}. Then, by Lemma 5.6 and
Theorem 2.2, 7* forms the independent set family of a matroid on A. This matroid
is denoted by M* and its rank function is denoted by r* : 24 — 7., where, by
Theorem 2.2,

t
P*(F) = min{Zb(xi)+ XL XY S FEX NX =0 G # )

i=1

t
F— U A(XD
i=1

(34)
for FF C A.
We are ready to prove the main theorem of this section.

Theorem 5.7 Let D = (V + s, A) be a rooted digraph, and M = (8‘;4(V), r1) and
My = (A, rp) two matroids such that M, is the direct sum of the matroids M, =
(8(v), ry) for v € V. Suppose that (Al), (A2) and (A3') are satisfied. Then B C A is
the arc set of an M -reachability-based M-restricted packing of s-arborescences if
and only if B is a common independent set of My and M* of size m(V).

Proof First let us check that the rank of M is m (V). Indeed, by (A3'),

r(A) = @) =Y m@) =mV). (39)

veV veV
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Note that in both directions B is independent in M. We claim that

108 (v)| = m(v) foreachv € V, (36)
92 (V) C B, and (37)
|B| = m(V) (38)

hold in both directions. Indeed, if a feasible packing exists, then (36) and (37) follow
from the definition of reachability-based packing, (A2), and (A3’). Thus, by (36),

1Bl = ,cy 105 ()] = X, cpy m(v) = (V).
On the other hand, if B is a common independent set with |B| = n(V), then, by
(A3') and the independence of B in Mj,

V)= mw)y =Y nd*w) =Y rnetw)=>Y 08wl =Bl=mV),

veV veV veV veV

implying (36) and (38). It follows, by (35), that B is a base of M, and hence, by (A2),
that 3 (V) C B, that is, (37) holds.

By (37), the independence condition for M*, thatis, i g (X) < b(X) forevery X € F,
is written as

ip(X) < A(Xp) — 188 (X))| — p(Q) for every X € F. (39)
On the other hand, since

) =Y 108w =igX) + 10" X (40)

veX;
holds by (36), (39) is equivalent to
pX) < |8€(X)| for every X € F. (41)
Lemma 5.3 implies that (41) is equivalent to
187 (X)| = r1(8;' (Pp (X)) — r1(3{ (X)) forevery X C V. (42)

If B is the edge set of an M -reachability-based M-restricted packing, B must
satisfy (42) (which is an easy direction of the statement and can be proved formally
as discussed in Sect. 5.4.)

If B satisfies (42), let D’ be the subgraph of D induced by B. Then by (42) and
(37) we have

108 (X)| = r (38 (Pp (X)) — r1 (38 (X)) forevery X C V. (43)
Therefore, by Theorem 3.3, D’ (and hence B) contains an M -reachability-based

packing in D’. Lemma 5.5 implies that such a packing is also an M -reachability-
based in D as the condition of the lemma, that BSA(V) C B, holds by (36). Moreover,
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as |B| = m(V), B is exactly the edge set of the packing. Finally by the independence
of B in My, we can conclude that B is the edge set of an M -reachability-based
M-restricted packing in D. O

5.3 Algorithmic aspects
5.3.1 Minimum weight packing

Based on Theorem 5.7 we can now solve our minimum weight packing problem,
provided an efficient independence oracle for the matroid M* induced by b. A simple
polynomial time independence oracle for M* will be developed in Sect. 5.3.2. We
leave open the problem of developing a faster independence oracle for M™* which
would imply a more acceptable running time for our algorithm.

Theorem 5.8 Let D = (V + s, A) be a rooted digraph, ¢ : A — R a weight function,
and My = (0(V), r1), and My = (A, r2) two matroids such that M is the direct sum
of the matroids M, = (3(v), ry) for v € V. Then there exists a polynomial time algo-
rithm to find an M |-reachability-based M-restricted packing of s-arborescences in
D of minimum weight if D has at least one such packing.

Proof As explained in Sect. 5.1 we may always assume that (D, ¢, M|, M>) satisfies
(A1), (A2) and (A3). If (A3') does not hold, then there is no feasible packing. Hence
we also assume (A3').

By a weighted matroid intersection algorithm we compute the minimum weight
common base of M; and M*. (Here, we need an independence oracle for M*, which
will be developed in Sect. 5.3.2.) By Theorem 5.7, if there is no common base, we
can conclude that (D, ¢, M, M>) has no feasible packing. Otherwise, the common
base B is the arc set of a minimum weight feasible packing. Once the edge set B is
determined, the required decomposition can be obtained by applying the algorithm of
[21] to the subgraph induced by B by Lemma 5.5. O

5.3.2 Checking independence in AM*

Let M* = (A, Z*) be the matroid induced by b as above. We show that the inde-
pendence of each arc set B can be checked by solving matroid intersection problems
repeatedly.

Theorem 5.9 There exists a polynomial time algorithm to decide whether a set B of
arcs belongs to T* or not.

Proof We will use the definitions from Sect. 5.2. Using any searching algorithm, the
sets U;, and hence the partition of V into atoms, Ix and Jx for any X € F can be
computed in polynomial time. It can also be decided in polynomial time whether a
bi-set X belongs to F or not.

Recall that B is independent in Z* if and only if ig(X) < b(X) for every X € F.
Since there are O (n) atoms, we may focus on checking the inequality for every X € F;
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for a fixed atom A;. In other words, our goal is to check

ig(X) < A(Xy) — 12X — r1(Ix U Jx) + r1(Jx)
forevery X e F; :={Y e F:Y; C A;}.

By (20), r1 (Ix U Jx) is constant over F;. Therefore, it suffices to design an algorithm
for checking the following condition for a given k : A; — Z4 and g € Z:

ig(X) <k(X;) —q +r1(Jx) forevery X € F;. (44)
We first solve the case when g = 0, that is, checking
ig(X) <k(X;) +ri(Jx) forevery X € F;, (45)

and then show how to deal with the general case. The special case when g = 0 will
be done by reducing the problem to the independent matching problem, which is
known to be equivalent to the matroid intersection problem (see e.g., [25]). In the
independent matching problem, we are given a bipartite graph G = (U, W; E) and a
matroid My on W, and we have to decide whether G has an independent matching.
A matching M in G is said to be independent if W (M) is independent in My, where
W (M) denotes the endvertices of M in W.

In order to define G and My appropriately we need the following definitions. For
an arc a, let t(a) and h(a) be the tail and the head of a, respectively. Let B = B(A;)
and By = Bg_AI_ (A;). For each vertex v € A;, we prepare k(v) copies vy, ..., V)

of v, and let 7ch,~ = {v1, ..., k@) : v € A;} be the set of all those copies. Then we
define an auxiliary bipartite graph G = (U, W; E) as follows:

U= BUB, (S B),
W =kA; UdA(V),
E=EUEyUE3UEy,

where

Ey={avj:a e Bi,ve A, jell,...,kw)}, h(a) =vort(a) =}
Ey ={avj:a e By,ve A, jell,....k()}, h(a) = v}

Es={aej :a € B UBa,ej € 32(A;), h(a) = h(e)))

Es={aej :a € By,ej € 32 (V) — 32 (A)), 1(a) € U;}.

A matroid My is defined to be the sum of the free matroid on EAI- and M; =
(BSA(V), r1). The rank function of My is denoted by ryy.

Claim 5.10 (45) holds if and only if G has an independent matching that covers U.
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Proof The Rado—Perfect theorem [26,27] (see [25, (2.75)]) says that G has an inde-
pendent matching of size d if and only if |U — C| 4 rw (I'(C)) > d forevery C C U,
where I'(C) denotes the set of neighbors of C in G. Hence G has an independent
matching that covers U if and only if

ICl =rw(T(C)) (C<SU). (40)

We show (45) is equivalent to (46).

Suppose that (45) holds. To see (46) take any C € U. We may suppose C #= (.
Take X = (X, X;) suchthat X; = H(C)UT(C N By) and Xp = V(C), where H
and T denote the set of heads and tails of arcs of C in D, respectively. Then X; # ),
and we have X € F;. Also from the construction we have

C € B(X), 47
Jx =T(C)Natwv). (48)
Hence we have
IC| < ip(X) (by (47))
<k(Xp) +r1(Jx) (by (45))
= |T(C) NkA;| +r1(F(C)ﬂaf(V)) (by (48))

=rw(I'(C)).
Thus (46) holds.
Conversely, suppose (46) holds. Take any X € F;. Observe that B(X) € U and
each element in I'(B (X)) N kA; is a copy of a vertex in X;. Hence

I(B(X)) NKA;| < k(X)) (49)

By the construction we also have

T(B(X)) N a2 (V) = Jx. (50)
Hence we have
ig(X) = [BX)| < rw(T'(B(X))) (by (46))
= [D(B(X)) NkA;| + ri(T(B(X) N3A(V))
<k(X7) + r1(Jx) (by (49) and (50)).
Thus (45) holds. O

By Claim 5.10, we can check whether B satisfies (45) in polynomial time by a
matroid intersection algorithm. It remains to extend the approach to the case when
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q > 0. We do this by using a standard technique for checking the independence in a
so-called count matroid observed by Imai [17].

Let us use the auxiliary graph G = (U, W; E) and M defined above, and assume
that B satisfies (45). Forafixeda € U, leti be the index of the atom A; which contains
the head of a. We consider checking

ip(X) <k(X;) —q +ri(Jx) forX e Fe, (51)

where F{ := {X € F; : a € B(X)}. We prepare a new auxiliary bipartite graph
G = (U“, W; E“) obtained from G by replacing a with g 4 1 copies ao, ..., aq
(and then replacing each edge ax € E in G incident to a € U with ¢ + 1 copies
apx, ..., aqx). Applying the same proof as that in Claim 5.10 we have the following:

Claim 5.11 Suppose that B satisfies (45). Then (51) holds if and only if G* has an
independent matching that covers U“.

In view of this claim one can check (44) in polynomial time first by checking (45)
by computing a maximum independent matching in G and then checking (51) by
computing a maximum independent matching in G for every a € U. This completes
the proof. O

5.3.3 Computing a rank certificate

We have seen how to check the independence in polynomial time. We can also output
a maximal independent set using the above independence oracle. In this section we
show how to find a certificate of the rank of M?*, i.e., a minimizer of the rank formula
given in (34). As explained at the end of Sect. 5.4, such a certificate will be used to
construct a certificate that D has no feasible packing.

Let B be a maximal M™*-independent subset of a set F € A. We first observe that
the above algorithm for the independence oracle can be modified to output a bi-set
X* € F for each a € F — B such that

ig+a(X?) > b(X?). (52)

Indeed, since B is a maximal M™*-independent subset of F, there is no inde-
pendent matching covering U¢ in G (where U and G“ are as defined in the
proof of Theorem 5.9 when we check the independence of B + a). Hence there
exists a C¢ C U“ for which (46) does not hold. Setting X* = (X¢,, X{) with
X{ = H(CHUT(C*N(B+a)(A;)) and X¢, = V(C?) as in the proof of Claim 5.10,
X4 satisfies (52).

Since B is independent and ip44(X?) < ip(X?) 4+ 1, we have

ip(X*) = b(X?)
and

a € A(XY
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foreverya € F — B.

We say that X € F is tight if ip(X) = b(X). By a standard argument using the
intersecting submodularity of b and the supermodularity of ip, one can show that
the union of two intersecting tight bi-sets is tight. Thus, by taking the union of the
intersecting bi-sets in the collection {X? : a € F — B}, we get a family (X', ..., X}
of tight bi-sets with disjoint inner sets such that F — B € [Ji_; A(X)). As B is a
maximal M™*-independent subset of F,

' ' t t
r*(F)=B| =Y ig(X)+|F — [ JAX)| =D X))+ |F - JAx)|,
i=1 i=1 i=1 i=1
that is, {X', ..., X’} is a minimizer of the right side of (34).

5.4 Proof of theorem 3.4

Let D, M and M3 be as given in the statement of Theorem 3.4. Our goal is to prove
that there is a feasible packing in D if and only if (8) holds, i.e.,

ri(F)4+r@X)—F)>r@sP(X))) forall X € Vand F C 0;(X). (8)

Necessity of Theorem 3.4: Let {T1, ..., T;} be a feasible packing in D. We may
assume that each 7; is an s-one-arborescence, i.e., 7; contains exactly one root arc,
whichis denoted by e;. Foreachv € V,let R, bethesetofrootarcse; inT; (1 <i <t)
with v € V(T;).

Consider any X € V and F C 0,(X), and let Ry = Uvex Ry. Since Span
is monotone and d; (P (v)) € Spanyy, (Ry) for each v € V by the definition of fea-
sible packings, we have Span (, (Rx) 2 U,ex Spanpy, (Ry) 2 U,ex 05(P(v)) =
ds(P(X)). Thus we get

ri(Rx) = r1(9s(P(X))). (53)
For each ¢; € Rx, T; N 9(X) # @; so let us choose one arc a; from 7; N 3(X).

As | T; is independent in M», {a; : ¢; € Rx — F} is independent in M,. Hence we
have

r(3(X) — F) = r({a; : ¢; € Rx — F})

= |{a; : ¢, € Rx — F}| (since {a; : ¢; € Rx — F} is independent)
=|Rxy — F|

>ri(Rx — F)

>ri(Rx UF)—ri(F) (by submodularity)
>ri(Rx) — ri(F) (by monotonicity)
> r1(9s(P(X))) — ri(F) (by (53)),
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that is, (8) is satisfied.

Sufficiency of Theorem 3.4: Suppose that (D, M, M) satisfies (8). We have seen
in Sect. 5.2 how to convert a given instance (D, M, M) to that satisfying (A1)—(A3)
keeping the existence or nonexistence of a feasible packing. For simplicity of notation
we shall keep to use (D, M, M>) to denote the resulting instance. By Lemmas 5.1
and 5.2 the resulting instance satisfies (19).

We claim that (A3') is satisfied, i.e, 72(d(v)) > m(v). This can be proved as
follows. (A2) says that M, is the direct sum of the free matroid on d(v) and the
restriction of M, to d(v) — d;(v). Hence r2(d(v) — 95 (v)) = r2(3(v)) — |95 (v)]. Also
by (A1) we have 1 (35(v)) = |9 (v)|. Combining those with (19) for X = {v}, we get
m) < r1(9;(v)) +rp(d(v) — 9;(v)) = rr(d(v)) as claimed.

Hence (D, M|, M;) satisfies (A1), (A2) and (A3’). Thus the proof is completed
by showing the following lemma.

Lemma5.12 Let D, My and M3 be as in the statement of Theorem 3.4, and suppose
further that (Al), (A2) and (A3") hold. Then there exists a feasible packing in D if and
only if (19) holds, i.e.,

r1(95(X)) + r2(9v (X)) = r1(95(P(X))) forall X < V. 19)

Proof The necessity follows from that of Theorem 3.4. For the sufficiency, suppose
that there is no feasible packing in D. Then by Theorem 5.7 a common independent
set of M, and M* has size less than m (V). By Theorem 3.5, there exists F* C A
such that

F*(F*) +r(A—F* <m(V). (54)

Using the formula of r* given in (34), we obtain a family {X', ..., X'} C F of bi-sets
such that X"I N Xf =0 (i # j)and

t
Fr—[ JAX)

i=1

+r(A—F" <m(V). (55)

t
> b +
i=1

If we take such F* and {X1, ..., X;} so that the leﬁ side of (55) is as small as possible,
then we can always suppose that F* = U§=1 A(X"). In other words, we have a family

(X', ..., X'} C F of bi-sets such that Xi[ DX; =0 (i #j)and

t t
Zb(xf) +r(A — U AXD) < m(V). (56)

i=1 i=1
Let V/ = V — |Ji_; X;. Recall that M, is the direct sum of matroids on 9 (v).
Hence, by Xi N X} = @ (i # j) and (A3),
nA=JAX) =Y n@@)+Y Y nluwe AugXp)

i=1 veV’ i=l UEXiI
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t
= > m@)+ Y rn@X)).
veV’ i=1
Combining this with (56) and the definition of b, we get
t . . .

2(72(3(X’)) — 19 (X = p(X)) < 0.

i=1
Hence there is some i such that

r (X)) — 3, (X)) — p(X') < 0. (57)

Let B be a base of M>. By (A2), 9;(V) C B. (A2) further implies that B — 9,(V)
is a base of the restriction of M»> to A — 9;(V). Hence, forany X C V,

105 (X)| = r(04(X) — 85(X)) = (3 (X)). (58)
Now by (57)

pX) > r(3(X) — [3;(X)]

> r2(0B (X)) — |8, (X))] (by monotonicity of r7)
=138 — 35(X))|
= [35 (X (by 85(V) C B).

Hence by Lemma 5.3 we have a set X C V with
197 ()] < 1@} (P(X)) — r (3 (X)).
Combining this with (58), we finally get
r1 (X)) + ra(3y (X)) < r1(3} (P(X))). (59)

that is, X violates (19). This completes the proof of the lemma as well as that of
Theorem 3.4. O

As explained in the last subsection, one can check the existence of a feasible packing
in polynomial-time by using a weighted matroid intersection algorithm. This implies
by Theorem 3.4 that one can check in polynomial-time whether an instance satisfies the
cut condition (8). One may however wonder how to compute X € V and F C 95(X)
violating the condition if the instance has no feasible packing.

The proofs of Lemmas 5.1 and 5.2 explains how to convert certificates violating
the cut conditions in Reductions 1 and 2. Hence let us assume (A1), (A2) and (A3').
Observe that the above proof of the sufficiency of Theorem 3.4 is algorithmic: a set X
having the minimum of the left side of (9) can be computed by a matroid intersection
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algorithm; the minimizer of the rank formula in (34) can be found in polynomial time
as explained in Sect. 5.3.3. In other words, one can compute a bi-set X' with (57).
From X', the proof of Lemma 5.3 explains how to construct a set X violating the cut
condition (19). (Take X to be Y as defined in the proof of Lemma 5.3.)

5.5 Polyhedral aspects

An immediate corollary of Lemma 5.7 is a polyhedral description of the characteristic
vectors of the arc sets of the feasible packings as the intersection of two base polyhedra
due to Edmonds [5]. In this subsection we provide a different polyhedral description
which is more natural and fits better to Theorem 3.4.

We first deal with the case when (A1), (A2), and (A3’) hold. Recall that m(v) =
ri(05(P(v))) forv e V.

Theorem5.13 Let D = (V + s, A) be a rooted digraph, and M| = (05(V), rq)
and M> = (A, ry) two matroids such that M is the direct sum of the matroids
M,y = (BW), ry) for v € V. Suppose that (Al), (A2) and (A3') are satisfied. Let
P/D, MM, be defined by the following linear system

X0y (X)) > r1(05(P(X))) — r1(85(X)) for each nonempty X C V, (60)
rn(J) >X(J) foreach J C d(v)andv € V, (61)
x(a) >0 foreacha € A, (62)
X(A) = m(V). (63)

Then Pp, m,, M, is an integer polyhedron and its vertices are the characteristic
vectors of the arc sets of the M -reachability-based M,-restricted packings of s-
arborescences in (D, My, M>).

Proof We first remark an implication of (61)—(63):

Claim 5.14 If x € R4 satisfies (61)—(63), then the following hold:

0<x(a) =<l foreacha € A, (64)
X(0W)) =m(v) foreachv €V, (65)
x(a) =1 foreacha € 9;(V). (66)

Proof (64) follows from (61) and (62): 0 < x(a) < r(a) < 1Va € A.
To see (65) recall that My = @,y My, and each matroid M, is of rank m (v) by
(A3'). Hence (61) implies that

mV) =Y n@dw) =Y F@)=X5(A).

veV veV

Then, by (63), we get m(v) = r2(3(v)) = X(3(v)) forevery v € V.
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To see (66) observe r2(d(v)) = |d5(v)| + r2(dy (v)), which follows from (A2).
Hence by (61),

X(0(v)) = r2(0(v)) = [85(v)| + r2(3y (v) = |95 (V)] + Xy (v)),

implying |35 (v)| < X(95(v)). Combining this with (64), we get (66). O

Next we replace (60) by another inequality which is more convenient to apply the
results of the previous subsections.

Claim 5.15 (60) is equivalent to
b(X) > X(A(X)) foreachX € F, (67)

provided that (61)—(63) are satisfied.
Proof By Claim 5.14, we have (65) and (66). By (65) and (66), we have

b(X) = X(A(X)) = m(X;) — 19:(Xp)]| = p(X) — ¥(A(X))

= [ D XOW) - X(0,X)) = FAX) | — pX)

veXy

=X (v (X)) — p(X).

Hence the claim follows from Lemma 5.4. O

By Theorem 2.2, the polyhedron Pp, defined by the inequalities (62), (67), and
x(a) < 1Va € A, is the convex hull of the incidence vectors of the independent sets
of the matroid M™* (induced by b). By Edmonds [6], the polyhedron P, which is the
convex hull of the incidence vectors of the independent sets of the matroid M3, is
defined by the inequalities (61) and (62). Then, by Edmonds [5], P, N P> forms the
common independent set polytope of M* and My, and the common base polytope
of M* and M, is given by P/D,Ml,/\/lz (see e.g., [28, Corollary 41.12d]). O

Theorem 5.16 Let D = (V + s, A) be a rooted digraph, and M| = (3;(V), r1) and
My = (A, r2) two matroids such that My is the direct sum of the matroids M, =
(0(v), ry) for v € V and suppose that each M, has rank m(v). Let P p am, m, be
defined by the following linear system

XOX)—F) > r13s(P(X)) —ri(F) foreach X C V with X # @ and F C 95(X),

(68)
r(J) =2 %(J) foreach J € d(v)andv € V, (69)
x(a) >0 foreacha € A, (70)
x(A) = m(V). (71)

Then Pp am,, M, is an integer polyhedron and its vertices are the characteristic
vectors of the arc sets of the M -reachability-based M,-restricted packings of s-
arborescences in (D, My, M>).
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Proof Let (D" = (V', A"), M/, M) be the instance obtained from (D, M, M>) by
Reduction 1, where each root arc e = su is subdivided into sv, and v.u by inserting a

new vertex v.. Given a feasible packing P = {T1, ..., T¢} in D, one can construct an
s-arborescence 7/ in D’ from T; by subdividing the root arcs in T;. Let R be the set
of root arcs in D that are not used in P. Then P’ = {7}, ..., T;} U {{sv.} : e € R} is

a feasible packing in D’. We can also reverse the construction to construct a feasible
packing in D from that in D’ as every feasible packing in D’ contains all the root arcs
in D" due to the definition of (D', M/, M}). In other words there is a one-to one
correspondence between the set of feasible packings in D and that in D’.

To see the statement, we first observe that the characteristic vector yp of the arc
set of a feasible packing P in D is contained in Pp a1, A, This follows from Theo-
rem 3.4.

Let x € Pp ;. M, Define x” € R4 by

1 (a = sv, for some e = su € 8SA(V))
x'(a) = {x(e) (a = v,u forsome e =su € dA(V)) (a e A).
x(a) (aeA—3rV))

Then observe x’ € P/D, LML By Theorem 5.13, x’ can be described as a convex
’ 1 2

combination of the characteristic vectors of the arc sets of feasible packings in D', i.e.,
x" = Y"i_, Ai xp, for some feasible packings P/ in D’ and A; > O with }i_; A; = 1.
By the definition of x’, we have x = Y ;_, A; xp,, where P; is the feasible packing in
D corresponding to P;. This completes the proof. O
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