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On a min–max theorem on bipartite graphs
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Abstract

Frank et al. (Math. Programming Stud. 22 (1984) 99–112) proved that for any connected
bipartite graft (G; T ), the minimum size of a T -join is equal to the maximum value of a partition
of A, where A is one of the two colour classes of G. Their proof consists of constructing a
partition of A of value |F |, by using a minimum T -join F . That proof depends heavily on the
properties of distances in graphs with conservative weightings. We follow the dual approach,
that is starting from a partition of A of maximum value k, we construct a T -join of size k. Our
proof relies only on Tutte’s theorem on perfect matchings. It is known (J. Combin. Theory Ser.
B 61 (2) (1994) 263–271) that the results of Lov%asz on 2-packing of T -cuts, of Seymour on
packing of T -cuts in bipartite graphs and in grafts that cannot be T -contracted onto (K4; V (K4)),
and of Sebő on packing of T -borders are implied by this theorem of Frank et al. The main
contribution of the present paper is that all of these results can be derived from Tutte’s theorem.
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1. Introduction

This paper concerns matchings and T -joins. Since T -joins are generalizations of
matching, the minimum weight T -join problem contains the minimum weight perfect
matching problem. On the other hand, Edmonds and Johnson [2] showed that the
former problem can be reduced to the latter one. Thus, these problems are—in fact—
equivalent.
In matching theory lots of min–max results are known. Concerning matchings, in

fact, we shall consider Tutte’s theorem [11] on the existence of perfect matchings in
general graphs, and not the min–max version, the Tutte–Berge formula. Concerning
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T -joins, we mention the following min–max theorems: The results of Edmonds–Johnson
[2], Lov%asz [7] on 2-packing of T -cuts, of Seymour [9,10] on packing of T -cuts in
bipartite graphs and in grafts that cannot be T -contracted onto (K4; V (K4)), of Sebő
[8] on packing of T -borders and a generalization of Seymour’s theorem due to Frank
et al. [4]. (For the deHnitions and the theorems see [3] or [5].) There are some easy
known implications between these results, some others can be found in [5], where we
showed that the result of Frank et al. [4] implies all of these results, including the
Tutte theorem.
Our aim in this paper is to demonstrate a new (surprising) implication, namely,

Tutte’s theorem implies the result of Frank et al. [4], and consequently, all of these
min–max results can be derived from Tutte’s theorem.

2. De�nitions, notation

In this paper H =(V; E) denotes a graph where V is the set of vertices and E is the
set of edges. G = (A; B;E) denotes always a bipartite connected graph and T ⊆ A ∪ B
a subset of vertices of even cardinality. The pair (G; T ) is called a bipartite graft. An
edge set F ⊆ E is a T-join if T = {v∈A ∪ B: dF(v) is odd}. The minimum size of a
T -join is denoted by �(G; T ). We mention that a bipartite graft (G; T ) contains always
a T -join.
For a bipartite graft (G = (A; B;E); T ) let us introduce an auxiliary graph

GA := (T; EA) on the vertex set T , where for u; v∈T , uv∈EA if at least one of u
and v belongs to A and there exists a path in G connecting u and v of length one or
two.
Let K be a vertex set in G. Then �(K) denotes the set of edges connecting K and

(A ∪ B) − K . G[K] denotes the subgraph induced by K . bT
K is deHned to be 0 or 1

depending on the parity of |T ∩K |. K is called T-odd if bT
K =1 and T-even if bT

K =0.
For a subgraph K of G, JK = G[V (G)− V (K)].
We shall need the following operation applied for grafts. For a connected subgraph

K of G, by T-contracting K we mean the graft (G′; T ′) obtained from (G; T ) where
G′ = G=K (that is K is contracted into one vertex vK) and T ′ = T − V (K) if bT

K = 0
and T ′ = T − V (K) + {vK} if bT

K = 1.
In what follows a component of a graph means a connected component. For X⊆V (G),

K(G − X ) denotes the set of components of G − X and KT (G − X ) denotes the set
of T -odd components of G − X . Let qT (G − X ) = |KT (G − X )|.
We denote by PA := {u: u∈A} the partition of A where the elements of PA are

the vertices in A as singletons. The value of a (sub)partition P= {A1; : : : ; Ak} of A is
deHned to be

val(P) =
∑

{qT (G − Ai): Ai ∈P}; (1)

in other words,

val(P) =
∑ {

bT
K : K ∈

⋃
Ai∈P

K(G − Ai)

}
: (2)
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The theorem of Frank et al. [4] that generalizes all the min–max results mentioned
in the Introduction is as follows.

Theorem 1 (Frank, Sebő, Tardos). If (G; T ) is a bipartite graft with G = (A; B;E),
then

�(G; T ) = max{val(P): P is apartition of A}: (3)

In order to be able to prove Theorem 1 by induction we will have to prove a slightly
stronger result than Theorem 1. To present it we need some deHnitions. An edge set C
of a connected graph G is called bicut if G−C has exactly two connected components.
Note that each edge of a tree is a bicut. Let P= {A1; : : : ; Ak} be a partition of A and
let Q={B1; : : : ; Bl} be a partition of B. Then P∪Q is called a bi-partition of A∪B in
G. Let us denote by G=(P∪Q) the bipartite graph obtained from G by identifying the
vertices in R for every member R∈P∪Q and by taking the underlying simple graph.
A bi-partition P ∪ Q of A ∪ B is called admissible if

(i) F := G=(P ∪ Q) is a tree, and
(ii) for each edge e of F , the edge set of G that corresponds to e forms a bicut of

G.

By Claim 4, for any bipartite graft there exists an admissible bi-partition.

Theorem 2. If (G; T ) is a bipartite graft with G = (A; B;E), then

�(G; T ) = max{val(P): P ∪ Q is an admissible bi-partition of A ∪ B}: (4)

The proof of Frank et al. [4] for Theorem 1 consists of constructing a partition
of A of value |F |, by using a minimum T -join F . That proof depends heavily on
the properties of distances in graphs with conservative weightings. We follow the dual
approach, that is starting from a bi-partition of A∪B of maximum value k, we construct
a T -join of size k. Our proof applies induction. Taking a special optimal admissible
bi-partition either we can use induction for some contracted graphs (and here we need
admissibility of the bi-partition) or we can apply Tutte’s theorem on perfect matchings,
namely a graph H has a perfect matching if and only if qV (H − X )6 |X | for every
vertex set X of V (H).
We must mention two papers on this topic. Kostochka [6] and Ageev and Kostochka

[1] proved results similar to Theorem 2. Their proof technique is diNerent from the
present one.

3. Preliminary results

Claim 3. Let (G = (A; B;E); T ) be a bipartite graft.

(a) Then the bi-partition P ∪ Q of A ∪ B satis8es (i) where P := {a: a∈A} and
Q := {B}.
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(b) If X ⊆ A, then the bi-partition P∪Q of A∪B satis8es (i) where P := {a: a∈A−
X } ∪ {X } and Q := {K ∩ B: K ∈K(G − X )}.

The following claim (whose proof is left for the reader) shows that for any bipartite
graft there exists an admissible bi-partition.

Claim 4. Let (G = (A; B;E); T ) be a bipartite graft.

(a) If there is no cut vertex in A then P ∪Q is an admissible bi-partition of A∪ B,
where P := {a: a∈A} and Q := {B}.

(b) If there is a cut vertex v∈A, that is G can be decomposed into two connected
bipartite subgraphs G1=(A1; B1;E1) and G2=(A2; B2;E2) with exactly one vertex
in common, namely v, then let us denote by (G1; T1) and (G2; T2) the two grafts
obtained from (G; T ) by T -contracting V (G2) and V (G1). If for i=1; 2, Pi ∪Qi

is an admissible bi-partition of Ai ∪ Bi and v∈A′
i then P ∪ Q is an admissible

bi-partition of A ∪ B, where P := (P1 − A′
1) ∪ (P2 − A′

2) ∪ {A′
1 ∪ A′

2} and
Q := Q1 ∪ Q2.

The deHnition of an admissible bi-partition implies at once the following claim.

Claim 5. Let P ∪ Q be an admissible bi-partition of A ∪ B.

(a) K ∈KT (G−Ai) for some Ai ∈P if and only if JK ∈KT (G−Bj) for some Bj ∈Q.
(b) val(P) = val(Q).

Claim 6. Let P be a partition of A and F a T -join in a bipartite graft
(G = (A; B;E); T ).

(a) Then val(P)6 |F |.
(b) Moreover, if val(P)= |F |, then for every component K of G−Ai for any Ai ∈P,

|�(K) ∩ F |= bT
K .

Proof. Let R :=
⋃

Ai∈P K(G − Ai). By parity, for each K ∈R,

bT
K 6 |�(K) ∩ F |:

Since for K1; K2 ∈R; �(K1) ∩ �(K2) = ∅, we have

val(P) =
∑
K∈R

bT
K 6

∑
K∈R

|�(K) ∩ F |6 |F |:

Claim 7. For every partition P of A in a bipartite graft (G = (A; B;E); T ),

val(P) ≡ |T ∩ A| (mod 2):

Proof. Since |T | is even, for each Ai ∈P; qT (G − Ai) ≡ |T ∩ Ai| (mod 2). Thus

val(P) =
∑
Ai∈P

qT (G − Ai) ≡
∑
Ai∈P

|T ∩ Ai|= |T ∩ A|:
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We shall deal with some bi-partitions along the proofs. The admissibility of these
bi-partitions can always be easily veriHed. The following easy fact may be useful.

Claim 8. Let X be a subset of vertices of a connected graph H . Let K be a component
of H − X . If X is contained in one of the components of H − K , then H − K is
connected.

Claim 9. Let H be a connected graph with |V (H)| even. If X is a minimal vertex set
with qV (H − X )¿ |X |, then for every component K of H − X , H − K is connected.

Proof. By assumption, using the usual parity argument, qV (H − X )¿ |X |+ 2. Let K
be any component of H −X . Then at least one component N of H −K contains more
odd components of H−X than vertices in X , that is qV (H−(N ∩X ))¿ |N ∩X |. Then,
by the minimality of X , N ∩ X = X , that is, by Claim 8, H − K is connected.

Claim 10. Let (G = (A; B;E); T ) be a bipartite graft. If the auxiliary graph GA has
a perfect matching M then G contains a T -join of cardinality |T ∩ A|.

Proof. For every edge uv∈M there exists a (u; v)-path in G of length at most two.
Since M is a matching these paths are edge disjoint. The union F of these paths is a
T -join of G because M covers all the vertices of T . By construction, |F |= |T ∩A|.

4. The proof of Theorem 2

Let (G; T ) be a counterexample with minimum number of vertices in G. By Claim
6(a), for any admissible bi-partition P ∪ Q of A ∪ B, val(P)6 �(G; T ), so
val(P)¡�(G; T ).

Lemma 11. G is 2-connected.

Proof. Suppose that G contains a cut vertex v, by symmetry we may suppose that
v∈A. We use the notation of Claim 4. For i = 1; 2, (Gi; Ti) is a bipartite graft and
|Ai ∪ Bi|¡ |A ∪ B| so there exists an admissible bi-partition Pi ∪ Qi of Ai ∪ Bi with

�(Gi; Ti) = val(Pi): (5)

Clearly,

�(G; T ) = �(G1; T1) + �(G2; T2): (6)

Let P ∪ Q be the admissible bi-partition of A ∪ B deHned in Claim 4(b). Note that

val(P) = val(P1) + val(P2): (7)

Then, by (6), (5) and (7), �(G; T ) = val(P) showing that (G; T ) is not a counterex-
ample.
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Let us denote by MAX the maximum value of an admissible bi-partition of A ∪ B.
Observe that MAX¿ |T ∩A| and MAX¿ |T ∩B|. The Hrst comes from the admissible
bi-partition P={v: v∈A};Q={B}, the other one from P={A};Q={v: v∈B}. These
bi-partitions are admissible by Claim 4(a).

Case 1: First suppose that MAX = |T ∩ A| (or MAX = |T ∩ B|).

Lemma 12. If the auxiliary graph GA has no perfect matching then there exists an
admissible bi-partition P ∪ Q of A ∪ B with val(P)¿ |T ∩ A|.

Proof. By Tutte’s Theorem, there exists a set X ⊂ T so that qT (GA − X )¿ |X |. Let
us take a minimal such set.
We claim that X ∩ B = ∅. Suppose that a∈X ∩ B. Suppose that a is connected to

two odd components K1 and K2 of GA − X . Then, by the deHnition of GA, there is
an edge between K1 and K2, that is they cannot be diNerent components of GA − X .
Thus a is connected to at most one odd component of GA − X . Hence, qT (GA − (X −
a))¿ qT (GA − X )− 1¿ |X |¿ |X − a|, contradicting the minimality of X .
Let us denote by B1 the set of vertices in B − T that has at least one neighbour in

A∩T and let B2 := B−T −B1. Let G1 := G[T ∪B1] and G2 := G[(A−T )∪B2]. Note
that by the deHnition of GA there is a bijection between the components of GA − X
and the components of G1 − X diNerent from isolated vertices in B1. Moreover, the T
parity of the corresponding components are the same. Let R = K(G2). Note that if
R∈R then there is no edge between R ∩ B2 and A ∩ T . We distinguish two cases.

Case I: First, suppose that X = ∅ that is qT (G1)¿ 1, in other words qT (G − (A −
T ))¿ 1. Let R1 ⊆ R be a minimal subset of R so that qT (G − A′)¿ 1, where A′ :=⋃{R∩A: R∈R1}. Let P={u: u∈A−A′}∪{A′} and let Q={R∩B: R∈K(G−A′)}.
By Claim 3(b), P ∪ Q satisHes (i). Since A′ ⊆ A − T , |(V (G) − A′) ∩ T | is even
so qT (G − A′)¿ 2 and, by the minimality of R1, each such component has at least
one neighbour in every R∈R1. Since G is 2-connected and for every R∈R1; G[R] is
connected, it follows that for every D∈K(G−A′), G−D is connected, that is (ii) is
also satisHed, so P ∪ Q is an admissible bi-partition and

val(P) =
∑
Ai∈P

qT (G − Ai)¿
∑

t∈A−A′
bT
t + qT (G − A′)¿ |T ∩ A|+ 2:

Case II: Secondly, suppose that X �= ∅. By the minimality of X , X ⊂ V (G′) where
G′ ∈K(G1). Let R1 ⊆ R be a minimal subset of R so that all the components of
G′−X rest in diNerent components of G−A′′−X , where A′′ :=

⋃{R∩A: R∈R1}. Let
P := {X∪A′′}∪{u: u∈A−(X∪A′′)} and let Q={R∩B: R∈K(G−X−A′′)}. By Claim
3(b), P∪Q satisHes (i). For each R∈R1, G[R] is connected and, by the minimality of
R1, R has neighbours in at least two diNerent components of G−X −A′′. Moreover, by
Claim 9, for each K ∈K(G′−X ), G′−K is connected, hence (G−⋃{R: R∈R1})−K ′

is connected, where K ′ ∈K(G − X − A′′) that contains K . It follows that X ∪ A′′ is
contained in one of the components of G−K ′. Thus, by Claim 8 and by 2-connectivity,
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P ∪ Q is an admissible bi-partition of A ∪ B and

val(P) =
∑
Ai∈P

qT (G − Ai) =
∑

t∈A−X−A′′
bT
t + qT (G − (X ∪ A′′))

= |A ∩ T | − |X |+ qT (GA − X )¿ |T ∩ A|:
By Lemma 12, GA (GB, resp.) has a perfect matching and thus, by Claim 10, G

contains a T -join of cardinality |T ∩ A| (|T ∩ B|, resp.). By Claim 6(a), the proof of
the theorem is complete.

Case 2: Secondly, suppose that MAX¿ |T ∩ A| and MAX¿ |T ∩ B|. Then, by
Lemma 11, every optimal admissible bi-partition contains a set Ai with 1¡ |Ai|¡ |A|.
Let us choose an optimal admissible bi-partition P ∪ Q of A ∪ B so that such a set Ai

of P is as large as possible. Let K ∈K(G−Ai) so that |V (K)|¿ 2. (Since |Ai|¡ |A|
such a set exists.) Then, by Claim 5, JK ∈K(G−Bj) for some Bj ∈Q and |V ( JK)|¿ 2.
Let us denote by (G1; T1) and (G2; T2) the two bipartite grafts obtained from (G; T )
by T -contracting the connected subgraphs K and JK , respectively. The colour classes
of Gr will be denoted by Ar and Br , while the contracted vertex of Gr is denoted by
vr for r =1; 2. Let P1 := {Ak ∈P: Ak ⊆ A1} and Q1 := {Bl ∈Q: Bl ⊆ B1} ∪ {v1}. Let
P2 := {Ak ∈P: Ak ⊆ A2} ∪ {v2} and Q2 := {Bl ∈Q: Bl ⊆ B2}. The admissibility of
the bi-partition P ∪ Q implies the following Claim.

Claim 13.

(a) Pr ∪ Qr is an admissible bi-partition of Ar ∪ Br in Gr; r = 1; 2.
(b) val(G;T )(P) = val(G1 ;T1)(P1)− bT1

v1 + val(G2 ;T2)(P2).

Lemma 14. For r = 1; 2, Pr ∪ Qr is an optimal admissible bi-partition of Ar ∪ Br in
(Gr; Tr).

Proof. By Claim 13(a), only the optimality must be veriHed. By symmetry, it is enough
to prove it for r = 2. Suppose that P′ ∪ Q′ is an admissible bi-partition of A2 ∪ B2

in G2 with val(G2 ;T2)(P
′)¿ val(G2 ;T2)(P2). Let us denote by X that member of P′ that

contains v2. Since P1∪Q1 and P′∪Q′ are admissible bi-partitions and JK is connected,
P′′ := (P1 −Ai)∪ (P′ −X )∪ {(X − v2)∪Ai}, Q′′ = (Q1 −{v1})∪Q′ is an admissible
bi-partition of A ∪ B in G. By Claim 13(b),

val(G;T )(P′′) = val(G1 ;T1)(P1)− bT1
v1 + val(G2 ;T2)(P

′)

¿ val(G1 ;T1)(P1)− bT1
v1 + val(G2 ;T2)(P2) = val(G;T )(P);

a contradiction.

Lemma 15. If K is T -odd, then for every edge v2u of G2, P2 ∪ Q2 is an opti-
mal admissible bi-partition of A2 ∪ B2 in (G2; T ′

2) of value val(G2 ;T2)(P2) − 1, where
T ′
2 := T2 ⊕ {v2; u}.



360 Z. Szigeti / Discrete Mathematics 276 (2004) 353–361

Proof. By Claim 13(a), only the optimality must be veriHed. val(G2 ;T ′
2 )(P2)= val(G2 ;T2)

(P2)− 1 because for a component L of G2−R with R∈P2−{v2}, |L∩T2| ≡ |L∩T ′
2|

(mod 2) and the unique component K of G2−v2 becomes T ′
2-even. Suppose that P′∪Q′

is an admissible bi-partition of A2∪B2 in (G2; T ′
2) with val(G2 ;T ′

2 )(P
′)¿ val(G2 ;T2)(P2)−

1. By Claim 7, val(G2 ;T ′
2 )(P

′)¿ val(G2 ;T2)(P2)+1. Note that since K is T -odd, bT1
v1 = 1.

Let us denote by X that member of P′ that contains v2. Since K and JK are connected,
P′′ := (P1 −Ai)∪ (P′ −X )∪ {(X − v2)∪Ai}, Q′′ = (Q1 −{v1})∪Q′ is an admissible
bi-partition of A ∪ B in G.
If X = v2 then, by Claim 13(b),

val(G;T )(P′′) = val(G1 ;T1)(P1) + val(G2 ;T ′
2 )(P

′)

¿ val(G1 ;T1)(P1) + val(G2 ;T2)(P2) + 1¿ val(G;T )(P);

a contradiction.
If X �= v2, then, by Claim 13(b),

val(G;T )(P′′)¿ (val(G1 ;T1)(P1)− 1) + (val(G2 ;T ′
2 )(P

′)− 1)

¿ val(G1 ;T1)(P1)− 1 + val(G2 ;T2)(P2) = val(G;T )(P);

that is P′′ ∪ Q′′ is an optimal admissible bi-partition of A ∪ B in G, but
|(X − v2) ∪ Ai|¿ |Ai|, contradicting the maximality of Ai.

By induction (|V (G1)|¡ |V (G)| because |V (K)|¿ 2) and by Lemma 14, there exists
a T1-join F1 in G1 with |F1|= val(P1).
First suppose that K is a T -even component of G − Ai. By induction (|V (G2)|¡

|V (G)| because |V ( JK)|¿ 2) and by Lemma 14, there exists a T2-join F2 in G2 with
|F2|=val(P2). Then, by Claim 6(b), |F1∩�(K)|=0= |F2∩�(K)|, hence F := F1∪F2

is a T -join and, by Claim 13(b), |F |= |F1|+ |F2|= val(P1) + val(P2) = val(P). By
Claim 6(a), we are done.
Now suppose that K is a T -odd component of G − Ai. Then, by Claim 6(b),

|F1∩�(K)|=1. This edge corresponds to an edge v2u in G2. By induction (|V (G2)|¡
|V (G)| because |V ( JK)|¿ 2) and by Lemma 15 with edge v2u, there exists a T ′

2-join
F2 in G2 with |F2|=val(P2)− 1. Then F := F1 ∪F2 is a T -join and, by Claim 13(b),
|F |= |F1|+ |F2|= val(P1) + val(P2)− 1 = val(P). By Claim 6(a), we are done.
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