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Abstract

Frank et al. (Math. Programming Stud. 22 (1984) 99-112) proved that for any connected
bipartite graft (G, T'), the minimum size of a T-join is equal to the maximum value of a partition
of A, where A is one of the two colour classes of G. Their proof consists of constructing a
partition of A of value |F|, by using a minimum 7-join F. That proof depends heavily on the
properties of distances in graphs with conservative weightings. We follow the dual approach,
that is starting from a partition of 4 of maximum value k, we construct a 7-join of size k. Our
proof relies only on Tutte’s theorem on perfect matchings. It is known (J. Combin. Theory Ser.
B 61 (2) (1994) 263-271) that the results of Lovasz on 2-packing of 7-cuts, of Seymour on
packing of T-cuts in bipartite graphs and in grafts that cannot be 7-contracted onto (K, V'(K4)),
and of Sebo on packing of 7-borders are implied by this theorem of Frank et al. The main
contribution of the present paper is that all of these results can be derived from Tutte’s theorem.
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1. Introduction

This paper concerns matchings and 7T-joins. Since 7-joins are generalizations of
matching, the minimum weight 7-join problem contains the minimum weight perfect
matching problem. On the other hand, Edmonds and Johnson [2] showed that the
former problem can be reduced to the latter one. Thus, these problems are—in fact—
equivalent.

In matching theory lots of min—max results are known. Concerning matchings, in
fact, we shall consider Tutte’s theorem [11] on the existence of perfect matchings in
general graphs, and not the min—max version, the Tutte-Berge formula. Concerning
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T-joins, we mention the following min—max theorems: The results of Edmonds—Johnson
[2], Lovasz [7] on 2-packing of T-cuts, of Seymour [9,10] on packing of T-cuts in
bipartite graphs and in grafts that cannot be 7-contracted onto (Ky, V' (Ky)), of Sebo
[8] on packing of T-borders and a generalization of Seymour’s theorem due to Frank
et al. [4]. (For the definitions and the theorems see [3] or [5].) There are some easy
known implications between these results, some others can be found in [5], where we
showed that the result of Frank et al. [4] implies all of these results, including the
Tutte theorem.

Our aim in this paper is to demonstrate a new (surprising) implication, namely,
Tutte’s theorem implies the result of Frank et al. [4], and consequently, all of these
min—max results can be derived from Tutte’s theorem.

2. Definitions, notation

In this paper H =(V,E) denotes a graph where V' is the set of vertices and E is the
set of edges. G = (4, B; E) denotes always a bipartite connected graph and 7 C A UB
a subset of vertices of even cardinality. The pair (G, T) is called a bipartite graft. An
edge set F C E is a T-join if T ={v€AUB: dp(v) is odd}. The minimum size of a
T-join is denoted by (G, T). We mention that a bipartite graft (G, T) contains always
a T-join.

For a bipartite graft (G = (4,B;E),T) let us introduce an auxiliary graph
G4 = (T,E ) on the vertex set T, where for u,ve T, uve E, if at least one of u
and v belongs to 4 and there exists a path in G connecting u and v of length one or
two.

Let K be a vertex set in G. Then 6(K) denotes the set of edges connecting K and
(AU B) — K. G[K] denotes the subgraph induced by K. b% is defined to be 0 or 1
depending on the parity of |7 NK|. K is called T-odd if b, =1 and T-even if bL =0.
For a subgraph K of G, K = G[V(G) — V(K)].

We shall need the following operation applied for grafts. For a connected subgraph
K of G, by T-contracting K we mean the graft (G’,T’) obtained from (G, T) where
G’ = G/K (that is K is contracted into one vertex vg) and 7/ =T — V(K) if bL =0
and T/ =T — V(K) + {vg} if bL = 1.

In what follows a component of a graph means a connected component. For XCV(G),
H' (G — X) denotes the set of components of G — X and # 7(G — X) denotes the set
of T-odd components of G — X. Let g7(G — X) = |A47(G — X)|.

We denote by 24 := {u: u€ A} the partition of 4 where the elements of 2, are
the vertices in A as singletons. The value of a (sub)partition 2 = {4,,...,4;} of 4 is
defined to be

val(2) => {qr(G — 4;): 4;€ 2}, (1)
in other words,

val(2) = {b,@: kel %(GA,-)}. (2)

A,€2
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The theorem of Frank et al. [4] that generalizes all the min—max results mentioned
in the Introduction is as follows.

Theorem 1 (Frank, Sebo, Tardos). If (G,T) is a bipartite graft with G = (4,B;E),
then

(G, T) =max{val(?): 2 is apartition of A}. 3)

In order to be able to prove Theorem 1 by induction we will have to prove a slightly
stronger result than Theorem 1. To present it we need some definitions. An edge set C
of a connected graph G is called bicut if G—C has exactly two connected components.
Note that each edge of a tree is a bicut. Let Z = {4,,...,4;} be a partition of 4 and
let 2={By,...,B;} be a partition of B. Then U 2 is called a bi-partition of AUB in
G. Let us denote by G/(2U 2) the bipartite graph obtained from G by identifying the
vertices in R for every member R € 2 U 2 and by taking the underlying simple graph.
A bi-partition 2 U 2 of 4 U B is called admissible if

(i) F:=G/(2?U2) is a tree, and
(ii) for each edge e of F, the edge set of G that corresponds to e forms a bicut of
G.

By Claim 4, for any bipartite graft there exists an admissible bi-partition.

Theorem 2. If (G,T) is a bipartite graft with G = (A,B;E), then

(G, T) =max{val(?): U 2 is an admissible bi-partition of AU B}. (4)
The proof of Frank et al. [4] for Theorem 1 consists of constructing a partition
of A of value |F|, by using a minimum 7-join F. That proof depends heavily on
the properties of distances in graphs with conservative weightings. We follow the dual
approach, that is starting from a bi-partition of AUB of maximum value k, we construct
a T-join of size k. Our proof applies induction. Taking a special optimal admissible
bi-partition either we can use induction for some contracted graphs (and here we need
admissibility of the bi-partition) or we can apply Tutte’s theorem on perfect matchings,
namely a graph H has a perfect matching if and only if gy (H — X) < |X| for every
vertex set X of V(H).
We must mention two papers on this topic. Kostochka [6] and Ageev and Kostochka
[1] proved results similar to Theorem 2. Their proof technique is different from the
present one.

3. Preliminary results
Claim 3. Let (G =(A,B;E),T) be a bipartite graft.

(a) Then the bi-partition U 2 of AU B satisfies (i) where 2 := {a: a€ A} and
2 :={B}.



356 Z. Szigetil| Discrete Mathematics 276 (2004) 353—-361

(b) If X C A, then the bi-partition ?U2 of AUB satisfies (i) where # = {a: a€ A—
X}U{X} and 2:={KNB: KeA(G—-X)}.

The following claim (whose proof is left for the reader) shows that for any bipartite
graft there exists an admissible bi-partition.

Claim 4. Let (G =(A,B;E),T) be a bipartite graft.

(a) If there is no cut vertex in A then 2 U 2 is an admissible bi-partition of AU B,
where 2 :={a: a€ A} and 2 := {B}.

(b) If there is a cut vertex vE A, that is G can be decomposed into two connected
bipartite subgraphs G1=(A1,B1; E\) and Gy=(A, By; E>) with exactly one vertex
in common, namely v, then let us denote by (Gy,Ty) and (G,,T>) the two grafts
obtained from (G,T) by T-contracting V(G,) and V(Gy). If for i=1,2, #; U2;
is an admissible bi-partition of A; U B; and v€ A} then P U 2 is an admissible
bi-partition of AU B, where 2 = (2| — A}) U (P, — 45) U {4, U 45} and
2:=92,U2,.

The definition of an admissible bi-partition implies at once the following claim.
Claim 5. Let 2 U 2 be an admissible bi-partition of A U B.

(a) K € A 1(G—A4;) for some A; € 2 if and only if K € #' 1(G—B;) for some B; € 2.
(b) val(2) = val(2).

Claim 6. Let 2 be a partition of A and F a T-join in a bipartite graft
(G=(4,BE),T).

(a) Then val(2?) < |F)|.
(b) Moreover, if val(?)=|F|, then for every component K of G—A; for any 4; € 2,
|0(K)N F|=bE.
Proof. Let % :=J, c, #(G — 4;). By parity, for each K € %,
bl < |8(K)NF|.
Since for Ki,K> € #,0(K;) N 6(K,) =0, we have
val(2)= > by < Y |0K)NFI<|F|. O
KeR Kea
Claim 7. For every partition 2 of A in a bipartite graft (G =(4,B;E),T),
val(Z)=|TNA| (mod2).

Proof. Since |T| is even, for each 4; € 2,qr(G — 4;) = |T N 4;| (mod2). Thus

val(?)= > qr(G—4) =Y |[TN4|=|TNA| O
Aie? A;€2
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We shall deal with some bi-partitions along the proofs. The admissibility of these
bi-partitions can always be easily verified. The following easy fact may be useful.

Claim 8. Let X be a subset of vertices of a connected graph H. Let K be a component
of H—X. If X is contained in one of the components of H — K, then H — K is
connected.

Claim 9. Let H be a connected graph with |V(H)| even. If X is a minimal vertex set
with qy(H — X) > |X|, then for every component K of H — X, H — K is connected.

Proof. By assumption, using the usual parity argument, gy (H — X) > |X| + 2. Let K
be any component of H —X. Then at least one component N of H — K contains more
odd components of H —X than vertices in X, that is ¢y (H —(NNX)) > [NNX|. Then,
by the minimality of X, N N X =X, that is, by Claim 8, H — K is connected. [

Claim 10. Let (G =(A4,B;E),T) be a bipartite graft. If the auxiliary graph G4 has
a perfect matching M then G contains a T-join of cardinality |T N A].

Proof. For every edge uv € M there exists a (u,v)-path in G of length at most two.
Since M is a matching these paths are edge disjoint. The union F of these paths is a
T-join of G because M covers all the vertices of T. By construction, |[F|=|TN4|. O

4. The proof of Theorem 2

Let (G,T) be a counterexample with minimum number of vertices in G. By Claim
6(a), for any admissible bi-partition £ U 2 of 4 U B, val(?) < ©(G,T), so
val(?) < 1(G, T).
Lemma 11. G is 2-connected.
Proof. Suppose that G contains a cut vertex v, by symmetry we may suppose that

veA. We use the notation of Claim 4. For i = 1,2, (G;,T;) is a bipartite graft and
|4; UB;| < |4UB| so there exists an admissible bi-partition #; U 2; of A; U B; with

(G, Ti) = val(2). (5)
Clearly,
UG, T)=1G1,T1) + (G2, T2). (6)

Let 2 U 2 be the admissible bi-partition of 4 U B defined in Claim 4(b). Note that
val(2) = val(2,) + val(£,). (7)

Then, by (6), (5) and (7), ©(G,T) = val(2) showing that (G,T) is not a counterex-
ample. [
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Let us denote by MAX the maximum value of an admissible bi-partition of 4 U B.
Observe that MAX > [T NA| and MAX > |TNB|. The first comes from the admissible
bi-partition # = {v: v€ 4}, 2={B}, the other one from # ={A4}, 2={v: ve€ B}. These
bi-partitions are admissible by Claim 4(a).

Case 1: First suppose that MAX = |T N A4| (or MAX = |T N B|).

Lemma 12. If the auxiliary graph G, has no perfect matching then there exists an
admissible bi-partition 2 U 2 of AU B with val(?) > |T N A|.

Proof. By Tutte’s Theorem, there exists a set X C T so that ¢7(G4 — X) > |X|. Let
us take a minimal such set.

We claim that X N B = (). Suppose that a € X N B. Suppose that a is connected to
two odd components K; and K, of G4 — X. Then, by the definition of G4, there is
an edge between K; and K, that is they cannot be different components of G4 — X.
Thus a is connected to at most one odd component of G4 — X. Hence, q7(G4 — (X —
a)) =2 qr(G4 —X)— 1> |X| > |X — a|, contradicting the minimality of X.

Let us denote by B; the set of vertices in B — T that has at least one neighbour in
ANT and let B, := B—T — B;. Let G| := G[TUB,] and G, := G[(4 — T)UB;]. Note
that by the definition of G, there is a bijection between the components of G4 — X
and the components of G; — X different from isolated vertices in B,. Moreover, the T’
parity of the corresponding components are the same. Let # = #'(G,). Note that if
R € Z then there is no edge between RN B, and 4 N 7. We distinguish two cases.

Case 1. First, suppose that X = () that is ¢7(G;) = 1, in other words g7(G — (4 —
T)) = 1. Let #; C % be a minimal subset of # so that g7(G — A") = 1, where 4’ :=
U{RNA4: ReZ1}. Let P={u:ucA—A'}U{d'} and let 2={RNB: Re #(G—A4")}.
By Claim 3(b), 2 U 2 satisfies (i). Since 4’ C 4 — T, |(V(G) —4") N T| is even
s0 gr(G — A") = 2 and, by the minimality of #;, each such component has at least
one neighbour in every R € %;. Since G is 2-connected and for every R € %), G[R] is
connected, it follows that for every D € # (G —4’), G — D is connected, that is (ii) is
also satisfied, so 2 U 2 is an admissible bi-partition and

val(?) =Y qr(G—4)> > b +qr(G—4) > [T NA4|+2.

A,€? teA—A’

Case 1I: Secondly, suppose that X # (. By the minimality of X, X C V(G’) where
G e #(Gy). Let #; C # be a minimal subset of # so that all the components of
G’ —X rest in different components of G—A"” —X, where 4” := |J{RNA: RE %, }. Let
P = {XUd"}U{u: ue A—(XUA4")} and let 2={RNB: Re #(G—X—A4")}. By Claim
3(b), U2 satisfies (i). For each R € #,, G[R] is connected and, by the minimality of
21, R has neighbours in at least two different components of G—X —A”. Moreover, by
Claim 9, for each K € #(G'—X), G'—K is connected, hence (G—|J{R: R€ %,})—K’
is connected, where K’ € # (G — X — A’) that contains K. It follows that X U 4" is
contained in one of the components of G—K’. Thus, by Claim 8 and by 2-connectivity,
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2 U 2 is an admissible bi-partition of 4 U B and

val(?2)= > qr(G—d)= > b +qr(G—(xUA"))
Aie? tEA—X—A"

=ANT|—|X|+qr(Gs4—X)>|TNA| O

By Lemma 12, G4 (Gg, resp.) has a perfect matching and thus, by Claim 10, G
contains a T-join of cardinality |7 N 4| (|T N B|, resp.). By Claim 6(a), the proof of
the theorem is complete.

Case 2: Secondly, suppose that MAX > |T N A| and MAX > |T N B|. Then, by
Lemma 11, every optimal admissible bi-partition contains a set A; with 1 < |4;] < |4].
Let us choose an optimal admissible bi-partition 2 U 2 of A U B so that such a set A4;
of 2 is as large as possible. Let K € #(G — 4;) so that |V (K)| = 2. (Since |4;| < |4|
such a set exists.) Then, by Claim 5, K € #°(G — B;) for some B; € 2 and |V(K)| > 2.
Let us denote by (Gy,71) and (G,, T>) the two bipartite grafts obtained from (G, T')
by T-contracting the connected subgraphs K and K, respectively. The colour classes
of G, will be denoted by 4" and B”, while the contracted vertex of G, is denoted by
v, for r=1,2. Let 2 := {4, €P: A4y C A'} and 2, := {B;€ 2: B; C B'} U{v,}. Let
Py = {A, €P: Ay C A’} U {np} and 2, := {B,; € 2: B; C B?}. The admissibility of
the bi-partition 2 U 2 implies the following Claim.

Claim 13.

(a) 2, U 2, is an admissible bi-partition of A" UB" in G,,r =1,2.
(b) valG,r)(2) = valig,1,)(Z?1) — b} + valig,.1,)(22).

Lemma 14. For r =1,2, 2, U 2, is an optimal admissible bi-partition of A" UB" in
(G, T,).

Proof. By Claim 13(a), only the optimality must be verified. By symmetry, it is enough
to prove it for » = 2. Suppose that 2’ U 2’ is an admissible bi-partition of 4> U B?
in G, with valg, 1,)(2') > val(g,1,)(#2). Let us denote by X that member of 2’ that
contains v,. Since 2, U2, and 2’ U2’ are admissible bi-partitions and K is connected,
P = (P —A)U(Z? —X)U{(X —up)U4;}, 2" =(21 — {1 }) U2 is an admissible
bi-partition of 4 UB in G. By Claim 13(b),

valig,ry(2") = val@,1,)(Z1) — bl + valg,1,(?")
> val(g,1,)(21) — by + val(G,.1,)(#2) = valG,1)(?),
a contradiction. [J
Lemma 15. If K is T-odd, then for every edge viu of G,, P> U 2, is an opti-

mal admissible bi-partition of A*> U B? in (G, Ty) of value valG,,\(#2) — 1, where
Ty =T, ® {vp,u}.
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Proof. By Claim 13(a), only the optimality must be verified. val(s, r;)(#2) = valG,.r)
(23) — 1 because for a component L of G, — R with R€ 2, — {2}, [LNT| = |[LNT]
(mod 2) and the unique component K of G, —v, becomes 7;-even. Suppose that /U2’
is an admissible bi-partition of 4>UB? in (G, T3) with val(G, 7y(2") > val(G,.1,)(22) —
1. By Claim 7, val(Gz,TZ/)(?’) = valg, 1,)(#2) + 1. Note that since K is T-odd, bgl =1.
Let us denote by X that member of 2’ that contains v,. Since K and K are connected,
P = (P —A)U(P —X)U{(X —v)U4;}, 2" =(2, —{v1})U 2 is an admissible
bi-partition of 4 UB in G.
If X = v, then, by Claim 13(b),

Val(G,T)(,@”) = Val(Gl’Tl)(yl) + Val(Gz,Tzl)(.@/)
= valg, 1,)(21) + valG,.1,)(#2) + 1 > val ) (2),

a contradiction.
If X # v, then, by Claim 13(b),

Val(G)T)(@H) = (Val(Gl,Tl)(,@l) — 1) + (Val(GZ’TZ/)(g/) — 1)
= val, 1)(Z1) — 1 +val,.1,)(Z2) = valig,r)(2),

that is #” U 2” is an optimal admissible bi-partition of 4 U B in G, but
|(X — v) UA;| > |4;], contradicting the maximality of 4;. [

By induction (|V(Gy)| < |V(G)| because |V (K)| > 2) and by Lemma 14, there exists
a Ti-join Fy in G, with |F|| = val(Z).

First suppose that K is a T-even component of G — 4;. By induction (|V(G)| <
|V(G)| because |V(K)| = 2) and by Lemma 14, there exists a T»-join F, in G, with
|F2| =val(£,). Then, by Claim 6(b), |F; Nd(K)|=0=|F,NJd(K)|, hence F := F; UF,
is a T-join and, by Claim 13(b), |F| = |F\| + |F2| = val(2,) + val(#,) = val(Z). By
Claim 6(a), we are done.

Now suppose that K is a 7-odd component of G — A4;. Then, by Claim 6(b),
|F1 No(K)|=1. This edge corresponds to an edge v,u in G,. By induction (|V(Gy)| <
|V(G)| because |V (K)| >2) and by Lemma 15 with edge v,u, there exists a Tj-join
F, in G, with |F,|=val(2?,)— 1. Then F := F| UF, is a T-join and, by Claim 13(b),
|F| = |F\| 4 |F2| = val(2)) + val(2,) — 1 =val(2). By Claim 6(a), we are done. [J
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