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Abstract

A graphG is said to be &eymour graplif for any edge seF there existF| pairwise disjoint
cuts each containing exactly one elementrofprovided for every circuiC of G the necessary
condition|CNF| < |C\ F| is satisfied. Seymour graphs behave well with respect to soteger
programs including multiflow problems, or more generallg@dt packings, and are strictly related
to matching theory.

A first coNP characterization of Seymour graphs has been shywAgeev, Kostochka and
Szigeti, the recognition problem has been solved in a pdaticcase by Gerards, and the related
cut packing problem has been solved in the correspondingadpmses. In this articlere show a
new, minor-producing operation that keeps this propenty] prove excluded minor characterizations
of Seymour graphs: the operation is the contraction of ftats or of odd circuits.This sharpens
the previous results, providing at the same time a simpléisaif-contained algorithmic proof of the
existing characterizations as well, still using methodsatching theory and its generalizations.

Dualizing the planar special case, Seymour graphs are hegahose for which the cut condition
is sufficient for the existence of disjoint paths for any del@mand pairs. Either the disjoint paths
or a forbidden minor can be found in polynomial time.

1 Introduction

Graphs. In this paper graphs are undirected and may have loops artppl@@dges. LeG = (V,E) be
a graph. Shrinking XC V means the identification of the verticesXn keeping all the edges incident
to X; the result will be denoted byG/X. Thedeletionandcontractionof an edgee € E are the usual
operations (the latter is the same as shrinking the endpointhe edge), as well as the deletion of a
vertex which means the deletion of the vertex together wittha edges incident to it. We will use the
notationG — e, G/e for the deletion, respectively contraction of edgeandG — v for the deletion of
vertexv. The vertex-set, edge-set of the graphvill be denoted by (G), E(G), whereas foX CV(G),
d(X) will denote thecutinduced byX that is the set of edges with exactly one endpoirXjnE(X) the
set ofinducededges, that is those that have both of their endpoints ih(X)= d(X) UE(X) and N(X)
the set of neighbors of.

A graphH = (V’,E’) is asubgraphof Gif V' CV andE’ CE. If H = G(X):= (X,E(X)) for some
X CV, thenH is called aninducedsubgraph of5 (induced byX). If F is a subgraph o6 = G/Y then
the corresponding subgraph @fwill be denoted byF.

Packing of cuts. A family of subsets of a s&is a packingif the sets are disjoint, and agackingif
everys € Sis contained in at most two members of the family.

LetF C E. A complete packing of cufer (G,F) is a family of |F| pairwise edge-disjoint cuts, each
containing an element &f. An obvious necessary condition for the existence of a cetapdacking of
cuts for (G,F) is thatF is ajoin, that is, for every circuiC of G, |[CNF| < |C\F|. Indeed, if2 is
a complete packing of cuts fdG, F) then for everye € CNF one of the cute € 2 containse, and
one more edge of the circu which is not inF. Similarly, acomplete2-packing of cutdor (G,F) is
a 2-packing of | cuts each containing an elementfgfand the existence of a complete 2-packing of
cuts for(G, F) implies thatF is a join inG. These obvious facts will be used without reference all over
the paper. 1f2 is a packing of cuts then we will denote by22he 2-packing of cuts obtained fro#i
by duplication.
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The two graphsK, and prism, that can be found in Figlile 1 play an importantirofaur results.

AL

prism

Figure 1: The complete grapfy on four vertices and the prism

The graphK, (or the prism) with a join consisting of a perfect matchingpwh that a complete
packing of cuts does not necessarily exist. However, by aréime of Lovasz[[4] for every joifr there
exists a complete 2-packing of cuts @, F). This result (more precisely a slight sharpening) plays a
key-role in the proof of all the characterizations of Seymgnaphs.

Seymour graphs. The graphG is said to be e&eymour-graphf for every join F C E there exists a
complete packing of cuts. Let us immediately show a conditiat is sufficient for this property to fail:

Let us call a circuiC of G tight with respect to G, F), if CNF|=|C\ F|, that is, if the inequality
ICNF| < |C\F]is satisfied with equality. In the above proof of "consenatiess” (from the existence
of a complete packing of cuts) we have equality for tight i, that is in any complete packing of
cuts the family{QNC # 0 : Q € 2} is a partition ofC into pairs of edgege, f } whereec F andf ¢ F.
The following fact straightforwardly follows:

Fact 1. Let G be a graph. If there exists a join F in G and a set of citight with respect tqG, F)
whose union is non-bipartite, then G is not Seymour.

Indeed, ifC is an arbitrary circuit in the union of tight circuits, and is a complete packing of
cuts for (G,F), then all the edges & are contained in some member gf by the previous remark.
Therefore the nonempty members{@NC: Q € 2} partitionC. Since all the classes of this partition
are even|C| is even, proving tha® is bipartite.

The examples of Figuld 1 show non-bipartite graphs whergy@dge belongs to a tight circuit for
an arbitrary perfect matching, and hence these graphs a&egmour graphs.

T-joins. Matchings and shortest paths between any two vertices @hagare simple examples of joins
(as well as arbitrany -joins, see below.) Moreover it can be readily seen that ¢etmpackings of cuts
in the dual graph (or matroid) correspond to circuits, eamftaining exactly one element Bf that is, to
paths, each joining the endpoints of one elemetit.ofhey also occur in the dual of matching problems
or of the Chinese Postman problem.

The latter has a general setting containing also matchijplgsar multifiows and where the main
ideas of matching theory still workT -joins. LetG = (V,E) be a connected graph afidC V, where
IT| is even. A subsef C E is called aT -join if the set of vertices having an odd number of incident
edges fronF is T. For any subseX C V, the cutd(X) is called aT -cutif [ XN T|is odd. Since in every
graph the number of vertices of odd degree is even, &ajciin must have at least one edge in common
with eachT-cut. Hence, if we denote by(G, T) the maximum number of edge disjoifitcuts and by
7(G,T), the minimum cardinality of & -join in G, thenv(G,T) < 1(G,T). The examplés = K4 and
T =V/(G) shows that this inequality can be strict.

The usual definition of a Seymour-graph is that the equalitg, T) = (G, T) holds for all subsets
T CV(G) of even cardinality. Indeed, this is equivalent to the abdegnition since every minimum
T-join F, |F| = 1(G,T) is a join (Guan’s lemma]7]) and a complete packing of cuts(®rF) is a
family of |F| = 7(G, T) disjoint T-cuts. Conversely, every jolfis a minimumT -join whereT is the set
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of vertices incident to an odd number of edge$ofind|F| = 7(G,T) = v(G, T) implies that a family
of v(G,T) disjoint T-cuts is a complete packing of cuts f@®,F). This reformulation is well-known
and has been exploited already in Seymour’s article [10].

Several particular cases of Seymour-graphs have beenitexhthy Seymour[]9][110], Gerard§l[3],
Szigeti [11] while the existence of complete packing of datgraphs has been proved to be NP-hard
[6]. In the rest of this introduction we wish to show the diffiites of such characterizations, and this
will lead us to the answer we provide here to this question.

Odd K4 and odd prism. We will work with different types of subdivisions of th€, and the prism. Let
us emphasize that in any subdivision of #agor the prism every vertex is of degree 2 or 3

A graphG is called anodd K, if it is a subdivision ofK4 such that each circuit bounding a face of
G has an odd length. A graghis anodd prism if it is a subdivision of the prism such that each circuit
bounding a triangular face @ has an odd length while each circuit bounding a quadrandadéar has
an even length. (See Figue 2(a).)

A subdivision of a grapl® is said to beevenif the number of new vertices inserted in every edge of
G is even (possibly zero). (See Figlite 2(b).) Analogouslykalvision of a graplG is said to beoddif
the number of new vertices inserted in every edg& @ odd. An even subdivision d€4 (respectively,
of the prism) is clearly an od, (respectively, an odd prism).

A H A XA A

non-Se%/mour Seymour
odd 4

odd Ky odd prism even subdivisions graph

(@) (b) (€)

Figure 2: (a) An oddK4 and an odd prism, (b) even subdivisionskaf and the prism, (c) a Seymour
graph containing a non-Seymour okigl

Subclasses of Seymour graphs. Itis well known that Seymour graphs include bipartite gafheymour
[Q]) and series-parallel graphs (Seymdurl [10]). For battanparison let us mention this latter class as
the family of graphs not containing any subdivisionkaf Gerardsl[3] generalized the previous results
by proving that graphs not containing o#d or odd prism subgraphs are Seymour. Fiddre 2(c) shows
a subdivision ofK4 which is not a Seymour graph but adding a new vertex joineavitodld ones, or
replacing the bottom path of length three by just one edgebt@ma Seymour graph. This shows that
the property is not inherited to minors.

A further restriction of the excluded minors (and thus a gelimation of the sufficient condition) is
to exclude only the non-Seymour subdivisionskafand the prism. The list of these was provided by
[11] and served as an important preliminary [df [1]. Szigetfiieorem[[1i1] stated that a graph that does
not contain a non-Seymour subdivision Kf or of the prism as subgraph, is a Seymour graph. This
theorem generalizes all the previous results, but the grificondition it provides is still not necessary:
the second graph on Figute 2(c) contains a non-Seymounasibdi of K4 (even as an induced subgraph)
but is Seymour.

Continuing on this road, excluding only even subdivisioh&gand the prism is already a hecessary
condition, that is, all Seymour-graphs are contained indésfined class of graphs. Indeed, any perfect
matching of an even subdivision Kf, is a join in the graph and there exists no complete packingitst ¢
Similarly for the prism.
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The main contribution of the present work is an excluded mimaracterization of Seymour-graphs.
In Sectior® we state the main results including also themnehries. In Sectiofil3 we provide a self-
contained proof of the results.

2 Results

Previous characterization of Seymour graphs. The following result (conjectured by Seb6 in 1992,
proved by Ageev, Kostochka & Szigeti in an IPCO volume, 1966rnal version 19971]), places the
Seymour property in co-NP and implies all the above inclsio

Theorem 1. The following statements are equivalent for a graph G:
(1) Gis nota Seymour graph,
(2) G has ajoin F and a set of tight circuits whose union is thdpartite,
(3) G has ajoin F and two tight circuits whose union forms ad &d or an odd prism.

This theorem has the drawback that it depends on thdHpinis not suitable for testing the property,
and heavy for algorithmic handling. A reason can be captiméle logical structure: it uses one more
guantifier besides a containment of a graph making it harchtbdin NP-characterization or algorithm
(there exists a subgraph, and a jBin...). We provide here characterizations by property keepingpmi
producing operations. The main result of this paper avdidse formal drawbacks, leads to a simpler
proof and is trying to pave the way to the recognition. We exhibit several characterizations, some of
which play mainly the role of a bridge in the proof, but mayoate useful for studying the complexity
of the problem in the future. For this we have to introduce sotions:

Factor-contraction. A graphG is calledfactor-critical if the graphG — v has a perfect matching for
any vertexv of G. Note that a vertex and an odd circuit is factor-critical. Tokowing result due to
Lovasz [5], that provides a characterization of factadtigal graphs, will play an important role in the
main result of this paper.

Fact 2. A graph G is factor-critical if and only if a single vertex céie obtained from G by a series of
odd circuit contractions.

A factor-contractionis the contraction of (X) (all edges incident to a vertex s€}, whereG(X) is
factor-critical. There is a rich appearence of such Zeis the T-join structure [[8], which is “robust”
whith respect to the contraction bfX). We will denote the result of this operation BF. If X = {v},
v eV, then we will writeGY, and we call this operationsiar-contraction the contraction of the full star
of v. (A staris a graph consisting of edges all incident to a given vertestar is calledull, if it contains
all edges ofG incident tov.)

We well apply the following lemma that makes possible factmmtractions unless the graph is bi-
critical. The first part of this statement is part of a resnljd]. The second part is much simpler and is
implicit in [LQ].

Lemmal. Let G= (V,E) be a graph, FC E ajoin, and ¥ € V arbitrary.
(1) For F # 0, there exists a comple®packing{d(X) : X € €'} of cuts for(G,F) and Ce ¥ so that
(a) G(C) is factor-critical,
(b) {c} € ¥ for all c € C (if |C| = 1, then C is contained twice i#") and
(c) none of the members &f contain x.
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(2) Ifthere exists a complete packing of cuts(GtF ) then there is one containing a full star different
of 8(Xo).

Stoc-minor. A factor-contraction can be decomposed into two operatimtis of which are nontrivial if
|X| > 1: the contraction of (the edges induced By)nd the contraction of the edgesd(X). After the
contraction ofX we just have to contract a star, which thus keeps the Seyproperty.

But does the contraction of a factor-critical graph alsqtbe property? If yes, then in particular, the
contraction of an odd circuit also keeps it! By Hact 2, thet@mtion of the edges of a factor-critical graph
is equivalent to a succession of contractions of odd cscuitcase of a yes answer, two very simple and
basic operations would be sufficient to handle Seymourkgraptar- and odd-circuit-contraction. This
was a raised and forgotten open questiorn_in [11].

The main novelty of the present work is thatdeed, these two operations keep the Seymour
property. This refined approach simplifies the results and their grobthe known characterizations as
well. However, we were not able to prove it directly withomtalving essentially the entire proof.

We will say that a grapl@’ is the stoc-minorof G if it arises fromG by a series of star and odd
circuit contractions. Stoc-minors would generate thoughramediate simplification: prisms disappear!
Indeed K4 is a stoc-minor of the prism.

Biprism. A biprismis obtained from the prism by subdividing each edge that ecisrthe triangles by a
vertex.The seX of the three new vertices is called theparatorof the biprismH. Note thatH — X has
two connected components, and both are triangles. Thekeendhlled the twaidesof the biprism. For
a subdivided biprism the two sides include the new verti¢éiseosubdivisions connected to the triangles
on each side. We mention that for a subdivided biprism thedyidg biprism and the two sides are not
necessarily uniquely determined, so whenever necessanyitiwell more about the subdivision we are
speaking about.

Fort € {2,3}, at-staris a star containingedges.We will also deal with the families of the subgraphs
L of G that are even or odd subdivisions of-atar. The set of thevertices of degree one Inis called
the baseof L. For a subgrapli of G, a vertex-set) C V(H) is called at-coreof H if |4 (U)| =t and
I4(U) is an even subdivision oftastar. Acoreis either a 2-core or a 3-core.

Obstructions. We will say thatG contains &-obstruction whereK is aK4, a prism or a biprism if there
exists a subgrapH of G with a subpartitior? of V (H) satisfying the following properties:

— H is a subdivision oK.

For everyU € % the grapHy (U) is an even subdivision of a star.

Any pathof G joining two verticeau; € U; € % andup € V(H) —Uj has length at least 2 if; is
of degree 3 irH and it has length at least 3up € U, € %.

Shrinking eacH (U) in G (they are disjoint because of the previous condition) weageeven
subdivision ofK, and for the biprism we also require that there is no edde loétween vertices on
different sides. (Meaning that among the possible choi€éiseoseparator, there is one satisfying
this.)

We will say that(H, % ) is anobstructionof G. Note that ifK is aK4 or a prism and a subgrah of
G with subpartitionZz empty is aK-obstruction, themd is simply an even subdivision &f. We mention
that the graph of Figurd 2(c) does not contailsaobstruction because the distances of the vertices of
degree three are at most two@
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Figure 3: (a) AK4-obstruction and (b) a biprism-obstruction

Let us explain the definition of obstructions with other wegrdsing only contractions and not using
distances (see Figuré 3):

An odd K4 subgraphH of G with a set% of disjoint 3-coredJ; of H is a K4-obstruction if after
contracting inG the set of edges @ having at least one end-vertex in ondipk (that islg(U;) U; € %),
H tranforms into an even subdivision of tKg.

An odd prism subgraphl of G with a set?% of disjoint 2 or 3-coredJ; of H is a prism-obstruction
(respectively, biprism-obstruction) if after contragtim G the set of edges o& having at least one
end-vertex in one dfj’s (that islg(U;) U; € %), H tranforms intoH’, an even subdivision of the prism
(respectively, of the biprism; and in this latter case wita further property that for a convenient sepa-
rator X of the underlying biprism no edge &f connects the two connected componentbl of X). We
mention that 2-cores are necessary because of the sepafrtiterbiprism (see Figuild 4).

contraction
—_—
inG

Figure 4: Necessary 2-star contraction

Let us continue with three claims on obstructions.

Claim 1. Let G= (V,E) be a graph, A=V andG = G/I(A). Suppose thab contains a K-obstruction
(H,%). Let H be the subgraph of G defined by the edge sétafid T=\V (H) NN(A).

(@) If |T| =2and GAUT) contains an even path between the vertices of T, or

(b) if |T| =3 and GAUT) contains an even or odd subdivision o8&tar with base T,
then G also contains a K-obstruction.

Proof. Let us denote by the contracted vertex @& and let% = {Uy,...,Uy}.

(a) LetL be the even path in question. Note that the subgtdphL of G is an oddK4 or an
odd prism because we extended the pathathat contains the vertea by an even path. Now we
define the set”. If the vertexa belongs to one of the cor&%,- € @2, then letU; := U; for i # j and
Uj := (U; —a)UV/(L), otherwise let; := U; for i = 1,...,k and ifK is a biprism anch belongs to the
separator, thebly, 1 :=V (L) — T. We emphasize that in this latter case we have toladd because of
the condition that no edge @ is allowed between the different sides of the biprism.
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(b) LetL be the subdivision of a 3-star in question. Note that the apgigH UL of G is an oddK,
or an odd prism because every circuitrbis extended by an even path. Now we define theZseFirst,
suppose thalt is an even subdivision of a 3-star. If the vertm}belongs to one of the coréﬂs, cEU,
then letU; := U; for i # j andUj is deleted, otherwise |&f; = U fori = 1,....,kandUy;1:=V(L)-T.
Second, suppose thhtis an odd subdivision of a 3-star. If the verta>belongs to one of the cores
U; € %, then letU; := U; i # j andU; := (U; —a) UV(L), otherwise let; := U fori=1,... k.

In all case§H UL, %) is aK-obstruction ofG. O

Claim 2. If G contains an obstructioiiH, 0), then G has a join F and two tight circuits whose union is
Hand d(v) = 1lifdy(v) =3.

Proof. We define the edge sét in the three cases. H is an even subdivision df4, then letF be
an arbitrary perfect matching &f. If H is an even subdivision of the prism, then kebe that perfect
matching ofH for which & (C) = 1 whereC is one of the two odd circuits that correspond to the two
triangles of the prism. IH is an even subdivision of the biprism, then }tbe the separator dfl, x
a vertex ofX andu andw be the two neighbors of in H and finally letF be the union of the unique
perfect matching oH — X —u—wand{ux,wx}. In all casesig (v) = 1 if dy (v) = 3. (See Figuréls.)

To see thaF is a join we provide a complete 2-packing of cuts @ F) in the three cases. H is
an even subdivision df4 or the prism, then le2 := {d(v) : ve V(H)} and ifH is an even subdivision
of the biprism, then let2 := {d(v) :ve V(H) — X} U{d(V1),0(V2)}, whereV; andV;, are the two
connected components bff — X. Note that, by the definition of a biprism-obstruction, thexists no
edge ofG betweerV; andV,. ThenQ is a complete 2-packing of cuts f¢&, F) and hencé- is a join.

(See Figurgls.) In all cases it is easy to find the two tightutisowhose union i$l. O
. o m
\/
® ) G, )

Figure 5: Construction of the joiR and of the complete 2-packing of cuts

The proof of the next claim is omitted because of space liinita

Claim 3. Let us suppose that the subgraph H and the subpartifoform an obstruction of G so that
IV(H)|+Syues U] is minimum. Let U= % be a3-core. Then there exists no edge of G between a vertex
in Ny (U) and a vertex of U that are not neighbors in H O

The next definition we need serves purely technical purptbedss in itself not very interesting, but
it is useful in the proof, and makes a bridge between the nexgrgéion of the results and the previous
ones.

Visibly non-Seymour. We will say that the grapi® is visibly non-Seymougshortly VNS) if it has a
subgraptH containing an edge sét, so that

(a) H is the union of two tight circuits with respect (&, F),

(b) H is non-bipartite,
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(c) the maximum degree is 3 i,

(d) there exists a complete 2-packing of cuts @;F), which contains all the stars (iB) of the
vertices whose degree is 3kh(with multiplicity at least 1).

Matching-covered graphs. We will need some definitions and results from matching thedr con-
nected graph is callechatching-coveredf each edge belongs to a perfect matching. A connected graph
G is calledbicritical if the graphG — {u,v} has a perfect matching for any two different verticesnd

v of G; in other worlds:G — u is factor-critical for any vertexi of G. A bicritical graph isnon-trivial if
|V(G)| > 2. Note that a bicritical graph is matching-covered. Addingedge between the vertices of a
bicritical graph it remains bicritical, and therefore apgtdhas a bicritical subgraph if and only if it has a
bicritical induced subgraph. The grapl§ is defined to be a set of three parallel edges. A cilCuwf G

is calledniceif G—V(C) contains a perfect matching.

The following two similar results on matching-covered drawill be crucial for us. Faii3 is due to
Lovasz and Plummel[5]. We mention that none of them imphesother one.

Fact 3. Every non-bipartite matching-covered graph contains amesubdivision of the Kor the prism.

Lemma 2. Every3-star of a matching-covered graph belongs to an even suidiviof K; or K3.

Proof. Let G be a minimal counter-example with the 3-skar= {ej, e, e3} such thalg = vv. SinceG

is matching-covered, each edgéelongs to a perfect matchimg; of G. Then there exists a nice circuit
in the symmetric differencél; AM; of M; andM; containinge ande;j. Let C be a shortest nice circuit
containing two edges d¢f. We may suppose without loss of generality teatloes not belong t6. Since
Cis a nice circuit, there exists a perfect matchMgf G —V(C). ThenM AM3 contains odd paths that
match the vertices . Note that the union of these paths &b a matching-covered graph containing
F so by the minimality ofG, it is G. Since we can contract the edges incident to a vertex ) gf degree
two in G, it follows, by the minimality ofG, that these paths are just edges éngd CUMs. Letv;u; be
the edge oMj3 incident tov;. Let A andB be the two colour classes 6fwith v e A andvy, v, € B. By
the minimality ofC, vz € Aanduy, u, € B.

Case 1.If vw andviu; (for somei € {1,2}) are crossing chords @& thenC + vvs + Vviu; is an even
subdivision ofK4 and it containg-. (See the first graph in Figuké 6.)

Case 2.0therwise (v +Vviug +C(U1,V3)) + Vs + (Wa + Volz +C(U2, V3)) iS @an even subdivision CKS
betweernv andvs and it containg=, whereC(a,b) denotes the path & between two verticea andb of

C which does not contaim (See the second graph in Figlile 6.) O

Vv
V1 \Z

3
even subdivision oK, even subdivision ng'

Figure 6: The configurations in the two cases

A similar observation on odd prisms will also be applied.

Fact 4. Every3-star of an odd prism belongs to an even or odd subdivisionof K

8



An Excluded Minor Characterization of Seymour Graphs Ageeanchetrit, Sebd, Szigeti

New characterization of Seymour graphs. We squeeze the main results of this paper into one theorem:
The prism disappears !

Theorem 2. The following statements are equivalent for the graph G:
(i) G isnota Seymour graph,
(i) G can be factor-contracted to a graph that contains a +towial bicritical subgraph,

(i) G can be factor-contracted to a graph that contains aree subdivision of Kor of the prism as a
subgraph,

(iv) G contains an obstruction,
(v) Gisa visibly non-Seymour graph,
(vi) G has a stoc-minor containing an even subdivision p&Ka subgraph.

A tempting additional equivalent statement would be Batan be star-contracted to a graph that
contains a bicritical graph on at least four vertices as gah. This is not true as the biprism shows.
This graph is not Seymour but contracting any of the staredbmes Seymour. Yet it does not contain a
bicritical subgraph.

3 Algorithmic proof of Theorem 2

(i) implies(ii): Let G = (V,E) be a minimal counter-example that is
(&) Gis not a Seymour graph,
(b) every factor-contraction @b is a Seymour graph and

(c) G contains no non-trivial bicritical subgraph.

By (a), there exists a non-empty jof so that no complete packing of cuts exists {&,F). The
following lemma contradicts (c).

Lemma3. G := G(V(F)) is a non-trivial bicritical graph.
Proof. First we show that

if 2 is a complete 2-packing of cuts f¢G, F ) then no star is contained twice i#1. (%)

To see this suppose to the contrary that\d C 2. Let us contract the full star of ThenFY:=F \ §(v)

is a join inGY of size|F| — 1 becauseZ — 25(v) is a complete 2-packing of cuts f0&",F"). Since the
graphG is obtained fronG by a factor-contration, we have by (b) th@tis a Seymour graph and hence
there exists a complete packitg of cuts for(G",FY) and then2' U d(v) is a complete packing of cuts
for (G,F), which is a contradiction.

Let xo be an arbitrary vertex df. Let 2 andC € 2 be the sets provided by (1) of Lemioa 1. We
recall thatG(C) is factor-critical andC C V (F) — xo. In fact,

C=V(F)—X. (+4)

To see this suppose to the contrary t8at V (F) — Xo. Then, sinced(C) contains only one edge &f,
the sef© := F \ 1(C) is non-empty. This edge sgt' is a join inG®, since2\ ({5(C)}uU{5(c):ccC})

9
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is a complete 2-packing of cuts f66C,FC). By (b), G® is a Seymour graph and hence there exists a
complete packing2® of cuts for(G®,F¢). By (2) of LemmdlL,d(v) € .2 for somev € V(G)\ (CU
N(C)). Then(22°)uU ({5(C)} U{d(c) : c € C}) is a complete 2-packing of cuts f0&, F), which is a
contradiction byg)).

It follows, by ), that|C| # 1 and by =), thatG' — xg = G(C) is factor-critical for everygy € V(G'),
that isG' is a non-trivial bicritical graph. O

(it) implies (iii): By Fact[3, a non-trivial bicritical graph contains an evembdivision ofK4 or the
prism.

(iii) implies (iv): Let G satisfy (iii), that is,G can be factor-contracted to a graBtthat contains an
even subdivisiorH of K4 or the prism. ThertH,0) is an obstruction o6. To show thatG satisfies (iv),
that isG itself contains an obstruction, we prove the following leenamd then we are done by induction:

Lemma4. If G (C CV, G(C) is factor-critical) contains an obstruction, then so does G

Proof. Let Gy := GC, (Hl,%) an obstruction of51, H; the subgraph ofs defined by the edge set bif
andT :={v1,...,vi} =V (H1) NN(C). Since the vertices dfi; are of degree 2 or 3, we have that 3.

Case 1If | <1, then(H;,% ) is an obstruction o6, and we are done.

Thus we may suppose without loss of generality that2. LetG, be the graph obtained fro@
by contractingy —C. Sincev; € N(C), we can choose a neighbarof v; inC for alli =1,...,l. Since
G(C) is factor-critical, G(C) — u; contains a perfect matching and her@ghas a perfect matchinig;
containingviu;. Then the subgrap8 of G, induced by the edge sejl M; is matching-covered.

Case 2.If | =2, thenSis an even path i6(CUT) and by Clain{Il(a)G contains an obstruction, and
we are done.

Thus from now on we suppose tHat 3. By LemmdR, there exists i8 an even subdivisiol,
either of theKy or of thng containing the three edgesvy, upv, andusvs.

Case 3.If H, is an even subdivision of théf, thenH> is an even subdivision of a 3-star with bakén
G(CUT) and by ClainflL(b), we are done. (Figlile 7.)

Hy Vi

Figure 7: An easy case

So we suppose that, is an even subdivision df,, that is(Hz,O) is aK4-obstruction inS.

Case 4.If I—h is an odd prism oél, then by Fadfl4, there exists an even or odd subdivikiohthe Kg’
in Gy, soL is an even or odd subdivision of the 3-staHnwith baseT in G((V —C—N(C))UT) and
we are done again by Claioh 1(b). (Figlile 8.)
Case 5Finally, if H; is an oddK, in G; andH, is an even subdivision d€, in Gz, thenH; UH, is an odd
prism of G. If the contracted vertex db; belongs to one of the corék say toljj, then letU; :=U; i # |
andUj is deleted, otherwise l&f; := U1<i<k Then(HyUH2,% ) is an obstruction o5 because
after contracting the set$ € % we get an even subdivision of the prism or the biprism. (Fegl)

[l
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Figure 8: Another easy case
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Figure 9: The case of the biprism

(iv) implies (v): Let (H,%) be an obstruction o8, G' := G/ U Ig(U;) andH’ := H/ U Ig(U;). By
Claim[3, there exist a joif’ of G’ and two tight circuitsC; andC;, whose union i$1” and for each 3-core
U; exactly one edge of F’ is incident to the vertex; that corresponds td; in G'. For each 3-coréJ;
there is a unique edgew; € &4 (U;) such thaw; € Uj,w; € V —U; ande is incident tow;. For each 2-core
Ui, letw;v; be one of the two edges of the alf(U;) with v; € U;. For each cor&);, let F be the unique
perfect matching o (U;) — vi. Let F := F’ UK (F +viw).

By Lemmdl, there exists a complete 2-packitigof cuts for(G',F’). Let 2, be the corresponding
complete 2-packing of cuts fqiG,F’). Let 2 := {v:ve U} U{U;} and 2 := UKZ;. Then 2 is a
complete 2-packing of cuts f@6, F) henceF is a join of G.

Moreover,C] andC;, correspond to two tight circuits @ whose union i$H. ThusG is VNS.

C Ua
Uz

L)

H

contraction
inG

Us

Figure 10: The construction of the jokhand the complete 2-packing of cuts

(v) implies (i): LetH be a subgraph db, F an edge set il and.2 a complete 2-packing of cuts for
(G,F) that show thaG is VNS. By (d),F is a join of G, by (a),H is the union of two tight circuits with
respect tq G, F), and by (b) H is non-bipartite, so by FaEl G is not a Seymour graph.

(i) implies (vi): By Fact[2, a factor-contraction can be replaced by a sefiesmtractions of odd
circuits and then the contraction of a star. Moreover, wearartract an odd circuit in an even subdivion
of a prism to get an even subdivision ofka. Hence, ifG can be factor-contracted to a graph that

11
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contains an even subdivision I, or of the prism as a subgraph, thérhas a stoc-minor containing an
even subdivision oK, as a subgraph.

(vi) implies (i): Let G be a stoc-minor ofs that contains an even subdivisibhof K4. Then any perfect
matching ofH is a join of G, andH is the union of two tight circuits with respect (é,F), so by Fact
B, Gis not a Seymour graph, that @ satisfies (i). To show thab satisfies (i) we prove the following
lemma and then we are done by induction:

Lemmab. Let C be a full star or an odd circuit. If & satisfies (i), then so does G.

Proof. If C is a full star, then sinc&/C satisfies (i), it satisfaigiii). A full star contraction is a factor-
contraction, sd also satisfiegiii) and hence (i).

From now onC is an odd circuit. Sinc&/C satisfies (i), it satisfaigiv), that isG/C contains a
K-obstruction(H,% ) whereK is aKy, prism or biprism. Take a minimal one as in Cldiin 3.

Case 1: If V(C)NV(H)| <2 andcis not in a separator of a biprism. d¢fe V \ UNy(U;), then the
obstructionH can be extended by the even par€othat isG also satisfie¢iv) and hence (i). Otherwise,
¢ € Ny (U;) for somei, that isH contains an edgey so thaty € U;.

If there exists no edge @ betweerl); and the even pai@, of the cycleC betweerc; andc, then the
obstructionH can be extended b, that isG also satisfieiv) and hence (i). Otherwise, take that edge
xcz of G with x € U; for which ¢z is onC, and the distancd of ¢, andcz onC; is as small as possible.
By Claim[3,x =Y. If d is even then for the edges we are in the above case.dfis odd, then changing
H as shown on Figule11, whe@is an odd path i, and deletindJ from %, we get a4-obstruction.

@ ‘ N \
Z C Z | /Cji> Z \ /(;3:>
| \e Q\l

l

Figure 11:

Case2: If [V(C)NV(H)| =2 andc s in a separator of a biprism. Latandb be the two vertices o
that are incident to the two edgeshfincident toc. Thena andb partitionC into an odd patl€; and an
even patiC,. If a= b, then(l—i,@/) remains a biprism-obstruction (B, soG satisfieqiv) and hences
also satisfies (i). Ia # b, then letH’ be obtained frond by addingC; and deleting the path betwees
andvg defined in Figur€l2. Le’ be obtained fron¥/ by deleting those cores that correspond to inner
vertices of the deleted path. Théd’, %) is aKs-obstruction inG, soG satisfieqiv) and hences also
satisfies (i). (See Figufell2)

Case 3: If V(C)NV (H)| = 3. Then sinceG/C satisfies (iv), it satisfaigv) with the sameH. By (d) of
VNS for ¢, there exists exactly one edgén F incident toc and both tight circuits contains Letu be
the end vertex oéin C, M a perfect matching & —u, F* =F UM andH* = H UC. The vertices oH
partitionC into 3 paths. If exatly one of them is of odd length, then defebmH*, F* andC that odd
path. Let2* := 2\ d(c)U{d(x) : xe C'}. ThenH* satisfies (a), (b), (c) and (d) of VNS, $bsatisfies
(v) and hence (i). (See Figurel13) O
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V2

V5

Figure 13: Extensions d¥, the tight circuits and?
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