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Abstract

A graphG is said to be aSeymour graphif for any edge setF there exist|F | pairwise disjoint
cuts each containing exactly one element ofF , provided for every circuitC of G the necessary
condition|C∩F | ≤ |C\F | is satisfied. Seymour graphs behave well with respect to someinteger
programs including multiflow problems, or more generally odd cut packings, and are strictly related
to matching theory.

A first coNP characterization of Seymour graphs has been shown by Ageev, Kostochka and
Szigeti, the recognition problem has been solved in a particular case by Gerards, and the related
cut packing problem has been solved in the corresponding special cases. In this articlewe show a
new, minor-producing operation that keeps this property, and prove excluded minor characterizations
of Seymour graphs: the operation is the contraction of full stars, or of odd circuits.This sharpens
the previous results, providing at the same time a simpler and self-contained algorithmic proof of the
existing characterizations as well, still using methods ofmatching theory and its generalizations.

Dualizing the planar special case, Seymour graphs are becoming those for which the cut condition
is sufficient for the existence of disjoint paths for any set of demand pairs. Either the disjoint paths
or a forbidden minor can be found in polynomial time.

1 Introduction

Graphs. In this paper graphs are undirected and may have loops and multiple edges. LetG = (V,E) be
a graph.Shrinking X⊆ V means the identification of the vertices inX, keeping all the edges incident
to X; the result will be denoted byG/X. Thedeletionandcontractionof an edgee∈ E are the usual
operations (the latter is the same as shrinking the endpoints of the edge), as well as the deletion of a
vertex which means the deletion of the vertex together with all the edges incident to it. We will use the
notationG− e, G/e for the deletion, respectively contraction of edgee, andG− v for the deletion of
vertexv. The vertex-set, edge-set of the graphG will be denoted byV(G), E(G), whereas forX ⊆V(G),
δ (X) will denote thecut induced byX that is the set of edges with exactly one endpoint inX, E(X) the
set ofinducededges, that is those that have both of their endpoints inX, I(X)= δ (X)∪E(X) and N(X)
the set of neighbors ofX.

A graphH = (V ′,E′) is asubgraphof G if V ′ ⊆V andE′ ⊆ E. If H = G(X):= (X,E(X)) for some
X ⊆V, thenH is called aninducedsubgraph ofG (induced byX). If F̂ is a subgraph of̂G = G/Y then
the corresponding subgraph ofG will be denoted byF.

Packing of cuts. A family of subsets of a setS is apackingif the sets are disjoint, and a 2-packingif
everys∈ S is contained in at most two members of the family.

Let F ⊆ E. A complete packing of cutsfor (G,F) is a family of|F| pairwise edge-disjoint cuts, each
containing an element ofF. An obvious necessary condition for the existence of a complete packing of
cuts for(G,F) is thatF is a join, that is, for every circuitC of G, |C∩F | ≤ |C\F|. Indeed, ifQ is
a complete packing of cuts for(G,F) then for everye∈C∩F one of the cutsQe ∈ Q containse, and
one more edge of the circuitC which is not inF. Similarly, acomplete2-packing of cutsfor (G,F) is
a 2-packing of 2|F | cuts each containing an element ofF, and the existence of a complete 2-packing of
cuts for(G,F) implies thatF is a join inG. These obvious facts will be used without reference all over
the paper. IfQ is a packing of cuts then we will denote by 2Q the 2-packing of cuts obtained fromQ
by duplication.
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The two graphs,K4 and prism, that can be found in Figure 1 play an important rolein our results.

K4 prism

Figure 1: The complete graphK4 on four vertices and the prism

The graphK4 (or the prism) with a join consisting of a perfect matching shows that a complete
packing of cuts does not necessarily exist. However, by a theorem of Lovász [4] for every joinF there
exists a complete 2-packing of cuts for(G,F). This result (more precisely a slight sharpening) plays a
key-role in the proof of all the characterizations of Seymour graphs.

Seymour graphs. The graphG is said to be aSeymour-graphif for every join F ⊆ E there exists a
complete packing of cuts. Let us immediately show a condition that is sufficient for this property to fail:

Let us call a circuitC of G tight with respect to(G,F), if |C∩F| = |C\F |, that is, if the inequality
|C∩F| ≤ |C\F| is satisfied with equality. In the above proof of ”conservativeness” (from the existence
of a complete packing of cuts) we have equality for tight circuits, that is in any complete packingQ of
cuts the family{Q∩C 6= /0 : Q∈ Q} is a partition ofC into pairs of edges{e, f} wheree∈ F and f /∈ F.
The following fact straightforwardly follows:

Fact 1. Let G be a graph. If there exists a join F in G and a set of circuits tight with respect to(G,F)
whose union is non-bipartite, then G is not Seymour.

Indeed, ifC is an arbitrary circuit in the union of tight circuits, andQ is a complete packing of
cuts for(G,F), then all the edges ofC are contained in some member ofQ, by the previous remark.
Therefore the nonempty members of{Q∩C : Q∈ Q} partitionC. Since all the classes of this partition
are even,|C| is even, proving thatG is bipartite.

The examples of Figure 1 show non-bipartite graphs where every edge belongs to a tight circuit for
an arbitrary perfect matching, and hence these graphs are not Seymour graphs.

T-joins. Matchings and shortest paths between any two vertices of a graph are simple examples of joins
(as well as arbitraryT-joins, see below.) Moreover it can be readily seen that complete packings of cuts
in the dual graph (or matroid) correspond to circuits, each containing exactly one element ofF, that is, to
paths, each joining the endpoints of one element ofF . They also occur in the dual of matching problems
or of the Chinese Postman problem.

The latter has a general setting containing also matchings,planar multiflows and where the main
ideas of matching theory still work:T-joins. LetG = (V,E) be a connected graph andT ⊆ V, where
|T| is even. A subsetF ⊆ E is called aT-join if the set of vertices having an odd number of incident
edges fromF is T. For any subsetX ⊆V, the cutδ (X) is called aT-cut if |X∩T| is odd. Since in every
graph the number of vertices of odd degree is even, eachT-join must have at least one edge in common
with eachT-cut. Hence, if we denote byν(G,T) the maximum number of edge disjointT-cuts and by
τ(G,T), the minimum cardinality of aT-join in G, thenν(G,T) ≤ τ(G,T). The exampleG = K4 and
T = V(G) shows that this inequality can be strict.

The usual definition of a Seymour-graph is that the equalityν(G,T) = τ(G,T) holds for all subsets
T ⊆ V(G) of even cardinality. Indeed, this is equivalent to the abovedefinition since every minimum
T-join F, |F | = τ(G,T) is a join (Guan’s lemma [7]) and a complete packing of cuts for(G,F) is a
family of |F| = τ(G,T) disjoint T-cuts. Conversely, every joinF is a minimumT-join whereT is the set
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of vertices incident to an odd number of edges ofF, and|F | = τ(G,T) = ν(G,T) implies that a family
of ν(G,T) disjoint T-cuts is a complete packing of cuts for(G,F). This reformulation is well-known
and has been exploited already in Seymour’s article [10].

Several particular cases of Seymour-graphs have been exhibited by Seymour [9] [10], Gerards [3],
Szigeti [11] while the existence of complete packing of cutsin graphs has been proved to be NP-hard
[6]. In the rest of this introduction we wish to show the difficulties of such characterizations, and this
will lead us to the answer we provide here to this question.

Odd K4 and odd prism. We will work with different types of subdivisions of theK4 and the prism. Let
us emphasize that in any subdivision of theK4 or the prism every vertex is of degree 2 or 3.

A graphG is called anodd K4 if it is a subdivision ofK4 such that each circuit bounding a face of
G has an odd length. A graphG is anodd prism if it is a subdivision of the prism such that each circuit
bounding a triangular face ofG has an odd length while each circuit bounding a quadrangularface has
an even length. (See Figure 2(a).)

A subdivision of a graphG is said to beevenif the number of new vertices inserted in every edge of
G is even (possibly zero). (See Figure 2(b).) Analogously, a subdivision of a graphG is said to beodd if
the number of new vertices inserted in every edge ofG is odd. An even subdivision ofK4 (respectively,
of the prism) is clearly an oddK4 (respectively, an odd prism).

oddK4 odd prism

o

o

e

(a)

o
oo

e

even subdivisions

(b)

Seymournon-Seymour
oddK4 graph

(c)

Figure 2: (a) An oddK4 and an odd prism, (b) even subdivisions ofK4 and the prism, (c) a Seymour
graph containing a non-Seymour oddK4.

Subclasses of Seymour graphs. It is well known that Seymour graphs include bipartite graphs (Seymour
[9]) and series-parallel graphs (Seymour [10]). For bettercomparison let us mention this latter class as
the family of graphs not containing any subdivision ofK4. Gerards [3] generalized the previous results
by proving that graphs not containing oddK4 or odd prism subgraphs are Seymour. Figure 2(c) shows
a subdivision ofK4 which is not a Seymour graph but adding a new vertex joined to two old ones, or
replacing the bottom path of length three by just one edge we obtain a Seymour graph. This shows that
the property is not inherited to minors.

A further restriction of the excluded minors (and thus a generalization of the sufficient condition) is
to exclude only the non-Seymour subdivisions ofK4 and the prism. The list of these was provided by
[11] and served as an important preliminary of [1]. Szigeti’s theorem [11] stated that a graph that does
not contain a non-Seymour subdivision ofK4 or of the prism as subgraph, is a Seymour graph. This
theorem generalizes all the previous results, but the sufficient condition it provides is still not necessary:
the second graph on Figure 2(c) contains a non-Seymour subdivision ofK4 (even as an induced subgraph)
but is Seymour.

Continuing on this road, excluding only even subdivisions of K4 and the prism is already a necessary
condition, that is, all Seymour-graphs are contained in thedefined class of graphs. Indeed, any perfect
matching of an even subdivision ofK4 is a join in the graph and there exists no complete packing of cuts.
Similarly for the prism.
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The main contribution of the present work is an excluded minor characterization of Seymour-graphs.
In Section 2 we state the main results including also the preliminaries. In Section 3 we provide a self-
contained proof of the results.

2 Results

Previous characterization of Seymour graphs. The following result (conjectured by Sebő in 1992,
proved by Ageev, Kostochka & Szigeti in an IPCO volume, 1995,journal version 1997 [1]), places the
Seymour property in co-NP and implies all the above inclusions.

Theorem 1. The following statements are equivalent for a graph G:

(1) G is not a Seymour graph,

(2) G has a join F and a set of tight circuits whose union is non-bipartite,

(3) G has a join F and two tight circuits whose union forms an odd K4 or an odd prism.

This theorem has the drawback that it depends on the joinF , it is not suitable for testing the property,
and heavy for algorithmic handling. A reason can be capturedin the logical structure: it uses one more
quantifier besides a containment of a graph making it hard to find an NP-characterization or algorithm
(there exists a subgraph, and a joinF, . . .). We provide here characterizations by property keeping minor-
producing operations. The main result of this paper avoids these formal drawbacks, leads to a simpler
proof and is trying to pave the way to the recognition. We willexhibit several characterizations, some of
which play mainly the role of a bridge in the proof, but may also be useful for studying the complexity
of the problem in the future. For this we have to introduce some notions:

Factor-contraction. A graphG is calledfactor-critical if the graphG− v has a perfect matching for
any vertexv of G. Note that a vertex and an odd circuit is factor-critical. Thefollowing result due to
Lovász [5], that provides a characterization of factor-critical graphs, will play an important role in the
main result of this paper.

Fact 2. A graph G is factor-critical if and only if a single vertex canbe obtained from G by a series of
odd circuit contractions.

A factor-contractionis the contraction ofI(X) (all edges incident to a vertex setX), whereG(X) is
factor-critical. There is a rich appearence of such setsX in the T-join structure [8], which is “robust”
whith respect to the contraction ofI(X). We will denote the result of this operation byGX. If X = {v},
v∈V, then we will writeGv, and we call this operation astar-contraction, the contraction of the full star
of v. (A star is a graph consisting of edges all incident to a given vertex.A star is calledfull, if it contains
all edges ofG incident tov.)

We well apply the following lemma that makes possible factor-contractions unless the graph is bi-
critical. The first part of this statement is part of a result in [8]. The second part is much simpler and is
implicit in [10].

Lemma 1. Let G= (V,E) be a graph, F⊆ E a join, and x0 ∈V arbitrary.

(1) For F 6= /0, there exists a complete2-packing{δ (X) : X ∈ C } of cuts for(G,F) and C∈ C so that

(a) G(C) is factor-critical,

(b) {c} ∈ C for all c ∈C (if |C| = 1, then C is contained twice inC ) and

(c) none of the members ofC contain x0.
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(2) If there exists a complete packing of cuts for(G,F) then there is one containing a full star different
of δ (x0).

Stoc-minor. A factor-contraction can be decomposed into two operationsboth of which are nontrivial if
|X|> 1 : the contraction of (the edges induced by)X, and the contraction of the edges inδ (X). After the
contraction ofX we just have to contract a star, which thus keeps the Seymour-property.

But does the contraction of a factor-critical graph also keep the property? If yes, then in particular, the
contraction of an odd circuit also keeps it! By Fact 2, the contraction of the edges of a factor-critical graph
is equivalent to a succession of contractions of odd circuits, in case of a yes answer, two very simple and
basic operations would be sufficient to handle Seymour-graphs: star- and odd-circuit-contraction. This
was a raised and forgotten open question in [11].

The main novelty of the present work is thatindeed, these two operations keep the Seymour
property. This refined approach simplifies the results and their proofs of the known characterizations as
well. However, we were not able to prove it directly without involving essentially the entire proof.

We will say that a graphG′ is thestoc-minorof G if it arises fromG by a series of star and odd
circuit contractions. Stoc-minors would generate though an immediate simplification: prisms disappear!
Indeed,K4 is a stoc-minor of the prism.

Biprism. A biprism is obtained from the prism by subdividing each edge that connects the triangles by a
vertex.The setX of the three new vertices is called theseparatorof the biprismH. Note thatH −X has
two connected components, and both are triangles. These will be called the twosidesof the biprism. For
a subdivided biprism the two sides include the new vertices of the subdivisions connected to the triangles
on each side. We mention that for a subdivided biprism the underlying biprism and the two sides are not
necessarily uniquely determined, so whenever necessary, we will tell more about the subdivision we are
speaking about.

For t ∈ {2,3}, at-star is a star containingt edges.We will also deal with the families of the subgraphs
L of G that are even or odd subdivisions of at-star. The set of thet vertices of degree one inL is called
thebaseof L. For a subgraphH of G, a vertex-setU ⊂V(H) is called at-coreof H if |δH(U)| = t and
IH(U) is an even subdivision of at-star. Acore is either a 2-core or a 3-core.

Obstructions. We will say thatG contains aK-obstruction, whereK is aK4, a prism or a biprism if there
exists a subgraphH of G with a subpartitionU of V(H) satisfying the following properties:

– H is a subdivision ofK.

– For everyU ∈ U the graphIH(U) is an even subdivision of a star.

– Any pathof G joining two verticesu1 ∈U1 ∈ U andu2 ∈V(H)−U1 has length at least 2 ifu2 is
of degree 3 inH and it has length at least 3 ifu2 ∈U2 ∈ U .

– Shrinking eachI(U) in G (they are disjoint because of the previous condition) we getan even
subdivision ofK, and for the biprism we also require that there is no edge ofG between vertices on
different sides. (Meaning that among the possible choices of the separator, there is one satisfying
this.)

We will say that(H,U ) is anobstructionof G. Note that ifK is aK4 or a prism and a subgraphH of
G with subpartitionU empty is aK-obstruction, thenH is simply an even subdivision ofK. We mention
that the graph of Figure 2(c) does not contain aK4-obstruction because the distances of the vertices of
degree three are at most two inG.
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U1

U2

contraction
in G

-

(a)

U1

U2

contraction
in G

(b)

U3

U4

-

Figure 3: (a) AK4-obstruction and (b) a biprism-obstruction

Let us explain the definition of obstructions with other words, using only contractions and not using
distances (see Figure 3):

An odd K4 subgraphH of G with a setU of disjoint 3-coresUi of H is a K4-obstruction if after
contracting inG the set of edges ofG having at least one end-vertex in one ofUi ’s (that isIG(Ui)Ui ∈U ),
H tranforms into an even subdivision of theK4.

An odd prism subgraphH of G with a setU of disjoint 2 or 3-coresUi of H is a prism-obstruction
(respectively, biprism-obstruction) if after contracting in G the set of edges ofG having at least one
end-vertex in one ofUi ’s (that isIG(Ui) Ui ∈ U ), H tranforms intoH ′, an even subdivision of the prism
(respectively, of the biprism; and in this latter case with the further property that for a convenient sepa-
ratorX of the underlying biprism no edge ofG connects the two connected components ofH ′−X). We
mention that 2-cores are necessary because of the separatorof the biprism (see Figure 4).

-
contraction

in G

U1

Figure 4: Necessary 2-star contraction

Let us continue with three claims on obstructions.

Claim 1. Let G= (V,E) be a graph, A⊂V andĜ = G/I(A). Suppose that̂G contains a K-obstruction
(Ĥ,Û ). Let H be the subgraph of G defined by the edge set ofĤ and T= V(H)∩N(A).

(a) If |T| = 2 and G(A∪T) contains an even path between the vertices of T , or
(b) if |T| = 3 and G(A∪T) contains an even or odd subdivision of a3-star with base T,

then G also contains a K-obstruction.

Proof. Let us denote bya the contracted vertex of̂G and letÛ = {Û1, . . . ,Ûk}.

(a) Let L be the even path in question. Note that the subgraphH ∪ L of G is an oddK4 or an
odd prism because we extended the path ofĤ that contains the vertexa by an even path. Now we
define the setU . If the vertexa belongs to one of the coreŝU j ∈ Û , then letUi := Ûi for i 6= j and
U j := (Û j −a)∪V(L), otherwise letUi := Ûi for i = 1, . . . ,k and if K is a biprism anda belongs to the
separator, thenUk+1 := V(L)−T. We emphasize that in this latter case we have to addUk+1 because of
the condition that no edge ofG is allowed between the different sides of the biprism.
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(b) Let L be the subdivision of a 3-star in question. Note that the subgraphH ∪L of G is an oddK4

or an odd prism because every circuit ofĤ is extended by an even path. Now we define the setU . First,
suppose thatL is an even subdivision of a 3-star. If the vertexa belongs to one of the coreŝU j ∈ Û ,
then letUi := Ûi for i 6= j andU j is deleted, otherwise letUi := Ûi for i = 1, . . . ,k andUk+1 := V(L)−T.
Second, suppose thatL is an odd subdivision of a 3-star. If the vertexa belongs to one of the cores
Û j ∈ Û , then letUi := Ûi i 6= j andU j := (Û j −a)∪V(L), otherwise letUi := Ûi for i = 1, . . . ,k.

In all cases(H ∪L,U ) is aK-obstruction ofG.

Claim 2. If G contains an obstruction(H, /0), then G has a join F and two tight circuits whose union is
H and dF(v) = 1 if dH(v) = 3.

Proof. We define the edge setF in the three cases. IfH is an even subdivision ofK4, then letF be
an arbitrary perfect matching ofH. If H is an even subdivision of the prism, then letF be that perfect
matching ofH for which δF(C) = 1 whereC is one of the two odd circuits that correspond to the two
triangles of the prism. IfH is an even subdivision of the biprism, then letX be the separator ofH, x
a vertex ofX andu andw be the two neighbors ofx in H and finally letF be the union of the unique
perfect matching ofH −X−u−w and{ux,wx}. In all casesdF(v) = 1 if dH(v) = 3. (See Figure 5.)

To see thatF is a join we provide a complete 2-packing of cuts for(G,F) in the three cases. IfH is
an even subdivision ofK4 or the prism, then letQ := {δ (v) : v∈V(H)} and if H is an even subdivision
of the biprism, then letQ := {δ (v) : v ∈ V(H)−X}∪ {δ (V1),δ (V2)}, whereV1 andV2 are the two
connected components ofH −X. Note that, by the definition of a biprism-obstruction, thereexists no
edge ofG betweenV1 andV2. ThenQ is a complete 2-packing of cuts for(G,F) and henceF is a join.
(See Figure 5.) In all cases it is easy to find the two tight circuits whose union isH.

Figure 5: Construction of the joinF and of the complete 2-packing of cuts

The proof of the next claim is omitted because of space limitation.

Claim 3. Let us suppose that the subgraph H and the subpartitionU form an obstruction of G so that
|V(H)|+∑U∈U |U | is minimum. Let U∈U be a3-core. Then there exists no edge of G between a vertex
in NH(U) and a vertex of U that are not neighbors in H.

The next definition we need serves purely technical purposesthat is in itself not very interesting, but
it is useful in the proof, and makes a bridge between the new generation of the results and the previous
ones.

Visibly non-Seymour. We will say that the graphG is visibly non-Seymour(shortly VNS) if it has a
subgraphH containing an edge setF, so that

(a) H is the union of two tight circuits with respect to(G,F),

(b) H is non-bipartite,
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(c) the maximum degree is 3 inH,

(d) there exists a complete 2-packing of cuts for(G,F), which contains all the stars (inG) of the
vertices whose degree is 3 inH (with multiplicity at least 1).

Matching-covered graphs. We will need some definitions and results from matching theory. A con-
nected graph is calledmatching-coveredif each edge belongs to a perfect matching. A connected graph
G is calledbicritical if the graphG−{u,v} has a perfect matching for any two different verticesu and
v of G; in other worlds:G−u is factor-critical for any vertexu of G. A bicritical graph isnon-trivial if
|V(G)| > 2. Note that a bicritical graph is matching-covered. Adding anedge between the vertices of a
bicritical graph it remains bicritical, and therefore a graph has a bicritical subgraph if and only if it has a
bicritical induced subgraph. The graphK3

2 is defined to be a set of three parallel edges. A circuitC of G
is callednice if G−V(C) contains a perfect matching.

The following two similar results on matching-covered graphs will be crucial for us. Fact 3 is due to
Lovász and Plummer [5]. We mention that none of them impliesthe other one.

Fact 3. Every non-bipartite matching-covered graph contains an even subdivision of the K4 or the prism.

Lemma 2. Every3-star of a matching-covered graph belongs to an even subdivision of K4 or K3
2.

Proof. Let G be a minimal counter-example with the 3-starF := {e1,e2,e3} such thatei = vvi . SinceG
is matching-covered, each edgeei belongs to a perfect matchingMi of G. Then there exists a nice circuit
in the symmetric differenceMi△M j of Mi andM j containingei andej . Let C be a shortest nice circuit
containing two edges ofF. We may suppose without loss of generality thate3 does not belong toC. Since
C is a nice circuit, there exists a perfect matchingM of G−V(C). ThenM△M3 contains odd paths that
match the vertices ofC. Note that the union of these paths andC is a matching-covered graph containing
F so by the minimality ofG, it is G. Since we can contract the edges incident to a vertex (6= vi) of degree
two in G, it follows, by the minimality ofG, that these paths are just edges andG = C∪M3. Let viui be
the edge ofM3 incident tovi . Let A andB be the two colour classes ofC with v∈ A andv1,v2 ∈ B. By
the minimality ofC, v3 ∈ A andu1,u2 ∈ B.

Case 1. If vv3 and viui (for somei ∈ {1,2}) are crossing chords ofC thenC+ vv3 + viui is an even
subdivision ofK4 and it containsF. (See the first graph in Figure 6.)

Case 2.Otherwise,(vv1 +v1u1+C(u1,v3))+vv3 +(vv2+v2u2+C(u2,v3)) is an even subdivision ofK3
2

betweenv andv3 and it containsF, whereC(a,b) denotes the path ofC between two verticesa andb of
C which does not containv. (See the second graph in Figure 6.)

u1

v v
v1 v2

v3

u1

v1 v2

v3

u2

even subdivision ofK4 even subdivision ofK3
2

Figure 6: The configurations in the two cases

A similar observation on odd prisms will also be applied.

Fact 4. Every3-star of an odd prism belongs to an even or odd subdivision of K3
2.
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New characterization of Seymour graphs. We squeeze the main results of this paper into one theorem:
The prism disappears !

Theorem 2. The following statements are equivalent for the graph G:

(i) G is not a Seymour graph,

(ii) G can be factor-contracted to a graph that contains a non-trivial bicritical subgraph,

(iii) G can be factor-contracted to a graph that contains an even subdivision of K4 or of the prism as a
subgraph,

(iv) G contains an obstruction,

(v) G is a visibly non-Seymour graph,

(vi) G has a stoc-minor containing an even subdivision of K4 as a subgraph.

A tempting additional equivalent statement would be thatG can be star-contracted to a graph that
contains a bicritical graph on at least four vertices as a subgraph. This is not true as the biprism shows.
This graph is not Seymour but contracting any of the stars it becomes Seymour. Yet it does not contain a
bicritical subgraph.

3 Algorithmic proof of Theorem 2

(i) implies (ii): Let G = (V,E) be a minimal counter-example that is

(a) G is not a Seymour graph,

(b) every factor-contraction ofG is a Seymour graph and

(c) G contains no non-trivial bicritical subgraph.

By (a), there exists a non-empty joinF so that no complete packing of cuts exists for(G,F). The
following lemma contradicts (c).

Lemma 3. G′ := G(V(F)) is a non-trivial bicritical graph.

Proof. First we show that

if Q is a complete 2-packing of cuts for(G,F) then no star is contained twice inQ. (∗)

To see this suppose to the contrary that 2δ (v) ⊆Q. Let us contract the full star ofv. ThenFv := F \δ (v)
is a join inGv of size|F|−1 becauseQ−2δ (v) is a complete 2-packing of cuts for(Gv,Fv). Since the
graphGv is obtained fromG by a factor-contration, we have by (b) thatGv is a Seymour graph and hence
there exists a complete packingQ′ of cuts for(Gv,Fv) and thenQ′∪δ (v) is a complete packing of cuts
for (G,F), which is a contradiction.

Let x0 be an arbitrary vertex ofF . Let Q andC ∈ Q be the sets provided by (1) of Lemma 1. We
recall thatG(C) is factor-critical andC⊆V(F)−x0. In fact,

C = V(F)−x0. (∗∗)

To see this suppose to the contrary thatC ⊂V(F)− x0. Then, sinceδ (C) contains only one edge ofF,
the setFC := F \ I(C) is non-empty. This edge setFC is a join inGC, sinceQ\({δ (C)}∪{δ (c) : c∈C})

9
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is a complete 2-packing of cuts for(GC,FC). By (b), GC is a Seymour graph and hence there exists a
complete packingQC of cuts for(GC,FC). By (2) of Lemma 1,δ (v) ∈ QC for somev∈V(G) \ (C∪
N(C)). Then(2QC)∪ ({δ (C)}∪{δ (c) : c∈C}) is a complete 2-packing of cuts for(G,F), which is a
contradiction by (∗).

It follows, by (∗), that|C| 6= 1 and by (∗∗), thatG′−x0 = G(C) is factor-critical for everyx0 ∈V(G′),
that isG′ is a non-trivial bicritical graph.

(ii) implies (iii): By Fact 3, a non-trivial bicritical graph contains an even subdivision ofK4 or the
prism.

(iii) implies (iv): Let G satisfy (iii), that is,G can be factor-contracted to a graphĜ that contains an
even subdivisionH of K4 or the prism. Then(H, /0) is an obstruction of̂G. To show thatG satisfies (iv),
that isG itself contains an obstruction, we prove the following lemma and then we are done by induction:

Lemma 4. If GC (C⊆V, G(C) is factor-critical) contains an obstruction, then so does G.

Proof. Let Ĝ1 := GC, (Ĥ1,Û ) an obstruction ofĜ1, H1 the subgraph ofG defined by the edge set of̂H1

andT := {v1, . . . ,vl} = V(H1)∩N(C). Since the vertices of̂H1 are of degree 2 or 3, we have thatl ≤ 3.

Case 1.If l ≤ 1, then(H1,U ) is an obstruction ofG, and we are done.

Thus we may suppose without loss of generality thatl ≥ 2. Let Ĝ2 be the graph obtained fromG
by contractingV −C. Sincevi ∈ N(C), we can choose a neighborui of vi in C for all i = 1, . . . , l . Since
G(C) is factor-critical,G(C)− ui contains a perfect matching and henceĜ2 has a perfect matchingMi

containingviui . Then the subgrapĥSof Ĝ2 induced by the edge set
⋃l

1 Mi is matching-covered.

Case 2.If l = 2, thenS is an even path inG(C∪T) and by Claim 1(a),G contains an obstruction, and
we are done.

Thus from now on we suppose thatl = 3. By Lemma 2, there exists in̂S an even subdivision̂H2

either of theK4 or of theK3
2 containing the three edgesu1v1,u2v2 andu3v3.

Case 3.If Ĥ2 is an even subdivision of theK3
2, thenH2 is an even subdivision of a 3-star with baseT in

G(C∪T) and by Claim 1(b), we are done. (Figure 7.)

N(C)

u1

u2

u3

v3

e1

e2

e3

e1

e2

e3

-

G/(V \C) C

v1

v2

CG

Ĥ2
H2H1

Figure 7: An easy case

So we suppose that̂H2 is an even subdivision ofK4, that is(Ĥ2, /0) is aK4-obstruction inŜ.

Case 4.If Ĥ1 is an odd prism ofĜ1, then by Fact 4, there exists an even or odd subdivisionL̂ of theK3
2

in Ĝ1, soL is an even or odd subdivision of the 3-star inH1 with baseT in G((V −C−N(C))∪T) and
we are done again by Claim 1(b). (Figure 8.)
Case 5.Finally, if Ĥ1 is an oddK4 in Ĝ1 andĤ2 is an even subdivision ofK4 in Ĝ2, thenH1∪H2 is an odd
prism ofG. If the contracted vertex of̂G1 belongs to one of the coreŝUi say toÛ j , then letUi := Ûi i 6= j
andU j is deleted, otherwise letUi := Ûi 1≤ i ≤ k. Then(H1∪H2,U ) is an obstruction ofG because
after contracting the setsUi ∈ U we get an even subdivision of the prism or the biprism. (Figure 9.)
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N(C)

v3

e1

e2

e3

v1

v2

CG

H2H1

K

Figure 8: Another easy case

N(C)

v3

e1

e2

e3

v1

v2

CG

H1 H2

Figure 9: The case of the biprism

(iv) implies (v): Let (H,U ) be an obstruction ofG, G′ := G/∪k
1 IG(Ui) andH ′ := H/∪k

1 IG(Ui). By
Claim 2, there exist a joinF ′ of G′ and two tight circuitsC′

1 andC′
2 whose union isH ′ and for each 3-core

Ui exactly one edgeei of F ′ is incident to the vertexui that corresponds toUi in G′. For each 3-coreUi

there is a unique edgeviwi ∈ δH(Ui) such thatvi ∈Ui,wi ∈V−Ui andei is incident towi. For each 2-core
Ui, let wivi be one of the two edges of the cutδH(Ui) with vi ∈Ui. For each coreUi , let Fi be the unique
perfect matching ofH(Ui)−vi. Let F := F ′∪k

1 (Fi +viwi).

By Lemma 1, there exists a complete 2-packingQ′
0 of cuts for(G′,F ′). Let Q0 be the corresponding

complete 2-packing of cuts for(G,F ′). Let Qi := {v : v ∈ Ui} ∪ {Ui} and Q := ∪k
0Qi. ThenQ is a

complete 2-packing of cuts for(G,F) henceF is a join ofG.

Moreover,C′
1 andC′

2 correspond to two tight circuits ofG whose union isH. ThusG is VNS.

U1

U2

contraction
in G

U3

U4

H H ′

e4

e3

e1 = e2

F

-

w3

v3F0-

Q0

v4

w4

w1
v1

w2 v2

Q

Figure 10: The construction of the joinF and the complete 2-packingQ of cuts

(v) implies (i): Let H be a subgraph ofG, F an edge set inH andQ a complete 2-packing of cuts for
(G,F) that show thatG is VNS. By (d),F is a join ofG, by (a),H is the union of two tight circuits with
respect to(G,F), and by (b),H is non-bipartite, so by Fact 1,G is not a Seymour graph.

(iii) implies (vi): By Fact 2, a factor-contraction can be replaced by a series of contractions of odd
circuits and then the contraction of a star. Moreover, we cancontract an odd circuit in an even subdivion
of a prism to get an even subdivision of aK4. Hence, ifG can be factor-contracted to a graph that

11
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contains an even subdivision ofK4 or of the prism as a subgraph, thenG has a stoc-minor containing an
even subdivision ofK4 as a subgraph.

(vi) implies (i): Let Ĝ be a stoc-minor ofG that contains an even subdivisionH of K4. Then any perfect
matching ofH is a join ofĜ, andH is the union of two tight circuits with respect to(Ĝ,F), so by Fact
2, Ĝ is not a Seymour graph, that iŝG satisfies (i). To show thatG satisfies (i) we prove the following
lemma and then we are done by induction:

Lemma 5. Let C be a full star or an odd circuit. If G/C satisfies (i), then so does G.

Proof. If C is a full star, then sinceG/C satisfies (i), it satisfais(iii). A full star contraction is a factor-
contraction, soG also satisfies(iii) and hence (i).

From now onC is an odd circuit. SinceG/C satisfies (i), it satisfais(iv), that isG/C contains a
K-obstruction(Ĥ,U ) whereK is aK4, prism or biprism. Take a minimal one as in Claim 3.

Case 1: If |V(C)∩V(H)| ≤ 2 andc is not in a separator of a biprism. Ifc ∈ V \∪NH(Ui), then the
obstructionĤ can be extended by the even part ofC, that isG also satisfies(iv) and hence (i). Otherwise,
c∈ NH(Ui) for somei, that isH contains an edgecy so thaty∈Ui.

If there exists no edge ofG betweenUi and the even pathC2 of the cycleC betweenc1 andc2 then the
obstructionĤ can be extended byC2, that isG also satisfies(iv) and hence (i). Otherwise, take that edge
xc3 of G with x∈Ui for which c3 is onC2 and the distanced of c2 andc3 onC2 is as small as possible.
By Claim 3,x = y. If d is even then for the edgeyc3 we are in the above case. Ifd is odd, then changing
H as shown on Figure 11, whereQ is an odd path inH, and deletingU from U , we get aK4-obstruction.

c1

v

U

cz

v

U

z z

v

c1

Qc2 c2

y y y
c3 c3

Figure 11:

Case 2: If |V(C)∩V(H)| = 2 andc is in a separator of a biprism. Leta andb be the two vertices ofC
that are incident to the two edges ofH incident toc. Thena andb partitionC into an odd pathC1 and an
even pathC2. If a = b, then(Ĥ,U ) remains a biprism-obstruction inG, soG satisfies(iv) and henceG
also satisfies (i). Ifa 6= b, then letH ′ be obtained fromĤ by addingC1 and deleting the path betweenv5

andv6 defined in Figure 12. LetU ′ be obtained fromU by deleting those cores that correspond to inner
vertices of the deleted path. Then(H ′,U ′) is aK4-obstruction inG, soG satisfies(iv) and henceG also
satisfies (i). (See Figure 12)

Case 3: If |V(C)∩V(H)| = 3. Then sinceG/C satisfies (iv), it satisfais(v) with the sameĤ. By (d) of
VNS for c, there exists exactly one edgee in F incident toc and both tight circuits containse. Let u be
the end vertex ofe in C, M a perfect matching ofC−u, F∗ = F ∪M andH∗ = H ∪C. The vertices ofH
partitionC into 3 paths. If exatly one of them is of odd length, then delete fromH∗, F∗ andC that odd
path. LetQ∗ := Q \δ (c)∪{δ (x) : x∈C′}. ThenH∗ satisfies (a), (b), (c) and (d) of VNS, soG satisfies
(v) and hence (i). (See Figure 13)
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Cc

v4 v5

v6

v3

v2v1 v1

v3

v6

v4

v2

v5

a

b

a

b
C1

Figure 12: Finding aK4-obstruction

Figure 13: Extensions ofF , the tight circuits andQ
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