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Abstract

A relatively simple proof is presented for the min—max theorem of Lovasz on the graphic
matroid parity problem.
© 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

The graph matching problem and the matroid intersection problem are two well-
solved problems in combinatorial theory in the sense of min—max theorems [2,3] and
polynomial algorithms [3,4] for finding an optimal solution. The matroid parity
problem, a common generalization of them, turned out to be much more difficult.
For the general problem there does not exist polynomial algorithm [6,8]. Moreover,
it contains NP-complete problems. On the other hand, for linear matroids Lovasz
provided a min—max formula in [8] and a polynomial algorithm in [7]. There are
several earlier results which can be derived from Lovasz’ theorem, e.g. Tutte’s result
on f-factors [15], a result of Mader on openly disjoint 4-paths [11] (see [9]), a result
of Nebesky concerning maximum genus of graphs [12] (see [5]), and the problem of
Lovasz on cacti [9]. This latter one is a special case of the graphic matroid parity
problem. Our aim is to provide a simple proof for the min—-max formula on this
problem, i.e. on the graphic matroid parity problem. In an earlier paper [14] of the
present author the special case of cacti was considered. We remark that we shall
apply the matroid intersection theorem of Edmonds [4]. We refer the reader to [13]
for basic concepts on matroids.

For a given graph G, the cycle matroid % is defined on the edge set of G in such a
way that the independent sets are exactly the edge sets of the forests of G. Thus, for
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the rank function rg of ¢ and for an edge set F of G,
r6(F) = |V(G)| = ¢(G[F]), (1)

where ¢(H) denotes the number of connected components of a graph H and G[F] =
(V(G), F). In other words, rg(F) is the maximum size of a forest contained in F. A
matroid .# is graphic if there exists a graph whose cycle matroid is .#.

The graphic matroid parity problem is the following. Given a graph G and a
partition ¥~ of its edge set into pairs, what is the maximum size of a forest in G which
consists of pairs in ¥". The pair (G, 7") is called v-graph. A v-forest of (G,7") is a
forest of G consisting of v-pairs in #". The v-size of a v-forest is the number of v-pairs
contained in it. The graphic matroid parity problem consists of finding the maximum
v-size B(G,7") of a v-forest in a v-graph (G, ¥").

Let (G,7") be a v-graph. Let 2 .= {V}, V>, ..., V;} be a partition of the vertex set
V(G) and let 2 .= {H,, H,, ..., Hi} be a partition of ¥". We say that (2, 2) is a cover
of (G,7"). For a partition 2 of V, V5 will denote the vertex set obtained from V" by
contracting each set 7; in 2 into one vertex v;. Note that |Vy| = |2 = 1. Let G :
= (Vy,E(G)). For H;= 7", (G»[H;], H;) will denote the v-graph on the vertex set Vi
for which the edge set E(H;) of G»[H;| is the union of the edges of the v-pairs in H;.
For H;=7", let ry(H;) =rg,(E(H;))(= [ — ¢(G»[H]])). The value val(#,2) of a
cover is defined as follows. Let n = |V(G)|, I = |2| and k = |2|.

val(?,2) =n—1+ Z VW(H’A)J . (2)

H,’G;’z 2

Now, we are able to present the min—max result of Lovasz [7] in our terminology.

Theorem 1. Let (G,?") be a v-graph. Then B(G,?") = min{val(?,2)}, where the
minimum is taken over all covers (?,2) of (G,7").

We mention that the min—-max formula for the special case of cacti is presented in
[10, Theorem 11.3.6]. Theorem 1 is the natural generalization of that formula. To see
that the problem of cacti, i.e. finding a maximum triangular cactus in a graph G, is a
special case of the graphic matroid parity problem we have to consider the v-graph
(G', ") which is defined by the original graph G as follows: Let us denote by 7 the
set of triangles of G. For every TeJ, let er,fr be two edges of T. Let ¥~ =
{(er.fr): TeT } and let G’ = (V(G),E(G")) where E(G') = Uy ,{er.fr} where
the union is understood by multiplicity.

Our proof follows the line of Gallai’s (independently Anderson’s [1]) proof for
Tutte’s theorem on the existence of perfect matchings.

2. Definitions
A v-forest F of a v-graph (G, ¥") is called perfect if it is a spanning forest of G, that

is |F| = rg(E(G)). A forest F is said to be almost spanning if |F| = rg(E(G)) — 1. A
v-forest is almost perfect if it is almost spanning. For an edge set F of a v-graph



Z. Szigeti | Journal of Combinatorial Theory, Series B 88 (2003) 247-260 249

(G,7"), the maximum v-size of a v-forest contained in F is denoted by v, (F). Note
that

(3)

by (F) < VG(F )J .

2

A v-graph (G, 7") will be called critical if by identifying any two vertices in the
same connected component of G, the v-graph obtained has a perfect v-forest. In
particular, this means that in a critical v-graph there exists an almost perfect v-forest.
Critical v-graphs will play an important role in the proof, like factor critical graphs
play the key role in the proof of Tutte’s theorem.

For a cover (2, 2) of a v-graph (G, 7"), let us denote by ¥"», ¥ » and Z the sets
of v-pairs T in 7  for which r»(T)=2,r»(T)=1 and r»(T)=0. (Then
V =V p0F»URyp.) The elements H;e 2 with rp(H;)>=1 are called components
of the cover. A component H;e 2 is said to be critical if the v-graph (G»[H;], H;) is
critical.

For a graph H = (U, F), we shall denote by ~p the equivalence relation for
which u~ yv for u,ve U if and only if there exists a path connecting # and v in H.
The partition of U defined by the equivalence classes of ~ g, that is by the vertex sets
of the connected components of H, is denoted by part (H).

We say that the partition 2 of V(G) is the trivial partition if | =n. The
cover (2,2) is the trivial cover if I=n and k=1. Let % =
Vs VIV Ve LV L V] where V/ =V, for all i, then the
partition 2’ is called a refinement of the partition 2. If 2 is a refinement of 2 so
that |2'| = |2| + 1, then we say it is an elementary refinement. If V;e 2 then the
partition obtained from £ by replacing V; by its singletons will be denoted by
P ={V;}. If ' is a refinement of 2, then 2 corresponds to a partition of V(G ).
This partition will be denoted by 22/Z'.

We shall need later two auxiliary graphs B and D. These graphs will depend on a
v-graph (G,7") and a cover (2,2) of this v-graph. We suppose that for each
component H;, r»(H;) is odd. First we define the graph B = (V(G), E(B)). e = uv
will be an edge of B if and only if there exist u,ve V;e#, a component H;e 2 and a
v-forest K in (Gyp. (y,)[H,], H;) of v-size (r»(H;) + 1)/2 so that u~ gv but for every
pair (x,y)# (u,v) of vertices from V}, x~ gy. (Note that (Vy, E(K)) contains a v-
forest of v-size (r»(H;) — 1)/2 in (G»[H;], H;). We mention that (by Lemma 8, see
later) (G»[H;], H;) will always contain a v-forest of v-size (r»(H;) — 1)/2.) In other
words, the trace of the v-forest K in V;eZ is the edge e. We call this edge e an
augmenting edge for H;. We will call the edges of B augmenting edges. Note that an
edge of B may be augmenting for more than one component H; e 2. For a refinement
Z' of 2, the set A, < E(B) of augmenting edges connecting vertices in different sets
of 2’ will be called the augmenting edges with respect to the refinement 2.

The second auxiliary graph D will be a bipartite graph with colour classes E(B)
(the edge set of B) and 2. Two vertices ec E(B) and H,; € 2 are connected in D by an
edge if and only if ¢ is an augmenting edge for H;. As usual, the set of neighbours of a
vertex set X of one of the colour classes of D will be denoted by I'p(X).
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3. Outline of the proof

In this section, we present some ideas of the proof. As it was mentioned earlier, we
shall follow the proof of Tutte’s theorem. Let us briefly summarize the steps of this
proof. We suppose that the Tutte condition is satisfied for a given graph G and we
have to construct a perfect matching of G. Let X be a maximal set satisfying the
condition with equality. The maximality of X implies that all the components of
G — X are factor-critical, thus it is enough to find a perfect matching in an auxiliary
bipartite graph D, where one of the color classes corresponds to X while the other to
the (critical) components. Hall’s theorem (or the matroid intersection theorem)
provides easily the existence of a perfect matching M in D. The desired perfect
matching of G can be obtained from M and from the almost perfect matchings of the
critical components. We mention that this is a lucky case because the union of these
almost perfect matchings will be automatically a matching in G.

In the case of v-forests we shall prove directly the min—max theorem. We shall
choose a minimum cover (2, 2) of (G, ") which is maximal in some certain sense.
This will imply (Lemma 7) that the minimum cover of (G»[H;], H;) is unique for each
component H;. This fact has two consequences (Lemmas 8 and 11), namely (i) each
component is critical (hence r»(H;) is odd) and (ii) for any component H; and for
any refinement 2’ of 2, either there exists an augmenting edge for H; with respect to
P’ or ry(H;) <rp(H;).

We shall construct a v-forest of size val(#, 2) in (G, ") as follows. (1) For n —/
components H;e2, we shall find a v-forest K; in (G,,;g{yj}[H,'], H;) of v-size
(ro(H;)+1)/2 for some V;e€Z so that the trace of K; in V; is an edge and the
corresponding augmenting edges form a spanning forest of the auxiliary graph B.
(We shall see (Corollary 13) that the size of a spanning forest of Bis indeed n — [.) (2)
For the other components H; we shall need an almost perfect v-forest in
(G»[Hj], H;), and (3) the union of all of these forests will be a forest in G, that is
a v-forest in (G, 7") of size val(#,2). Using (i), for the latter components H; it is
enough to find an arbitrary almost spanning forest in G»[H;] (and then using that H;
is critical, this forest can be replaced by a convenient v-forest containing the same
number of edges, that is of v-size (r»(H;) — 1)/2). By the definition of augmenting
edge, for the former components H; it is enough to find an arbitrary spanning forest
in Gp[H;] so that (=) there exist augmenting edges for these components whose
union will be a spanning forest of B. Thus we have to find a forest F in G so that (a)
for each component H;, E(F)NE(G»[H)]) is a spanning or an almost spanning
forest in G»[Hj|, (b) for n — [ components H; we have a spanning forest, (c) for these
components in (b), () is satisfied.

The existence of a forest with (a) and (b) can be proved, using (ii), by a matroid
partition theorem (for a graphic matroid and a truncated partitional matroid). We
shall see in Lemma 16 that if for all such forests, we consider the components where
the corresponding forests are spanning forests then we get the set of bases of a
matroid on the set of indices of the components.

Two matroids will be defined on the edge set of the auxiliary graph D, one of them
will be defined by the above introduced matroid, and the other one will be defined by
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the cycle matroid of B. The matroid intersection theorem will provide a forest of G
with (a)—(c). As we mentioned earlier, each part of the forest, which corresponds to a
component, can be replaced by a convenient v-forest, and thus the desired v-forest
would have been found.

4. Graphic matroid

In this section, we present some simple properties of forests and of the graphic
matroid rank function.

Claim 2. Let H = (U, F) be a graph. Then

(a) for F"<F'cF, r(F")<r(F'),
(b) for F',F'<F, r(FFOF")<r(F') +r(F").

Lemma 3. Let H = (U, F) be a graph, let 2 be a partition of U and let Fy be an edge
set such that part(Fy) = P. Then

(@) r(FUFy) =rs(F)+r(Fy),

(b) rp(F)<r(F),

(©) r(F)<|U| = |2] +ra(F),

(d) if ro(F)<r(F) then there exists an elementary refinement 2" of P such that
o (F) <1 p(F).

Proof. (a) By (1) and by part(Fy)=2, r(FuF)=n—c¢(FUF)=n—
eH(FUFy) = (12] - s(F)) + (n— [2]) = rs(F) + r(Fy).

(b) By Lemma 3(a) and Claim 2(b), r»(F) = r(FuFy) — r(Fy) <r(F).

(c) By Claim 2(a) and Lemma 3(a), r(F)<r(FUF)) =r»(F) +r(Fy) =r»(F) +
Ul - 2],

(d) Let F' be a spanning forest of (Vp,F). Then ry(F)=|F'|. Since
r(F)>rp(F) = |F'| there exists an edge f € F — F' such that (V,F' uf) is a forest.
(Vp,F'Uf) contains a unique cycle C and f € E(C) because F’ is a forest. On the
other hand (¥, F' uf) contains no cycle so there is a vertex v; € V»(C) such that the
two edges of C incident to v; are incident to different vertices of V; say a and b. But
then for the elementary refinement 2" = (2 — Vi)uau (V; —a), (Vp,F' Of) is a
forest and hence ry (F) = |F' Of|>rp(F). O

Claim 4. Let F be a forest and let Fy and F, be two vertex disjoint subtrees of F. If F,
and F, belong to the same connected component of F then let us denote by a and b the
two end vertices of the shortest path in F connecting F) and F, otherwise let ae V (F)
and be V(F,) be two arbitrary vertices. Then

(a) if F| is a tree on V(Fy) then (F — E(F\))UE(F)) is a forest.
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(b) If F' is a forest on V(F\)UV(F,) so that a and b are in different connected
components of F', then (F — E(Fy) — E(F,))UE(F") is a forest.

The proof of Claim 4 is a simple exercise, it is left to the reader.

Lemma 5. Let (V, F) be a forest. Let Fy = {ey, ..., ek}, Fi, ..., Fy disjoint edge sets of
F and let F{, ..., F| be disjoint edge sets on V. Let 2 = part(V, Fy). Suppose that for
all 1 <i<k the following conditions are satisfied:

) |F] = |F|+1,
(ii) part(Vyp, F;) = part(V, Fy),
(iii) if e; is in Ve P, then (Vp_ vy, F}) is a forest whose trace in V; is e;.

Then F* = (F — s F;) U UY F! is a forest of size |F|.

Proof. By the disjointness of the sets F; (resp. F}), by (i) and by |Fy| =k, |[F¥| =
((F = Uo B o Uy Fll = 1F| = S0 Bl + 7 |F| = F| = [Fo - XY IRl + X5 (F] +
1) = |F| — |Fo| — Z’f |Fi| + Zlf |Fi| + k= |F|. By Claim 4(a) applied for each
connected component of F; for every i, we obtain that r»(F — Fjy) = r»(F*). Then,
by Lemma 3(a), |F*|=|F|=rF)=r((F—-F)uF)=rsF —F)+r(F)=
ro(F*) 4+ r(Fy) = r(F* U Fy). Thus it is enough to prove that r(F*u Fy) = r(F*), in
other words u; ~ (y p+)w; for every u;w; € Fy. Suppose on the contrary that there exists
an edge u;w;, € Fo (say u;,,w;, € V) such that u;, ~ p pyw;,. By (iii), (VW%%}’IZ{I)
contains a path P;, connecting u;, and wy,. Since E(P;,) S F;, < F* but u;, ~ y pew;, it
follows that there exists a vertex v, € V(P;,) (j#/1) and an edge u;,w;, € Fy (with
uj;,, wj, € V},) such that u;, ~ (y p+wj,. Note that P;, connects v;, and vj, in (V, F}, ) and
hence, by (ii), there exists a path Q;, in (V», Fj,) connecting v;, and v;,. The same way,
there exists an edge u;,wj, € Fy (j3#j2) (say uj,, wj, € V};) such that uj, ~ (y p«yw;, and
there exists a path Q;, in (V», F},) connecting v;, and vj,. We can continue the same
way. Since |Fy| is finite there exist indices s < ¢ such that v, = v,;1. Then using that the
paths Q; connect v, and vj,, for every s<i<t in (V», F;) and that these paths are
edge disjoint it follows that C == Q; U Q;., U ---U Q) is acycle in (V», F — Fy). This
is a contradiction because, by Lemma 3(a), |F — Fy| = |F| — |Fo| = r(F) — r(Fy) =
r»(F — Fy) and hence (Vp, F — F) is a forest. [

We mention that Lemma 5 will be applied only in the very last step of the
proof.

5. The proof

Proof (max<min). The following lemma proves this direction. [l
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Lemma 6. For a forest F in G and for a cover (#,2) of (G,7"), we have

o F) 1)+ S 1240

Proof. Let F’ be a subset of F of maximum size so that F’ is a forest in G». By
Lemma 3(c), |F| =r(F)<n—1+r»(F) =n— [+ |F’|. Since the number of ¥ -pairs
in F is equal to the number of ¥ -pairs in F’ plus the number of ¥ -pairs fi, f> in F for
which at most one of f; and f; belongs to F’, we have

vy (F)<viy ) (F') + |[F = F'|<vgy ) (F') +n— L. (4)

For each H;e2, let H] = (H;), and let F/ = F' nE(H;). Then F! is a forest in
Gy[H;] and so r»(F!) <r»(H;). Whence, by (3), UH/(F’)<|_” J<|_”’ L|. As 2is

a partition of 7, for every v-pair T contained in F’ there exists some H; e 2 such that
TeH]. Thus

Hie2 H;e2

Egs. (4) and (5) imply the desired inequality. [

Remark 1. It follows from the proof of Lemma 6 that if (2, 2) is a cover of (G, ?")
and F is a v-forest of G of size val(2, 2) then we have equality in (4). It follows that
for every ¥ -pair f1, /> in F at least one of fj and f> belongs to F’, that is if TeZ»
then T is not contained in F.

Proof (max>min). We prove the theorem by induction on n+ |#7|. For n = 3 the
result is trivially true. It is also true when |#| = 1. In what follows we suppose that
n=4 and |77 =2.

Let (2, 2) be a minimum cover of (G, ¥") for which |2| = [ is as small as possible
and subject to this | 2| = k is as large as possible. Note that by the maximality of &,

for each pair Te S» U Ry, Te, (6)
because for each T€ % » U Z», L”g—T)J =0.

Lemma 7. For each H;e 2, the minimum cover of (Gy|H;|, H;) is unique and it is the
trivial cover.

Proof. Let (7', 2') be a minimum cover of (G»[H,], H;). Since the value of the trivial
cover of (G[Hi], Hy) is [ ], 11+ ¥y | 2V | = pat(2, 2y < | 28 ).
Using this cover (2, 2'), a new cover (2%, 2%) of (G, ") can be defined as follows.
Let the partition 2* of V(G) be obtained from £ by taking the union of all those V,
and V; whose corresponding vertices in G» are in the same set of #'. Then [* =
|2¥| = |#'| = I'. Let 2* be obtained from 2 by deleting H; and by adding 2. For
Hie2 — {H;}, rp(H;)<r»(H;) by Lemma 3(b). We claim that the new cover is also
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a minimum cover,

adBE )R\ _ 4, _ J* M r.’?’(l_lj{)
val(P*,9%) =n—I* + Z { 5 + Z >
Hje2—{H;}

1~ gl
I‘IJ.EJ

»(H;
<n—1I'+ V”( f)J +(val(?,2) — (1 - 1))
mer il 2
17 H |7 Hl
<n—1I1+ V'/(z ])J + V/(z )J =val(?,2).
Hyeo ()

It follows that equality holds everywhere, so val(#', 2') = |_” (H:) J thus the trivial
cover of (Gy[Hj|, H;) is a minimum cover. Furthermore, by the minimality of /,
|2|<|2¥| = |2'|< |2 that is 2 is the trivial partition of V(G»[H,]) and by the
maximality of k, |2|>]2%=|2|—1+|2|>|2| that is |2|=1, whence the
minimum cover of (G»[H,], H;) is unique. O

Lemma 8. Each component H;e 2 is critical.

Proof. Suppose that there exists a component H;e 2 for which (G»[H;|, H;) is not
critical, that is there are two vertices @ and b in the same connected component of
G»|H;] whose identification into a new vertex v, leaves a v-graph (G’, H;) with no
perfect v-forest. Note that rq(E(H;)) = r»(H;) — 1. By the induction hypothesis, it
follows  that there is a cover (2,2) of (G H;) so that
valg (2, 2') <" EHD | 22U | Lot 2" = (2 — X)U((X — vap) Waub), where X
is the member of 2’ that contains v,,. Then (2", 2') is a cover of (G»[H;], H;) and
val(2",2') = val(#',2') + 1. Thus val(2", 2) < | 2% | By Lemma 7, (2", 2') is a
minimum cover of (G»[H;], H;) but not the trivial one (¢ and b are in the same
member of 2"), which contradicts Lemma 7. [

Corollary 9. If Hic 2 and a,be V (G»[H,]), then there exists an almost perfect v-forest
K in (G»[H}], H;) so that a and b belong to different connected components of K.

Proof. If ¢ and b are in the same connected component of G»[H;], then let ¢ = a and
d = b, otherwise let ¢ and d be two arbitrary vertices from a connected component of
Gy»|H;]. By Lemma 8, H; is critical, so by identifying ¢ and d in G»[H,], the v-graph
obtained has a perfect v-forest K'. Then K = (V(G»), E(K')) is an almost perfect
v-forest in (G»[H;], H;) and a and b belong to different connected components of
K. O

Remark 2. (a) By Corollary 9, (G»[H;|, H;) (and consequently (G, 7")) contains a
v-forest of size L%J

(b) However, at this moment we cannot see whether we can choose a v-forest K; of
size |_”’ ) | for every H;e 2 so that U ez Ki is a v-forest in (G, 77).
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(c) Note that by Corollary 9, r»(H;) is odd for each component H;e 2, that is
I_",’}’(2HI>J _ r,w(l‘;i)—].

Claim 10. If [ =n—1, then k>=2.

Proof. Suppose I=n—-1 and k=1. Then wval(2,2)= l—t—|_"’ | =

1+ |_"’ J Let (ujv1,upv7) be a v-pair in ¥~ such that u;v; is not a loop. Let us
consider the cover (#', 2') of (G, 7") where each set of 2’ contains exactly one vertex
of G except one Wthh contains u; and vy (|| =n— 1) and 2’ contains exactly two
members, namely, H| = {ujv;,upv2} and H} = 7" — H]. (L@’|>2 because |77 >2.)
Then, val(#',2') =n— |J”| + L%J + LLZHDJ 14 | ©eEG)-L | By Lemma
3(c), r(E(G))<1+ r@(V), so val(?',2")<val(?,2), and hence (2',2) is a
minimum cover. This is a contradiction because |?'| =n — 1 and |2'|>2. O

Lemma 11. Let 2’ be a refinement of & and let H;c 2 be a component for which
Hi¢I'p(Ay). Then rp(H;)<rp(H;).

Proof. Suppose that ry(H;)>ry»(H;). Let H = G (H;). Then, by applying Lemma
3(d) with H and with 22/2', there exists an elementary refinement 2" of 2 (say
VIuVE=V; with V!, V?e?" Vie?) so that 2 is a refinement of 2" and
ron(H))>rp(H;). We Shdll denote the vertices of G, [H;] corresponding to V1 and
ij by v; and vy. Since 2’ is a refinement of 2", H;¢I'p(Ay) 1mp11es that
H;¢T'p(Ayr) that is there exists no augmenting edge for H; with respect to 2" so
(Gyr[Hj], H;) has no v-forest of size (H 1 By Claim 10, we can use the induction
hypothesis (of the theorem), that is there exists a cover (2°,2%) of (G,[H)|, H;) so
that val(#3, 2°) <2 — U] e 9% = (23 — 4 — B)UC, where 4 and
Be % contain v, and v, and C is the vertex set of G»[H;] corresponding to AU B.
Then (2%, 23) is a cover of (G»[H|, H;). If A = B, then val(#*,2°) = val(#*, 2°) —
1<”( )= This is a contradiction because the minimum cover of (Go»[H}], H;)
% by Lemma 7. Thus A4#B, and in this case
val(P*, 2°) <val(P3, 2°) < % By Lemma 7, (#* 2°) is a minimum cover of
(G»[H;], H;) and in fact it is the trivial cover. Since 4 # B it follows that (23 2°) is
the trivial cover of (Gu[H;|H;) thus L%J val(P3, 2°) < %, SO
ro (H;) <rp(H;), contradiction. [

has leue

Lemma 12. For a refinement 2’ of # (with I' = |?'| and 1 =|2?|) and for 2, =
Ip(dy), I' = I<[21].

Proof. Let H* = (Uy oy, Hi) V% and let 2' = (2 — 2, — #») v H*. We remark
that, by Claim 2(b). rp(#)< Yrep, ro(T) = Yrep, 0= 0. As (2,2 is a cover
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of (G, "), val(P?,2)<val(#?',2'), that is

. Hj _l 7 H ap! H*
n_l+zr]( ) + }’7( l) gn_l/_'_ V’/( )
= 2 / 2 2
€2 H;e92-9,
oy H,‘
- > = ™
H,-sz—ﬂ]
By Lemma 11, for H;e 2 — 2| — R,
ryp (Hi) <ryp(H;). (8)

Let H .= Gp[H*]. By applying Lemma 3(c) with H and 2, and by Claim 2(b),

rp(HY<I =1+ rp(H)SI =1+ Y rop(H) +r5(%)

Hied,
==+ > ryp(H). (9)
Hie,
Egs. (7)-(9) imply that
Y ra(H) =121 = Y (rp(H) = 1)<S20 = 1) +rp(HF)<(1=T)
Hied, Hie

+ Z ro(H;), (10)

H,'E;’Zl

whence /' —I1<|2,|. O
Corollary 13. part(V,E(B)) = 2.

Proof. By definition, there is no edge of B between two different sets of 2. Let us
consider an elementary refinement 2’ of 2. If there was no augmenting edge with
respect to #', then by Lemma 11, val(#',2) =n —|2'| + 3 Lr""(zH")J <n-—(I+
D+ e |_r'”(2H")J =val(?,2) — 1, contradicting the minimality of the cover
(2, 2). This implies that for each V; €2, the subgraph of B spanned on the vertex set
V; is connected. [J

Let F; be an arbitrary spanning forest of G»[H;| for every component H;€ 2. Then
E(F;)nE(F;) =0 if i#j because the components of 2 are disjoint. Let W =
(Vp, E(W)) where E(W) == Uy ., E(F;). Let 2’ be a refinement of 2 with |#'| =I'.
Let 2, =TI'p(Ay)and 2, .= 2 — 2,. We define two matroids on E(W). Let 4 be the
cycle matroid of W with rank function rg. Let # » = % | + %, (direct sum), where
Z; will be the following (truncated) partitional matroid (with rank function ;)
on E; = UH,G,Q, E(F;) j=1,2. Let #, contain those sets F<E; for which
|[FNE(F;)|<1 for all i and |F|<ty = |2i| — (I' = I). Note that 7, >0 by Lemma
12. Let #, contain those sets F < E> for which |F n E(F;)|<1 for all i. For the rank
function ¥/ of 5 ¥(X) =r(X nE)) + rn(XnE).
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Lemma 14. For any refinement 2’ of 2, E(W) can be written as the union of an
independent set in G and an independent set in F 4.

Proof. This is a matroid partition problem. By Nash—Williams’ theorem (see for
example [13]) the lemma is true if and only if for any YS E(W), |Y|<ry(Y) + ¥ (Y).
Suppose that this is not true, and let ¥ be a maximum cardinality set violating
the above inequality. Then, clearly, Y is closed in % 5. Thus Y can be written in
the form Y =J, .+ E(F;), for some 2*<2. Let t = |2*m21| Let 2" = (2 -

2*)UH", where H" = Jy; . H;. We remark that
rp(H") = rg(Y). (11)

Indeed, for every H;e 2%, F; is a spanning forest of G»[H;] hence part(Vy,Y) =
part(V.y, E(H")).
Case 1: t<ty. Then r/( ) |Q*| Since (7 Q”) is a cover of (G,77),

0<val(2,2") —val(2,2) = | 24 | — doH e =5 —, whence, by (11),
Vj H"
YI= 3 |EGR) = Z )=2 Z P e D)
H;e2* H;e2* H;e2*

+ 2% = rg(Y) +r(Y),

contradicting the assumption for Y.

Case 2: t>1ty. Now, by the closedness of Y in & 4, Y contains all the forest
F; for which H;e2;. Thus /(YY) =r(YnE) +nrn(YnE) =1+ (2% —|2|) =
|2%| — (I' = ). Let us consider the following cover (#',2%) of (G,7"), where
2 =(2"—H"— (V' pRp))VH> where H> = (H"U(V »A»)). Note that
r2(V p 0 Rp) =0. By Lemma 3(c), Claim 2(b) and (11), rp(H})<I' -1+
rp(H)I — 1+ r5(H") +15(V p 0" Rp) =1 — [ +r4(Y). By Lemma 11,

(H?3 y . 1 _ y
i, 3y [P 5 (A g )

2 H;e 2-9* 2
rp(H;)
o2 { 2 J
Hie2-2
Then 0<val(#?', 2%) — val(?,2)<I] — [ 4 =) ”'” ZH g L —! implies that
U
Y=Y EFE) =) rp(H)=2 ) +|Q*|
H;e9* H;e9* H;e9*

<rg(Y)+ |25 = (I' = 1) =rg(Y) + 1 (Y),

contradicting the assumption for Y. The proof of Lemma 14 is complete. [

Corollary 15. (a) There exists a forest F in the graph W so that for n — [ indices i,
E(F;)< E(F) and E(F) N E(F;) is an almost spanning forest of V(Gy|H,]) for the other
indices.
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(b) Therefore there exists a forest F'<F in W so that E(F')nE(F;) is an almost
spanning forest of V(Gy»[H,]) for every H;€2.

Proof. (a) By Lemma 14, for the trivial partition 2’ of V(G), there exist F, LS E(W)

such that E(W) = FUL, F is a forest of W, |Ln E(F;)|<1 for all i, and, by Lemma

12, for at least n — / components H;e 2y, |Ln E(F;)| = 0. Then F is the desired forest.
(b) is implied by (a). O

Remark 3. By Corollary 15(b), there exists a forest F in W (and consequently in G»)
so that E(F)n E(F;) is an almost spanning forest of G»[H;| for all components H;.
Let H; be an arbitrary component of 2. By Corollary 9, for the two vertices a and b
defined in Claim 4(b), there exists an almost perfect v-forest K in (G»[H;], H;) so that
a and b belong to different components of K. Then, by Claim 4(b), (F —
(E(F)nE(F;)))UE(K) is a forest of G». We can do this for all components, so the

v-graph (G, 7") (and hence (G, 7)) contains a v-forest of v-size ZH’,&,) L%J

Now we define a matroid .# on the components of 2. Let 2 =2 be an
independent set in .#, that is 2'eI(.4) if and only if there is f;e E(F;) for each
component H;e 2 — 2’ so that E(W) — {f;: Hie2 — 2'} is a forest in W.

Lemma 16. .# is a matroid.

Proof. We show that .# satisfies the three properties of independent sets of
matroids.

(1) By Corollary 15(b), OeI(.4).

Q) If 2"< 2" el(M), then 2" eI(M) because any subgraph of a forest is a forest.

(3) Let 2/, 2" e I(.#) with |2"|<|2'|. By definition, there are f; € E(F;) for Hie 2 —
2" and f'€E(F;) for Hie2— 2" so that T" = E(W) —{f]: Hie2— 2"} and T" =
EW)—{f": Hie2— 2"} are forests in W. Choose these two forests 7’ and 7" so
that |T'nT"| is as large as possible. 7" and 7" are two independent sets in the
matroid ¢4 and |2"|<|2'| implies that |T”| <|T’| thus there is an edge ee T' — T" so
that 7" Ueis also a forest in W. Then e :fj” for some j. If H;¢ 2’ that isj;.’gé T', then
T* = T"+f"—f] isaforest and |T'n T¥>|T'n T"|, contradiction. Thus H;e 2’ —
2" and 2" O{H;}elI() and we are done. [

We shall apply the matroid intersection theorem of Edmonds [4] for the following
two matroids on the edge set of the graph D introduced in Section 2. For a set
Z< E(D), let us denote by Z; and Z, the sets of end vertices of Z in the colour
classes E(B) and 2. The rank of Z in the first matroid will be rg(Z;) and r 4(Z>) in
the second matroid, where rp is the rank function of the cycle matroid of the graph B
and r 4 is the rank function of the above defined matroid .#. Note that if a vertex x
is in the colour class E(B) (in 2) then the edges incident to x correspond to parallel
elements of the first (second) matroid.
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Remark 4. By Corollary 13, rg(E(B)) = n — [ and by Corollary 15(a), r 4(2)=n — 1.
Moreover, if 2’ is a refinement of 2, then by Lemmas 12 and 14,

l’—lér,//(FD(Ay)). (12)

Lemma 17. There exists a common independent set of size n — [ of the above defined
two matroids.

Proof. By the matroid intersection theorem of Edmonds [4], we have to prove that
n—I<rg(E(D)—Z)+r (Z) forall Z<E(D). (13)

Suppose that there is a set Z violating (13). We may assume that E(D) — Z is closed
in the first matroid. This implies that there is a set J < E(B) so that E(D) — Z is the
set of all edges of D incident to J and J is closed in the cycle matroid of B. Then by
the closedness of J, E(B) —J is the set of augmenting edges of the refinement
P = part(Vy,J) of 2, that is, A, = E(B) — J. (Obviously, Z is the set of all edges
incident to E(B)—J in D.) Then r,(Z)=r4(I'p(Ap)) and rg(E(D)—Z) =
rg(J)=n—1, where I'=|%'|. By (12), I' —I<r 4(I'p(Ay)) and thus n—/=
('=D+n=0<r (2Z)+rp(E(D) — Z), contradicting the fact that Z violates
(13). O

The construction of the desired v-forest: Let N< E(D) be a common independent
set of size n —/ of the above two matroids. (By Lemma 17, such a set exists.) It
follows that N is a matching in D so that it covers a basis E’ in the cycle matroid of B
and an independent set 2’ in .# with |2'| = n — [. Thus, there exists a forest F’ of G»
so that it is the union of the spanning forests F; in G»[H,] for H;e 2" and the almost
spanning forests F; — f; in G»[H,] (for appropriate f;) for H;e 2 — 2'. By Lemma
3(a), E'VE(F') is a forest on V(G) and it contains 2(n—1+3 4, [""”gH">J)
edges. Indeed, |E'VE(F')| = |E'|+ |[E(F)|=n—1+3 ey r2(Hi) + Y pgecon, v

(ro(H) = 1) =0 =14 1214+ Yo, (ro(H) = 1) = 2n =1+ Ty 0 [ 257 ]).
We shall change the forests by appropriate ones obtaining a v-forest of the desired
size. As in Remark 3, for each H;e 2 — 2’ we may replace F; — f; in F/ by an almost
perfect v-forest of (G»[H;], H;) obtaining a forest F”' on V with the same number of
edges. As above, E'UE(F") is a forest on V(G). For all ee E’, e is an augmenting
edge for H,e2', where H, is the pair of e in the matching N. Thus there exists a v-
forest K, in (G- (y,)[H.], H,) of size % so that the trace of K, in V; is the edge e,
where V;€2 contains the edge e. (Note that each K, corresponds to a graph F, in
Gy[H,] such that part(Vy,F,) = part(Vp,F,).) Replace E'y_yE(F;) by
Upep E(K.). By Lemma 5 with F = E'UE(F"),Fy = E', F; = F,, F| = K, (note that
all the conditions of Lemma 5 are satisfied), we obtain again a forest of G with the
same number of edges. The forest obtained consists of v-pairs, that is it is a v-forest

of sizen—1+3 4, Lr,y(sz)J' 0
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