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Abstract

A relatively simple proof is presented for the min–max theorem of Lovász on the graphic

matroid parity problem.

r 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

The graph matching problem and the matroid intersection problem are two well-
solved problems in combinatorial theory in the sense of min–max theorems [2,3] and
polynomial algorithms [3,4] for finding an optimal solution. The matroid parity
problem, a common generalization of them, turned out to be much more difficult.
For the general problem there does not exist polynomial algorithm [6,8]. Moreover,
it contains NP-complete problems. On the other hand, for linear matroids Lovász
provided a min–max formula in [8] and a polynomial algorithm in [7]. There are
several earlier results which can be derived from Lovász’ theorem, e.g. Tutte’s result
on f -factors [15], a result of Mader on openly disjoint A-paths [11] (see [9]), a result
of Nebesky concerning maximum genus of graphs [12] (see [5]), and the problem of
Lovász on cacti [9]. This latter one is a special case of the graphic matroid parity
problem. Our aim is to provide a simple proof for the min–max formula on this
problem, i.e. on the graphic matroid parity problem. In an earlier paper [14] of the
present author the special case of cacti was considered. We remark that we shall
apply the matroid intersection theorem of Edmonds [4]. We refer the reader to [13]
for basic concepts on matroids.
For a given graph G; the cycle matroid G is defined on the edge set of G in such a

way that the independent sets are exactly the edge sets of the forests of G: Thus, for
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the rank function rG of G and for an edge set F of G;

rGðFÞ ¼ jVðGÞj � cðG½F �Þ; ð1Þ
where cðHÞ denotes the number of connected components of a graph H and G½F � ¼
ðVðGÞ;FÞ: In other words, rGðFÞ is the maximum size of a forest contained in F : A
matroid M is graphic if there exists a graph whose cycle matroid is M:
The graphic matroid parity problem is the following. Given a graph G and a

partitionV of its edge set into pairs, what is the maximum size of a forest in G which
consists of pairs in V: The pair ðG ;VÞ is called v-graph. A v-forest of ðG;VÞ is a
forest of G consisting of v-pairs inV: The v-size of a v-forest is the number of v-pairs
contained in it. The graphic matroid parity problem consists of finding the maximum
v-size bðG ;VÞ of a v-forest in a v-graph ðG;VÞ:
Let ðG;VÞ be a v-graph. Let P :¼ fV1;V2;y;Vlg be a partition of the vertex set

VðGÞ and let Q :¼ fH1;H2;y;Hkg be a partition ofV:We say that ðP;QÞ is a cover

of ðG;VÞ: For a partition P of V ; VP will denote the vertex set obtained from V by
contracting each set Vi in P into one vertex vi: Note that jVPj ¼ jPj ¼ l: Let GP :
¼ ðVP;EðGÞÞ: ForHiDV; ðGP½Hi�;HiÞ will denote the v-graph on the vertex set VP

for which the edge set EðHiÞ of GP½Hi� is the union of the edges of the v-pairs in Hi:
For HiDV; let rPðHiÞ ¼ rGP

ðEðHiÞÞð¼ l � cðGP½Hi�ÞÞ: The value valðP;QÞ of a
cover is defined as follows. Let n ¼ jVðGÞj; l ¼ jPj and k ¼ jQj:

valðP;QÞ :¼ n � l þ
X

HiAQ

rPðHiÞ
2

� �
: ð2Þ

Now, we are able to present the min–max result of Lovász [7] in our terminology.

Theorem 1. Let ðG;VÞ be a v-graph. Then bðG;VÞ ¼ minfvalðP;QÞg; where the

minimum is taken over all covers ðP;QÞ of ðG;VÞ:

We mention that the min–max formula for the special case of cacti is presented in
[10, Theorem 11.3.6]. Theorem 1 is the natural generalization of that formula. To see
that the problem of cacti, i.e. finding a maximum triangular cactus in a graph G; is a
special case of the graphic matroid parity problem we have to consider the v-graph
ðG0;VÞ which is defined by the original graph G as follows: Let us denote byT the
set of triangles of G: For every TAT; let eT ; fT be two edges of T : Let V :¼
fðeT ; fTÞ: TATg and let G0 :¼ ðVðGÞ;EðG0ÞÞ where EðG0Þ :¼

S
TATfeT ; fTg where

the union is understood by multiplicity.
Our proof follows the line of Gallai’s (independently Anderson’s [1]) proof for

Tutte’s theorem on the existence of perfect matchings.

2. Definitions

A v-forest F of a v-graph ðG;VÞ is called perfect if it is a spanning forest of G; that
is jF j ¼ rGðEðGÞÞ: A forest F is said to be almost spanning if jF j ¼ rGðEðGÞÞ � 1: A
v-forest is almost perfect if it is almost spanning. For an edge set F of a v-graph
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ðG;VÞ; the maximum v-size of a v-forest contained in F is denoted by vVðFÞ: Note
that

vVðFÞp rGðFÞ
2

� �
: ð3Þ

A v-graph ðG;VÞ will be called critical if by identifying any two vertices in the
same connected component of G; the v-graph obtained has a perfect v-forest. In
particular, this means that in a critical v-graph there exists an almost perfect v-forest.
Critical v-graphs will play an important role in the proof, like factor critical graphs
play the key role in the proof of Tutte’s theorem.
For a cover ðP;QÞ of a v-graph ðG;VÞ; let us denote byVP;SP and RP the sets

of v-pairs T in V for which rPðTÞ ¼ 2; rPðTÞ ¼ 1 and rPðTÞ ¼ 0: (Then
V ¼ VP,SP,RP:) The elements HiAQ with rPðHiÞX1 are called components

of the cover. A component HiAQ is said to be critical if the v-graph ðGP½Hi�;HiÞ is
critical.
For a graph H ¼ ðU ;FÞ; we shall denote by BH the equivalence relation for

which uBHv for u; vAU if and only if there exists a path connecting u and v in H:
The partition of U defined by the equivalence classes ofBH ; that is by the vertex sets
of the connected components of H; is denoted by part ðHÞ:
We say that the partition P of VðGÞ is the trivial partition if l ¼ n: The

cover ðP;QÞ is the trivial cover if l ¼ n and k ¼ 1: Let P0 ¼
fV 1

1 ;y;V r1
1 ;V 1

2 ;y;V r2
2 ;y;V 1

l ;y;Vrl

l g; where
S

j V
j
i ¼ Vi for all i; then the

partition P0 is called a refinement of the partition P: If P0 is a refinement of P so

that jP0j ¼ jPj þ 1; then we say it is an elementary refinement. If ViAP then the
partition obtained from P by replacing Vi by its singletons will be denoted by

PCfVig: If P0 is a refinement of P; then P corresponds to a partition of VðGP0 Þ:
This partition will be denoted by P=P0:
We shall need later two auxiliary graphs B and D: These graphs will depend on a

v-graph ðG;VÞ and a cover ðP;QÞ of this v-graph. We suppose that for each
component Hi; rPðHiÞ is odd. First we define the graph B ¼ ðVðGÞ;EðBÞÞ: e ¼ uv

will be an edge of B if and only if there exist u; vAVjAP; a component HiAQ and a

v-forest K in ðGPCfVjg½Hi�;HiÞ of v-size ðrPðHiÞ þ 1Þ=2 so that uBK v but for every

pair ðx; yÞaðu; vÞ of vertices from Vj; xfK y: (Note that ðVP;EðKÞÞ contains a v-
forest of v-size ðrPðHiÞ � 1Þ=2 in ðGP½Hi�;HiÞ: We mention that (by Lemma 8, see
later) ðGP½Hi�;HiÞ will always contain a v-forest of v-size ðrPðHiÞ � 1Þ=2:) In other
words, the trace of the v-forest K in VjAP is the edge e: We call this edge e an

augmenting edge for Hi: We will call the edges of B augmenting edges. Note that an
edge of B may be augmenting for more than one component HiAQ: For a refinement

P0 of P; the set AP0DEðBÞ of augmenting edges connecting vertices in different sets
of P0 will be called the augmenting edges with respect to the refinement P0:
The second auxiliary graph D will be a bipartite graph with colour classes EðBÞ

(the edge set of B) and Q: Two vertices eAEðBÞ and HiAQ are connected in D by an
edge if and only if e is an augmenting edge forHi: As usual, the set of neighbours of a
vertex set X of one of the colour classes of D will be denoted by GDðX Þ:
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3. Outline of the proof

In this section, we present some ideas of the proof. As it was mentioned earlier, we
shall follow the proof of Tutte’s theorem. Let us briefly summarize the steps of this
proof. We suppose that the Tutte condition is satisfied for a given graph G and we
have to construct a perfect matching of G: Let X be a maximal set satisfying the
condition with equality. The maximality of X implies that all the components of
G � X are factor-critical, thus it is enough to find a perfect matching in an auxiliary
bipartite graph D; where one of the color classes corresponds to X while the other to
the (critical) components. Hall’s theorem (or the matroid intersection theorem)
provides easily the existence of a perfect matching M in D: The desired perfect
matching of G can be obtained fromM and from the almost perfect matchings of the
critical components. We mention that this is a lucky case because the union of these
almost perfect matchings will be automatically a matching in G:
In the case of v-forests we shall prove directly the min–max theorem. We shall

choose a minimum cover ðP;QÞ of ðG;VÞ which is maximal in some certain sense.
This will imply (Lemma 7) that the minimum cover of ðGP½Hi�;HiÞ is unique for each
component Hi: This fact has two consequences (Lemmas 8 and 11), namely (i) each
component is critical (hence rPðHiÞ is odd) and (ii) for any component Hi and for
any refinement P0 of P; either there exists an augmenting edge for Hi with respect to
P0 or rP0 ðHiÞprPðHiÞ:
We shall construct a v-forest of size valðP;QÞ in ðG;VÞ as follows. (1) For n � l

components HiAQ; we shall find a v-forest Ki in ðGPCfVjg½Hi�;HiÞ of v-size
ðrPðHiÞ þ 1Þ=2 for some VjAP so that the trace of Ki in Vj is an edge and the
corresponding augmenting edges form a spanning forest of the auxiliary graph B:
(We shall see (Corollary 13) that the size of a spanning forest of B is indeed n � l:) (2)
For the other components Hj we shall need an almost perfect v-forest in
ðGP½Hj�;HjÞ; and (3) the union of all of these forests will be a forest in G; that is
a v-forest in ðG;VÞ of size valðP;QÞ: Using (i), for the latter components Hj it is
enough to find an arbitrary almost spanning forest in GP½Hj� (and then using that Hj

is critical, this forest can be replaced by a convenient v-forest containing the same
number of edges, that is of v-size ðrPðHjÞ � 1Þ=2). By the definition of augmenting
edge, for the former components Hi it is enough to find an arbitrary spanning forest
in GP½Hi� so that ð*Þ there exist augmenting edges for these components whose
union will be a spanning forest of B: Thus we have to find a forest F in G so that (a)
for each component Hj; EðFÞ-EðGP½Hj�Þ is a spanning or an almost spanning
forest in GP½Hj�; (b) for n � l components Hi we have a spanning forest, (c) for these
components in (b), ð*Þ is satisfied.
The existence of a forest with (a) and (b) can be proved, using (ii), by a matroid

partition theorem (for a graphic matroid and a truncated partitional matroid). We
shall see in Lemma 16 that if for all such forests, we consider the components where
the corresponding forests are spanning forests then we get the set of bases of a
matroid on the set of indices of the components.
Two matroids will be defined on the edge set of the auxiliary graph D; one of them

will be defined by the above introduced matroid, and the other one will be defined by
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the cycle matroid of B: The matroid intersection theorem will provide a forest of G

with (a)–(c). As we mentioned earlier, each part of the forest, which corresponds to a
component, can be replaced by a convenient v-forest, and thus the desired v-forest
would have been found.

4. Graphic matroid

In this section, we present some simple properties of forests and of the graphic
matroid rank function.

Claim 2. Let H ¼ ðU ;FÞ be a graph. Then

(a) for F 00DF 0DF ; rðF 00ÞprðF 0Þ;
(b) for F 0;F 00DF ; rðF 0,F 00ÞprðF 0Þ þ rðF 00Þ:

Lemma 3. Let H ¼ ðU ;FÞ be a graph, let P be a partition of U and let F0 be an edge

set such that partðF0Þ ¼ P: Then

(a) rðF,F0Þ ¼ rPðFÞ þ rðF0Þ;
(b) rPðFÞprðFÞ;
(c) rðFÞpjU j � jPj þ rPðFÞ;
(d) if rPðFÞorðFÞ then there exists an elementary refinement P00 of P such that

rPðFÞorP00 ðFÞ:

Proof. (a) By (1) and by partðF0Þ ¼ P; rðF,F0Þ ¼ n � cðF,F0Þ ¼ n �
cPðF,F0Þ ¼ ðjPj � cPðFÞÞ þ ðn � jPjÞ ¼ rPðFÞ þ rðF0Þ:
(b) By Lemma 3(a) and Claim 2(b), rPðFÞ ¼ rðF,F0Þ � rðF0ÞprðFÞ:
(c) By Claim 2(a) and Lemma 3(a), rðFÞprðF,F0Þ ¼ rPðFÞ þ rðF0Þ ¼ rPðFÞ þ

jU j � jPj:
(d) Let F 0 be a spanning forest of ðVP;FÞ: Then rPðFÞ ¼ jF 0j: Since

rðFÞ4rPðFÞ ¼ jF 0j there exists an edge fAF � F 0 such that ðV ;F 0,f Þ is a forest.
ðVP;F 0,f Þ contains a unique cycle C and fAEðCÞ because F 0 is a forest. On the
other hand ðV ;F 0,f Þ contains no cycle so there is a vertex viAVPðCÞ such that the
two edges of C incident to vi are incident to different vertices of Vi say a and b: But

then for the elementary refinement P00 :¼ ðP� ViÞ,a,ðVi � aÞ; ðVP0 ;F 0,f Þ is a
forest and hence rP00 ðFÞXjF 0,f j4rPðFÞ: &

Claim 4. Let F be a forest and let F1 and F2 be two vertex disjoint subtrees of F : If F1
and F2 belong to the same connected component of F then let us denote by a and b the

two end vertices of the shortest path in F connecting F1 and F2; otherwise let aAVðF1Þ
and bAVðF2Þ be two arbitrary vertices. Then

(a) if F 0
1 is a tree on VðF1Þ then ðF � EðF1ÞÞ,EðF 0

1Þ is a forest.
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(b) If F 0 is a forest on VðF1Þ,VðF2Þ so that a and b are in different connected

components of F 0; then ðF � EðF1Þ � EðF2ÞÞ,EðF 0Þ is a forest.

The proof of Claim 4 is a simple exercise, it is left to the reader.

Lemma 5. Let ðV ;FÞ be a forest. Let F0 ¼ fe1;y; ekg;F1;y;Fk disjoint edge sets of

F and let F 0
1;y;F 0

k be disjoint edge sets on V : Let P :¼ partðV ;F0Þ: Suppose that for

all 1pipk the following conditions are satisfied:

(i) jF 0
i j ¼ jFij þ 1;

(ii) partðVP;F 0
i Þ ¼ partðVP;FiÞ;

(iii) if ei is in VjAP; then ðVPCfVjg;F 0
i Þ is a forest whose trace in Vj is ei:

Then Fn :¼ ðF �
Sk
0 FiÞ,

Sk
1 F 0

i is a forest of size jF j:

Proof. By the disjointness of the sets Fi (resp. F 0
i ), by (i) and by jF0j ¼ k; jFnj ¼

jðF �
Sk
0 FiÞ,

Sk
1 F 0

i j ¼ jF j �
Pk
0 jFij þ

Pk
1 jF 0

i j ¼ jF j � jF0j �
Pk
1 jFij þ

Pk
1ðjFij þ

1Þ ¼ jF j � jF0j �
Pk
1 jFij þ

Pk
1 jFij þ k ¼ jF j: By Claim 4(a) applied for each

connected component of Fi for every i; we obtain that rPðF � F0Þ ¼ rPðFnÞ: Then,
by Lemma 3(a), jFnj ¼ jF j ¼ rðFÞ ¼ rððF � F0Þ,F0Þ ¼ rPðF � F0Þ þ rðF0Þ ¼
rPðFnÞ þ rðF0Þ ¼ rðFn,F0Þ: Thus it is enough to prove that rðFn,F0Þ ¼ rðFnÞ; in
other words uiBðV ;FnÞwi for every uiwiAF0: Suppose on the contrary that there exists

an edge uj1wj1AF0 (say uj1 ;wj1AVj1 ) such that uj1fðV ;FnÞwj1 : By (iii), ðVPCfVj1
g;F 0

j1
Þ

contains a path Pj1 connecting uj1 and wj1 : Since EðPj1ÞDF 0
j1
DFn but uj1fV ;Fnwj1 it

follows that there exists a vertex vj2AVðPj1Þ ðj2aj1Þ and an edge uj2wj2AF0 (with

uj2 ;wj2AVj2 ) such that uj2fðV ;FnÞwj2 :Note that Pj1 connects vj1 and vj2 in ðVP;F 0
j1
Þ and

hence, by (ii), there exists a path Qj1 in ðVP;Fj1Þ connecting vj1 and vj2 : The same way,

there exists an edge uj3wj3AF0 ðj3aj2Þ (say uj3 ;wj3AVj3 ) such that uj3fðV ;FnÞwj3 and

there exists a path Qj2 in ðVP;Fj2Þ connecting vj2 and vj3 : We can continue the same

way. Since jF0j is finite there exist indices sot such that vs ¼ vtþ1: Then using that the
paths Qi connect vji and vjiþ1 for every spipt in ðVP;FjiÞ and that these paths are
edge disjoint it follows that C :¼ Qjs,Qjsþ1,?,Qjt is a cycle in ðVP;F � F0Þ: This
is a contradiction because, by Lemma 3(a), jF � F0j ¼ jF j � jF0j ¼ rðFÞ � rðF0Þ ¼
rPðF � F0Þ and hence ðVP;F � F0Þ is a forest. &

We mention that Lemma 5 will be applied only in the very last step of the
proof.

5. The proof

Proof (maxpmin). The following lemma proves this direction. &
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Lemma 6. For a forest F in G and for a cover ðP;QÞ of ðG;VÞ; we have

vVðFÞpðn � lÞ þ
P

HiAQ I
rPðHiÞ
2

m:

Proof. Let F 0 be a subset of F of maximum size so that F 0 is a forest in GP: By
Lemma 3(c), jF j ¼ rðFÞpn � l þ rPðFÞ ¼ n � l þ jF 0j: Since the number of V-pairs
in F is equal to the number ofV-pairs in F 0 plus the number ofV-pairs f1; f2 in F for
which at most one of f1 and f2 belongs to F 0; we have

vVðFÞpvðVPÞðF 0Þ þ jF � F 0jpvðVPÞðF 0Þ þ n � l: ð4Þ

For each HiAQ; let H 0
i :¼ ðHiÞP and let F 0

i :¼ F 0-EðHiÞ: Then F 0
i is a forest in

GP½Hi� and so rPðF 0
i ÞprPðHiÞ: Whence, by (3), vH 0

i
ðF 0

i ÞpIrPðF 0
i Þ

2
mpIrPðHiÞ

2
m: As Q is

a partition ofV; for every v-pair T contained in F 0 there exists some HiAQ such that
TAH 0

i : Thus

vðVPÞðF 0Þ ¼
X

HiAQ

vH 0
i
ðF 0

i Þp
X

HiAQ

rPðHiÞ
2

� �
: ð5Þ

Eqs. (4) and (5) imply the desired inequality. &

Remark 1. It follows from the proof of Lemma 6 that if ðP;QÞ is a cover of ðG;VÞ
and F is a v-forest of G of size valðP;QÞ then we have equality in (4). It follows that
for every V-pair f1; f2 in F at least one of f1 and f2 belongs to F 0; that is if TARP

then T is not contained in F :

Proof (maxXmin). We prove the theorem by induction on n þ jVj: For n ¼ 3 the
result is trivially true. It is also true when jVj ¼ 1: In what follows we suppose that
nX4 and jVjX2:
Let ðP;QÞ be a minimum cover of ðG;VÞ for which jPj ¼ l is as small as possible

and subject to this jQj ¼ k is as large as possible. Note that by the maximality of k;

for each pair TASP,RP; TAQ; ð6Þ

because for each TASP,RP;I
rPðTÞ
2

m ¼ 0:

Lemma 7. For each HiAQ; the minimum cover of ðGP½Hi�;HiÞ is unique and it is the

trivial cover.

Proof. Let ðP0;Q0Þ be a minimum cover of ðGP½Hi�;HiÞ: Since the value of the trivial
cover of ðGP½Hi�;HiÞ is IrPðHiÞ

2
m; l � l0 þ

P
H 0

j
AQ0 I

rP0 ðH 0
j Þ

2
m ¼ valðP0;Q0ÞpIrPðHiÞ

2
m:

Using this cover ðP0;Q0Þ; a new cover ðPn;QnÞ of ðG;VÞ can be defined as follows.
Let the partition Pn of VðGÞ be obtained from P by taking the union of all those Vr

and Vs whose corresponding vertices in GP are in the same set of P
0: Then ln ¼

jPnj ¼ jP0j ¼ l0: Let Qn be obtained from Q by deleting Hi and by adding Q0: For
HjAQ� fHig; rP0 ðHjÞprPðHjÞ by Lemma 3(b). We claim that the new cover is also
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a minimum cover,

valðPn;QnÞ ¼ n � ln þ
X

HjAQ�fHig

rP0 ðHjÞ
2

� �
þ

X
H 0

j
AQ0

rP0 ðH 0
j Þ

2

� �

p n � l0 þ
X

HjAQ�fHig

rPðHjÞ
2

� �
þ ðvalðP0;Q0Þ � ðl � l0ÞÞ

p n � l þ
X

HjAQ�fHig

rPðHjÞ
2

� �
þ rPðHiÞ

2

� �
¼ valðP;QÞ:

It follows that equality holds everywhere, so valðP0;Q0Þ ¼ IrPðHiÞ
2

m; thus the trivial
cover of ðGP½Hi�;HiÞ is a minimum cover. Furthermore, by the minimality of l;

jPjpjPnj ¼ jP0jpjPj that is P0 is the trivial partition of VðGP½Hi�Þ and by the
maximality of k; jQjXjQnj ¼ jQj � 1þ jQ0jXjQj that is jQ0j ¼ 1; whence the
minimum cover of ðGP½Hi�;HiÞ is unique. &

Lemma 8. Each component HiAQ is critical.

Proof. Suppose that there exists a component HiAQ for which ðGP½Hi�;HiÞ is not
critical, that is there are two vertices a and b in the same connected component of
GP½Hi� whose identification into a new vertex vab leaves a v-graph ðG0;HiÞ with no
perfect v-forest. Note that rG0 ðEðHiÞÞ ¼ rPðHiÞ � 1: By the induction hypothesis, it
follows that there is a cover ðP0;Q0Þ of ðG0;HiÞ so that

valG0 ðP0;Q0ÞorG0 ðEðHiÞÞ
2

pIrPðHiÞ
2

m: Let P00 :¼ ðP0 � X Þ,ððX � vabÞ,a,bÞ; where X

is the member of P0 that contains vab: Then ðP00;Q0Þ is a cover of ðGP½Hi�;HiÞ and
valðP00;Q0Þ ¼ valðP0;Q0Þ þ 1: Thus valðP00;Q0ÞpIrPðHiÞ

2
m: By Lemma 7, ðP00;Q0Þ is a

minimum cover of ðGP½Hi�;HiÞ but not the trivial one (a and b are in the same

member of P00), which contradicts Lemma 7. &

Corollary 9. If HiAQ and a; bAVðGP½Hi�Þ; then there exists an almost perfect v-forest

K in ðGP½Hi�;HiÞ so that a and b belong to different connected components of K :

Proof. If a and b are in the same connected component of GP½Hi�; then let c ¼ a and
d ¼ b; otherwise let c and d be two arbitrary vertices from a connected component of
GP½Hi�: By Lemma 8, Hi is critical, so by identifying c and d in GP½Hi�; the v-graph
obtained has a perfect v-forest K 0: Then K :¼ ðVðGPÞ;EðK 0ÞÞ is an almost perfect
v-forest in ðGP½Hi�;HiÞ and a and b belong to different connected components of
K : &

Remark 2. (a) By Corollary 9, ðGP½Hi�;HiÞ (and consequently ðG;VÞ) contains a
v-forest of size IrPðHiÞ

2 m:

(b) However, at this moment we cannot see whether we can choose a v-forest Ki of

size IrPðHiÞ
2

m for every HiAQ so that
S

HiAQ Ki is a v-forest in ðG;VÞ:
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(c) Note that by Corollary 9, rPðHiÞ is odd for each component HiAQ; that is

IrPðHiÞ
2

m ¼ rPðHiÞ�1
2

:

Claim 10. If l ¼ n � 1; then kX2:

Proof. Suppose l ¼ n � 1 and k ¼ 1: Then valðP;QÞ ¼ n � l þ IrPðVÞ
2 m ¼

1þ IrPðVÞ
2

m: Let ðu1v1; u2v2Þ be a v-pair in V such that u1v1 is not a loop. Let us

consider the cover ðP0;Q0Þ of ðG;VÞ where each set of P0 contains exactly one vertex
of G except one which contains u1 and v1 ðjP0j ¼ n � 1Þ and Q0 contains exactly two
members, namely, H 0

1 :¼ fu1v1; u2v2g and H 0
2 :¼ V� H 0

1: (jQ0jX2 because jVjX2:)
Then, valðP0;Q0Þ ¼ n � jP0j þ IrP0 ðH 0

1
Þ

2
mþ IrP0 ðH 0

2
Þ

2
m ¼ 1þ IrGðEðGÞÞ�1

2
m: By Lemma

3(c), rGðEðGÞÞp1þ rPðVÞ; so valðP0;Q0ÞpvalðP;QÞ; and hence ðP0;Q0Þ is a
minimum cover. This is a contradiction because jP0j ¼ n � 1 and jQ0jX2: &

Lemma 11. Let P0 be a refinement of P and let HiAQ be a component for which

HieGDðAP0 Þ: Then rP0 ðHiÞprPðHiÞ:

Proof. Suppose that rP0 ðHiÞ4rPðHiÞ: Let H ¼ GP0 ðHiÞ: Then, by applying Lemma
3(d) with H and with P=P0; there exists an elementary refinement P00 of P (say

V 1
j ,V 2

j ¼ Vj with V1
j ;V2

j AP00;VjAPÞ so that P0 is a refinement of P00 and

rP00 ðHiÞ4rPðHiÞ: We shall denote the vertices of GP00 ½Hi� corresponding to V 1
j and

V 2
j by v1 and v2: Since P0 is a refinement of P00; HieGDðAP0 Þ implies that

HieGDðAP00 Þ that is there exists no augmenting edge for Hi with respect to P00 so

ðGP00 ½Hi�;HiÞ has no v-forest of size rPðHiÞþ1
2

: By Claim 10, we can use the induction

hypothesis (of the theorem), that is there exists a cover ðP3;Q3Þ of ðGP00 ½Hi�;HiÞ so
that valðP3;Q3ÞprPðHiÞþ1

2
� 1 ¼ rPðHiÞ�1

2
: Let Pn :¼ ðP3 � A � BÞ,C; where A and

BAP3 contain v1 and v2 and C is the vertex set of GP½Hi� corresponding to A,B:

Then ðPn;Q3Þ is a cover of ðGP½Hi�;HiÞ: If A ¼ B; then valðPn;Q3Þ ¼ valðP3;Q3Þ �
1orPðHiÞ�1

2 : This is a contradiction because the minimum cover of ðGP½Hi�;HiÞ
has value rPðHiÞ�1

2
by Lemma 7. Thus AaB; and in this case

valðPn;Q3ÞpvalðP3;Q3ÞprPðHiÞ�1
2

: By Lemma 7, ðPn;Q3Þ is a minimum cover of

ðGP½Hi�;HiÞ and in fact it is the trivial cover. Since AaB it follows that ðP3;Q3Þ is
the trivial cover of ðGP00 ½Hi�HiÞ thus IrP00 ðHiÞ

2
m ¼ valðP3;Q3ÞprPðHiÞ�1

2
; so

rP00 ðHiÞprPðHiÞ; contradiction. &

Lemma 12. For a refinement P0 of P (with l0 ¼ jP0j and l ¼ jPj) and for Q1 ¼
GDðAP0 Þ; l0 � lpjQ1j:

Proof. Let Hn ¼ ð
S

HiAQ1
HiÞ,RP and let Q0 :¼ ðQ� Q1 �RPÞ,Hn: We remark

that, by Claim 2(b), rPðRPÞp
P

TARP
rPðTÞ ¼

P
TARP

0 ¼ 0: As ðP0;Q0Þ is a cover
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of ðG;VÞ; valðP;QÞpvalðP0;Q0Þ; that is

n � l þ
X

HiAQ1

rPðHiÞ � 1
2

þ
X

HiAQ�Q1

rPðHiÞ
2

� �
pn � l0 þ rP0 ðHnÞ

2

� �

þ
X

HiAQ�Q1

rP0 ðHiÞ
2

� �
: ð7Þ

By Lemma 11, for HiAQ� Q1 �RP;

rP0 ðHiÞprPðHiÞ: ð8Þ

Let H :¼ GP0 ½Hn�: By applying Lemma 3(c) with H and PP0 and by Claim 2(b),

rP0 ðHnÞpl0 � l þ rPðHnÞpl0 � l þ
X

HiAQ1

rPðHiÞ þ rPðRPÞ

¼ l0 � l þ
X

HiAQ1

rPðHiÞ: ð9Þ

Eqs. (7)–(9) imply thatX
HiAQ1

rPðHiÞ � jQ1j ¼
X

HiAQ1

ðrPðHiÞ � 1Þp2ðl � l0Þ þ rP0 ðHnÞpðl � l0Þ

þ
X

HiAQ1

rPðHiÞ; ð10Þ

whence l0 � lpjQ1j: &

Corollary 13. partðV ;EðBÞÞ ¼ P:

Proof. By definition, there is no edge of B between two different sets of P: Let us

consider an elementary refinement P0 of P: If there was no augmenting edge with

respect to P0; then by Lemma 11, valðP0;QÞ ¼ n � jP0j þ
P

HiAQ I
rP0 ðHiÞ
2

mpn � ðl þ
1Þ þ

P
HiAQ I

rPðHiÞ
2

m ¼ valðP;QÞ � 1; contradicting the minimality of the cover

ðP;QÞ: This implies that for each VjAP; the subgraph of B spanned on the vertex set

Vj is connected. &

Let Fi be an arbitrary spanning forest of GP½Hi� for every component HiAQ: Then

EðFiÞ-EðFjÞ ¼ | if iaj because the components of Q are disjoint. Let W ¼
ðVP;EðWÞÞ where EðWÞ :¼

S
HiAQ EðFiÞ: Let P0 be a refinement of P with jP0j ¼ l0:

Let Q1 :¼ GDðAP0 Þ and Q2 :¼ Q� Q1:We define two matroids on EðWÞ: Let G be the
cycle matroid of W with rank function rG: LetFP0 :¼ F1 þF2 (direct sum), where
Fj will be the following (truncated) partitional matroid (with rank function rj)

on Ej :¼
S

HiAQj
EðFiÞ j ¼ 1; 2: Let F1 contain those sets FDE1 for which

jF-EðFiÞjp1 for all i and jF jpt0 :¼ jQ1j � ðl0 � lÞ: Note that t0X0 by Lemma
12. LetF2 contain those sets FDE2 for which jF-EðFiÞjp1 for all i: For the rank
function r0 of FP0 r0ðXÞ ¼ r1ðX-E1Þ þ r2ðX-E2Þ:
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Lemma 14. For any refinement P0 of P; EðWÞ can be written as the union of an

independent set in G and an independent set in FP0 :

Proof. This is a matroid partition problem. By Nash–Williams’ theorem (see for
example [13]) the lemma is true if and only if for any YDEðWÞ; jY jprGðY Þ þ r0ðY Þ:
Suppose that this is not true, and let Y be a maximum cardinality set violating
the above inequality. Then, clearly, Y is closed in FP0 : Thus Y can be written in

the form Y ¼
S

HiAQn EðFiÞ; for some QnDQ: Let t :¼ jQn-Q1j: Let Q00 :¼ ðQ�
QnÞ,H 00; where H 00 :¼

S
HiAQn Hi: We remark that

rPðH 00Þ ¼ rGðY Þ: ð11Þ

Indeed, for every HiAQn; Fi is a spanning forest of GP½Hi� hence partðVP;Y Þ ¼
partðVP;EðH 00ÞÞ:

Case 1: tpt0: Then r0ðYÞ ¼ jQnj: Since ðP;Q00Þ is a cover of ðG;VÞ;
0pvalðP;Q00Þ � valðP;QÞ ¼ IrPðH 00Þ

2
m�

P
HiAQn

rPðHiÞ�1
2

; whence, by (11),

jY j ¼
X

HiAQn

jEðFiÞj ¼
X

HiAQn

rPðHiÞ ¼ 2
X

HiAQn

rPðHiÞ � 1
2

þ jQnjp2 rPðH 00Þ
2

þ jQnj ¼ rGðYÞ þ r0ðYÞ;

contradicting the assumption for Y :
Case 2: t4t0: Now, by the closedness of Y in FP0 ; Y contains all the forest

Fi for which HiAQ1: Thus r0ðYÞ ¼ r1ðY-E1Þ þ r2ðY-E2Þ ¼ t0 þ ðjQnj � jQ1jÞ ¼
jQnj � ðl0 � lÞ: Let us consider the following cover ðP0;Q3Þ of ðG;VÞ; where
Q3 :¼ ðQ00 � H 00 � ðVP0-RPÞÞ,H3 where H3 :¼ ðH 00,ðVP0-RPÞÞ: Note that

rPðVP0-RPÞ ¼ 0: By Lemma 3(c), Claim 2(b) and (11), rP0 ðH3Þpl0 � l þ
rPðH3Þpl0 � l þ rPðH 00Þ þ rPðVP0-RPÞ ¼ l0 � l þ rGðYÞ: By Lemma 11,

valðP0;Q3Þ ¼ n � l0 þ rP0 ðH3Þ
2

� �
þ

X
HiAQ�Qn

rPðHiÞ
2

� �
pn � l0 þ l0 � l þ rGðYÞ

2

þ
X

HiAQ�Qn

rPðHiÞ
2

� �
:

Then 0pvalðP0;Q3Þ � valðP;QÞpl � l0 þ l0�lþrGðY Þ
2

�
P

HiAQn
rPðHiÞ�1

2
implies that

jY j ¼
X

HiAQn

jEðFiÞj ¼
X

HiAQn

rPðHiÞ ¼ 2
X

HiAQn

rPðHiÞ � 1
2

þ jQnj

prGðYÞ þ jQnj � ðl0 � lÞ ¼ rGðYÞ þ r0ðYÞ;

contradicting the assumption for Y : The proof of Lemma 14 is complete. &

Corollary 15. (a) There exists a forest F in the graph W so that for n � l indices i;
EðFiÞDEðFÞ and EðFÞ-EðFiÞ is an almost spanning forest of VðGP½Hi�Þ for the other

indices.
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(b) Therefore there exists a forest F 0DF in W so that EðF 0Þ-EðFiÞ is an almost

spanning forest of VðGP½Hi�Þ for every HiAQ:

Proof. (a) By Lemma 14, for the trivial partition P0 of VðGÞ; there exist F ;LDEðWÞ
such that EðWÞ ¼ F,L; F is a forest of W ; jL-EðFiÞjp1 for all i; and, by Lemma
12, for at least n � l components HiAQ1; jL-EðFiÞj ¼ 0: Then F is the desired forest.
(b) is implied by (a). &

Remark 3. By Corollary 15(b), there exists a forest F inW (and consequently in GP)
so that EðFÞ-EðFiÞ is an almost spanning forest of GP½Hi� for all components Hi:
Let Hi be an arbitrary component of Q: By Corollary 9, for the two vertices a and b

defined in Claim 4(b), there exists an almost perfect v-forest K in ðGP½Hi�;HiÞ so that
a and b belong to different components of K : Then, by Claim 4(b), ðF �
ðEðFÞ-EðFiÞÞÞ,EðKÞ is a forest of GP: We can do this for all components, so the

v-graph ðGP;VÞ (and hence ðG;VÞ) contains a v-forest of v-size
P

HiAQ I
rPðHiÞ
2

m:

Now we define a matroid M on the components of Q: Let Q0DQ be an

independent set in M; that is Q0AIðMÞ if and only if there is fiAEðFiÞ for each
component HiAQ� Q0 so that EðWÞ � ffi: HiAQ� Q0g is a forest in W :

Lemma 16. M is a matroid.

Proof. We show that M satisfies the three properties of independent sets of
matroids.

(1) By Corollary 15(b), |AIðMÞ:
(2) If Q00DQ0AIðMÞ; then Q00AIðMÞ because any subgraph of a forest is a forest.
(3) Let Q0;Q00AIðMÞ with jQ00jojQ0j: By definition, there are f 0

i AEðFiÞ for HiAQ�
Q0 and f 00

i AEðFiÞ for HiAQ� Q00 so that T 0 :¼ EðWÞ � ff 0
i : HiAQ� Q0g and T 00 :¼

EðWÞ � ff 00
i : HiAQ� Q00g are forests in W : Choose these two forests T 0 and T 00 so

that jT 0-T 00j is as large as possible. T 0 and T 00 are two independent sets in the
matroid G and jQ00jojQ0j implies that jT 00jojT 0j thus there is an edge eAT 0 � T 00 so
that T 00,e is also a forest in W : Then e ¼ f 00

j for some j: If HjeQ0 that is f 0
j eT 0; then

Tn :¼ T 00 þ f 00
j � f 0

j is a forest and jT 0-Tnj4jT 0-T 00j; contradiction. Thus HjAQ0 �
Q00 and Q00,fHjgAIðMÞ and we are done. &

We shall apply the matroid intersection theorem of Edmonds [4] for the following
two matroids on the edge set of the graph D introduced in Section 2. For a set
ZDEðDÞ; let us denote by Z1 and Z2 the sets of end vertices of Z in the colour
classes EðBÞ and Q: The rank of Z in the first matroid will be rBðZ1Þ and rMðZ2Þ in
the second matroid, where rB is the rank function of the cycle matroid of the graph B

and rM is the rank function of the above defined matroidM: Note that if a vertex x

is in the colour class EðBÞ (in Q) then the edges incident to x correspond to parallel
elements of the first (second) matroid.
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Remark 4. By Corollary 13, rBðEðBÞÞ ¼ n � l and by Corollary 15(a), rMðQÞXn � l:

Moreover, if P0 is a refinement of P; then by Lemmas 12 and 14,

l0 � lprMðGDðAP0 ÞÞ: ð12Þ

Lemma 17. There exists a common independent set of size n � l of the above defined

two matroids.

Proof. By the matroid intersection theorem of Edmonds [4], we have to prove that

n � lprBðEðDÞ � ZÞ þ rMðZÞ for all ZDEðDÞ: ð13Þ

Suppose that there is a set Z violating (13). We may assume that EðDÞ � Z is closed
in the first matroid. This implies that there is a set JDEðBÞ so that EðDÞ � Z is the
set of all edges of D incident to J and J is closed in the cycle matroid of B: Then by
the closedness of J; EðBÞ � J is the set of augmenting edges of the refinement

P0 :¼ partðVP; JÞ of P; that is, AP0 ¼ EðBÞ � J: (Obviously, Z is the set of all edges
incident to EðBÞ � J in D:) Then rMðZÞ ¼ rMðGDðAP0 ÞÞ and rBðEðDÞ � ZÞ ¼
rBðJÞ ¼ n � l0; where l0 ¼ jP0j: By (12), l0 � lprMðGDðAP0 ÞÞ and thus n � l ¼
ðl0 � lÞ þ ðn � l0ÞprMðZÞ þ rBðEðDÞ � ZÞ; contradicting the fact that Z violates
(13). &

The construction of the desired v-forest: Let NDEðDÞ be a common independent
set of size n � l of the above two matroids. (By Lemma 17, such a set exists.) It
follows that N is a matching in D so that it covers a basis E0 in the cycle matroid of B

and an independent set Q0 inM with jQ0j ¼ n � l: Thus, there exists a forest F 0 of GP

so that it is the union of the spanning forests Fi in GP½Hi� for HiAQ0 and the almost
spanning forests Fi � fi in GP½Hi� (for appropriate fi) for HiAQ� Q0: By Lemma

3(a), E0,EðF 0Þ is a forest on VðGÞ and it contains 2ðn � l þ
P

HiAQ I
rPðHiÞ
2

mÞ
edges. Indeed, jE0,EðF 0Þj ¼ jE0j þ jEðF 0Þj ¼ n � l þ

P
HiAQ0 rPðHiÞ þ

P
HiAQ�RP�Q0

ðrPðHiÞ � 1Þ ¼ n � l þ jQ0j þ
P

HiAQ�RP
ðrPðHiÞ � 1Þ ¼ 2ðn � l þ

P
HiAQ I

rPðHiÞ
2

mÞ:
We shall change the forests by appropriate ones obtaining a v-forest of the desired

size. As in Remark 3, for each HiAQ� Q0 we may replace Fi � fi in F 0 by an almost
perfect v-forest of ðGP½Hi�;HiÞ obtaining a forest F 00 on VP with the same number of
edges. As above, E0,EðF 00Þ is a forest on VðGÞ: For all eAE0; e is an augmenting

edge for HeAQ0; where He is the pair of e in the matching N: Thus there exists a v-

forest Ke in ðGPCfVig½He�;HeÞ of size rPðHiÞþ1
2

so that the trace of Ke in Vi is the edge e;

where ViAP contains the edge e: (Note that each Ke corresponds to a graph F 0
e in

GP½He� such that partðVP;FeÞ ¼ partðVP;F 0
eÞ:) Replace E 0 S

HiAQ0 EðFiÞ byS
eAE0 EðKeÞ: By Lemma 5 with F ¼ E0,EðF 00Þ;F0 ¼ E0;Fi ¼ Fe;F 0

i ¼ Ke (note that

all the conditions of Lemma 5 are satisfied), we obtain again a forest of G with the
same number of edges. The forest obtained consists of v-pairs, that is it is a v-forest

of size n � l þ
P

HiAQ I
rPðHiÞ
2

m: &
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