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1. INTRODUCTION

An ear-decomposition of a gragghis a sequencéGo, Gy, ..., Gk) of subgraphs such that
Go is a vertex,Gx = G and eachG;j 1 is obtained fronG; by adding an ear that is a path
whose end vertices belong @& but the inner vertices do not. It is well known that a graph
has an ear-decomposition if and only if it is 2-edge-connected. We remark that each circuit
can be the starting ear of an ear-decomposition. It is quite simple to see that the number of
ears in each ear-decomposition ®fis m — n + 1, wheren and m denote the number of
vertices and edges &, respectively. However, the number of even ears may differ in distinct
ear-decompositions db. (The length of an ear is the number of edges contained in it.) We
focus our attention on ear-decompositions (called optimal) that have minimum ngiter
of even ears. Frank showed in [2] how an optimal ear-decomposition can be constructed in
polynomial time for any 2-edge-connected graph.

Lovasz[4] observed that a grap8 is factor-critical if and only ifo(G) = 0. Lovasz and
Plummer [5] proved that for matching-covered graphi&) = 1. However, thidatter one
is not a characterization. To see an exampleHebe the simple graph obtained from the
circuit on four vertices by adding an edgeTheng(H) = 1 butH is not matching-covered.
Let us call an edge of a graphG ¢-extreme ife may lie on an even ear of an optimal ear-
decomposition 06. Note that in the example abogés notp-extreme. This observation leads
to the following characterization of matching-covered graphs. We call a gsapteovered if
each edge ofs is p-extreme. For more definitions see Sectin

CLaIM 1. G is matching-covered and only if (G) = 1 and G is¢-covered. In other
words, G is matching-covered if and only if/&is factor-critical for each edge e of G.

The reader is encouraged to prove Cldims a warm-up. In the light of Clairh, ¢-covered
graphs can be considered as a natgealeralization of matching-covered graphs. We propose
the investigation ofp-covered graphs in this paper. By Claim we have another way to
generalize matching-covered graphs, namely we ommsider graphs witly(G) = 1. This
possibility will also be exploited in this paper.

By combining the results of La@asz and Plummer [5] and Little [3], it follows that for any
two edges of a matching-covergtdaphG there exists an optimal ear-decompositionGof
such that the first edP is even andP contains these two edges. This result can be extended
to 2-vertex-connecte@-covered graphs. Note that to demonstrate this result we had to use
some properties of the ear matroid. The ear matroid of a graph was introduced in [6, 7]. It
will be shown that two edgesf G belong to the same block of the ear matroid if and only if
these two edges may lie on the starting even ear of an optimal ear-decomposition. To argue
the above mentioned result we shall give a simple description of the blocks of the ear matroid.
Hopefully, this result is of interest in its own right and can be considered as one of the main
results of this paper.
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By the aforementioned characterization a€tor-critical graphs it follows that for an opti-
mal ear-decompositiofGy, . . ., Gk) of afactor-critical graphG, each subgrap@; in this se-
guence is also factor-critical. This useful property does not hold for matching-covered graphs.
As an example, consider the complete graphon four verticesK,4 is matching-covered
but, sinceK4 — e is not matching-covered for an arbitrary edgef K4, K4 has no optimal
ear-decomposition such that all the subgraphs in the sequence are matching-covered. To have
a similar property for matching-covered graphs &sz and Plummer [5] suggested the notion
of graded ear-decomposition. Briefly this means thay allowed the addition of more ears
simultaneously. With this more general notion, we can achieve our aim. It is easy to see that
each matching-covered graph has a graded ear-decomposition in such a way that the first ear
is even, all the other ears are of odd length and each subgraph in the sequence is matching-
covered. What is much more interesting (and of course a little bit more complicated) is, as
Lovasz and Plummer [5] demonstrated, that we can do this by adding at most two ears in each
step. This is the so-called Twear Theorem, and for a very short and simple proof we refer to
a note of the present author [8]. We shall show, as a main result of the paper, that the Two Ear
Theorem can be extendedgecoveredgraphs. This theorem characterizesovered graphs
by means of ear-decomposition. Another constructive characterization will also be given for
@-covered graphs.

Along the way we shall also prove some structural results on the graph defined by the
p-extreme edges. The power of this approach has been utilized in [9] to provide a simple
graph theoretic proof for the Tight Cuemma on bricks due to Edmonds, lasz and Pulley-
blank [1]. We shall also provide a new proof for the Cathedral Theorem on saturated graphs
due to Lovasz and Plummer [5In fact, an analogous construction, the Cathedral Construction
for saturated graphs, can be deduced fromresults for almost critical graphs.

The organization of this paper is as follows. In Sectibwe give all the definitions we
need. SectioB contains earlier results and some ngmple observations that will be used in
this paper. In Sectiod we shall apply ouresults to almost critical graphs to provide a new
proof for the Cathedral Theorem on saturated gralphSection5 we prove our main lemma
that provides a constructive characterizafimny-covered graphs. We investigate in Sectfon
the graph defined by theg-extreme edges and give sorméormation about the structure of
this graph. SectiorY, which is devoted to the ear matroid, yields a simple description of
the blocks of this matroid. In Sectid® we extend results on matching-covered graphs to
@p-covered graphs.

We remark that althe results here can be found in the two IPCO papers [6, 10].

2. DEFINITIONS AND NOTATION

A connected componerit of a graphG is calledodd (even) if|V (K)| is odd (even). For
X C V(G), c(G — X) denotes the number of odd component&in- X, while Cx will
denote the union of the even component§&of X. We shall use the notaticd(G) defined
in the Gallai-Edmonds Decomposition Theorem [5].

Let G be a graph with a perfect matching. £dge ofG is allowedif it lies in some perfect
matching of G. N(G) denotes the subgraph & induced by the allowed edges &. G
is matching-coveredf it is connected and each edge Gfis allowed, that isG = N(G).

G is calledelementanyif N(G) is connected. In particular, every matching-covered graph is
elementary. A vertex seX C V(G) is called aarrier if co(G— X) = | X|. If G is elementary,
then letP(G) be defined as the set of all maximal barrier§&ofG is said to besaturatedf for
each paiu, v of non-adjacent vertices &, G — u — v has a perfect matching. It is equivalent
to saying that the addition of the edge to G creates a new perfect matching@f+ uv.
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CATHEDRAL CONSTRUCTION. Let Gg be a saturated elementary graph and to each class
S € P(G) assign an already constructed saturated graph @& the empty set. For each
S € P(G) join every vertex of S to every vertex 0§.G

A subgraphH of a graphG is calledniceif G — V(H) has a perfect matching. A grah
is factor-critical if for each vertexw € V(G), G — v possesses a perfect matching.

For a graphH with a perfect matching, a non-empty barrirof H is said to be a&trong
barrier if H— X has no even components, each odd componeiit-efX is factor-critical and
the bipartite graph obtained froid by deleting the edges spanned ¥yand by contracting
each factor-critical component ¢ — X to a single vertex is matching-covered. L@&t=
(V, E) be a graph and assume that the subgrdpbf G induced byU C V has a strong
barrier X. ThenH is said to be a&trong subgraplof G with strong barrierX if X separates
U-XandV —-UinGorifU =V.

An ear-decompositionf a graphG is a sequencéGg, G, . .., Gk) of subgraphs such that
Go is a vertex,Gx = G and eachGj,; is obtained fromG; by adding anear R that
is a path whose end vertices belongGp but the inner vertices do not. We shall also use
the following notation for an ear-decompositic®: = P; + P> + --- + Px. Note that we
allow closed ears, for example tlséarting ear R is always a circuit. Théengthof an ear
is the number of edges contained in it. A sequef@g, G1, ..., Gy) of subgraphs o6 is
a 2-graded ear-decompositionf G if Gg is a vertex,G; is an even circuitGy, = G, for
1<i <=m-1,Gjy;is matching-covered3j 1 is obtained fromG; by adding at most two
disjoint odd paths which are openly disjoint fraB but their end-vertices belong ;.

Let G be an arbitrary graph. K € V(G), then the subgraph @ induced byX is denoted
by G[X]. The graph obtained fror® by contracting an edge sét of G will be denoted by
G/F. By the subdivision of an edge sétwe mean the operation which subdivides each edge
f € F by a new vertex, and it will be denoted &/ x F.

We say that an edge set of a graphs critical makingif its contraction leaves a factor-
critical graph. For a 2-edge-connected gr&php (G) is defined to be the minimum number
of even ears in an ear-decomposition@f An ear-decomposition is said to logtimalif it
has exactlyy(G) even ears. We call a graathmost criticalif ¢(G) = 1. A circuitC of G is
calledgoodif G has an optimal ear-decomposition such that the first €ar We say that an
edgee of G is g-extremdf e may lie on an even ear of an optimal ear-decompositio®,dh
other wordsgp(G/e) = ¢(G) — 1. More generally, an edge setof G is calledp-extremeif
0(G/F) = ¢(G) — |F|. G is calledp-coveredf each edge of5 is p-extreme. We denote by
D(G) the graph orV (G) whose edges are exactly theextreme edges db.

Theear matroid M (G) of a graphG was introduced in [7]. Its bases are exactly the maxi-
mumeg-extreme edge sets, or equivalenthe minimum critical making edge sets. The set of
bases of\ (G) will be denoted by3(G).

The blocks of a matroidv” are defined by an equivalence relation. For two elemeatsd
f of M, e ~ f if there exists a circuit in the matroid containing them, or equivalently, if there
exists a bas® containinge such thatB —e+ f is a base again. This is an equivalence relation
and theblocksof N are the equivalence classes-ef The blocksof a graphG are defined
to be the blocks of the circuit matroid &, in other words the maximal 2-vertex-connected
subgraphs 06G.

We finish this section by giving some examplesgecovered graphs: the complete bipartite
graphKz.n (n > 2)is g-covered ang (K2 n) = n—1, a graphG whose blocks are matching-
covered isp-covered ang (G) is the number of blocks d&. A procedure that generates all
thep-covered graphs is presented in Secon



868 Z. Szigeti
3. PRELIMINARIES

In this section we list the resultge will need in this paper.

THEOREM1 ( TUTTE[11]). A graph G has a perfect matching if and only if for every
X CV(G), (G — X) < [X].

THEOREM 2 (LOVASZ [4]).
(@) A graph G is factor-critical if and only ip(G) = 0.
(b) For a factor-criticalgraph G, a circuit C of G is nice if and only if C is good.

THEOREM 3 (LOVASZ [4]). Let H be a connected subgraph of a graph G.
(a) If H and G/H are factor-critical, then G idactor-critical.
(b) If H is nice in the factor-critical graph G, then G is factor-critical.

THEOREM 4 (LOVASZ AND PLUMMER [5]). Let G be an elementary graph. Th&{G)
is a partition of V(G). For every pair x y € V(G), x and y belong to different classes of
P(G) if and only if G— x — y has a perfect matching.

THEOREMS5 (CATHEDRAL THEOREM[5]). If G is any saturated graph then it can be
built up using the Cathedral Constructistarting with a saturated elementary graphyG
The graph G may be uniquely described as the subgraph of G induced by those vertices of
G which, for each x V(G), do not lie in GG — Xx).

THEOREM®G. Let G be a matching-a@red graph. Then

(a) (Little [3]). Any two edges of G belong to a nice circuit.

(b) (Lovasz and PlummegB]). ¢(G) = 1.

(c) (Lovasz and Plummgpb]). A circuit C of G is nice if and only if C is good and even.
(d) Consequentlyany two edges of Gelong toa good even circuit.

THEOREM 7 (LOVASZ AND PLUMMER [5]). Let G be a matching-covered graph. Then:

(a) If{ey, ..., &}isasetof non-edges & such that G-{ey, . .., &} is matching-covered,
then there exist  j such that G+ g + e; is matching-covered.

(b) G has a2-graded ear-decomposition.

(c) Any two edgesf G belong to the starting ear ofZgraded ear-decomposition.

THEOREM 8.
(@) (Frank [2]).¢(G) equalsthe minimum size of a criticahaking edge set.
(b) (Lemma 1.1in[7]). For any forest F of Gu(G/F) = ¢(G x F).

THEOREM 9 ([7]). Theg-extremeedge sets of a graph G form the independent sets of a
matroid M (G). The base#(G) of M(G) are exactly the minimum critical making edge sets.

THEOREM 10 (CLAIM 7 IN[9]). If G — X has at leastX| factor-critical components for
a vertex sefX # @, then there exists a strong subgraph H of G with strong barrief YX
such that all the components of HY are among the factor-critical components of-GX.

THEOREM 11 ( FRANK [2]). Let G be a2-edge-connected graph. Then:

(a) Every edge of G belongs to a good circuit of G.
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(b) An edge e of G belongs to a good even circuit of G if and only ifiedstreme in G.

THEOREM 12 (FRANK [2]). Let G be a2-edge-connected graph. Then:

(@) G has astrong subgraph if and only if it is not factor-critical.

(b) Let H be a strong subgraph of G. ThetH) = 1 and¢(G/H) = ¢(G) — 1.

(c) G is almostcritical if and only if G has a perfect matching and G contains no two
disjoint strong subgraphs.

THEOREM 13 ([9] (SEEALSO IN [6])). Let G be amalmost critical graph. Then:

(&) E(D(G)) = E(B(G)), where BG) is one of the connectembmponents of KG).
(b) E(D(G)) = E(D(H)) for every strong subgraph laf G.
(c) V(B(G)) =N {V(H) : H is a strong subgraph iG}.

In the rest of this section we give some simple observations on almost critical graphs.

LEMMA 1. Suppose that H has a stig barrier X. Then:

(a) (Frank [2]). Each edge leaving X isextreme in H, Xcontains nap-extreme edge of
H.

(b) If C is a good even circuit of H containing two vertices u anfltom X then the two
parts D; and D, of C between u and are of even length.

PROOF. (b) LetH’ := H + uv. Then, by Theorem2(b),9(H) = ¢(H’) = 1.Cis a
goodeven circuitof H so there exists an optimal ear-decomposit®r+ --- + P of H
such that the unique even earRs = C. Suppose thaD; and D, are of odd length. Then
(D1 4+ uv) + D2+ P>+ - - - + Py is an optimal ear-decomposition bf and the unique even
ear(D1 + uv) containsuv souv is ag-extreme edge ofi” by Theorenil1(b). HoweverX is
a strong barrier oH’ containinguv, that is,uv is not ap-extreme edge ofl’ by Lemmal(a).
This contradiction proves (b). ]

LEMMA 2. Let G be an almost criticagraph.

(a) Then RG) is matching-covered and B(G) is factorcritical.

(b) Any twogp-extreme edges of G belong to a good even circuit.

(c) Let & := G[V(B(G))]. Any connectedomponent of G- V(Gp) has neighbourin
exactly one maximal barrier of &

PROOF (a) Since each connected componeniNafs) is matching-covered, so B(G)
by Theorem13(a).Let e € E(D(G)). Then, byTheorem2(a), G/e is factor-critical. By
Theoreml3(a),e € E(B(G)) andG/e—V (B(G)/e) = G—V (B(G)) has a perfect matching.
Then,by TheorenB(b), G/B(G) = (G/e)/(B(G)/e) is factor-critical.

(b) Lete, f € E(D(G)). Then, byTheorem13(a),e and f belong toB(G) which is
matching-covered by Lemn#(a).By Theorem6(b) and (d),B(G) has an ear-decomposition
P1 + - - - + Px suchthat the unique even e&h containse and f. By Lemma2(a), G/B(G)
is factor-critical, thus, by Theore®(a), 9(G/B(G)) = 0. By Theoreml1(a),G/B(G) has
an optimal ear-decompositioR; + --- + P/ such thatP; contains the vertex 06/B(G)
corresponding t@B(G). ThenPy + --- + Pk + P; +--- + P/ is an ear-decomposition &
such that the unique even ey containse and f, and we are done.

(c) Note thaiGg is elementary by Lemm2(a). Suppose there exists a connected component
P of G — V(Gp) that has neighbours in at least twaximal barriers 05, sayS; is one of
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them. LetG’ be the graph obtained fro@ by contractingS; andV (Gg) — § into vertices
v1 andv, anddeleting the edges betweenandv,. Then|V (G')| is even and the existence
of P implies thatG’ is connected. We show th&’ has a perfect matching. Otherwise, by
Theoreml, there is a seX # ¢ such thatty(G’ — X) > |X| + 2. Let us denotdy G” the
graph obtained fron®’ by identifyingv1 andv, and letX’ be the smallest vertex set &
that containsX. Thency(G” — X’) > ¢o(G' — X) —1 > |X|+1 > | X'| thusG” is not factor-
critical. However,G” = G/B(G) and it is factor-critical by Lemma&(a). This contradiction
shows thatG’ has a perfect matchinigl;. The edgesetM; is a matching inG that covers all
the vertices iV (G) — V (Gg) and two vertices; € S ands, € S, whereS is a maximal
barrier of G different fromS;. By Theorem4, Gog — 51 — S has a perfect matchinglo. Then
M1 U M2 is a perfect matchingf G that contains two edges leavivg B(G)), a contradiction
by Theoreml3(a). O

4. SATURATED GRAPHS

In this section we derive from our results on almost critical graphs the Cathedral ThBorem
for saturated graphs, a result of lasz and Plummer [5]. Tbe able to apply our results we
need the following lemma.

LEMMA 3. Let G be a saturatedraph. Then:

(a) Forabarrier X of G, G is saturated and for all xc X andy € X U Cx, xy € E(G).
(b) Every strong subgraph H of G is saturated.

(c) G is almost critical.

(d) Gp:= G[V(B(G))]is (elementary andsaturated.

(e) Every maximal barrier 06q is a barrier of G.

ProOF. (a) Is immediate by definition.

(b) Let H be a strong subgraph & with strong barrieiX. Let u, v € V(H) be such that
uv ¢ E(H). Thenuv ¢ E(G). SinceG is saturatedc — u — v contains a perfect matching
M. SinceX is a barrier inG, M’ := M N E(H) is a matching ofH — u — v that is either
perfect or covers all the vertices bif — u — v except exactly two verticesandy in X. In the
latter case, by Lemm@(a), M’ + xy is a perfect matching dfl — u — v. Then, bydefinition,

H is saturated.

(c) Let us suppose th& is not almost critical. By definitionGc has a perfect matching so,
by Theoreml12(c), G contains two vertex disjoint strorgubgraphdH; and Ha with strong
barriersX1 and X,. Letx € X1 andy € V(Hz2) — X2. Theny € Cx, and, by Lemma(a),
xy € E(G). ThenXz does not separaté(Hz) — X2 andV (G) — V (H2), hencehy definition,
H> is not a strong subgraph &, a contradiction.

(d) Go is elementary by Lemm2(a). We prove thabg is saturated by induction v (G)|.
For |V (G)| = 2,4 itis trivial. First suppose that for each strong subgrépbf G, V(H) =
V (G). Then, by Theoreri3(c),V (B(G)) = V(G), thatis,Gg is saturated. Secondly, suppose
that thereexists a strong subgrapth of G such thatV (H)| < |V (G)|. By Lemma3(b), H is
saturated, thus, by inductiokly := H[V (B(H))] is saturated. By Lemm3(c), G is almost
critical, so by Theorem3(b), E(D(G)) = E(D(H)), thatis, Go = Hp is saturated.

(e) LetS € P(Gp) and let us denotby Fy, ..., Fig the odd components &g — S. By
Lemma2(c), every connected compongdt of G — V(Gg) has neighbours in exactly one
maximal barrier§ of Gg. By Lemma3(d), Gg is saturated so, by Lemnt&(a), Go[S] is
a complete graph, thuld; has neighbours eithemly in S or in one of theF/s. Moreover,
Hi has a perfect matching by Theorei(a). It follows that the componenks of Gop — S
correspond to odd components@f— S, henceSis a barrierof G. O
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PROOF OFTHEOREM5. We have to show that iG is a saturated graph then it can be
built up by the Cathedral Construction. By Lemréc), G is almost critical. LetGg :=
G[V(B(G))]. Then, by Lemma&(d), Go is elementary and saturated. L&t P(Gg). Then,
by Lemma3(e), Sis a barrierof G, so by LemméB(a),Cs is saturated andvery vertex ofS
is adjacent to everyartex ofCs. Let H; be an arbitrary connected componenGof- V (Gop).

By Lemma2(c), Hi has neighbours in one of the maximal barrier&gf(say S ). SinceCg
is saturatedH; = Cg. Finally, it easyto see that the last claim in Theordnis equivalent to
Theoreml3(b). ]

5. DECOMPGCSITION

The main tool underlying the results to be proved in the following sections is given in the
following lemma. It generalizes Theoret3(b).

THEOREM 14. For a strongsubgraph H of G, ED(G)) = E(D(H)) U E(D(G/H)).

PROOF First, lete ¢ E(D(H)) U E(D(G/H)). By Theorem9, theseten E(D(H))
(eNE(D(G/H))) can beextended to a bad®; € B(H) (B2 € B(G/H)). LetB := B1UBs.
Thene € B and, by Theorem3(a) and 12(b), B € B(G) so, by Theoren®, e € E(D(G)).

Secondlylet e € E(D(G)). Let us denote byX the strong barrier ofH that separates
V(H) — XandV(G) — V(H).

LEMMA 4. There is a base Be B(G) sut that ec B and|Be N E(H)| = 1.

PROOF. If at least one of the two end verticeseis contained in one of theomponents of
H — X, then let us denote this component Ky otherwise letK be an arbitrary component
of H — X. Let f be ag-extreme edge irH which connectK to X, such an edge exists
by Lemma 1(a). LetB’ € B(G/H) and letB; := B’ U f. By Theorems3(a) and 12(b),
Bi € B(G) with f € Bf and|Bf N E(H)| = 1. Theedgee is ¢-extreme inG thus, by
Theorem9, it can be extended to a baBg € B(G) using elements iB. We still haw to
show that Be N E(H)| = 1. By construction|B: N E(H)| < 2. Let us denote by’ (by V')
the smallest vertex set i@/ Be that containsX (V (H)) and letH’ := (G/Bg)[V']. G/Bg is
factor-critical becaus8e € B(G), whence, by Theorents2(a) and10, co,(H' — X) < |X/].
Then, by constructionX| —1=co(H — X) =1 < co(H' — X') < |X’| =1 < |X|—1. Thus
Co(H' — X') = co(H — X) — L and|X’| = | X|. It follows that|Be N E(H)| = 1. ]

Let De = Be — E(H). Let G’ := G/De. Then, by Theorem8 and2(a) and Lemmat,
¢(G’) = 1. We claim thatH remains a strongubgraph inG’. Otherwise|X| decreases and
then the corresponding s¥t violates the Tutte’s condition i6’, a contradiction by Theo-
rem12(c).

First suppose that € E(H). Then,by Theoreml3(b), e € E(D(H)). Now suppose that
e € E(G/H). By Theorem12(b), G'/H is factor-critical. Sinc6G/H)/De = G'/H and
|Del = ¢(G)—1=¢(G/H),e e De € B(G/H); thatis, by TheorerB,e € E(D(G/H)). O

By Theorem12(a), a connected gragh can be decomposdddy contracting strong sub-
graphs) intop(G) almost critical graphs and a factor-critical graph; that is, any connected
graphG can be constructed by starting from a factor-critical graph and by appyy/it)
times the inverse operation of contraction of a strong subgraph.

By Theoreml4, a 2-edge-connected gra@his ¢(G)-covered if and only ifG can be de-
composed (by contracting strong subgraphs) @) matching-covered graphs and a single
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vertex, in other wrds, a 2-edge-connected gra@his ¢(G)-covered if and onlyif G can

be constructed by starting from a vertex and by applyii@) times the inverse operation

of contraction of a matching-covered strong subgraph. This way we can construct as many
examples ofy(G)-covered graphs as we want.

6. @-EXTREME EDGES

The following result generalizes Lemr2éa) and gives some information about the struc-
ture of D(G) for an arbitrary 2-edge-connected graph

THEOREM 15. Let us denote by G. .., Gk the blocks oD (G). Then:
(&) The graph m) = ((G/Gy)/...)/ Gk is factor-critical.
(b) ¢(G) = Y5 0(Gi).

(©) (G/Gi) = ¢(C) —¢(Gi) (i =1,...,K).
(d) G;j is¢-coveredi =1,..., k).

PrROOF. We prove by induction op(G). For¢(G) = 1, Theoreml3(a)and Lemma2(a)
imply (a),(b), (c) and (d).

Now suppose thap(G) > 2. Let H be a strong subgraph @ with strong barrierX.
Then, by Theoremi4, D(G) containsD(H) and hence, by Theoref8(a) it containdB(H).
By Theoreml2(b),H is almost critical so, by Lemm2(a), B(H) is matching-covered. Thus
B(H) is 2-vertex-connectednd hence, by Theoreld, it is included in som&;, sayG;. We
remark thate(D(H)) = E(G1) N E(H) by Theoreml4andX c V(B(H)) by Lemmal(a).
Consider the grapls’ := G/B(H). Then thevertex v of G’ that corresponds t8(H) sep-
aratesV(H/B(H)) — v andV(G’) — V(H/B(H)). Moreover,H/B(H) is factor-critical
by Lemma2(a), sop(G') = ¢(G/H) and E(D(G/H)) = E(D(G’)). By Theorem14,
E(D(G)) — E(D(H)) = E(D(G/H)), so E(D(G")) = E(D(G)) — E(D(H)). Thus the
blocksGj, ..., G| of D(G’) are exactly the blocks d&1/B(H) andGs, ..., Gk. By Theo-
rem12(b),¢(G") = ¢(G/H) = ¢(G) — 1, thus, by the inductiohypothesis, the theorem is
true forG'.

LEMMA 5. B(H) is a strong subgraplf G;.

ProoOF B(H) is nice inH by Theoreml3(a) so the factecritical components oH — X
correspond to odd componentsi&fH ) — X. ThusX is a barrierof B(H). LetY be a maximal
barrier of B(H) including X. Then, sinceB(H) is matching-covered by Lemna),Y is a
strong barrier oB(H). SinceX separate$l — X andG—V (H) in G, Y separate8(H) - Y
andGi — V(B(H)). It follows thatB(H) is a strong subgraph &1 with strong barriely. O

(a) SinceS(G) = S(G') (in the second case we contraci®d in two steps, namely first
B(H) and then the blocks d&1/B(H)), the statement follows from the induction hy-

othesis.

(b) %y Lemmab and Theorem 2(b), gD(Gl/B(H)) = ¢(G1) — 1. By |nduct|0n,<p(G ) =
Y1 ¢(G)). Thenp(G) = ¢(G)+1= Y1 p(G)+1= (p(G)— D+ Y 5p(G)+1=
>19(Gi).

(c) By TheorerTB(a) ?(G) < 9(G/Gi)+¢(Gj) andp(G/Gi) < p(((G/G1)/ .. )/Gk)+
Zzgo(GJ) By adding these two inequalities, and using tha(G/G1)/ .. )/Gk) =
by (a) and Theorerf(a), andzlw(GJ) = ¢(G) by (b), we havep(G) < Zlgo(GJ) =
¢(G). Thus equality holds everywhere, hengéG) = ¢(G/Gj) + ¢(Gj), as we

claimed.
(d) Fori > 2 the statement follows from the induction hypothesis. Ggiit follows from

the induction hypothesis aritbm Theoreml4. O
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7. THE BLOCKS OFTHE EAR MATROID

In this section we present a simple description of the blocks of the ear matt o) for an
arbitrary 2-edge-connected grahThe close relation between the circuits of the ear matroid
M(G) and the good even circuits & is presented in the following lemma.

LEMMA 6. Two edges e and of a 2-edge-connected graph G belong t@aod even
circuit of G if and only if e and f are in the same block of the ear matidG).

PROOFE If eand f belong to the starting en earP; of an optimal ear-decomposition then
choosing one edge from each even eardleé chosen froniP;) we obtain a seF for which
|F| = ¢(G), G/F andG/(F —e+ f) are factor-critical by Theore®(a), thus, by Theore®,
F andF — e+ f are inB(G), that is,eand f belong to the samielock of M (G).

Alternatively, letF € B(G) containingesuch thafF —e+f € B(G). LetG’ := Gx(F—e).
SinceF is a minimal critical making edge set, it is a forest an@/(F — e)) = 1. Then,
by Theorem8(b), 9(G’) = 1. Moreover,e and f are g-extreme inG’. By LemmaZ2(b),
there exists an optimal ear-decomposition&fsuchthat the starting ear contairsand f
and it is the unigque even ear. Obviously, this ear-decomposition provides the desired ear-
decomposition of. ]

It is natural to investigate graphs whose ear matroid is loopless. Note that, by definition,
these are exactly the-covered graphs. The blocks of the ear mattbidG) of a p-covered
graph can easily be described.

THEOREM16. Let G be a2-vertex-connectedp-covered graph. Then thear matroid
M(G) has one block.

PROOF We prove the theorem by induction @iiG). If ¢(G) = 1, thenG is matching-
covered by Claiml, and then, by Theorei®(d) and Lemmab, the theorem is true. In the
rest of the proof we suppose thatG) > 2. Let H be a strong subgraph & with strong
barrierX. By Theoreml4,H andG/H areg-covered and, by Theorefr2(b),o(H) = 1 and
¢(G/H) = ¢(G) — 1. LetG1 be an arbitrarplock of G/H.

(i) Let e ande; be two arbitrary edges dfi. Let B € B(G/H). Then, by Theoren9,
(G/H)/B is factor-critical.H /e; andH /e, are factorcritical by Claim1. LetB’ := B + e.
Note thatiB’| = ¢(G). Then, by Theorer(a), G/B’ andG/(B’ —e; + &) are factor-critical,
thus, by Theoren®, B’ andB’ — e; + e are inB(G), hencee; ande, belong to the same
block of M(G).

(i) Let g and ey be two arbitrary edges dB;. By induction,e; and e, belong to the
same block ofM (G1), thus there exists a baf e B(G1) such thate; € BandB — e +
e € B(G1). For each bloclG; of G/H different fromGj let B; € B(G;). Furthermore, let
f € E(H). Finally, letD := BU (UB;) + f. Note that D| = ¢(G). Then, by Theorer3(a),
G/D andG/(D —e; + &) are factor-critical, thus, by TheoreD andD —e; + & € B(G).
Hencee; ande; belong to the same block @¢¢1(G).

(iii) Let e; and f1 be two edges of51 such that the corresponding two edgesGrare
incident on two different verticas andv of X. By the 2-vertex-connectivity d&, such edges
exist. Letey; and f, be two edges oH incident onu and v, respectively. By (i), (ii) and
Lemma 6, there exists an optimal ear-decomposit®in- P2 +- - -+ P« (P{+ P;+-- -+ F))
of H (of G1) such thak, and f, (e; and f1) belong to the starting even ear. Furthermore, let
P/ + Py 4+ --- 4+ Py be an optimal ear-decomposition @/H)/G1 such that the first ear
contains the vertex corresponding to the contracted vertex set. Using these ear-decompositions
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we provide an optimal eadtecomposition of5 such that the starting even eaifl contain e;
andey. By Lemmal(b),u andv divide P; into two pathsD1 and D, of evenlength. Suppose
D1 containse;. Consider the following ear-decomposition®f (D1 + P]) + D2+ P2+ - - +
P+ Py+---+ B + P+ P)/+---+ Py Itis clear that this is an optimal ear-decomposition
of G, the first ear containg; ande, and it is even. Hence, by LemnGae; ande, belong to
the same block af1(G).

(1), (i) and (iii) imply the theorem. O

THEOREM 17. The edge sets tifie blocks of @G) and the blocks oM (G) coincide.

PrROOF. (a) Leteand f be two edges o5 from thesame bloclof M(G). By Lemmas,
there exists a good eveircuit C that containe and f. Since, by Theoreril(b), every edge
of C is g-extreme, the edges of this circ@itbelong tothe same block oD (G).
(b) Leteand f be two edges of from the same blocks;1 of D(G). By Theoreml5(d),G;
is p-covered, thushby Theoreml6 and Lemmaéb, there exists an optimal ear-decomposition
of G1 such that the starting even eeontainse and f. By Theorem15(c), ¢(G/G1) =
0(G) — ¢(Gy), sothis ear-decomposition can be extended to an optimal ear-decomposition
of G such that the starting even ear contagrend f. Then, by Lemmd, e and f belong to
the same block a1 (G). O

8. ¢-COVERED GRAPHS

The aim of this section is to extend earlier results on matching-covered graphsasa_ov
and Plummer [5] tg-covered graphs. First we prove a technical lemma.

LEMMA 7. Let e be ap-extremeadge of &2-edge-connected graph G with(G) > 2. Then
there exists a strong subgraph H of G such that E(G/H).

PROOF First suppose thdb has a perfect matching. Then, Bheoreml12(c), G hastwo
vertex disjoint strong subgraphs. Cleafigr one of theme € E(G/H). Secondly, suppose
thatG has no perfect matching. Then, by Theorgnthere exists a set with c,(G — X) >
| X]. Let X be such a maximalertex set. Then each component®f- X is factor-critical.
SinceG is not factor-critical by Theorerfi(a),| X| # 9.

() If a componentF of G — X contains an endertex ofe, then by Theorenl0, G has a
strong subgraphi such thatv(H) € V(G) — V(F) so we aralone.

(ii) Otherwise, by TheoreniO, G has a strong subgrapH with strong barriery < X
such that each componentdf — Y is a component o6 — X. We claim thate € E(G/H).

If not then the two end verticas andv of e belong toY because we are in (ii). Then, by
Lemmal(a), e is notgp-extreme inH. This contradicts theakct thate is ¢-extreme inH by
Theoreml4. O

The following theorem generalizes Theoréd) for p-covered graphs. By Lemn® it is
equivalent torheoreml6.

THEOREM 18. For a 2-vertex-connecteg-cavered graph G any two edges belong to a
good even circuit of G.

By Theorem7(b), each matching-covered graph has a 2-graded ear-decomposition. This
result can also be generalized fercoveredgraphs. A sequencgsg, Gy, ..., Gm) of sub-
graphs ofG is ageneralized 2-graded ear-decompositionG if Gg is a vertex,Gm = G,
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for everyi = 1,...,m: Gj is ¢-covered;G; is obtainedfrom G;_1 by adding at most two
disjoint paths (ears) which are openly disjoint frdBp_1 but their end-vertices belong to
Gj_1, if we add two ears then both are of odd length; ari@&;_1) < ¢(G;j). This is the
natural extension of the original definition of Lasz and Plummer. Indeed, @& is matching-
covered therp(G) = 1, thus the first ear will be even and all the other ears will be odd;
and for alli, 1 = ¢(G1) < ¢(Gj) < ¢(G) = 1 andG; is ¢-covered so, by Clain, G; is
matching-covered.

THEOREM19. Let e be an arbitary edge of ap-covered graph G. Thefs possesses a
generalized-graded ear-decomposition such that the starting ear contains e.

PrROOF If ¢(G) = 1 then, by Claiml, G is matching-coered so, by Theorer(c), we
are done. From nown we assuméhat(G) > 2. We shall frequently use in the proof that
a graphL is ¢-covered if and only if each block df is ¢-covered. We prove the theorem by
induction on|V (G)|. We may suppose th& is 2-vertex-connected because, by induction,
for each block the theorem is true. By Lemmiathere exists a strong subgraph of G
with strong barrierX such thate € E(G/H). By Theoreml14, H andG/H areg-covered.
By Theorem12(b) and Claiml, H is matching-cuered. Let us denote by the vertex of
G/H corresponding td1. Let us denote byQ the block ofG/H which contain. Note that
v € V(Q). SinceG/H is gp-covered,Q is alsop-covered. By inductionQ) has a generalized
2-graded ear-decompositi@fsg, Gy, ..., Gk) such that the starting ear contaimsLet G|
be the first subgraph @ which contains and leta andb be the two edges @ incident on
v. (G/H)/Q is alsog-covered so, by inductionG/H)/Q has a generalized 2-graded ear-
decompositionGg, G7, ..., G}) such that the starting ear contains an edge incident on

(i) First suppose tha andb are incident on the same vertexof X in G. Letc be an edge
of H incident onu. By Theoren7(c), H has a 2-graded ear-decompositi@}, G, ..., G))
such that thestarting ear contains LetG' = Gj if 0 <i < j, let G’ be the graph obtained
from Gi/fj by replacing the vertex by G if j +1 <i < j +1, letG{ be the graph obtained
from G;j_; by replacing the vertex by G/j’+I if j+14+1<i <k+I andfinally letG" be the
graph obtained frons;"_, _, by replacing the vertex by G, if k+1+1<i <k+1+ p.
We show that(Gg, GY., ..., {(’+|+p) is the desired generalized 2-graded ear-decomposition
of G. The starting ear contaires In each step we added at most two ears, when two ears
were added then they were of odd lengthG{") < ¢(G/' ;) and finally by Theoreni4, each
subgraplG’ is ¢-covered.

(i) Secondly, suppose thatandb are incidenton different verticess andw of X in G.
Let c andd be two edges oH incident onu andw, respectively. By Theorem(c), H has a
2-graded ear-decompositi@®,, G}, ..., G|) suchthat the starting eaP, containsc andd.

u andw divide Py (which is an even ear) into two patiy andD». By Lemmal(b), D1 and
D are of even length. Le! = Gj if 0 <i < j —1, G’j’ bethe graph obtained fror®; by
replacing the vertex by D1, G’J-’Jrl be the graph obtained fro@; by replacing the vertex by
P1, let G’ be the graph obtained frofié\{_j by replacingP; by G’J-’Jrl if j+2<i<j+l,let
G/’ be the graph obtained fro®; | by replacing the vertex by G/j/+| if j+l+1<i<k+l
and finally, as above, &/’ be the graph obtained fro@;" , | by replacing the vertex by

kp Fk+1+1<i <k+I+ p.ltiseasyto see thaGg, G, ..., Gy}, ) is the desired

generalized 2-graded ear-decompositioof ]

The next theorem is the natural generalization of Theoré However, we cannot prove
Theoreml9 using this result.
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THEOREMZ20. Let F := {e1, ..., &} be a setof non-edges of @-covered graph G. If
G + F is p-covered and(G) = ¢(G + F), then there exist i j such that G+ g + g;j is
@-covered.

PrROOFE We prove the theorem by induction @rG). If ¢(G) = 1, thenG is matching-
cowered by Claiml so, by Theoren¥(a), we are done. In the following we suppose that
©(G) > 2. LetF’ € F be a minimal non-empty set if suchthatG’ := G + F’ is
p-covered. The(G) = ¢(G’) becausar(G) > ¢(G + F') > ¢(G + F) = ¢(G). We
claim that|F’| < 2. Suppose thgF’| > 3 and letg € F’. By Lemma?, there exists a strong
subgraptH of G’ such tha € E(G’/H). By Theoreml4,H andG’/H areg-coveredLet
E1:= E(H)NF andE, := E(G’/H) N F’. ThenE1 U E> = F’ andE5 # #.

First supposeE; = @. ThenH is a strong subgraph db, so by Theorenl4, G/H is
p-covered. ByTheoreml2,¢p(G/H) = ¢(G)—1 = ¢(G')—1 = ¢(G’/H), thus by induction
for G/H andF’, there exist®) # F” C F’ such thatF”| < 2 and(G/H)+ F” is p-covered.
By Theoreml4, G + F” is p-covered, and we are done.

Secondly supposg; # @. Clearly, each edge @ is p-extreme inG + E;. Furthermore,
each edge oE; is g-extreme inH, so by Theoreni4, they arep-extreme inG + E;. Thus
G + E; is ¢-covered. Sinc&; C F’, thiscontradicts the minimality oF’. O

ExaMPLE. The following example shas the necessity of the conditigiG) = ¢(G+F)
in Theorem20. LetG := (V, E), whereV = {a, b, c,d}, E = {ab, ab, ac, ac, ad, ad} and
let F := {bc, bd, cd}. ThenG andG + F areg-covered but foreveryy #F c F,G + F’
is notp-covered. Note thap(G) = 3 andy(G + F) = 1.
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