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1. INTRODUCTION

An ear-decomposition of a graphG is a sequence(G0,G1, . . . ,Gk) of subgraphs such that
G0 is a vertex,Gk = G and eachGi+1 is obtained fromGi by adding an ear that is a path
whose end vertices belong toGi but the inner vertices do not. It is well known that a graph
has an ear-decomposition if and only if it is 2-edge-connected. We remark that each circuit
can be the starting ear of an ear-decomposition. It is quite simple to see that the number of
ears in each ear-decomposition ofG is m − n + 1, wheren andm denote the number of
vertices and edges ofG, respectively. However, the number of even ears may differ in distinct
ear-decompositions ofG. (The length of an ear is the number of edges contained in it.) We
focus our attention on ear-decompositions (called optimal) that have minimum numberϕ(G)
of even ears. Frank showed in [2] how an optimal ear-decomposition can be constructed in
polynomial time for any 2-edge-connected graph.

Lovász[4] observed that a graphG is factor-critical if and only ifϕ(G) = 0. Lovász and
Plummer [5] proved that for matching-covered graphsϕ(G) = 1. However, thislatter one
is not a characterization. To see an example, letH be the simple graph obtained from the
circuit on four vertices by adding an edgee. Thenϕ(H) = 1 but H is not matching-covered.
Let us call an edgee of a graphG ϕ-extreme ife may lie on an even ear of an optimal ear-
decomposition ofG. Note that in the example abovee is notϕ-extreme. This observation leads
to the following characterization of matching-covered graphs. We call a graphG ϕ-covered if
each edge ofG is ϕ-extreme. For more definitions see Section2.

CLAIM 1. G is matching-coveredif and only ifϕ(G) = 1 and G isϕ-covered. In other
words, G is matching-covered if and only if G/e is factor-critical for each edge e of G.

The reader is encouraged to prove Claim1 as a warm-up. In the light of Claim1,ϕ-covered
graphs can be considered as a naturalgeneralization of matching-covered graphs. We propose
the investigation ofϕ-covered graphs in this paper. By Claim1, we have another way to
generalize matching-covered graphs, namely we mayconsider graphs withϕ(G) = 1. This
possibility will also be exploited in this paper.

By combining the results of Lov́asz and Plummer [5] and Little [3], it follows that for any
two edges of a matching-coveredgraphG there exists an optimal ear-decomposition ofG
such that the first earP is even andP contains these two edges. This result can be extended
to 2-vertex-connectedϕ-covered graphs. Note that to demonstrate this result we had to use
some properties of the ear matroid. The ear matroid of a graph was introduced in [6, 7]. It
will be shown that two edgesof G belong to the same block of the ear matroid if and only if
these two edges may lie on the starting even ear of an optimal ear-decomposition. To argue
the above mentioned result we shall give a simple description of the blocks of the ear matroid.
Hopefully, this result is of interest in its own right and can be considered as one of the main
results of this paper.
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By the aforementioned characterization of factor-critical graphs it follows that for an opti-
mal ear-decomposition(G0, . . . ,Gk) of afactor-critical graphG, each subgraphGi in this se-
quence is also factor-critical. This useful property does not hold for matching-covered graphs.
As an example, consider the complete graphK4 on four vertices.K4 is matching-covered
but, sinceK4 − e is not matching-covered for an arbitrary edgee of K4, K4 has no optimal
ear-decomposition such that all the subgraphs in the sequence are matching-covered. To have
a similar property for matching-covered graphs Lovász and Plummer [5] suggested the notion
of graded ear-decomposition. Briefly this means thatthey allowed the addition of more ears
simultaneously. With this more general notion, we can achieve our aim. It is easy to see that
each matching-covered graph has a graded ear-decomposition in such a way that the first ear
is even, all the other ears are of odd length and each subgraph in the sequence is matching-
covered. What is much more interesting (and of course a little bit more complicated) is, as
Lovász and Plummer [5] demonstrated, that we can do this by adding at most two ears in each
step. This is the so-called TwoEar Theorem, and for a very short and simple proof we refer to
a note of the present author [8]. We shall show, as a main result of the paper, that the Two Ear
Theorem can be extended toϕ-coveredgraphs. This theorem characterizesϕ-covered graphs
by means of ear-decomposition. Another constructive characterization will also be given for
ϕ-covered graphs.

Along the way we shall also prove some structural results on the graph defined by the
ϕ-extreme edges. The power of this approach has been utilized in [9] to provide a simple
graph theoretic proof for the Tight CutLemma on bricks due to Edmonds, Lovász and Pulley-
blank [1]. We shall also provide a new proof for the Cathedral Theorem on saturated graphs
due to Lov́asz and Plummer [5]. In fact, an analogous construction, the Cathedral Construction
for saturated graphs, can be deduced from ourresults for almost critical graphs.

The organization of this paper is as follows. In Section2 we give all the definitions we
need. Section3 contains earlier results and some newsimple observations that will be used in
this paper. In Section4 we shall apply ourresults to almost critical graphs to provide a new
proof for the Cathedral Theorem on saturated graphs.In Section5 we prove our main lemma
that provides a constructive characterizationfor ϕ-covered graphs. We investigate in Section6
the graph defined by theϕ-extreme edges and give someinformation about the structure of
this graph. Section7, which is devoted to the ear matroid, yields a simple description of
the blocks of this matroid. In Section8 we extend results on matching-covered graphs to
ϕ-covered graphs.

We remark that allthe results here can be found in the two IPCO papers [6, 10].

2. DEFINITIONS AND NOTATION

A connected componentK of a graphG is calledodd (even) if|V(K )| is odd (even). For
X ⊆ V(G), co(G − X) denotes the number of odd components inG − X, while CX will
denote the union of the even components ofG − X. We shall use the notationC(G) defined
in the Gallai–Edmonds Decomposition Theorem [5].

Let G be a graph with a perfect matching. Anedge ofG is allowedif it lies in some perfect
matching ofG. N(G) denotes the subgraph ofG induced by the allowed edges ofG. G
is matching-coveredif it is connected and each edge ofG is allowed, that is,G = N(G).
G is calledelementaryif N(G) is connected. In particular, every matching-covered graph is
elementary. A vertex setX ⊆ V(G) is called abarrier if co(G−X) = |X|. If G is elementary,
then letP(G) be defined as the set of all maximal barriers ofG. G is said to besaturatedif for
each pairu, v of non-adjacent vertices ofG, G−u−v has a perfect matching. It is equivalent
to saying that the addition of the edgeuv to G creates a new perfect matching ofG+ uv.
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CATHEDRAL CONSTRUCTION. Let G0 be a saturated elementary graph and to each class
S ∈ P(G) assign an already constructed saturated graph GS or the empty set. For each
S∈ P(G) join every vertex of S to every vertex of GS.

A subgraphH of a graphG is callednice if G− V(H) has a perfect matching. A graphG
is factor-critical if for each vertexv ∈ V(G), G− v possesses a perfect matching.

For a graphH with a perfect matching, a non-empty barrierX of H is said to be astrong
barrier if H−X has no even components, each odd component ofH−X is factor-critical and
the bipartite graph obtained fromH by deleting the edges spanned byX and by contracting
each factor-critical component ofH − X to a single vertex is matching-covered. LetG =
(V, E) be a graph and assume that the subgraphH of G induced byU ⊆ V has a strong
barrierX. ThenH is said to be astrong subgraphof G with strong barrierX if X separates
U − X andV −U in G or if U = V .

An ear-decompositionof a graphG is a sequence(G0,G1, . . . ,Gk) of subgraphs such that
G0 is a vertex,Gk = G and eachGi+1 is obtained fromGi by adding anear Pi+1 that
is a path whose end vertices belong toGi but the inner vertices do not. We shall also use
the following notation for an ear-decomposition:G = P1 + P2 + · · · + Pk. Note that we
allow closed ears, for example thestarting ear P1 is always a circuit. Thelengthof an ear
is the number of edges contained in it. A sequence(G0,G1, . . . ,Gm) of subgraphs ofG is
a 2-graded ear-decompositionof G if G0 is a vertex,G1 is an even circuit,Gm = G, for
1 ≤ i ≤ m− 1, Gi+1 is matching-covered,Gi+1 is obtained fromGi by adding at most two
disjoint odd paths which are openly disjoint fromGi but their end-vertices belong toGi .

Let G be an arbitrary graph. IfX ⊆ V(G), then the subgraph ofG induced byX is denoted
by G[X]. The graph obtained fromG by contracting an edge setF of G will be denoted by
G/F . By the subdivision of an edge setF we mean the operation which subdivides each edge
f ∈ F by a new vertex, and it will be denoted byG× F .

We say that an edge set of a graphG is critical making if its contraction leaves a factor-
critical graph. For a 2-edge-connected graphG, ϕ(G) is defined to be the minimum number
of even ears in an ear-decomposition ofG. An ear-decomposition is said to beoptimal if it
has exactlyϕ(G) even ears. We call a graphalmost criticalif ϕ(G) = 1. A circuit C of G is
calledgoodif G has an optimal ear-decomposition such that the first ear isC. We say that an
edgee of G is ϕ-extremeif e may lie on an even ear of an optimal ear-decomposition ofG, in
other words,ϕ(G/e) = ϕ(G)− 1. More generally, an edge setF of G is calledϕ-extremeif
ϕ(G/F) = ϕ(G)− |F |. G is calledϕ-coveredif each edge ofG is ϕ-extreme. We denote by
D(G) the graph onV(G) whose edges are exactly theϕ-extreme edges ofG.

Theear matroidM(G) of a graphG was introduced in [7]. Its bases are exactly the maxi-
mumϕ-extreme edge sets, or equivalently, the minimum critical making edge sets. The set of
bases ofM(G) will be denoted byB(G).

The blocks of a matroidN are defined by an equivalence relation. For two elementse and
f ofN , e∼ f if there exists a circuit in the matroid containing them, or equivalently, if there
exists a baseB containingesuch thatB−e+ f is a base again. This is an equivalence relation
and theblocksof N are the equivalence classes of∼. Theblocksof a graphG are defined
to be the blocks of the circuit matroid ofG, in other words the maximal 2-vertex-connected
subgraphs ofG.

We finish this section by giving some examples forϕ-covered graphs: the complete bipartite
graphK2,n (n ≥ 2) isϕ-covered andϕ(K2,n) = n−1, a graphG whose blocks are matching-
covered isϕ-covered andϕ(G) is the number of blocks ofG. A procedure that generates all
theϕ-covered graphs is presented in Section5.
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3. PRELIMINARIES

In this section we list the resultswe will need in this paper.

THEOREM 1 ( TUTTE [11]). A graph G has a perfect matching if and only if for every
X ⊆ V(G), c0(G− X) ≤ |X|.

THEOREM 2 (LOVÁSZ [4]) .
(a) A graph G is factor-critical if and only ifϕ(G) = 0.
(b) For a factor-criticalgraph G, a circuit C of G is nice if and only if C is good.

THEOREM 3 (LOVÁSZ [4]) . Let H be a connected subgraph of a graph G.
(a) If H and G/H are factor-critical, then G isfactor-critical.
(b) If H is nice in the factor-critical graph G, then G/H is factor-critical.

THEOREM 4 (LOVÁSZ AND PLUMMER [5]). Let G be an elementary graph. ThenP(G)
is a partition of V(G). For every pair x, y ∈ V(G), x and y belong to different classes of
P(G) if and only if G− x − y has a perfect matching.

THEOREM 5 (CATHEDRAL THEOREM [5]). If G is any saturated graph then it can be
built up using the Cathedral Constructionstarting with a saturated elementary graph G0.
The graph G0 may be uniquely described as the subgraph of G induced by those vertices of
G which, for each x∈ V(G), do not lie in C(G− x).

THEOREM 6. Let G be a matching-covered graph. Then

(a) (Little [3]). Any two edges of G belong to a nice circuit.
(b) (Lovász and Plummer[5]). ϕ(G) = 1.
(c) (Lovász and Plummer[5]). A circuit C of G is nice if and only if C is good and even.
(d) Consequently,any two edges of Gbelong toa good even circuit.

THEOREM 7 (LOVÁSZ AND PLUMMER [5]). Let G be a matching-covered graph. Then:

(a) If {e1, . . . ,ek} is a set of non-edges ofG such that G+{e1, . . . ,ek} is matching-covered,
then there exist i≤ j such that G+ ei + ej is matching-covered.

(b) G has a2-graded ear-decomposition.
(c) Any two edgesof G belong to the starting ear of a2-graded ear-decomposition.

THEOREM 8.
(a) (Frank [2]).ϕ(G) equalsthe minimum size of a criticalmaking edge set.
(b) (Lemma 1.1 in [7]). For any forest F of G,ϕ(G/F) = ϕ(G× F).

THEOREM 9 ([7]). Theϕ-extremeedge sets of a graph G form the independent sets of a
matroidM(G). The basesB(G) ofM(G) are exactly the minimum critical making edge sets.

THEOREM 10 (CLAIM 7 IN [9]). If G − X has at least|X| factor-critical components for
a vertex setX 6= ∅, then there exists a strong subgraph H of G with strong barrier Y⊆ X
such that all the components of H− Y are among the factor-critical components of G− X.

THEOREM 11 ( FRANK [2] ). Let G be a2-edge-connected graph. Then:

(a) Every edgee of G belongs to a good circuit of G.
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(b) An edge e of G belongs to a good even circuit of G if and only if e isϕ-extreme in G.

THEOREM 12 (FRANK [2] ). Let G be a2-edge-connected graph. Then:

(a) G has astrong subgraph if and only if it is not factor-critical.
(b) Let H be a strong subgraph of G. Thenϕ(H) = 1 andϕ(G/H) = ϕ(G)− 1.
(c) G is almostcritical if and only if G has a perfect matching and G contains no two

disjoint strong subgraphs.

THEOREM 13 ([9] (SEE ALSO IN [6])). Let G be analmost critical graph. Then:

(a) E(D(G)) = E(B(G)), where B(G) is one of the connectedcomponents of N(G).
(b) E(D(G)) = E(D(H)) for every strong subgraph Hof G.
(c) V(B(G)) =

⋂
{V(H) : H is a strong subgraph inG}.

In the rest of this section we give some simple observations on almost critical graphs.

LEMMA 1. Suppose that H has a strong barrier X. Then:

(a) (Frank [2]). Each edge leaving X isϕ-extreme in H, Xcontains noϕ-extreme edge of
H.

(b) If C is a good even circuit of H containing two vertices u andv from X then the two
parts D1 and D2 of C between u andv are of even length.

PROOF. (b) Let H ′ := H + uv. Then, by Theorem12(b),ϕ(H) = ϕ(H ′) = 1. C is a
goodeven circuitof H so there exists an optimal ear-decompositionP1 + · · · + Pk of H
such that the unique even ear isP1 = C. Suppose thatD1 and D2 are of odd length. Then
(D1+ uv)+ D2+ P2+ · · · + Pk is an optimal ear-decomposition ofH ′ and the unique even
ear(D1+uv) containsuv souv is aϕ-extreme edge ofH ′ by Theorem11(b). However,X is
a strong barrier ofH ′ containinguv, that is,uv is not aϕ-extreme edge ofH ′ by Lemma1(a).
This contradiction proves (b). 2

LEMMA 2. Let G be an almost criticalgraph.

(a) Then B(G) is matching-covered and G/B(G) is factor-critical.
(b) Any twoϕ-extreme edges of G belong to a good even circuit.
(c) Let G0 := G[V(B(G))]. Any connectedcomponent of G− V(G0) has neighboursin

exactly one maximal barrier of G0.

PROOF. (a) Since each connected component ofN(G) is matching-covered, so isB(G)
by Theorem13(a).Let e ∈ E(D(G)). Then, byTheorem2(a), G/e is factor-critical. By
Theorem13(a),e∈ E(B(G)) andG/e−V(B(G)/e) = G−V(B(G)) has a perfect matching.
Then,by Theorem3(b),G/B(G) = (G/e)/(B(G)/e) is factor-critical.

(b) Let e, f ∈ E(D(G)). Then, byTheorem13(a), e and f belong toB(G) which is
matching-covered by Lemma2(a).By Theorem6(b) and (d),B(G) has an ear-decomposition
P1 + · · · + Pk suchthat the unique even earP1 containse and f . By Lemma2(a),G/B(G)
is factor-critical, thus, by Theorem2(a),ϕ(G/B(G)) = 0. By Theorem11(a),G/B(G) has
an optimal ear-decompositionP′1 + · · · + P′l such thatP′1 contains the vertex ofG/B(G)
corresponding toB(G). ThenP1 + · · · + Pk + P′1 + · · · + P′l is an ear-decomposition ofG
such that the unique even earP1 containse and f , and we are done.

(c) Note thatG0 is elementary by Lemma2(a). Suppose there exists a connected component
P of G− V(G0) that has neighbours in at least twomaximal barriers ofG0, sayS1 is one of
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them. LetG′ be the graph obtained fromG by contractingS1 andV(G0) − S1 into vertices
v1 andv2 anddeleting the edges betweenv1 andv2. Then|V(G′)| is even and the existence
of P implies thatG′ is connected. We show thatG′ has a perfect matching. Otherwise, by
Theorem1, there is a setX 6= ∅ such thatco(G′ − X) ≥ |X| + 2. Let us denoteby G′′ the
graph obtained fromG′ by identifyingv1 andv2 and letX′ be the smallest vertex set inG′′

that containsX. Thenco(G′′− X′) ≥ co(G′− X)−1≥ |X|+1> |X′| thusG′′ is not factor-
critical. However,G′′ = G/B(G) and it is factor-critical by Lemma2(a). This contradiction
shows thatG′ has a perfect matchingM1. The edgesetM1 is a matching inG that covers all
the vertices inV(G) − V(G0) and two verticess1 ∈ S1 ands2 ∈ S2, whereS2 is a maximal
barrier ofG0 different fromS1. By Theorem4, G0−s1−s2 has a perfect matchingM2. Then
M1∪M2 is a perfect matchingof G that contains two edges leavingV(B(G)), a contradiction
by Theorem13(a). 2

4. SATURATED GRAPHS

In this section we derive from our results on almost critical graphs the Cathedral Theorem5
for saturated graphs, a result of Lovász and Plummer [5]. Tobe able to apply our results we
need the following lemma.

LEMMA 3. Let G be a saturatedgraph. Then:

(a) For a barrier X of G, CX is saturated and for all x∈ X andy ∈ X ∪CX , xy ∈ E(G).
(b) Every strong subgraph H of G is saturated.
(c) G is almost critical.
(d) G0 := G[V(B(G))] is (elementary and)saturated.
(e) Every maximal barrier ofG0 is a barrier of G.

PROOF. (a) Is immediate by definition.
(b) Let H be a strong subgraph ofG with strong barrierX. Let u, v ∈ V(H) be such that

uv /∈ E(H). Thenuv /∈ E(G). SinceG is saturated,G − u − v contains a perfect matching
M . SinceX is a barrier inG, M ′ := M ∩ E(H) is a matching ofH − u − v that is either
perfect or covers all the vertices ofH −u− v except exactly two verticesx andy in X. In the
latter case, by Lemma3(a),M ′ + xy is a perfect matching ofH − u− v. Then, bydefinition,
H is saturated.

(c) Let us suppose thatG is not almost critical. By definition,G has a perfect matching so,
by Theorem12(c), G contains two vertex disjoint strongsubgraphsH1 and H2 with strong
barriersX1 andX2. Let x ∈ X1 andy ∈ V(H2) − X2. Theny ∈ CX1 and, by Lemma3(a),
xy ∈ E(G). ThenX2 does not separateV(H2)−X2 andV(G)−V(H2), hence,by definition,
H2 is not a strong subgraph ofG, a contradiction.

(d) G0 is elementary by Lemma2(a). We prove thatG0 is saturated by induction on|V(G)|.
For |V(G)| = 2,4 it is trivial. First suppose that for each strong subgraphH of G, V(H) =
V(G). Then, by Theorem13(c),V(B(G)) = V(G), that is,G0 is saturated. Secondly, suppose
that thereexists a strong subgraphH of G such that|V(H)| < |V(G)|. By Lemma3(b), H is
saturated, thus, by induction,H0 := H [V(B(H))] is saturated. By Lemma3(c), G is almost
critical, so by Theorem13(b),E(D(G)) = E(D(H)), thatis, G0 = H0 is saturated.

(e) Let S ∈ P(G0) and let us denoteby F1, . . . , F|S| the odd components ofG0 − S. By
Lemma2(c), every connected componentHi of G − V(G0) has neighbours in exactly one
maximal barrierSi of G0. By Lemma3(d), G0 is saturated so, by Lemma3(a), G0[Si ] is
a complete graph, thusHi has neighbours eitheronly in S or in one of theF ′j s. Moreover,
Hi has a perfect matching by Theorem13(a). It follows that the componentsF j of G0 − S
correspond to odd components ofG− S, henceS is a barrierof G. 2
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PROOF OFTHEOREM 5. We have to show that ifG is a saturated graph then it can be
built up by the Cathedral Construction. By Lemma3(c), G is almost critical. LetG0 :=

G[V(B(G))]. Then, by Lemma3(d), G0 is elementary and saturated. LetS ∈ P(G0). Then,
by Lemma3(e),S is a barrierof G, so by Lemma3(a),CS is saturated andevery vertex ofS
is adjacent to every vertex ofCS. Let Hi be an arbitrary connected component ofG−V(G0).
By Lemma2(c), Hi has neighbours in one of the maximal barriers ofG0 (saySi ). SinceCSi

is saturated,Hi = CSi . Finally, it easyto see that the last claim in Theorem5 is equivalent to
Theorem13(b). 2

5. DECOMPOSITION

The main tool underlying the results to be proved in the following sections is given in the
following lemma. It generalizes Theorem13(b).

THEOREM 14. For a strongsubgraph H of G, E(D(G)) = E(D(H)) ∪ E(D(G/H)).

PROOF. First, let e ∈ E(D(H)) ∪ E(D(G/H)). By Theorem9, theset e ∩ E(D(H))
(e∩E(D(G/H))) can beextended to a baseB1 ∈ B(H) (B2 ∈ B(G/H)). Let B := B1∪ B2.
Thene∈ B and, by Theorems3(a) and12(b),B ∈ B(G) so, by Theorem9, e∈ E(D(G)).

Secondly,let e ∈ E(D(G)). Let us denote byX the strong barrier ofH that separates
V(H)− X andV(G)− V(H).

LEMMA 4. There is a base Be ∈ B(G) such that e∈ Be and|Be ∩ E(H)| = 1.

PROOF. If at least one of the two end vertices ofe is contained in one of thecomponents of
H − X, then let us denote this component byK , otherwise letK be an arbitrary component
of H − X. Let f be aϕ-extreme edge inH which connectsK to X, such an edge exists
by Lemma 1(a). Let B′ ∈ B(G/H) and letB f := B′ ∪ f . By Theorems3(a) and 12(b),
B f ∈ B(G) with f ∈ B f and |B f ∩ E(H)| = 1. Theedgee is ϕ-extreme inG thus, by
Theorem9, it can be extended to a baseBe ∈ B(G) using elements inB f . We still have to
show that|Be ∩ E(H)| = 1. By construction,|Be ∩ E(H)| ≤ 2. Let us denote byX′ (by V ′)
the smallest vertex set inG/Be that containsX (V(H)) and letH ′ := (G/Be)[V ′]. G/Be is
factor-critical becauseBe ∈ B(G), whence, by Theorems12(a) and10, co(H ′ − X′) < |X′|.
Then, by construction,|X| − 1= co(H − X)− 1≤ co(H ′− X′) ≤ |X′| − 1≤ |X| − 1. Thus
co(H ′ − X′) = co(H − X)− 1 and|X′| = |X|. It follows that|Be ∩ E(H)| = 1. 2

Let De = Be − E(H). Let G′ := G/De. Then, by Theorems9 and2(a) and Lemma4,
ϕ(G′) = 1. We claim thatH remains a strongsubgraph inG′. Otherwise,|X| decreases and
then the corresponding setX′ violates the Tutte’s condition inG′, a contradiction by Theo-
rem12(c).

First suppose thate ∈ E(H). Then,by Theorem13(b), e ∈ E(D(H)). Now suppose that
e ∈ E(G/H). By Theorem12(b), G′/H is factor-critical. Since(G/H)/De = G′/H and
|De| = ϕ(G)−1= ϕ(G/H), e∈ De ∈ B(G/H); that is, by Theorem9,e∈ E(D(G/H)). 2

By Theorem12(a), a connected graphG can be decomposed(by contracting strong sub-
graphs) intoϕ(G) almost critical graphs and a factor-critical graph; that is, any connected
graphG can be constructed by starting from a factor-critical graph and by applyingϕ(G)
times the inverse operation of contraction of a strong subgraph.

By Theorem14, a 2-edge-connected graphG is ϕ(G)-covered if and only ifG can be de-
composed (by contracting strong subgraphs) intoϕ(G)matching-covered graphs and a single
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vertex, in other words, a 2-edge-connected graphG is ϕ(G)-covered if and onlyif G can
be constructed by starting from a vertex and by applyingϕ(G) times the inverse operation
of contraction of a matching-covered strong subgraph. This way we can construct as many
examples ofϕ(G)-covered graphs as we want.

6. ϕ-EXTREME EDGES

The following result generalizes Lemma2(a) and gives some information about the struc-
ture of D(G) for an arbitrary 2-edge-connected graphG.

THEOREM 15. Let us denote by G1, . . . ,Gk the blocks ofD(G). Then:

(a) The graph S(G) := ((G/G1)/ . . .)/Gk is factor-critical.
(b) ϕ(G) =

∑k
1 ϕ(Gi ).

(c) ϕ(G/Gi ) = ϕ(G)− ϕ(Gi ) (i = 1, . . . , k).
(d) Gi is ϕ-covered(i = 1, . . . ,k).

PROOF. We prove by induction onϕ(G). Forϕ(G) = 1, Theorem13(a)and Lemma2(a)
imply (a),(b), (c) and (d).

Now suppose thatϕ(G) ≥ 2. Let H be a strong subgraph ofG with strong barrierX.
Then, by Theorem14, D(G) containsD(H) and hence, by Theorem13(a) it containsB(H).
By Theorem12(b),H is almost critical so, by Lemma2(a), B(H) is matching-covered. Thus
B(H) is 2-vertex-connected,and hence, by Theorem14, it is included in someGi , sayG1. We
remark thatE(D(H)) = E(G1)∩ E(H) by Theorem14andX ⊂ V(B(H)) by Lemma1(a).
Consider the graphG′ := G/B(H). Then thevertex v of G′ that corresponds toB(H) sep-
aratesV(H/B(H)) − v and V(G′) − V(H/B(H)). Moreover,H/B(H) is factor-critical
by Lemma2(a), soϕ(G′) = ϕ(G/H) and E(D(G/H)) = E(D(G′)). By Theorem14,
E(D(G)) − E(D(H)) = E(D(G/H)), so E(D(G′)) = E(D(G)) − E(D(H)). Thus the
blocksG′1, . . . ,G

′

l of D(G′) are exactly the blocks ofG1/B(H) andG2, . . . ,Gk. By Theo-
rem12(b),ϕ(G′) = ϕ(G/H) = ϕ(G) − 1, thus, by the inductionhypothesis, the theorem is
true forG′.

LEMMA 5. B(H) is a strong subgraphof G1.

PROOF. B(H) is nice inH by Theorem13(a) so the factor-critical components ofH − X
correspond to odd components ofB(H)−X. ThusX is a barrierof B(H). LetY be a maximal
barrier ofB(H) including X. Then, sinceB(H) is matching-covered by Lemma2(a),Y is a
strong barrier ofB(H). SinceX separatesH − X andG−V(H) in G, Y separatesB(H)−Y
andG1− V(B(H)). It follows thatB(H) is a strong subgraph ofG1 with strong barrierY. 2

(a) SinceS(G) = S(G′) (in the second case we contractedG1 in two steps, namely first
B(H) and then the blocks ofG1/B(H)), the statement follows from the induction hy-
pothesis.

(b) By Lemma5 and Theorem12(b),ϕ(G1/B(H)) = ϕ(G1)− 1. By induction,ϕ(G′) =∑l
1 ϕ(G

′

i ). Thenϕ(G) = ϕ(G′)+1=
∑l

1 ϕ(G
′

i )+1= (ϕ(G1)−1)+
∑k

2 ϕ(Gi )+1=∑k
1 ϕ(Gi ).

(c) By Theorem3(a),ϕ(G) ≤ ϕ(G/Gi )+ϕ(Gi ) andϕ(G/Gi ) ≤ ϕ(((G/G1)/ . . .)/Gk)+∑k
2 ϕ(G j ). By adding these two inequalities, and using thatϕ(((G/G1)/ . . .)/Gk) = 0

by (a) and Theorem2(a), and
∑k

1 ϕ(G j ) = ϕ(G) by (b), we haveϕ(G) ≤
∑k

1 ϕ(G j ) =

ϕ(G). Thus equality holds everywhere, henceϕ(G) = ϕ(G/Gi ) + ϕ(Gi ), as we
claimed.

(d) For i ≥ 2 the statement follows from the induction hypothesis. ForG1 it follows from
the induction hypothesis andfrom Theorem14. 2



On generalizations of matching-covered graphs 873

7. THE BLOCKS OF THE EAR MATROID

In this section we present a simple description of the blocks of the ear matroidM(G) for an
arbitrary 2-edge-connected graphG. The close relation between the circuits of the ear matroid
M(G) and the good even circuits ofG is presented in the following lemma.

LEMMA 6. Two edges e andf of a 2-edge-connected graph G belong to agood even
circuit of G if and only if e and f are in the same block of the ear matroidM(G).

PROOF. If e and f belong to the starting even earP1 of an optimal ear-decomposition then
choosing one edge from each even ear (lete be chosen fromP1) we obtain a setF for which
|F | = ϕ(G), G/F andG/(F−e+ f ) are factor-critical by Theorem2(a), thus, by Theorem9,
F andF − e+ f are inB(G), that is,e and f belong to the sameblock ofM(G).

Alternatively, letF ∈ B(G) containingesuch thatF−e+ f ∈ B(G). LetG′ := G×(F−e).
SinceF is a minimal critical making edge set, it is a forest andϕ(G/(F − e)) = 1. Then,
by Theorem8(b), ϕ(G′) = 1. Moreover,e and f areϕ-extreme inG′. By Lemma2(b),
there exists an optimal ear-decomposition ofG′ suchthat the starting ear containse and f
and it is the unique even ear. Obviously, this ear-decomposition provides the desired ear-
decomposition ofG. 2

It is natural to investigate graphs whose ear matroid is loopless. Note that, by definition,
these are exactly theϕ-covered graphs. The blocks of the ear matroidM(G) of aϕ-covered
graph can easily be described.

THEOREM 16. Let G be a2-vertex-connectedϕ-covered graph. Then theear matroid
M(G) has one block.

PROOF. We prove the theorem by induction onϕ(G). If ϕ(G) = 1, thenG is matching-
covered by Claim1, and then, by Theorem6(d) and Lemma6, the theorem is true. In the
rest of the proof we suppose thatϕ(G) ≥ 2. Let H be a strong subgraph ofG with strong
barrierX. By Theorem14, H andG/H areϕ-covered and, by Theorem12(b),ϕ(H) = 1 and
ϕ(G/H) = ϕ(G)− 1. LetG1 be an arbitraryblock of G/H .

(i) Let e1 ande2 be two arbitrary edges ofH . Let B ∈ B(G/H). Then, by Theorem9,
(G/H)/B is factor-critical.H/e1 andH/e2 are factor-critical by Claim1. Let B′ := B+ e1.
Note that|B′| = ϕ(G). Then, by Theorem3(a),G/B′ andG/(B′−e1+e2) are factor-critical,
thus, by Theorem9, B′ and B′ − e1 + e2 are inB(G), hencee1 ande2 belong to the same
block ofM(G).

(ii) Let e1 and e2 be two arbitrary edges ofG1. By induction,e1 and e2 belong to the
same block ofM(G1), thus there exists a baseB ∈ B(G1) such thate1 ∈ B and B − e1 +

e2 ∈ B(G1). For each blockGi of G/H different fromG1 let Bi ∈ B(Gi ). Furthermore, let
f ∈ E(H). Finally, let D := B ∪ (∪Bi )+ f . Note that|D| = ϕ(G). Then, by Theorem3(a),
G/D andG/(D−e1+e2) are factor-critical, thus, by Theorem9, D andD−e1+e2 ∈ B(G).
Hencee1 ande2 belong to the same block ofM(G).

(iii) Let e1 and f1 be two edges ofG1 such that the corresponding two edges inG are
incident on two different verticesu andv of X. By the 2-vertex-connectivity ofG, such edges
exist. Lete2 and f2 be two edges ofH incident onu andv, respectively. By (i), (ii) and
Lemma 6, there exists an optimal ear-decompositionP1+ P2+· · ·+ Pk (P′1+ P′2+· · ·+ P′l )
of H (of G1) such thate2 and f2 (e1 and f1) belong to the starting even ear. Furthermore, let
P′′1 + P′′2 + · · · + P′′m be an optimal ear-decomposition of(G/H)/G1 such that the first ear
contains the vertex corresponding to the contracted vertex set. Using these ear-decompositions
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we provide an optimal ear-decomposition ofG such that the starting even earwill contain e1
ande2. By Lemma1(b),u andv divide P1 into two pathsD1 andD2 of evenlength. Suppose
D1 containse2. Consider the following ear-decomposition ofG: (D1+ P′1)+D2+ P2+· · ·+

Pk+ P′2+· · ·+ P′l + P′′1 + P′′2 +· · ·+ P′′m. It is clear that this is an optimal ear-decomposition
of G, the first ear containse1 ande2 and it is even. Hence, by Lemma6, e1 ande2 belong to
the same block ofM(G).

(i), (ii) and (iii) imply the theorem. 2

THEOREM 17. The edge sets ofthe blocks of D(G) and the blocks ofM(G) coincide.

PROOF. (a) Lete and f be two edges ofG from thesame blockofM(G). By Lemma6,
there exists a good evencircuit C that containse and f . Since, by Theorem11(b), every edge
of C is ϕ-extreme, the edges of this circuitC belong tothe same block ofD(G).

(b) Leteand f be two edges ofG from the same blockG1 of D(G). By Theorem15(d),G1
is ϕ-covered, thus,by Theorem16 and Lemma6, there exists an optimal ear-decomposition
of G1 such that the starting even earcontainse and f . By Theorem15(c), ϕ(G/G1) =

ϕ(G) − ϕ(G1), sothis ear-decomposition can be extended to an optimal ear-decomposition
of G such that the starting even ear containse and f . Then, by Lemma6, e and f belong to
the same block ofM(G). 2

8. ϕ-COVERED GRAPHS

The aim of this section is to extend earlier results on matching-covered graphs of Lovász
and Plummer [5] toϕ-covered graphs. First we prove a technical lemma.

LEMMA 7. Let e be aϕ-extremeedge of a2-edge-connected graph G withϕ(G) ≥ 2. Then
there exists a strong subgraph H of G such that e∈ E(G/H).

PROOF. First suppose thatG has a perfect matching. Then, byTheorem12(c),G hastwo
vertex disjoint strong subgraphs. Clearly, for one of theme ∈ E(G/H). Secondly, suppose
thatG has no perfect matching. Then, by Theorem1, there exists a setX with co(G − X) >
|X|. Let X be such a maximal vertex set. Then each component ofG − X is factor-critical.
SinceG is not factor-critical by Theorem2(a),|X| 6= ∅.

(i) If a componentF of G − X contains an end vertex ofe, then by Theorem10, G has a
strong subgraphH such thatV(H) ⊆ V(G)− V(F) so we aredone.

(ii) Otherwise, by Theorem10, G has a strong subgraphH with strong barrierY ⊆ X
such that each component ofH − Y is a component ofG − X. We claim thate ∈ E(G/H).
If not then the two end verticesu andv of e belong toY because we are in (ii). Then, by
Lemma1(a),e is notϕ-extreme inH . This contradicts the fact thate is ϕ-extreme inH by
Theorem14. 2

The following theorem generalizes Theorem6(d) forϕ-covered graphs. By Lemma6, it is
equivalent toTheorem16.

THEOREM 18. For a 2-vertex-connectedϕ-covered graph G,any two edges belong to a
good even circuit of G.

By Theorem7(b), each matching-covered graph has a 2-graded ear-decomposition. This
result can also be generalized forϕ-coveredgraphs. A sequence(G0,G1, . . . ,Gm) of sub-
graphs ofG is a generalized 2-graded ear-decompositionof G if G0 is a vertex,Gm = G,
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for every i = 1, . . . ,m: Gi is ϕ-covered;Gi is obtainedfrom Gi−1 by adding at most two
disjoint paths (ears) which are openly disjoint fromGi−1 but their end-vertices belong to
Gi−1, if we add two ears then both are of odd length; andϕ(Gi−1) ≤ ϕ(Gi ). This is the
natural extension of the original definition of Lovász and Plummer. Indeed, ifG is matching-
covered thenϕ(G) = 1, thus the first ear will be even and all the other ears will be odd;
and for all i , 1 = ϕ(G1) ≤ ϕ(Gi ) ≤ ϕ(G) = 1 andGi is ϕ-covered so, by Claim1, Gi is
matching-covered.

THEOREM 19. Let e be an arbitrary edge of aϕ-covered graph G. ThenG possesses a
generalized2-graded ear-decomposition such that the starting ear contains e.

PROOF. If ϕ(G) = 1 then, by Claim1, G is matching-covered so, by Theorem7(c), we
are done. From nowon we assumethatϕ(G) ≥ 2. We shall frequently use in the proof that
a graphL is ϕ-covered if and only if each block ofL is ϕ-covered. We prove the theorem by
induction on|V(G)|. We may suppose thatG is 2-vertex-connected because, by induction,
for each block the theorem is true. By Lemma7, there exists a strong subgraphH of G
with strong barrierX such thate ∈ E(G/H). By Theorem14, H andG/H areϕ-covered.
By Theorem12(b) and Claim1, H is matching-covered. Let us denote byv the vertex of
G/H corresponding toH . Let us denote byQ the block ofG/H which containse. Note that
v ∈ V(Q). SinceG/H is ϕ-covered,Q is alsoϕ-covered. By induction,Q has a generalized
2-graded ear-decomposition(G0,G1, . . . ,Gk) such that the starting ear containse. Let G j

be the first subgraph ofQ which containsv and leta andb be the two edges ofG j incident on
v. (G/H)/Q is alsoϕ-covered so, by induction,(G/H)/Q has a generalized 2-graded ear-
decomposition(G∗0,G

∗

1, . . . ,G
∗
p) such that the starting ear contains an edge incident onv.

(i) First suppose thata andb are incident on the same vertexu of X in G. Let c be an edge
of H incident onu. By Theorem7(c), H has a 2-graded ear-decomposition(G′0,G

′

1, . . . ,G
′

l )

such that thestarting ear containsc. Let G′′i = Gi if 0 ≤ i ≤ j , let G′′i be the graph obtained
from G′i− j by replacing the vertexu by G j if j +1≤ i ≤ j + l , let G′′i be the graph obtained
from Gi−l by replacing the vertexv by G′′j+l if j + l +1≤ i ≤ k+ l and finally letG′′i be the
graph obtained fromG∗i−k−l by replacing the vertexv by G′′k+l if k+ l + 1≤ i ≤ k+ l + p.
We show that(G′′0,G

′′

1, . . . ,G
′′

k+l+p) is the desired generalized 2-graded ear-decomposition
of G. The starting ear containse, in each step we added at most two ears, when two ears
were added then they were of odd length,ϕ(G′′i ) ≤ ϕ(G

′′

i+1) and finally by Theorem14, each
subgraphG′′i is ϕ-covered.

(ii) Secondly, suppose thata andb are incidenton different verticesu andw of X in G.
Let c andd be two edges ofH incident onu andw, respectively. By Theorem7(c), H has a
2-graded ear-decomposition(G′0,G

′

1, . . . ,G
′

l ) suchthat the starting earP1 containsc andd.
u andw divide P1 (which is an even ear) into two pathsD1 andD2. By Lemma1(b), D1 and
D2 are of even length. LetG′′i = Gi if 0 ≤ i ≤ j − 1, G′′j bethe graph obtained fromG j by
replacing the vertexv by D1, G′′j+1 be the graph obtained fromG j by replacing the vertexv by
P1, let G′′i be the graph obtained fromG′i− j by replacingP1 by G′′j+1 if j +2≤ i ≤ j + l , let
G′′i be the graph obtained fromGi−l by replacing the vertexv by G′′j+l if j + l +1≤ i ≤ k+ l
and finally, as above, letG′′i be the graph obtained fromG∗i−k−l by replacing the vertexv by
G′′k+l if k+ l + 1≤ i ≤ k+ l + p. It is easy to see that(G′′0,G

′′

1, . . . ,G
′′

k+l+p) is the desired
generalized 2-graded ear-decomposition ofG. 2

The next theorem is the natural generalization of Theorem7(a). However, we cannot prove
Theorem19using this result.
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THEOREM 20. Let F := {e1, . . . ,ek} be a setof non-edges of aϕ-covered graph G. If
G + F is ϕ-covered andϕ(G) = ϕ(G + F), then there exist i≤ j such that G+ ei + ej is
ϕ-covered.

PROOF. We prove the theorem by induction onϕ(G). If ϕ(G) = 1, thenG is matching-
covered by Claim1 so, by Theorem7(a), we are done. In the following we suppose that
ϕ(G) ≥ 2. Let F ′ ⊆ F be a minimal non-empty set inF suchthat G′ := G + F ′ is
ϕ-covered. Thenϕ(G) = ϕ(G′) becauseϕ(G) ≥ ϕ(G + F ′) ≥ ϕ(G + F) = ϕ(G). We
claim that|F ′| ≤ 2. Suppose that|F ′| ≥ 3 and letei ∈ F ′. By Lemma7, there exists a strong
subgraphH of G′ such thatei ∈ E(G′/H). By Theorem14, H andG′/H areϕ-covered.Let
E1 := E(H) ∩ F ′ andE2 := E(G′/H) ∩ F ′. ThenE1 ∪ E2 = F ′ andE2 6= ∅.

First supposeE1 = ∅. Then H is a strong subgraph ofG, so by Theorem14, G/H is
ϕ-covered. ByTheorem12,ϕ(G/H) = ϕ(G)−1= ϕ(G′)−1= ϕ(G′/H), thus by induction
for G/H andF ′, there exists∅ 6= F ′′ ⊆ F ′ such that|F ′′| ≤ 2 and(G/H)+F ′′ isϕ-covered.
By Theorem14, G+ F ′′ is ϕ-covered, and we are done.

Secondly supposeE1 6= ∅. Clearly, each edge ofG is ϕ-extreme inG + E1. Furthermore,
each edge ofE1 is ϕ-extreme inH , so by Theorem14, they areϕ-extreme inG + E1. Thus
G+ E1 is ϕ-covered. SinceE1 ⊂ F ′, thiscontradicts the minimality ofF ′. 2

EXAMPLE . The following example shows the necessity of the conditionϕ(G) = ϕ(G+F)
in Theorem20. LetG := (V, E), whereV = {a,b, c,d}, E = {ab,ab,ac,ac,ad,ad} and
let F := {bc,bd, cd}. ThenG andG + F areϕ-covered but for every∅ 6= F ′ ⊂ F , G + F ′

is notϕ-covered. Note thatϕ(G) = 3 andϕ(G+ F) = 1.
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