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a b s t r a c t

In this note we provide a generalization of a result of Goddard et al. (2003) [4] on edge-
connectivity of permutation graphs for hypergraphs. A permutation hypergraph Gπ is
obtained from a hypergraph G by taking two disjoint copies of G and by adding a perfect
matching between them. Themain tool in the proof of the graph result was the theorem on
partition constrained splitting off preserving k-edge-connectivity due to Bang-Jensen et al.
(1999) [1]. Recently, this splitting off theorem was extended for hypergraphs by Bernáth
et al. (accepted in Journal of Graph Theory) [2]. This extension made it possible to find a
characterization of hypergraphs for which there exists a k-edge-connected permutation
hypergraph.

© 2011 Elsevier B.V. All rights reserved.

1. Definitions

Let G = (V , E) be a graph. For a vertex set X of V , the set of edges between X and V − X is called a cut of G. The size of
this cut of G is denoted by dG(X). For disjoint subsets X and Y of V , we denote by dG(X, Y) the number of edges between X
and Y . The minimum size of a cut of G is denoted by λ(G). The graph G is called k-edge-connected if λ(G) ≥ k. Theminimum
degree δ(G) of G is defined as min{dG(v) : v ∈ V }. A graph H = (V + s, E) is called k-edge-connected in V if each cut, except
eventually the one defined by s and V , contains at least k edges. The set of neighbors of the vertex s, that is the vertices
adjacent to s, is denoted by NH (s). The complete graph on n vertices is denoted by Kn. By taking two disjoint copies of Kn we
get the graph 2Kn.

Let G = (V , E) be a hypergraph, where V is a finite set and E is a set of non-empty subsets of V , called hyperedges. A
hyperedge of cardinality 2 is a graph edge. For a vertex set X of V , the set of hyperedges intersecting X and V −X is called a cut
and is denoted by δG(X). The size of a cut of G is denoted by dG(X). For disjoint subsets X and Y of V , we denote by dG(X, Y )
the number of hyperedges intersecting both X and Y . The hypergraph G is called k-edge-connected if each cut contains at
least k hyperedges. A 1-edge-connected hypergraph is called connected. A maximal connected subhypergraph of G is called
a connected component of G. Let ωk(G) be defined as the maximum number of connected components of G − F minus 1,
where F is a set of k − 1 hyperedges in E . A hypergraph H = (V + s, E) is called k-edge-connected in V if each cut, except
eventually the one defined by s and V , contains at least k hyperedges. The set of vertices adjacent to the vertex s in H is
denoted by NH (s).

2. Permutation graphs

Given a graph G on n vertices and a permutation π of [n], Chartrand and Harary [3] defined the permutation graph Gπ as
follows: we duplicate the graph G and we add a perfect matching defined by the permutation π between the two copies of
the graph, in other words:
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1. we take 2 disjoint copies G1 = (V1, E1) and G2 = (V2, E2) of G,
2. for every vertex vi ∈ V1, we add an edge between vi of G1 and vπ(i) of G2, this edge set is denoted by E3,
3. Gπ = (V1 ∪ V2, E1 ∪ E2 ∪ E3).

Since, for any graph, the minimum size of a cut is less than or equal to the minimum degree, we have

λ(Gπ ) ≤ δ(Gπ ) = δ(G) + 1.

For simple graphs, the following result answers when this upper bound can be achieved.

Theorem 1 (Goddard et al. [4]). Let G be a simple graph without isolated vertices. Then there exists a permutation π such that
λ(Gπ ) = δ(G) + 1 if and only if G ≠ 2Kk for some odd k.

The tool to prove this result is presented in the next section.

3. k-admissible P -allowed complete splitting off in graphs

Let H = (V + s, E) be a graph with a specified vertex s, P = {P1, P2} a partition of V and k ≥ 2 an integer. Splitting off at
smeans taking two edges {su, sv} incident to s and replacing them by a new edge uv. Complete splitting off at s is a sequence
of splitting off isolating s. A complete splitting off is called k-admissible if the new graph without the isolated vertex s is
k-edge-connected and it is P -allowed if the new edges are between P1 and P2.
A partition {A1, . . . , A4} of V is called a C4-obstacle of H if there exists j ∈ {1, 2} such that

dH(Ai) = k for i = 1, . . . , 4, (1)
dH(A1, A3) = dH(A2, A4) = 0, (2)
k is odd, (3)
dH(s, P1) = dH(s, P2), (4)
(Aj ∪ Aj+2) ∩ NH(s) = P1 ∩ NH(s). (5)

The following theorem is a special case of a general result on partition constrained k-edge-connected complete splitting
off in graphs.

Theorem 2 (Bang-Jensen et al. [1]). Let H = (V + s, E) be a graph, P = {P1, P2} a partition of V and k ≥ 2 an integer. Then
there exists a k-admissible P -allowed complete splitting off at s if and only if

H is k-edge-connected in V , (6)
dH(s, P1) = dH(s, P2), (7)
H contains no C4-obstacle. (8)

4. Sketch of the proof of Theorem 1

We only prove the sufficiency. The main idea is the following: instead of finding the required permutation in one step
we will find it in two steps. First we make an extension and then we apply splitting off. The extended graph H is obtained
from G by taking two disjoint copies G1 and G2 of G, adding a new vertex s and connecting it to every other vertex. Since G
is simple, it is easy to see that H is k-edge-connected, where k = δ(G) + 1. Let P := {V (G1), V (G2)}.

Theorem 1 follows from the equivalence of the following conditions:

(a) there exists a permutation π such that λ(Gπ ) = δ(G) + 1,
(b) there exists a k-admissible P -allowed complete splitting off at s in H ,
(c) H contains no C4-obstacle,
(d) G ≠ 2Kk if k is odd.

It is easy to verify that (a) and (b) are equivalent. Theorem 2 implies that (b) and (c) are equivalent. An easy calculation
shows that (c) and (d) are equivalent.

5. Permutation hypergraphs

We define permutation hypergraphs as a natural generalization of permutation graphs. Given a hypergraph G on n
vertices and a permutation π of [n], we define the permutation hypergraph Gπ as follows:

1. we take 2 disjoint copies G1 = (V1, E1) and G2 = (V2, E2) of G,
2. for every vertex vi ∈ V1, we add an edge between vi of G1 and vπ(i) of G2, this edge set is denoted by E3,
3. Gπ = (V1 ∪ V2, E1 ∪ E2 ∪ E3).
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The main result of this paper characterizes hypergraphs that admit a k-edge-connected permutation hypergraph.

Theorem 3. Let G = (V , E) be a hypergraph and k ≥ 2 an integer. Then there exists a permutation π such that Gπ is k-edge-
connected if and only if

dG(X) ≥ k − |X | for all ∅ ≠ X ⊆ V , (9)

G is not composed of two connected components, both of k vertices, k being odd. (10)

Theorem 3 will be proved in Section 7 using the result presented in Section 6.

6. k-admissible P -allowed complete splitting off in hypergraphs

Let H = (V + s, E) be a hypergraph with a specified vertex s, P = {P1, P2} a partition of V and k ≥ 1 an integer. A
partition {A1, . . . , A4} of V is called a C4-obstacle of H if there exists j ∈ {1, 2} such that

dH (Ai) = k, for i = 1, . . . , 4, (11)
δH (A1) ∩ δH (A3) = δH (A2) ∩ δH (A4), (12)
k − |δH (A1) ∩ δH (A3)| ≠ 1 is odd, (13)

dH (s, P1) = dH (s, P2), (14)
(Aj ∪ Aj+2) ∩ NH (s) = P1 ∩ NH (s). (15)

The following theorem generalizes Theorem 2 and is a special case of a general result on partition constrained k-edge-
connected complete splitting off in hypergraphs.

Theorem 4 (Bernáth et al. [2]). Let H = (V + s, E) be a hypergraph, where s is incident only to graph edges, P = {P1, P2} a
partition of V and k ≥ 1 an integer. Then there exists a k-admissible P -allowed complete splitting off at s if and only if

H is k-edge-connected in V , (16)
dH (s) ≥ 2ωk(H − s), (17)
dH (s, P1) = dH (s, P2), (18)
H contains no C4-obstacle. (19)

7. Proof of Theorem 3

7.1. Proof of the necessity

Suppose that there exists a permutation π such that Gπ is k-edge-connected. We prove that (9) and (10) are satisfied.

(9) Let X be an arbitrary non-empty subset of V and X1 the corresponding vertex set in V1. Then, by the k-edge-connectivity
of Gπ , k ≤ dGπ (X1) = dG(X) + |X |, and (9) follows.

(10) Suppose that (10) is not satisfied that is G has exactly two connected components on vertex sets V 1 and V 2 and
|V 1

| = |V 2
| = k is odd. Then the vertex set of Gπ is partitioned into 4 sets V 1

1 , V 2
1 , V 1

2 , V 2
2 of size k, where {V 1

i , V 2
i }

corresponds to {V 1, V 2
} for i = 1, 2. Since G[V 1

] and G[V 2
] are connected components of G, no hyperedge exists

between V 1
i and V 2

i in Gπ for i = 1, 2. Then, by dGπ (V 1
1 , V 1

2 ) + dGπ (V 1
1 , V 2

2 ) = dGπ (V 1
1 ) = |V 1

1 | = k and k is odd, one
of them, say dGπ (V 1

1 , V 1
2 ), is larger than k

2 . Since only graph edges exist between V 1
1 and V 1

2 in Gπ and Gπ is k-edge-
connected, we have k ≤ dGπ (V 1

1 ∪ V 1
2 ) = dGπ (V 1

1 ) + dGπ (V 1
2 ) − 2dGπ (V 1

1 , V 1
2 ) < k + k − 2 k

2 = k. This contradiction
shows that (10) is satisfied.

7.2. Proof of the sufficiency

Suppose that the conditions (9) and (10) are satisfied for the hypergraph G and for the integer k. As for the graphic case,
we extend first the hypergraph and then we apply splitting off. The extended hypergraph H is obtained from G by taking
two disjoint copies G1 = (V1, E1) and G2 = (V2, E2) of G, adding a new vertex s and connecting it by the edge set E ′ to all
the other vertices. Then H = (V1 ∪ V2 ∪ {s}, E1 ∪ E2 ∪ E ′). Note that for all X ⊆ V1 ∪ V2, dH (s, X) = |X |. We define the
partition P of the vertex set of H − s to be {V1, V2}. We show that there exists a k-admissible P -allowed complete splitting
off at s. After executing this complete splitting off at s, we get the permutation hypergraph Gπ that is k-edge-connected and
the theorem is proved. By Theorem 4, we must verify that the conditions (16)–(19) are satisfied for H, P and k.
(16) Let ∅ ≠ X ⊂ V1 ∪ V2. Let X1 := X ∩ V1 and X2 := X ∩ V2. Then one of them, say X1, is not empty. Let

X ′
⊆ V be the vertex set of G that corresponds to X1 of G1. Then, by the construction of H and (9) applied for

X ′, dH (X) = dH (X1) + dH (X2) ≥ dH (X1) = dG1(X1) + |X1| = dG(X ′) + |X ′
| ≥ k, and (16) follows.
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(17) Let F be a set of k− 1 hyperedges in E such that the numberm of connected components of H ′
:= H − s− F minus

1 to be ωk(H − s). We distinguish two cases:
Case 1. Suppose first that H ′ contains no isolated vertices. Then each connected component K ′

i of H ′ contains at least
2 vertices and hence ωk(H − s) + 1 = m =

1
2

m
i=1 2 ≤

1
2

m
i=1 |V (K ′

i )| =
1
2 |V (H ′)| =

1
2dH (s).

Case 2. Suppose next that H ′ contains some isolated vertices, let v be one of them. Then, by |F | = k − 1 and by
(9) applied for v, 0 = dH ′(v) ≥ dG(v) − |F | = dG(v) − (k − 1) ≥ 0. Hence we have equality everywhere,
that is all the hyperedges of F contain the vertex v. Thus all the hyperedges of F belong to the same connected
component of H − s, say K 1

1 of G1. Note that, by the above argument, all the isolated vertices of H ′ belong to K 1
1 . Let

K 1
2 , . . . , K 1

t be the other connected components of G1. Note that G2 has also t connected components. By 2 ≤ |V (K 1
i )|

for i = 2, . . . , t, ωk(H − s) = m − 1 ≤ 2t − 2 + |V (K 1
1 )| ≤

t
i=1 |V (K 1

i )| = |V1| =
1
2dH (s).

In both cases (17) is satisfied.
(18) dH (s, P1) = |V1| = |V2| = dH (s, P2) and (18) is satisfied.
(19) Let us suppose that a C4-obstacle exists in H , let {A1, . . . , A4} be the partition of V1 ∪ V2 satisfying (11)–(15) with say

j = 1. By (15) and P = {V1, V2}, V1 = A1 ∪ A3 and V2 = A2 ∪ A4. By (12), all hyperedges intersecting both A1 and
A3 also intersect A2 and A4. By construction, no such hyperedge exists, and then by (13), k ≠ 1 is odd. It also follows
by (11), that |Ai| = dH (Ai) = k. By (9), all connected components of G contains at least k vertices, so G has exactly
two connected components, G[A1] and G[A3], both of k vertices and k is odd, that is (10) is violated. This contradiction
finishes the proof of Theorem 3.

8. Application

We show in this section that Theorem 3 is a generalization of Theorem 1.
Let G be a graph satisfying the conditions of Theorem 1. Let us consider G as a hypergraph and let k := δ(G) + 1. Since G

contains no isolated vertices, k = δ(G) + 1 ≥ 2. Let X be an arbitrary non-empty vertex set in V . Since G is simple, for any
vertex v ∈ X, dG(v, X − v) ≤ |X | − 1. Then dG(X) ≥ dG(v, V − X) = dG(v) − dG(v, X − v) ≥ δ(G) − (|X | − 1) = k− |X |, so
(9) is satisfied. Suppose that (10) is not satisfied, that is G has exactly two connected components, both of k vertices, and k
is odd. Then, since the graph is simple, each vertex has degree at most k− 1. But k = δ(G) + 1, so each vertex has degree at
least k− 1. It follows that G = 2Kk and k is odd. This contradiction shows that G satisfies all the conditions of Theorem 3, so
by this theorem, there exists a permutation π such that Gπ is k-edge-connected, hence δ(G) + 1 = k ≤ λ(Gπ ) ≤ δ(G) + 1
and Theorem 1 is proved.
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