Discrete Mathematics 312 (2012) 2536-2539

Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Edge-connectivity of permutation hypergraphs

Neil Jami?, Zoltan Szigeti >*

2 Ensimag, Grenoble Institute of Technology, 681, rue de la Passerelle, Domaine Universitaire, 38402 Saint Martin d’Héres, France
b Laboratoire G-SCOP, CNRS, Grenoble INP, UJF, 46, Avenue Félix Viallet, 38000 Grenoble, France

ARTICLE INFO ABSTRACT

Artic{e history: In this note we provide a generalization of a result of Goddard et al. (2003) [4] on edge-
Received 15 September 2010 connectivity of permutation graphs for hypergraphs. A permutation hypergraph 4, is
Accepted 9 August 2011 obtained from a hypergraph § by taking two disjoint copies of § and by adding a perfect

Available online 3 September 2011 matching between them. The main tool in the proof of the graph result was the theorem on

partition constrained splitting off preserving k-edge-connectivity due to Bang-Jensen et al.
(1999) [1]. Recently, this splitting off theorem was extended for hypergraphs by Bernath
et al. (accepted in Journal of Graph Theory) [2]. This extension made it possible to find a
characterization of hypergraphs for which there exists a k-edge-connected permutation
hypergraph.

Keywords:

Permutation graph
Edge-connectivity augmentation
Hypergraph

© 2011 Elsevier B.V. All rights reserved.

1. Definitions

Let G = (V, E) be a graph. For a vertex set X of V, the set of edges between X and V — X is called a cut of G. The size of
this cut of G is denoted by d¢ (X). For disjoint subsets X and Y of V, we denote by d¢ (X, Y) the number of edges between X
and Y. The minimum size of a cut of G is denoted by A(G). The graph G is called k-edge-connected if A(G) > k. The minimum
degree §(G) of G is defined as min{dg(v) : v € V}. Agraph H = (V + s, E) is called k-edge-connected in V if each cut, except
eventually the one defined by s and V, contains at least k edges. The set of neighbors of the vertex s, that is the vertices
adjacent to s, is denoted by Ny (s). The complete graph on n vertices is denoted by K;,. By taking two disjoint copies of K, we
get the graph 2K,,.

Let § = (V, &) be a hypergraph, where V is a finite set and & is a set of non-empty subsets of V, called hyperedges. A
hyperedge of cardinality 2 is a graph edge. For a vertex set X of V, the set of hyperedges intersecting X and V —X is called a cut
and is denoted by &4 (X). The size of a cut of § is denoted by dg (X). For disjoint subsets X and Y of V, we denote by dg (X, Y)
the number of hyperedges intersecting both X and Y. The hypergraph § is called k-edge-connected if each cut contains at
least k hyperedges. A 1-edge-connected hypergraph is called connected. A maximal connected subhypergraph of § is called
a connected component of §. Let w, (%) be defined as the maximum number of connected components of § — F minus 1,
where F is a set of k — 1 hyperedges in &. A hypergraph # = (V + s, &) is called k-edge-connected in V if each cut, except
eventually the one defined by s and V, contains at least k hyperedges. The set of vertices adjacent to the vertex s in # is
denoted by N (s).

2. Permutation graphs

Given a graph G on n vertices and a permutation ir of [n], Chartrand and Harary [3] defined the permutation graph G, as
follows: we duplicate the graph G and we add a perfect matching defined by the permutation 7 between the two copies of
the graph, in other words:
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1. we take 2 disjoint copies G; = (V1, E1) and G, = (V,, E») of G,
2. for every vertex v; € V4, we add an edge between v; of G; and v, of G, this edge set is denoted by Es,
3. G = (ViUV,, Ey UE; UE3).

Since, for any graph, the minimum size of a cut is less than or equal to the minimum degree, we have
AMGr) < 8(Gr) =68(G) + 1.

For simple graphs, the following result answers when this upper bound can be achieved.

Theorem 1 (Goddard et al. [4]). Let G be a simple graph without isolated vertices. Then there exists a permutation 7 such that
A(Gr) = 8(G) + 1ifand only if G # 2K, for some odd k.

The tool to prove this result is presented in the next section.

3. k-admissible &#-allowed complete splitting off in graphs

Let H = (V +s, E) be a graph with a specified vertex s, » = {P;, P,} a partition of V and k > 2 an integer. Splitting off at
s means taking two edges {su, sv} incident to s and replacing them by a new edge uv. Complete splitting off at s is a sequence
of splitting off isolating s. A complete splitting off is called k-admissible if the new graph without the isolated vertex s is
k-edge-connected and it is #-allowed if the new edges are between Py and P,.
A partition {Aq, ..., A} of V is called a C4-obstacle of H if there exists j € {1, 2} such that

dy(A) =k fori=1,...,4, 0
dy (A1, A3) = dy(Ay, Ay) =0, o
k is odd, o
du(s, P1) = diu(s, Py), ®
(Aj U A12) N Ny (s) = Py N Ny (s). @

The following theorem is a special case of a general result on partition constrained k-edge-connected complete splitting
off in graphs.

Theorem 2 (Bang-Jensen et al. [1]). Let H = (V + s, E) be a graph, # = {Py, P,} a partition of V and k > 2 an integer. Then
there exists a k-admissible P -allowed complete splitting off at s if and only if

—
(2]
-

H is k-edge-connected in V,
du(s, P1) = du(s, P2),
H contains no C4-obstacle.

—~ o~
[ RN |
= —

4. Sketch of the proof of Theorem 1

We only prove the sufficiency. The main idea is the following: instead of finding the required permutation in one step
we will find it in two steps. First we make an extension and then we apply splitting off. The extended graph H is obtained
from G by taking two disjoint copies G; and G, of G, adding a new vertex s and connecting it to every other vertex. Since G
is simple, it is easy to see that H is k-edge-connected, where k = §(G) + 1. Let # = {V(Gy), V(Gy)}.

Theorem 1 follows from the equivalence of the following conditions:

there exists a permutation 7 such that A(G;) = 6(G) + 1,

there exists a k-admissible #-allowed complete splitting off at s in H,
H contains no C4-obstacle,

G # 2K if k is odd.

It is easy to verify that (a) and (b) are equivalent. Theorem 2 implies that (b) and (c) are equivalent. An easy calculation
shows that (c) and (d) are equivalent.

5. Permutation hypergraphs

We define permutation hypergraphs as a natural generalization of permutation graphs. Given a hypergraph § on n
vertices and a permutation 7 of [n], we define the permutation hypergraph §, as follows:

1. we take 2 disjoint copies §; = (V1, &) and §, = (V5, &) of G,
2. for every vertex v; € Vy, we add an edge between v; of §; and v (; of §,, this edge set is denoted by Ej,
3. = (V1 UV, 6 U & UEs).
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The main result of this paper characterizes hypergraphs that admit a k-edge-connected permutation hypergraph.

Theorem 3. Let § = (V, &) be a hypergraph and k > 2 an integer. Then there exists a permutation w such that § is k-edge-
connected if and only if

dg(X) > k— |X|forall§ #X C V, 9

g is not composed of two connected components, both of k vertices, k being odd. (10)
Theorem 3 will be proved in Section 7 using the result presented in Section 6.
6. k-admissible #-allowed complete splitting off in hypergraphs

Let ## = (V + s, &) be a hypergraph with a specified vertex s, # = {Py, P} a partition of V and k > 1 an integer. A
partition {Aq, ..., A4} of V is called a @4-obstacle of # if there existsj € {1, 2} such that

dpA) =k, fori=1,...,4, (11)
830(A1) M 84 (A3) = 83 (Az) N Sy (As), (12)
k — 185 (A1) N5 (A3)| # 1is odd, (13)
d}((S,P]) :dJ{’(s»PZ)v (14)

(Aj UAjs2) NNy (s) = Py N Nye(s). (15)

The following theorem generalizes Theorem 2 and is a special case of a general result on partition constrained k-edge-
connected complete splitting off in hypergraphs.

Theorem 4 (Berndth et al. [2]). Let #¢ = (V + s, &) be a hypergraph, where s is incident only to graph edges, # = {P1, P;} a
partition of V and k > 1 an integer. Then there exists a k-admissible 2 -allowed complete splitting off at s if and only if

Jt is k-edge-connected in V, (
dy(s) > 2k (H —3), (17)
dye(s, P1) = dy (s, Py), (
J contains no C4-obstacle. (

7. Proof of Theorem 3
7.1. Proof of the necessity

Suppose that there exists a permutation r such that 4, is k-edge-connected. We prove that (9) and (10) are satisfied.

(9) Let X be an arbitrary non-empty subset of V and X; the corresponding vertex set in V. Then, by the k-edge-connectivity
of G,k < dg, (X1) = dg(X) + |X[, and (9) follows.

(10) Suppose that (10) is not satisfied that is § has exactly two connected components on vertex sets V' and V2 and
[V!] = |V2| = kis odd. Then the vertex set of §, is partitioned into 4 sets V', V2, V;, V7 of size k, where {V/!, V?}
corresponds to {V!,V?} fori = 1, 2. Since §[V'] and §[V?] are connected components of §, no hyperedge exists
between V;' and V? in §, fori = 1, 2. Then, by dg (V], V) + dg, (V!,V}) = dg4, (V}) = |V| = kand k is odd, one
of them, say dg, (V], V), is larger than £. Since only graph edges exist between V| and V, in §. and g is k-edge-
connected, we have k < dg (V! UV}) = dg_ (V]) +dg, (V) — 2dg, (V{, V) < k+ k — 25 = k. This contradiction
shows that (10) is satisfied.

7.2. Proof of the sufficiency

Suppose that the conditions (9) and (10) are satisfied for the hypergraph § and for the integer k. As for the graphic case,
we extend first the hypergraph and then we apply splitting off. The extended hypergraph J¢ is obtained from § by taking
two disjoint copies §; = (V1, &) and §, = (V,, &;) of §, adding a new vertex s and connecting it by the edge set E’ to all
the other vertices. Then # = (V; U V, U {s}, & U & U E’). Note that for all X C V; U V5, d (s, X) = |X]|. We define the
partition & of the vertex set of #¢ — s to be {V1, V,}. We show that there exists a k-admissible $-allowed complete splitting
off at s. After executing this complete splitting off at s, we get the permutation hypergraph 4, that is k-edge-connected and
the theorem is proved. By Theorem 4, we must verify that the conditions (16)-(19) are satisfied for #, & and k.

(16) Let @ # X C ViUV letX; = XNVyand X, = X N V,. Then one of them, say Xi, is not empty. Let
X' C V be the vertex set of § that corresponds to X; of §;. Then, by the construction of # and (9) applied for
X', dpe(X) = dge (X1) + dse (X2) = dge(X1) = dg, (X1) + [X| = dg(X') + [X'| > k, and (16) follows.
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(17) Let F be aset of k — 1 hyperedges in & such that the number m of connected components of #' := # — s — F minus
1 to be wy(# — s). We distinguish two cases:
Case 1. Suppose first that #’ contains no isolated vertices. Then each connected component K/ of #¢' contains at least
2 verticesand hence wy(# —s) + 1=m=2>",2 < 13" |V(K))| = JIV(H)| = 1dy(s).
Case 2. Suppose next that #’ contains some isolated vertices, let v be one of them. Then, by || = k — 1 and by
(9) applied for v,0 = dyw(v) > dg(v) — |F| = dg(v) — (k — 1) > 0. Hence we have equality everywhere,
that is all the hyperedges of & contain the vertex v. Thus all the hyperedges of ¥ belong to the same connected
component of # — s, say Kf of g1. Note that, by the above argument, all the isolated vertices of #’ belong to Kll. Let
Kzl, e Kt] be the other connected components of §;. Note that §, has also t connected components. By 2 < |V(Ki1)|
fori=2,....t,ax(H —s)=m—1=<2t =2+ |VEKD| < Xi_, IVEH| = V1] = 3dx(s).
In both cases (17) is satisfied.

(18) dy (s, Py) = |Vi| = |Va| = dx(s, Py) and (18) is satisfied.

(19) Let us suppose that a C4-obstacle exists in #, let {A1, ..., A4} be the partition of V; U V; satisfying (11)-(15) with say
j = 1.By(15)and # = {V{,V,},V; = A; UAsand V, = A, U A4. By (12), all hyperedges intersecting both A; and
As also intersect A, and A,4. By construction, no such hyperedge exists, and then by (13), k # 1 is odd. It also follows
by (11), that |A;| = ds(A;)) = k. By (9), all connected components of § contains at least k vertices, so § has exactly
two connected components, ¢[A] and §[As], both of k vertices and k is odd, that is (10) is violated. This contradiction
finishes the proof of Theorem 3.

8. Application

We show in this section that Theorem 3 is a generalization of Theorem 1.

Let G be a graph satisfying the conditions of Theorem 1. Let us consider G as a hypergraph and let k := §(G) + 1. Since G
contains no isolated vertices, k = §(G) + 1 > 2. Let X be an arbitrary non-empty vertex set in V. Since G is simple, for any
vertex v € X, dg(v,X —v) < |X|—1.Thends(X) > dg(v, V —X) = dg(v) —dg(v, X —v) > §(G) — (X| —1) = k—|X],s0
(9) is satisfied. Suppose that (10) is not satisfied, that is G has exactly two connected components, both of k vertices, and k
is odd. Then, since the graph is simple, each vertex has degree at most k — 1. But k = §(G) + 1, so each vertex has degree at
least k — 1. It follows that G = 2K, and k is odd. This contradiction shows that G satisfies all the conditions of Theorem 3, so
by this theorem, there exists a permutation 7 such that G, is k-edge-connected, hence §(G) + 1 =k < A(G;) < 8(G) + 1
and Theorem 1 is proved.
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