ON PACKING T-CUTS

by

András Frank and Zoltán Szigeti

(1992, June)

ABSTRACT A short proof of a difficult theorem of P.D. Seymour on grafts with the max-flow min-cut property is given.

I. INTRODUCTION

The Chinese Postman problem, in other words the minimum T-join problem, consists of finding a minimum cardinality subset of edges of a graph satisfying prescribed parity constraints on the degrees of nodes. This minimum is bounded from below by the maximum value of a (fractional) packing of T-cuts. In the literature there are several min-max theorems for cases when equality actually holds. In this paper we list some of these results and exhibit new relationships among them.

To be more specific, P. Seymour’s theorem [1977] on binary matroids with the max-flow min-cut property, when specialized to T-joins, provides a characterization of pairs (G, T) for which the minimum weight of a T-join is equal to the maximum packing of T-cuts for every integer weighting. Motivated by Seymour’s theorem, A. Sebő [1988] proved a min-max theorem concerning minimum T-joins and maximum packing of T-borders. He also observed that his result, combined with a simple-sounding lemma on bi-critical graphs (Theorem 7 below), immediately implies Seymour’s theorem.

The purpose of this note is two-fold. We show first that Sebő’s theorem is an easy consequence of an earlier min-max theorem [Frank, Sebő, Tardos, 1984] and, second, we provide a simple proof of the above-mentioned statement on bi-critical graphs. This way we will have obtained a simple proof of Seymour’s theorem.

A graft (G, T) is a pair consisting of a connected undirected graph $G = (V, E)$ and a subset T of V of even cardinality. A subset J of edges is called a T-join if $d_J(v)$ is odd precisely when $v \in T$. Here $d_J(v)$ denotes the number of elements of J incident to v. J is called a perfect matching if $d_J(v) = 1$ for every $v \in V$. Note that a perfect matching is a T-join for which for $T = V$. A graph $G = (V, E)$ is called bi-critical if E is non-empty and every pair of nodes u, v, the graph $G - \{u, v\}$ contains a perfect matching. It follows immediately from Tutte’s theorem (see Theorem 0 below) that G is bi-critical if and only if
\[q(X) \leq |X| - 2 \quad \text{for every subset } X \subseteq V \text{ with } |X| \geq 2 \] (1)

where \(q(X) \) denotes the number of odd-cardinality components of \(G - X \).

Let us call a set \(X \subseteq V \) T-odd if \(|X \cap T| \) is odd. Given a partition \(\mathcal{P} = \{V_1, V_2, \ldots, V_k\} \) of \(V \), by a multicut \(B = B(\mathcal{P}) \) we mean the set of edges connecting different parts of \(\mathcal{P} \). If each \(V_i \) is T-odd and induces a connected subgraph, \(B \) is called a T-border. Then clearly \(k \) is even and \(\text{val}(B) := k/2 \) is called the value of the T-border. When \(k = 2 \) a T-border \(B \) is called a T-cut. Note that the value of a T-cut is one.

The border graph \(G_B \) of a T-border \(B = B(\mathcal{P}) \) is one obtained by contracting each \(V_i \) into one node. Let us call a T-border bi-critical if its border graph is bi-critical.

Note that the cardinality of the intersection of a T-cut and a T-join is always odd, in particular, at least one. Hence the cardinality of the intersection of a T-border \(B \) and a T-join \(J \) is always at least \(\text{val}(B) \) and equality holds precisely when the edges in \(J \) connecting distinct \(V_i \)'s form a perfect matching in the border graph of \(B \).

A list \(B = \{B_1, \ldots, B_l\} \) of T-borders is called a packing (2-packing) if each edge of \(G \) belongs to at most one (two) member(s) of \(B \). The value of a packing is \(\sum \{\text{val}(B) : B \in B\} \) and the value of a 2-packing is \(\sum \{\text{val}(B) : B \in B\}/2 \). Note that a T-border of value \(t \) determines a 2-packing of T-cuts of value \(t \).

For an edge \(e = uv \) we define the elementary T-contraction as a graft \((G', T') \) where \(G' \) arises from \(G \) by contracting \(e \) and \(T' := T - \{u, v\} \) if \(\{|u, v\} \cap T| \) is even and \(T' := T - \{u, v\} + x_{uv} \) if \(\{|u, v\} \cap T| \) is odd where \(x_{uv} \) denotes the contracted node. The T-contraction of a graph means a sequence of elementary T-contractions. If \(X \subseteq V \) induces a connected subgraph of \(G \), then by T-contracting \(X \) we mean the operation of T-contracting a spanning tree of \(X \).

Let \(K_4 \) denote a graft \((K_4, V(K_4)) \) where \(K_4 \) is a complete graph on 4 nodes. Note that a graft \((G, T) \) can be T-contracted to \(K_4 \) precisely when there is a partition \(\{V_1, V_2, V_3, V_4\} \) of \(V \) into T-odd sets so that each \(V_i \) induces a connected subgraph and there is an edge connecting \(V_i \) and \(V_j \) whenever \(1 \leq i < j \leq 4 \).

For a general account on matchings and T-joins, see [Lovász and Plummer, 1986].

II. RESULTS ON T-CUTS AND T-JOINS

Our starting point is Tutte’s theorem [1947] on perfect matchings.

THEOREM 0 A graph \(G = (V, E) \) contains no perfect matching if and only if there is a set \(X \) of nodes so that \(G - X \) includes more than \(|X| \) components of odd cardinality.

The perfect matching problem can be reformulated in terms of T-joins. Namely, by choosing \(T := V \), one observes that \(G \) has a perfect matching precisely if the minimum cardinality of a T-join is \(|V|/2\). Therefore it was natural to ask for theorems concerning the minimum cardinality of a T-join. Let us list some known results concerning this minimum. The first one was proved by L. Lovász [1975] (and was stated earlier in a more general form by J. Edmonds and E. Johnson [1970]).
THEOREM 1 The minimum cardinality of a T-join is equal to the maximum value of a 2-packing of T-cuts.

For example, in K_4 a perfect matching is a T-join of 2 elements and a 2-packing of T-cuts with value 2 is provided by taking each T-cut once. Note that the value of the best integral T-cut packing is 1.

Although this theorem, when applied to $T := V$, provides a good characterization for the existence of a perfect matching (namely, a graph $G = (V, E)$ with $|V|$ even has no perfect matching if and only if there is a list of more than $|V|$ V-cuts so that every edge belongs to at most two of them), Tutte’s theorem does not seem to follow directly.

For bipartite graphs P. Seymour [1981] proved a stronger statement:

THEOREM 2 In a bipartite graph the minimum cardinality of a T-join is equal to the maximum number of disjoint T-cuts.

This theorem immediately implies Theorem 1 by subdividing each edge by a new node. In [Frank, Sebő, Tardos, 1984] the following sharpening of Theorem 2 was proved:

THEOREM 3 In a bipartite graph $D = (U, V; F)$ the minimum cardinality of a T-join is equal to $\max \sum q_T(V_i)$ where the maximum is taken over all partitions $\{V_1, \ldots, V_l\}$ of V and $q_T(X)$ denotes the number of T-odd components of $D - X$.

Let $G = (V, E)$ be an arbitrary graph. Subdivide each edge by a new node and let $D = (V, U; F)$ denote the resulting bipartite graph (where U denotes the set of new nodes). By applying Theorem 3 to this graph one can easily obtain the following.

THEOREM 4 In a graph $G = (V, E)$ the minimum cardinality of a T-join is equal to $\max \sum q_T(V_i)/2$ where the maximum is taken over all partitions $\{V_1, \ldots, V_l\}$ of V.

Observe that Theorem 3 implies Seymour’s Theorem 2. In [Frank, Sebő, Tardos] we pointed out via an elementary construction that Theorem 3 also implies the Berge-Tutte formula, a slight generalization of Tutte’s theorem.

Let us show now an even simpler derivation of the (non-trivial part of) Tutte’s theorem.

THEOREM 4 \rightarrow THEOREM 0

Apply Theorem 4 with the choice $T := V$. Notice that in this case a set is T-odd if its cardinality is odd. If there is no perfect matching, then the minimum cardinality of a T-join is larger than $|V|/2$. By Theorem 4 there is a partition $\{V_1, \ldots, V_l\}$ of V so that $\sum q_T(V_i)/2 > |V|/2$, that is, $\sum q_T(V_i) > \sum |V_i|$. Therefore there must be a subscript i so that $q_T(V_i) > |V_i|$, that is, the number of components in $G - V_i$ with odd cardinality is larger than $|V_i|$, as required. ♠
A. Sebő [1988] determined the minimal totally dual integral linear system defining the conical hull of \(T\)-joins. As a by-product, he derived the following integer min-max theorem concerning \(T\)-joins:

THEOREM 5 In a graph \(G = (V, E)\) the minimum cardinality of a \(T\)-join is equal to the maximum value of a \(T\)-border packing \(\{B_1, \ldots, B_r\}\). Furthermore, if an optimal packing is chosen in such a way that \(r\) is as large as possible, then each \(B_i\) is bi-critical.

Note that both Theorems 4 and 5 imply Theorem 1. The last theorem of our list is also due to P. Seymour [1977].

THEOREM 6 If a graft \((G, T)\) cannot be \(T\)-contracted to \(K_4\), then the minimum cardinality of a \(T\)-join is equal to the maximum number of disjoint \(T\)-cuts.

This theorem is a special case of a very difficult result of Seymour concerning binary matroids with the max-flow min-cut property. It can be formulated in an apparently stronger form:

A graft \((G, T)\) cannot be \(T\)-contracted to \(K_4\) if and only if for every integer weight-function \(w\) the minimum weight of a \(T\)-join is equal to the maximum number of \(T\)-cuts so that every edge belongs to at most \(w(e)\) \(T\)-cuts.

Note, however, that the "if" part is trivial and the "only if" part easily follows from Theorem 6 if we delete each edge \(e\) with \(w(e) = 0\) and subdivide each edge \(e\) by \(w(e) - 1\) new nodes when \(w(e) > 0\).

III. PROOFS

We are going to show first that Sebő’s Theorem 5 is also an easy consequence of Theorem 3 and, second, using Sebő’s theorem we provide a simple proof of Seymour’s Theorem 6.

Let \(G = (V, E)\) be an arbitrary graph and let \(D = (V, U; F)\) be a bipartite graph arising from \(G\) by subdividing each edge by a new node. Here sets \(E\) and \(U\) are in a one-to-one correspondence and we will not distinguish between their corresponding elements. In particular, a subset of \(U\) will be considered as a subset of \(E\) and vice versa.

Observe that in Theorem 3 the two parts \(U\) and \(V\) of the bipartite graph play an asymmetric role. When one applies Theorem 3 to \(D\) and the maximum is taken over the partitions of \(V\), Theorem 4 can be obtained. Sebő’s theorem will follow from Theorem 3 by taking the maximum over the partitions of \(U\).

Proof of Theorem 5

We have already seen that the value of a \(T\)-border packing is a lower bound for the minimum cardinality of a \(T\)-join. We are going to prove that there is a \(T\)-join \(J\) of \(G\) and a packing \(\mathcal{F}\) of \(T\)-borders of \(G\) so that
\[|J| = \text{val}(\mathcal{F}). \] (2)

By Theorem 3 there is a partition \(\mathcal{U} \) of \(U \) and a \(T \)-join \(J' \) of \(D \) for which

\[|J'| = \sum (q_T(X) : X \in \mathcal{U}). \] (3)

Assume that \(l := |\mathcal{U}| \) is as large as possible and let \(Z \) be an arbitrary member of \(\mathcal{U} \) with \(q_T(Z) > 0 \). Let \(K_1, K_2, \ldots, K_h \) be the components of \(D - Z \), \(V_i := V \cap K_i \) and \(\mathcal{P} := \{V_1, \ldots, V_h\} \).

Clearly, \(Z \supseteq B(\mathcal{P}) \) and, in fact, we have equality here since if an edge \(e \) induced by \(V_i \) belonged to \(Z \), then \(|Z| \geq 2 \) and in \(\mathcal{U} \) we could replace \(Z \) by two sets \(Z - e \) and \(\{e\} \) without destroying (3), contradicting the maximality of \(l \). We also claim that each \(V_i \) is \(T \)-odd for otherwise \(|Z| \geq 2 \) and for an edge \(e \in Z \) leaving \(V_i \) we could replace \(Z \) by \(Z - e \) and \(\{e\} \) without destroying (3), contradicting again the maximality of \(l \).

Let \(\mathcal{F} := \{Z \in \mathcal{U} : q_T(Z) > 0\} \). We have seen that each member \(Z \) of \(\mathcal{F} \) is a \(T \)-border of \(G \) with \(\text{val}(Z) = q_T(Z)/2 \). Hence (2) and the first half of Theorem 5 follows by noticing that \(J' \) corresponds to a \(T \)-join of \(G \) with \(|J| = |J'|/2 \).

To prove the second half of the theorem let \(B \) be a \(T \)-border packing of maximum value such that \(r := |B| \) is as large as possible. Suppose indirectly, that a member \(B \in \mathcal{B} \) is not bi-critical. That is, the border graph \(G_B \) of \(B \) includes a subset \(X \) of nodes with \(|X| \geq 2 \) for which \(q(X) \geq |X| \). (Here \(q(X) \) denotes the number of odd-cardinality components of \(G_B - X \).)

For any odd component \(K \) of \(G_B - X \) let us define a partition of \(V(G_B) \) consisting of the elements of \(K \) as singletons and a set \(V(G_B) - K \). This partition defines a \(T \)-border of \(G \) with value \((|K| + 1)/2 \). For any even component \(L \) of \(G_B - X \) let us define a partition of \(V(G_B) \) consisting of the elements of \(L - v \) as singletons and the set \(V(G_B) - (L - v) \) where \(v \) is an arbitrary element of \(L \). This partition defines a \(T \)-border of \(G \) with value \(|L|/2 \). The \(T \)-borders defined this way are pairwise disjoint subsets of \(B \) and their total value is \(|V(G_B)|/2 \), the value of \(B \). This contradicts the maximal choice of \(r \). ★★★★

The following Theorem 7, interesting for its own right, was stated by A. Sebő [1988]. He noted that it follows from Seymour’s Theorem 6 and observed that, conversely, Theorem 6 is an easy consequence of Theorems 5 and 7. We provide here a simple proof.

THEOREM 7 The node set of an arbitrary bi-critical graph \(G_B \) on \(k \geq 4 \) nodes can be partitioned into four subsets \(V_1, V_2, V_3, V_4 \) of odd cardinality so that each \(V_i \) induces a connected subgraph and there is an edge connecting \(V_i \) and \(V_j \) whenever \(1 \leq i < j \leq 4 \).

Proof. Let \(M \) be a perfect matching of \(G_B \), \(uv \in M \) and \(M_{uv} := M - uv \). Let \(z(\neq v) \) be a neighbour of \(u \). Since \(G_B \) is bi-critical \(G_B - \{v, z\} \) contains a perfect matching \(M_{vz} \). The symmetric difference \(M_{uv} \oplus M_{vz} \) consists of node-disjoint circuits and a path \(P \) connecting \(z \) and \(u \). Now \(C := P + uz \) is an odd circuit of \(G_B \) so that, starting at \(u \) and going along \(C \), every second edge of \(C \) belongs to \(M \).
Let u, u_1, \ldots, u_h be the nodes of C (in this order). Because of the existence of M, the component K of $G_B - V(C)$ containing v is of odd cardinality while all the other components are of even cardinality.

Let $V_1 := K$. It follows from (1) that G_B is 2-connected and, moreover, contains no separating set X of two elements for which $q(X) > 0$. Hence K must have at least three distinct neighbours u, u_i, u_j in C.

If there is a matching edge $xy \in M$ on C so that u, u_i, x, y, u_j reflects the order of these nodes around C (where both $u_i = x$ and $u_j = y$ are possible), then define $V'_2 := \{u_1, u_2, \ldots, x\}$, $V'_3 := \{y, \ldots, u_{h-1}, u_h\}$, $V'_4 := \{u\}$.

If there is no such matching edge, that is, $j = i+1$ and i is even, then define $V'_2 := \{u_i\}$, $V'_3 := \{u_{i+1}\}$, $V'_4 := V(C) - \{u_i, u_{i+1}\}$.

In both cases $\{V'_2, V'_3, V'_4\}$ is a partition of $V(C)$. Let \mathcal{L} denote the set of even components of $G_B - V(C)$. For each $L \in \mathcal{L}$ choose a subscript $s = s(L)(= 2, 3, 4)$ so that L is connected to a node in V'_s.

For $t = 2, 3, 4$ define $V'_t := V'_t \cup \cup (L \in \mathcal{L}: s(L) = t)$

The partition $\{V_1, V_2, V_3, V_4\}$ constructed this way satisfies the requirements. ♠♠♠

Proof of Theorem 6

Let \mathcal{B} be an optimal packing of bi-critical T-borders provided by Theorem 5. We claim that each member of \mathcal{B} is a T-cut. Indeed, if $B \in \mathcal{B}$ is a T-border determined by a partition \mathcal{P} of V ($|\mathcal{P}| \geq 4$) into T-odd sets, then the graft $(G_B, V(G_B))$ arises from (G, T) by T-contracting each member of \mathcal{P} and then, by Theorem 7, (G, T) can be T-contracted to K_4, a contradiction. ♠♠♠

In order for the paper to be self-contained, we include here a proof of Theorem 3, due to A. Sebő [1987].

Proof of Theorem 3

We prove only the non-trivial direction $\max \leq \min$. Let J be a T-join of minimum cardinality. Let w denote a weighting on F for which $w(e) = -1$ if $e \in J$ and $w(e) = 1$ if $e \in F - J$. Then w is clearly conservative, that is, there is no circuit of negative total weight. Actually, we prove the following:

THEOREM 3’ Let $D = (U, V; F)$ be a bipartite graph and $w : F \to \{+1, -1\}$ a conservative weighting. There is a partition \mathcal{L} of V so that for each part $P \in \mathcal{L}$ and for each component C of $D - P$ there is at most one negative edge connecting P and C.

Proof. We use induction on $|J|$ where J denotes the set of negative edges. If J is empty, $\mathcal{L} := \{V\}$ will do. Assume that J is non-empty and let s be an arbitrary node incident to an element of J. Let P be a path of D starting at s so that its weight $m := w(P)$ is minimum and, in addition, P has as few edges as possible. Let t denote the other end-node of P, xt the last edge of P and B the set of edges of D incident to t. Since B is a cut of
D, the graph $D' := D/B := (U', V'; F')$ arising from D by contracting the elements of B is bipartite. Let t' denote the contracted node of D' corresponding to t and let w' denote the weighting of D' determined by w. We call a subpath $P[y, t]$ of P an end-segment. Clearly $m < 0$ by the choice of s and

$$w'(xt) < 0. \quad (*)$$

in particular, $w(xt) < 0$.

CLAIM (i) xt is the only negative edge incident to t. (ii) In $D - t$ there is no negative path R connecting two neighbours u, v of t.

Proof. (i) Let tz be another negative edge. If $z \in P$, then $P[z, t] + tz$ would form a negative circuit contradicting that w is conservative. If $z \not\in P$, then $P' := P + tz$ would be a path with $w(P') < w(P)$ contradicting the minimal choice of P. Thus (i) follows.

(ii) Let R be a path for which $w(R)$ is minimum and suppose for a contradiction that $w(R) < 0$. Clearly u and v are distinct from x since otherwise $R + ut + tv$ would form a negative circuit in G.

An arbitrary node y of R subdivides R into two segments $R[y, u]$ and $R[y, v]$. Since $w(R) < 0$, at least one of the two segments has negative weight.

Suppose first that P and R have a node y in common. Choose y so that $P[y, t]$ has as few edges as possible. Assume that $w(R[u, y]) < 0$. Property (*) implies that $P[t, y] + R[y, u] + ut$ is a negative circuit in D, a contradiction.

Now let P and R be disjoint. Since D is bipartite, R has even length from which $w(R) \leq -2$. Hence $P' := P + tu + R$ is a simple path starting at s such that $w(P') < m$ contradicting the minimal choice of P. ♠

The claim is equivalent to saying that w' is a conservative weighting of D'. By the inductional hypothesis, there is a partition \mathcal{L}' of V' satisfying the requirement of the theorem with respect to w'. If $t \in U$ (that is, $t' \in V'$), then \mathcal{L}' determines a partition \mathcal{L} of V. If $t \in V$, then define $\mathcal{L} := \mathcal{L}' \cup \{t\}$. In both cases it is easily seen that \mathcal{L} satisfies the requirements of the theorem. ♠♠♠

REFERENCES

