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Abstract

We deepen the link between two classic areas of combinatorial optimization: augmentation

and packing arborescences. We consider the following type of questions: What is the minimum

number of arcs to be added to a digraph so that in the resulting digraph there exists some

special kind of packing of arborescences? We answer this question for two problems: h-regular

M-independent-rooted (f, g)-bounded (α, β)-limited packing of mixed hyperarborescences and h-

regular (ℓ, ℓ′)-bordered (α, β)-limited packing of k hyperbranchings. We also solve the undirected

counterpart of the latter, that is the augmentation problem for h-regular (ℓ, ℓ′)-bordered (α, β)-
limited packing of k rooted hyperforests. Our results provide a common generalization of a great

number of previous results.

1 Introduction

The design of robust networks consists in improving existing networks so that the resulting networks
resist to different types of failures. A typical problem is the global edge-connectivity augmentation
problem where the goal is to add a minimum number of edges to a given undirected graph to obtain a
graph that remains connected after deleting any set of edges of a given size. Watanabe and Nakamura
[22], Cai and Sun [3] independently solved the problem in the sense of a minimax theorem and an
efficient algorithm. Frank [7] developed a method to solve edge-connectivity augmentation problems
in general which for instance provided the solution of the local edge-connectivity augmentation
problem. His paper has stimulated further research in a great number of directions that led to many
interesting generalizations. For a survey on the subject see [20].

Let us now consider the directed case. In [7], Frank solved the global arc-connectivity augmen-
tation problem and proved that the local arc-connectivity augmentation problem is NP-complete.
Further, in [8], Frank solved the rooted k-arc-connectivity augmentation problem, that is when the
local arc-connectivity requirement is k from a given vertex s to all the other vertices and 0 otherwise.
By the fundamental theorems of Edmonds [4] and Menger [15], this special case is equivalent to the
augmentation problem for packing k spanning s-arborescences. In this paper we study some more
complex arborescence packing augmentation problems. We mention that for any arborescence pack-
ing problem, the augmentation version extends the original problem. On the one hand, we propose
the solution of the augmentation version of h-regular M-independent-rooted (f, g)-bounded (α, β)-
limited packing of mixed hyperarborescences. For the definitions see Section 2. Our solution depends
on the discovery of a new submodular function and on the theory of generalized polymatroids. This
way we are able to unify the results of two previous papers [18] and [19] and to provide a simpler
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proof of this common extension. On the other hand, we propose the solution of the augmentation
version of h-regular (ℓ, ℓ′)-bordered (α, β)-limited packing of k hyperbranchings, and also its undi-
rected counterpart. Our solution depends on a new augmentation lemma and the recent results of
[13].

Our theorems generalize the results of the following papers: [1], [2], [4], [6], [9], [10], [11], [12],
[13], [14], [16], [17], [18], [19], [21]. In order to explain this, we present lots of remarks that point out
how the results imply the previous ones.

2 Definitions

We use the usual notation for the set ZZZ of integers, for the set Z+Z+Z+ of non-negative integers and
ZkZkZk = {1, . . . , k}. An inequality is called tight if it holds with equality, otherwise it is strict. Let V

be a finite set. For a function m : V → R and a subset X of V, we define m(X) =
∑

x∈X m(x).
Functions may have the values +∞ or −∞. For a function g : V → Z+ and a non-negative integer
h, the function gh is defined as follows: gh(v) = min{g(v), h} for every v ∈ V. The function ∞0 on
V has value ∞ everywhere except for the emptyset where we set its value to 0. The function ∞0

is considered as an integer valued function. For a subset X of V, its complement is denoted by X.
A multiset of V is a set of elements of V taken with multiplicities. For a multiset S of V and a
subset X of V , we denote by SX the multiset of V which is the restriction of S on X. For k ∈ Z+,

we denote by k × V the multiset of V where every element of V is taken with multiplicity k. A
set S of subsets of V is called a family if the subsets of V are taken with multiplicities in S. For a
family S of subsets of V and a subset X of V , we denote by SX the subfamily of S containing the
sets in S that intersect X. We say that two subsets X and Y of V are properly intersecting if none
of X ∩ Y,X − Y, and Y − X is empty. We mean by uncrossing two properly intersecting sets the
operation that replaces the two sets by their intersection and their union.

A set of mutually disjoint subsets of V is called a subpartition. If P is a subpartition of V , then
∪P denotes the union of the sets in P. If P is a subpartition of V and ∪P = V , then P is called a
partition. Let P1 and P2 be two subpartitions of V , P1 = ∪P1, P2 = ∪P2, and P = P1 ∪ P2. Note
that P covers each element in P1 ∩ P2 twice and each element in (P1 ∪ P2)− (P1 ∩ P2) once. Using
the usual uncrossing method on P, we obtain a family P ′ that contains no properly intersecting sets
and that covers each element in P1 ∩P2 twice and each element in (P1 ∪P2)− (P1 ∩P2) once. Then,
by taking respectively the minimal and the maximal sets in P ′, we obtain a partition P ′

1 of P1 ∩ P2

and a partition P ′
2 of P1 ∪ P2. We mention that while P ′

1 depends on the particular execution of the
uncrossing method, ∪P ′

1, |P
′
1|, and P ′

2 are uniquely defined. We define P ′
1 as the intersection P1⊓P2

of P1 and P2, and P ′
2 as the union P1 ⊔ P2 of P1 and P2. We will only use properties on P1 ⊓ P2

and P1 ⊔ P2 that are true for every execution of the uncrossing method such as:

If U1 ∈ P1 and U2 ∈ P2 intersect, then an element of P1 ⊓ P2 contains U1 ∩ U2. (1)

If U ∈ P1 ∪ P2, then an element of P1 ⊔ P2 contains U . (2)

|P1|+ |P2| = |P1 ⊓ P2|+ |P1 ⊔ P2|. (3)

Let S be a finite ground set. A set function b on S is called non-decreasing if b(X) ≤ b(Y )
for all X ⊆ Y ⊆ S, subcardinal if b(X) ≤ |X| for every X ⊆ S, and submodular if b(X) + b(Y ) ≥
b(X∩Y )+b(X∪Y ) for all X, Y ⊆ S. A set function p on S is called supermodular if −p is submodular.
A set function m on S is called modular if it is submodular and supermodular. Let r be a non-negative
integer-valued function on S such that r is subcardinal, non-decreasing and submodular. Then M

= (S, r) is called a matroid. The function r is called the rank function of the matroid M. If a matroid
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M is given, then we denote its rank function by rM. An independent set of M is a subset X of S such
that rM(X) = |X|. The set of independent sets of M is denoted by IM. A maximal independent set
of M is called a basis. The free matroid is the matroid where every subset of S is independent. The
uniform matroid US,k of rank k is the matroid whose independent sets are the subsets of S of size at
most k.

Let D = (V,A) be a directed graph or digraph with vertex set V and arc set A. An arc e = uv

is an ordered pair of different vertices u (the tail of e) and v (the head of e). For a subset X of V,
the set of arcs in A entering X, that is their heads are in X and their tails are in X, is denoted by
δ−

A(X). The in-degree of X is d−

A(X) = |δ−A(X)|. A digraph H = (U,B) is called an s-arborescence
if s ∈ U and every vertex of H is reachable from s via a unique path in H. The vertex s is called
the root of the s-arborescence. We say that H is an S-branching if S ⊆ U and there exists a unique
path from S to every v ∈ U in H. The vertex set S is called the root set of the S-branching. A
branching H is called a spanning branching of D if U = V and B ⊆ A. Note that if S = {s}, then
an S-branching is an s-arborescence. For non-negative integer-valued functions f ′ and g′ on V , an
arc set F is called (f ′, g′)-indegree-bounded if f ′(v) ≤ d−F (v) ≤ g′(v) for every v ∈ V. For non-negative
integers q and q′, an arc set F is called (q, q′)-size-limited if q ≤ |F | ≤ q′.

Let D = (V,A) be a directed hypergraph or dypergraph with dyperedge set A. A dyperedge
e = Zz is an ordered pair of a non-empty subset Z of V − z (the set of tails of e) and a vertex z in V

(the head of e). For a subset X of V, a dyperedge Zz enters X if z ∈ X and Z ∩X 6= ∅. The set of
dyperedges in A entering X is denoted by δ−

A(X) and the in-degree of X is d−

A(X) = |δ−A(X)|. By
trimming a dyperedge Zz, we mean the operation that replaces Zz by an arc yz for some y ∈ Z. We
say that H = (U,B) is an S-hyperbranching if H can be trimmed to an S-branching. If S = {s}, then
an S-hyperbranching is called an s-hyperarborescence. An S-hyperbranching H is called a spanning
S-hyperbranching of D if U = V , B ⊆ A, and |S|+ |B| = |V |.

Let F = (V, E ∪ A) be a mixed hypergraph with hyperedge set E and dyperedge set A. A
hyperedge is a subset Z of V containing at least two distinct elements. In this paper digraphs
may have multiple arcs, hypergraph may have multiple hyperedges, dypergraph may have multiple
dyperedges, and mixed hypergraphs may have multiple hyperedges and multiple dyperedge. For a
subset X of V, a hyperedge Z enters X if Z ∩X 6= ∅ 6= Z ∩X. By orienting a hyperedge Z ∈ E , we
mean the operation that replaces the hyperedge Z by a dyperedge Z ′z where z ∈ Z and Z ′ = Z − z.

An orientation of F is obtained from F by orienting every hyperedge in E . A mixed (spanning) S-
hyperbranching is a mixed hypergraph that has an orientation that is a (spanning) S-hyperbranching.
In particular, if S = {s}, then we are speaking of a mixed (spanning) s-hyperarborescence. A mixed
S-hyperbranching is called a rooted S-hyperforest if it contains no dyperedge. For a subpartition
P of V , we denote by eE∪A(P) the number of hyperedges in E and dyperedges in A that enter
at least one member of P. By a packing of mixed hyperbranchings in F , we mean a set of mixed
hyperbranchings that are hyperedge- and dyperedge-disjoint.

Let B be a packing of arborescences in a digraph D. For a positive integer h, the packing B is
called h-regular if each vertex of D belongs to exactly h arborescences in B. For non-negative integer-
valued functions f and g on V , the packing B is called (f, g)-bounded if the number of arborescences
in B rooted at v is at least f(v) and at most g(v) for every vertex v of D. For non-negative integers
α and β, the packing B is called (α, β)-limited if the number of arborescences in B is at least α

and at most β. For a multiset S of vertices in V and a matroid M on S, the packing B is called
M-independent-rooted if the root set of the arborescences in B forms an independent set in M. If the
root set of the arborescences in B forms a basis in M, then the packing B is called M-basis-rooted. For
ℓ, ℓ′ : Zk → Z+, a packing of k branchings with root sets S1, . . . , Sk in D is said to be (ℓ, ℓ′)-bordered
if ℓ(i) ≤ |Si| ≤ ℓ′(i) for every 1 ≤ i ≤ k.
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Let D be a dypergraph, F a mixed hypergraph and P a subset of the properties of M-independent-
rooted, M-bases-rooted, (f, g)-bounded, h-regular, (α, β)-limited, and (ℓ, ℓ′)-bordered. We say that
D has a P packing of hyperarborescences if D can be trimmed to a digraph that has a P packing of
arborescences. We say that F has a P packing of mixed hyperarborescences if F can be oriented to
a dypergraph that has a P packing of hyperarborescences.

3 Generalized polymatroids

We present the necessary definitions and results from the theory of generalized polymatroids. In this
section let p and b be a supermodular and a submodular set function on V such that p(∅) = 0 = b(∅).
Let f and g be integer-valued functions on V and α and β integers. We will use the following
polyhedra.

Q(p, b) = {x ∈ R
V : p(Z) ≤ x(Z) ≤ b(Z) for every Z ⊆ V },

T (f, g) = {x ∈ R
V : f(v) ≤ x(v) ≤ g(v) for every v ∈ V },

K(α, β) = {x ∈ R
V : α ≤ x(V ) ≤ β},

Q1 + Q2 = {x1 + x2 : x1 ∈ Q1, x2 ∈ Q2}.

If b(X) − p(Y ) ≥ b(X − Y ) − p(Y − X) for all X, Y ⊆ V, then Q(p, b) is called a generalized
polymatroid, shortly g-polymatroid. The sum Q1 + Q2 is defined only for non-empty polyhedra Q1

and Q2.

We need the following results on generalized polymatroids.

Theorem 1 (Frank [8]). Let Q(p, b) be a g-polymatroid, f, g : V → Z functions, α, β ∈ Z, Q(p1, b1)
and Q(p2, b2) two non-empty g-polymatroids.

1. (Proposition 14.1.2 in [8])

(a) T (f, g) 6= ∅ if and only if f ≤ g.

(b) If T (f, g) 6= ∅, then it is a g-polymatroid Q(f, g).

2. (Theorems 14.3.9, 14.3.14 in [8])

(a) Q(p, b) ∩ T (f, g) 6= ∅ if and only if max{p(Z), f(Z)} ≤ min{b(Z), g(Z)} for every Z ⊆ V.

(b) If Q(p, b) ∩ T (f, g) 6= ∅, then it is a g-polymatroid Q(pgf , b
g
f) with

p
g
f(Z) = max{p(X)− g(X − Z) + f(Z −X) : X ⊆ V },

b
g
f(Z) = min {b(X)− f(X − Z) + g(Z −X) : X ⊆ V }.

3. (Corollary 14.3.18, Theorem 14.3.13 in [8])

(a) Q(p, b) ∩K(α, β) 6= ∅ if and only if p ≤ b, α ≤ β, β ≥ p(V ) and α ≤ b(V ).

(b) If Q(p, b) ∩K(α, β) 6= ∅, then it is a g-polymatroid Q(pβα, b
β
α) with

pβ
α
(Z) = max{p(Z), α− b(Z)},

bβ
α
(Z) = min{b(Z), β − p(Z)}.

4. (Theorem 14.2.15 in [8])
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(a) Q(p1, b1) +Q(p2, b2) = Q(p1 + p2, b1 + b2).

(b) If p1, b1, p2, b2 are integral, then every integral element of Q(p1 + p2, b1 + b2) arises as the
sum of an integral element of Q(p1, b1) and an integral element of Q(p2, b2).

5. (Theorem 14.4.2 in [8])

(a) Q(p1, b1) ∩Q(p2, b2) 6= ∅ if and only if p1 ≤ b2 and p2 ≤ b1.

(b) If p1, b1, p2, b2 are integral and the intersection is not empty, then it contains an integral
element.

4 Packing problems

This section lists some results on packing arborescences or more generally on packing mixed hy-
perbranchings relevant to this paper. It contains three subsections: the first one on packing mixed
arborescences, the second one on packing mixed hyperarborescences, and the last one on packing
mixed hyperbranchings.

4.1 Packing arborescences and mixed arborescences

We start by the classic result of Edmonds [4] on packing arborescences with fixed roots.

Theorem 2 (Edmonds [4]). Let D = (V,A) be a digraph and S = {s1, . . . , sk} a multiset of vertices
in V. There exists a packing of k spanning arborescences with roots s1, . . . , sk in D if and only if

|SX |+ d−A(X) ≥ k for every non-empty X ⊆ V. (4)

The next result on packing arborescences with flexible roots is due to Frank [6]. Recall that,
for a subpartition P of V, eA(P) denotes the number of arcs entering a member of P. Note that
eA(P) =

∑

X∈P d−A(X).

Theorem 3 (Frank [6]). Let D = (V,A) be a digraph and k ∈ Z+. There exists a packing of k

spanning arborescences in D if and only if

eA(P) + k ≥ k|P| for every subpartition P of V. (5)

Remark 1. It is well-known that Theorems 2 and 3 are equivalent.

Theorem 3 was generalized for (f, g)-bounded packings as follows.

Theorem 4 (Frank [6], Cai [2]). Let D = (V,A) be a digraph, f, g : V → Z+ functions, and k ∈ Z+.

There exists an (f, g)-bounded packing of k spanning arborescences in D if and only if

g(v) ≥ f(v) for every v ∈ V, (6)

eA(P) + min{k − f(∪P), g(∪P)} ≥ k|P| for every subpartition P of V. (7)

Remark 2. For f(v) = 0 and g(v) = k for every v ∈ V , Theorem 4 reduces to Theorem 3.

Proof. In this case an (f, g)-bounded packing of k spanning arborescences is a packing of k spanning
arborescences. Further, (6) trivially holds and, for every subpartition P of V , we have min{k −
f(∪P), g(∪P)} = k, so (5) and (7) are equivalent.
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Theorem 25 of Bérczi and Frank [1] provides the following extension of Theorem 4.

Theorem 5 (Bérczi, Frank [1]). Let D = (V,A) be a digraph, f, g : V → Z+ functions, and
h, α, β ∈ Z+. There is an h-regular (f, g)-bounded (α, β)-limited packing of arborescences in D if and
only if

gh(v) ≥ f(v) for every v ∈ V, (8)

min{β, gh(V )} ≥ α, (9)

eA(P) + min{β − f(∪P), g(∪P)} ≥ h|P| for every subpartition P of V. (10)

Remark 3. For h = α = β = k, Theorem 5 reduces to Theorem 4.

Proof. In this case an h-regular (α, β)-limited packing of arborescences is a packing of k spanning
arborescences. Further, (7) applied for P = ∅ implies that f(V ) ≤ k, so by f ≥ 0, we have f(v) ≤ k

for every v ∈ V . (7) applied for P = {V } implies that g(V ) ≥ k. Then, (6)–(7) are equivalent to
(8)–(10).

Theorem 3 was extended to mixed graphs as follows.

Theorem 6 (Frank [6]). Let F = (V,E ∪ A) be a mixed graph and k ∈ Z+. There exists a packing
of k spanning mixed arborescences in F if and only if

eE∪A(P) + k ≥ k|P| for every subpartition P of V. (11)

Remark 4. If E = ∅, then Theorem 6 reduces to Theorem 3.

Theorem 4 was also extended to mixed graphs as follows.

Theorem 7 (Gao,Yang [12]). Let F = (V,E ∪ A) be a mixed graph, f, g : V → Z+ functions, and
k ∈ Z+. There exists an (f, g)-bounded packing of k spanning mixed arborescences in F if and only
if (6) is satisfied and

eE∪A(P) + min{k − f(∪P), g(∪P)} ≥ k|P| for every subpartition P of V. (12)

Remark 5. If E = ∅, then Theorem 7 reduces to Theorem 4.

Remark 6. If f(v) = 0 and g(v) = k for every v ∈ V, then Theorem 7 reduces to Theorem 6.

Proof. In this case an (f, g)-bounded packing of k spanning mixed arborescences is a packing
of k spanning mixed arborescences. Further, for every subpartition P of V , we have min{k −
f(∪P), g(∪P)} = k, so (11) and (12) are equivalent.

4.2 Packing hyperarborescences and mixed hyperarborescences

Theorem 2 was extended for dypergraphs by Frank, Király, and Király [9].

Theorem 8 (Frank, Király, Király [9]). Let D = (V,A) be a dypergraph and S = {s1, . . . , sk} a
multiset of vertices in V. There exists a packing of k spanning hyperarborescences with roots s1, . . . , sk
in D if and only if

|SX |+ d−A(X) ≥ k for every non-empty X ⊆ V. (13)

Remark 7. If D is a digraph, then Theorem 8 reduces to Theorem 2.
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Hörsch and Szigeti [14] extended Theorem 7 to mixed hypergraphs.

Theorem 9 (Hörsch, Szigeti [14]). Let F = (V, E ∪ A) be a mixed hypergraph, f, g : V → Z+

functions, and k ∈ Z+. There exists an (f, g)-bounded packing of k spanning mixed hyperarborescences
in F if and only if (6) is satisfied and

eE∪A(P) + min{k − f(∪P), g(∪P)} ≥ k|P| for every subpartition P of V. (14)

Remark 8. If F is a mixed graph, then Theorem 9 reduces to Theorem 7.

Remark 9. If E = ∅, k = |S| for a multiset S of vertices in V , and f(v) = g(v) = |S{v}| for every
v ∈ V, then Theorem 9 reduces to Theorem 8.

Proof. In this case an (f, g)-bounded packing of k spanning mixed hyperarborescences is a packing
of k spanning hyperarborescences with roots s1, . . . , sk, where S = {s1, . . . , sk}. Further, for every
subpartition P of V , we have

eA(P) + min{k − f(∪P), g(∪P)} = eA(P) + |S∪P | =
∑

X∈P

(d−A(X) + |SX |),

so (13) and (14) are equivalent.

An extension with a matroid constraint of a common generalization of Theorems 4 and 8 was
given in Szigeti [19].

Theorem 10 (Szigeti [19]). Let D = (V,A) be a dypergraph, h ∈ Z+, f, g : V → Z+ functions, S
a multiset of vertices in V , and M = (S, rM) a matroid. There exists an h-regular M-basis-rooted
(f, g)-bounded packing of hyperarborescences in D if and only if (8) holds and for all X,Z ⊆ V and
subpartition P of Z,

rM(SX) + gh(X) ≥ rM(S), (15)

eA(P) + rM(SX)− f(X − Z) + gh(Z −X) ≥ h|P|. (16)

Remark 10. If D is digraph, M = Uk×V,k is the uniform matroid of rank k on k × V, and h = k,
then Theorem 10 reduces to Theorem 4.

Proof. In this case an h-regular M-basis-rooted packing of hyperarborescences is a packing of k

spanning arborescences. Further, rM(SX) = k for every ∅ 6= X ⊆ V and rM(S∅) = 0. We have
already seen that (7) implies that f(v) ≤ k for every v ∈ V and that g(V ) ≥ k. Hence (6) is
equivalent to (8), and (15) holds. (16) is equivalent to eA(P) + g(Z) ≥ k|P| (for X = ∅) and
eA(P) + k − f(X − Z) + gk(Z − X) ≥ k|P| (for X 6= ∅). The first one, by g ≥ 0, is equivalent to
eA(P) + g(∪P) ≥ k|P|. The second one, by f, g ≥ 0, is equivalent to eA(P) + k − f(∪P) ≥ k|P|. It
follows that (16) is equivalent to (7).

Remark 11. For a multiset S = {s1, . . . , sk} of V , if M is the free matroid on S, f(v) = g(v) = |S{v}|
for every v ∈ V, and h = |S|, then Theorem 10 reduces to Theorem 8.

Proof. In this case an h-regular M-basis-rooted (f, g)-bounded packing of hyperarborescences is a
packing of k spanning hyperarborescences with roots s1, . . . , sk. (8) trivially holds and, by rM(SX) +
gh(X) = |SX | + |SX | = |S| = rM(S), (15) also holds. By rM(SX) − f(X − Z) + gh(Z − X) =
|SX |−|SX−Z |+ |SZ−X | = |SZ| ≥ |S∪P |, (16) is equivalent to eA(P)+ |S∪P | ≥ k|P| which is equivalent
to (13).
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Theorem 10 and an orientation result of Gao [11] provide the following theorem.

Theorem 11. Let F = (V, E ∪ A) be a mixed hypergraph, h ∈ Z+, f, g : V → Z+ functions, S

a multiset of vertices in V , and M = (S, rM) a matroid. There exists an h-regular M-basis-rooted
(f, g)-bounded packing of mixed hyperarborescences in F if and only if (8) and (15) hold and for all
X,Z ⊆ V and subpartition P of Z,

eE∪A(P) + rM(SX)− f(X − Z) + gh(Z −X) ≥ h|P|. (17)

Remark 12. If F is a mixed graph, M is the uniform matroid of rank k on k × V and h = k, then
Theorem 11 reduces to Theorem 7.

Proof. In this case an h-regular M-basis-rooted packing of mixed hyperarborescences is a packing of
k spanning mixed arborescences. Further, (8), (15), and (17) are equivalent to (6) and (12). This
can be proved similarly as in Remark 10.

Remark 13. If F is a dypergraph, then Theorem 11 reduces to Theorem 10.

An extension for mixed hypergraphs of a common generalization of Theorems 5 and 9 was given
in Szigeti [18].

Theorem 12 (Szigeti [18]). Let F = (V, E ∪ A) be a mixed hypergraph, f, g : V → Z+ functions,
and h, α, β ∈ Z+. There exists an h-regular (f, g)-bounded (α, β)-limited packing of mixed hyperar-
borescences in F if and only if (8) and (9) hold and

eE∪A(P) + min{β − f(∪P), gh(∪P)} ≥ h|P| for every subpartition P of V. (18)

Remark 14. If F is digraph, then Theorem 12 reduces to Theorem 5.

Remark 15. If h = α = β = k, then Theorem 12 reduces to Theorem 9.

As a new result we now provide a common generalization of the previous two theorems.

Theorem 13. Let F = (V, E ∪A) be a mixed hypergraph, f, g : V → Z+ functions, h, α, β ∈ Z+, S a
multiset of vertices in V , and M = (S, rM) a matroid. There exists an h-regular M-independent-rooted
(f, g)-bounded (α, β)-limited packing of mixed hyperarborescences in F if and only if (8) and (17)
hold and for all X,Z ⊆ V and subpartition P of Z,

α ≤ β, (19)

max{h, α} − rM(SX) + f(Z −X)− gh(X − Z) ≤ h|Z|, (20)

eE∪A(P) + β − f(Z) ≥ h|P|. (21)

Theorem 13 will easily follow from Corollary 2.

Remark 16. If α = β = rM(S), then Theorem 13 reduces to Theorem 11.

Proof. In this case M-independent-rooted (α, β)-limited is equivalent to M-basis-rooted. Further, by
α = β, (19) holds. By (17) applied for X = Z = V and P = {V }, we get h ≤ rM(S). Then, by
max{h, α} = rM(S), (8), (15) applied for X, and h ≥ gh, we get that

max{h, α} − rM(SX) + f(Z −X)− gh(X − Z)

≤ rM(S)− rM(SX) + h|Z −X| − gh(X) + h|Z ∩X|

≤ h|Z|,

so (20) holds. On the other hand, by max{h, α} = rM(S) and (20) applied for Z = ∅, we get that
(15) holds. Hence (15) and (20) are equivalent. Finally, (17) applied for X = V provides (21).
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Remark 17. If M is the free matroid on h× V , then Theorem 13 reduces to Theorem 12.

Proof. In this case an h-regular M-independent-rooted packing is an h-regular packing. Further,
rM(SX) = h|X| for every X ⊆ V. On the one hand, by (19) and (20) applied for X = V and Z = ∅,
we get that (9) holds. By (21) and (17) applied for X = ∅ and Z = ∪P, we get that (18) holds. On
the other hand, (9) implies (19). By h ≥ f ≥ 0, h ≥ gh ≥ 0, and ∪P ⊆ Z, we get that

h|X| − f(X − Z) + gh(Z −X)

≥ h|X − Z| − f(X − Z) + h|X ∩ (∪P)| + gh((∪P)−X)

≥ gh(∪P),

so (18) implies (17). By (9) and (18) applied for P = {V }, we get that gh(V ) ≥ max{h, α}. By
h ≥ f, h ≥ gh and X ∪ Z ∪ (X − Z) = V , we have

h|Z|+ h|X| − f(Z −X) + gh(X − Z)

= h|Z −X| − f(Z −X) + h|X ∪ Z|+ gh(X − Z)

≥ 0 + gh(V ).

Hence (20) holds. By f ≥ 0 and ∪P ⊆ Z, we get that (18) implies (21).

4.3 Packing branchings and mixed hyperbranchings

Edmonds [4] also gave the characterization of the existence of a packing of spanning branchings with
fixed root sets.

Theorem 14 (Edmonds [4]). Let D = (V,A) be a digraph and S = {S1, . . . , Sk} a family of subsets
of V . There exists a packing of k spanning branchings with root sets S1, . . . , Sk in D if and only if

|SX |+ d−A(X) ≥ k for every non-empty X ⊆ V.

Remark 18. If S = {s : s ∈ S}, then Theorem 14 reduces to Theorem 2.

Theorem 25 of Bérczi and Frank [1] provides the following extension of Theorem 3. Let us recall
that for a function ℓ : Zk → Z+, ℓ(Zk) =

∑k

i=1
ℓ(i).

Theorem 15 (Bérczi, Frank [1]). Let D = (V,A) be a digraph, k, α, β ∈ Z+, and ℓ, ℓ′ : Zk → Z+

such that

ℓ′(Zk) ≥ β ≥ α ≥ ℓ(Zk), (22)

|V | ≥ ℓ′(i) ≥ ℓ(i) for every 1 ≤ i ≤ k. (23)

There exists an (ℓ, ℓ′)-bordered (α, β)-limited packing of k spanning branchings in D if and only if

β − ℓ(Zk) +
k

∑

i=1

min{|P|, ℓ(i)}+ eA(P) ≥ k|P| for every subpartition P of V, (24)

k
∑

i=1

min{|P|, ℓ′(i)}+ eA(P) ≥ k|P| for every subpartition P of V. (25)

Remark 19. If α = β = k, and ℓ(i) = ℓ′(i) = 1 for every 1 ≤ i ≤ k, then Theorem 15 reduces to
Theorem 3.
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Proof. In this case an (ℓ, ℓ′)-bordered (α, β)-limited packing of k spanning branchings is a packing
of k spanning arborescences. Further, (22) and (23) trivially hold, (24) and (25) coincide and are
equivalent to (5).

It was mentioned in [13] that Theorem 15 can be generalized as follows to h-regular packings in
dypergraphs.

Theorem 16 (Hoppenot, Martin, Szigeti [13]). Let D = (V,A) be a dypergraph, h, k, α, β ∈ Z+, and
ℓ, ℓ′ : Zk → Z+ such that (22) and (23) hold. There exists an h-regular (ℓ, ℓ′)-bordered (α, β)-limited
packing of k hyperbranchings in D if and only if

h|V | ≥ α, (26)

β − ℓ(Zk) +

k
∑

i=1

min{|P|, ℓ(i)}+ eA(P) ≥ h|P| for every subpartition P of V, (27)

k
∑

i=1

min{|P|, ℓ′(i)}+ eA(P) ≥ h|P| for every subpartition P of V. (28)

Remark 20. If D is a digraph and h = k, then Theorem 16 reduces to Theorem 15.

The undirected counterpart of Theorem 16 follows.

Theorem 17 (Hoppenot, Martin, Szigeti [13]). Let G = (V, E) be a hypergraph, h, k, α, β ∈ Z+, and
ℓ, ℓ′ : Zk → Z+ such that (22) and (23) hold. There exists an h-regular (ℓ, ℓ′)-bordered (α, β)-limited
packing of k rooted hyperforests in G if and only if (26) holds and

β − ℓ(Zk) +
k

∑

i=1

min{|P|, ℓ(i)}+ eE(P) ≥ h|P| for every partition P of V, (29)

k
∑

i=1

min{|P|, ℓ′(i)}+ eE(P) ≥ h|P| for every partition P of V. (30)

We mention that the natural extension of Theorems 16 and 17 to mixed hypergraphs does not
hold, see [13].

We need to present the following result in order to deduce Corollary 1 of it.

Theorem 18 (Fortier et al. [5]). Let F = (V, E ∪ A) be a mixed hypergraph and S = {S1, . . . , Sk}
a family of subsets in V . There exists a packing of spanning mixed hyperbranchings with root sets
S1, . . . , Sk in F if and only if

eE∪A(P) +
∑

X∈P

|SX | ≥ k|P| for every subpartition P of V. (31)

Remark 21. If F is digraph, then Theorem 18 reduces to Theorem 14.

The following result for digraphs was observed by Frank, we present it for dypergraphs to apply
it later in the proof of Theorem 20.

Corollary 1. Let F = (V ∪ {s}, E ∪ A) be a mixed hypergraph such that no hyperedge is incident
to s, no dyperedge enters s and every dyperedge leaving s is an arc, and let F be a set of arcs in A
leaving s. There exists a packing of |F | spanning mixed s-hyperarborescences in F each containing
an arc of F if and only if

eE∪A(P) ≥ |F ||P| for every subpartition P of V. (32)
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Proof. Corollary 1 follows from Theorem 18 by applying it for S = {{s, v} : sv ∈ F} and F ′ =
(V ∪ {s}, E ∪ A′) where A′ = A− F . Indeed, let P be a subpartition of V ∪ {s}. Note that

eE∪A′(P) +
∑

X∈P

|SX | ≥ eE∪A(P)− eF (P) +
∑

X∈P

d−F (X) = eE∪A(P).

Thus, by (32), we get that (31) holds for F ′ and S. Then, by Theorem 18, there exists a packing of
spanning mixed hyperbranchings B′

v in F ′ with root sets {s, v} for every sv ∈ F. Then Bv = B′
v + sv

for every sv ∈ F is the desired packing of |F | spanning mixed s-hyperarborescences in F each
containing an arc of F.

5 Augmentation problems

This section contains the augmentation versions of the results presented in Section 4.

The first results on arborescence packing augmentation appeared in Frank [8].

Theorem 19 (Frank [8]). Let D = (V,A) be a digraph, k, γ ∈ Z+, and S = {s1, . . . , sk} a multiset
of vertices in V . We can add γ arcs to D to have a packing of

(a) k spanning arborescences with roots s1, . . . , sk if and only if

γ + eA(P) + |S∪P | ≥ k|P| for every subpartition P of V. (33)

(b) k spanning arborescences if and only if

γ + eA(P) + k ≥ k|P| for every subpartition P of V. (34)

Remark 22. If γ = 0, then Theorem 19(a) reduces to Theorem 2.

Proof. It follows from the fact that
∑

X∈P

(

|SX |+ d−A(X)
)

= eA(P) +
∑

X∈P |SX | ≥ k|P| for every
subpartition P of V is equivalent to (4).

Remark 23. If γ = 0, then Theorem 19(b) reduces to Theorem 3.

5.1 Augmentation to have a packing of mixed hyperarborescences

We now provide the first main result of the paper which is a slight extension of the augmentation
version of Theorem 13.

Theorem 20. Let F = (V, E∪A) be a mixed hypergraph, f, g, f ′, g′ : V → Z+ functions, h, α, β, q, q′ ∈
Z+, S a multiset of vertices in V , and M = (S, rM) a matroid. We can add an (f ′, g′)-indegree-bounded
(q, q′)-size-limited arc set F to F to have an h-regular M-independent-rooted (f, g)-bounded (α, β)-
limited packing of mixed hyperarborescences that contains F if and only if (8) and (19) hold and for
all v ∈ V , X,Z ⊆ V and subpartition P of Z,

f ′(v) ≤ g′(v),(35)

q ≤ q′, (36)

max{f ′(Z), q − g′(Z)}+max{f(Z),max{h, α} − rM(SX) + f(Z −X)− gh(X − Z)} ≤ h|Z|, (37)

eE∪A(P) + min{g′(Z), q′ − f ′(Z)}+min{β − f(Z), rM(SX)− f(X − Z) + gh(Z −X)} ≥ h|P|. (38)
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Proof. The theory of generalized polymatroids provides the tools to be applied in the proof. The
discovery of the submodularity of the function eE∪A on subpartitions makes the application of gen-
eralized polymatroids possible.

Claim 1. Let P1 and P2 be subpartitions of V and X ∈ E ∪ A.

(a) If X enters an element of P1 ⊓ P2 or an element of P1 ⊔ P2, then it enters an element of P1

or an element of P2.

(b) If X enters an element of P1 ⊓ P2 and an element of P1 ⊔ P2, then it enters an element of P1

and an element of P2.

(c) Consequently,
eE∪A(P1) + eE∪A(P2) ≥ eE∪A(P1 ⊓ P2) + eE∪A(P1 ⊔ P2). (39)

Proof. We prove (a) and (b) together.

First suppose that X ∈ E . If X enters a subset Y of V , then there exist x ∈ X∩Y and z ∈ X−Y .
Suppose that Y ∈ P1 ⊔ P2. Since x ∈ Y ⊆ (∪P1) ∪ (∪P2), there exist U1 ∈ P1 or U2 ∈ P2

containing x, say U1 ∈ P1. By (2) and x ∈ Y ∩ U1, we have U1 ⊆ Y . Since x ∈ U1 ∩ X and
z ∈ X − Y ⊆ X − U1, we get that X enters U1.

Suppose now that Y ∈ P1 ⊓ P2. Since x ∈ Y ⊆ (∪P1) ∩ (∪P2), there exist U ′
1 ∈ P1 and U ′

2 ∈ P2

containing x. By (1) and x ∈ U ′
1 ∩ U ′

2 ∩ Y , we have U ′
1 ∩ U ′

2 ⊆ Y . Since x ∈ U ′
1 ∩ U ′

2 ∩ X and
z ∈ X − Y ⊆ X − (U ′

1 ∩ U ′
2), we get that X enters U ′

1 ∩ U ′
2. Hence, X enters either U ′

1 or U ′
2. Thus,

the proof of (a) is complete.
Further, if X enters say U ′

1 but not U ′
2, then, since x ∈ X ∩ U ′

2, we have X ⊆ U ′
2. Then, by (2),

X does not enter any element of P1 ⊔ P2. Hence, the proof of (b) is complete.

The case for X ∈ A is the same except that x is the head of X and z is a tail of X not in Y .

It is clear that (c) follows from (a) and (b).

We introduce a set function p̂: for every Z ⊆ V,

p̂(Z) = max{h|P| − eE∪A(P) : P subpartition of Z}. (40)

Claim 2. The function p̂ is supermodular.

Proof. Let X1, X2 ⊆ V. For i = 1, 2, let Pi be the subpartition of Xi such that p̂(Xi) = h|Pi| −
eE∪A(Pi). Then, by (3), (39), P1⊓P2 and P1⊔P2 are subpartitions of X1∩X2 and X1∪X2, we have

p̂(X1) + p̂(X2) = h|P1| − eE∪A(P1) + h|P2| − eE∪A(P2)

≤ h|P1 ⊓ P2| − eE∪A(P1 ⊓ P2) + h|P1 ⊔ P2| − eE∪A(P1 ⊔ P2)

≤ p̂(X1 ∩X2) + p̂(X1 ∪X2),

and the claim follows.

We naturally consider the following g-polymatroids, where bM(X) = rM(SX) for every X ⊆ V,

which are well-defined because bM is submodular and, by Claim 2, p̂ is supermodular.

Q1 = T (f ′, g′) ∩K(q, q′),
Q2 = Q(−∞0, bM) ∩K(max{h, α}, β) ∩ T (f, gh),
Q3 = Q(p̂,∞0) ∩ T (0, h), where 0 and h are seen as constant valued functions,
Q4 = (Q1 +Q2) ∩Q3.
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Lemma 1. The following hold.

(a) An integral vector m is in Q4 if and only if there exist an (f ′, g′)-indegree-bounded (q, q′)-
size-limited new arc set F and an h-regular M-independent-rooted (f, g)-bounded (α, β)-limited
packing of mixed hyperarborescences in F+F that contains F with root set R such that m(v) =
d−F (v) + |Rv| for every v ∈ V.

(b) Q4 is well-defined and non-empty if and only if (8), (19), (35), (36), (37), and (38) hold.

Proof. (a) To prove the necessity, suppose that there exist an (f ′, g′)-indegree-bounded (q, q′)-size-
limited new arc set F and an h-regular M-independent-rooted (f, g)-bounded (α, β)-limited packing
B of mixed hyperarborescences in F +F that contains F. Let R be the root set of B. Then we have
the following.

|RX | ≤ rM(SX) = bM(X) for every X ⊆ V, (41)

max{h, α} ≤ |R| ≤ β, (42)

f(v) ≤ |Rv| ≤ g(v) for every v ∈ V, (43)

q ≤ |F | ≤ q′, (44)

f ′(v) ≤ d−F (v) ≤ g′(v) for every v ∈ V, (45)

0 ≤ |Rv|+ d−F (v) ≤ h, for every v ∈ V. (46)

Let m1(v) = d−F (v), m2(v) = |Rv| for every v ∈ V and m = m1 + m2. Then, by (41), (42), (43),
and (46), we have m2 ∈ Z

V ∩ Q2, by (44) and (45), we have m1 ∈ Z
V ∩ Q1, and, by (46), we have

m ∈ T (0, h). Since m = m1+m2, we have m ∈ Z
V ∩(Q1+Q2). It remains to show that m ∈ Q(p̂,∞0).

By Theorem 12 applied for f(v) = g(v) = |Rv| for every v ∈ V and α = β = |R|, we get that, for
every ∅ 6= X ⊆ V , we have

p̂(X) = max{h|P| − eE∪A(P) : P subpartition of X}

≤ max{h|P| − eE∪A∪F (P) +
∑

v∈X

d−F (v) : P subpartition of X}

≤ |R∪P |+
∑

v∈X

d−F (v) ≤ |RX |+
∑

v∈X

d−F (v) = m2(X) +m1(X) = m(X),

so m ∈ Q(p̂,∞0). Thus, m ∈ Z
V ∩Q4.

To prove the sufficiency, now suppose that m ∈ Z
V ∩Q4. By m ∈ Z

V ∩ (Q1+Q2) and Theorem
1.4, there exist m1 ∈ Z

V ∩ Q1 and m2 ∈ Z
V ∩ Q2 such that m = m1 +m2. Then, by f, f ′ ≥ 0, we

have m1, m2 ≥ 0. Let the mixed hypergraph F1 be obtained from F by adding a new vertex s and
a new arc set F3 = F1 ∪ F2, where for i = 1, 2, Fi is a new arc set containing mi(v) arcs from s to
every v ∈ V. Then d−F1

= m1, d
−
F2

= m2 and d−F3
= m.

We first show that F1 contains a packing of h spanning mixed s-hyperarborescences, each con-
taining at least one arc of F2, and their union containing F3. By d−F2

= m2 ∈ K(max{h, α}, β), we
have |F2| = m2(V ) ≥ h. Thus, there exists a subset F4 of F2 of size h. By m ∈ Q3, we have

eF3
(P) = d−F3

(∪P) = m(∪P) ≥ p̂(∪P) ≥ h|P| − eE∪A(P) = |F4||P| − eE∪A(P)

for every subpartition P of V, so (32) holds for F1 and F4. Then, by Corollary 1, there exists a packing
B1 of h spanning mixed s-hyperarborescences in F1 each containing an arc of F4. By m ∈ T (0, h),
we have d−F3

(v) = m(v) ≤ h for every v ∈ V. We may hence modify B1 to obtain a packing B2 of h
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spanning mixed s-hyperarborescences in F1 each containing an arc of F4 and their union containing
all the arcs in F3.

We now modify each spanning mixed s-hyperarborescence B2
i in B2 by deleting s and adding an

arc vu for every arc su ∈ F1 contained in B2
i where sv is the unique arc of F4 contained in B2

i . Let F
be the set of new arcs. This way we obtained an h-regular packing B3 of mixed hyperarborescences
in F+F that contains F. Note that the root set R3 of the packing B3 satisfies |R3

v| = d−F2
(v) = m2(v)

for every v ∈ V. Then, since m2 ∈ T (f, gh), B
3 is (f, g)-bounded. By m2 ∈ K(max{h, α}, β),

B3 is (α, β)-limited. Further, by m2 ∈ Q(−∞0, bM) and Theorem 13.1.2 in [8], there exists an
independent set S∗ in M such that for every v ∈ V , |S∗

v | = m2(v) = |R3
v| and hence the m2(v) mixed

v-hyperarborescences in B3 can be rooted at S∗
v . It follows that the packing B3 is M-independent-

rooted. Since d−F (v) = d−F1
(v) = m1(v) for every v ∈ V and m1 ∈ T (f ′, g′) ∩ K(q, q′), F is (f ′, g′)-

indegree-bounded and (q, q′)-size-limited, so the proof of (a) is completed.

(b) Q4 is well-defined and non-empty if and only if Q1+Q2 is well-defined and (Q1+Q2)∩Q3 6= ∅.
By Theorems 1.3 and 1.4, this is equivalent to Q1 6= ∅, Q2 6= ∅, Q3 6= ∅ and (Q1 +Q2) ∩Q3 6= ∅.

Q1 6= ∅: By Theorem 1.1 and 1.3(a), Q1 = T (f ′, g′)∩K(q, q′) 6= ∅ if and only if f ′ ≤ g′ (which is
(35)), q ≤ q′ (which is (36)), g′(V ) ≥ q (which is implied by (37) applied for Z = ∅) and f ′(V ) ≤ q′

(which is implied by (38) applied for X = Z = P = ∅).
If Q1 6= ∅, then, by Theorem 1.3(b), Q1 = Q(p1, b1) where, for every X ⊆ V,

p1(X) = max{f ′(X), q − g′(X)}, (47)

b1(X) = min{g′(X), q′ − f ′(X)}. (48)

Q2 6= ∅: By Theorem 1.3(a), Q′ = Q(−∞0, bM)∩K(max{h, α}, β) 6= ∅ if and only if max{h, α} ≤
bM(V ) = rM(S) (which is implied by (37) applied for X = ∅ = Z), and max{h, α} ≤ β (which is
implied by (38) applied for P = {V } and Z = V and (19)).

If Q′ 6= ∅, then by Theorem 1.3(b), Q′ = Q(p′, b′) where, for every X ⊆ V,

p′(X) = max{−∞0(X),max{h, α} − bM(X)}

= max{h, α} − bM(X) if X 6= ∅ and 0 if X = ∅, (49)

b′(X) = min{bM(X), β +∞0(X)}

= bM(X) if X 6= V and min{bM(V ), β} if X = V. (50)

By Theorem 1.2(a), Q2 = Q′∩T (f, gh) = Q(p′, b′)∩T (f, gh) 6= ∅ if and only if max{h, α} ≤ bM(V ) =
rM(S), f ≤ gh (which is (8)), f(X) ≤ b′(X) for every X ⊆ V (which, by (50), is (38) applied for
Z = ∅ = P) and p′(X) ≤ gh(X) for every X ⊆ V (which, by (49), is (37) applied for Z = ∅).

If Q2 6= ∅, then, by Theorem 1.2(b), Q2 = Q(p2, b2) where, for every Z ⊆ V,

p2(Z) = max{p′(X)− gh(X − Z) + f(Z −X) : X ⊆ V }, (51)

b2(Z) = min {b′(X)− f(X − Z) + gh(Z −X) : X ⊆ V }. (52)

By Theorem 1.4(a), Q1 +Q2 = Q(p+, b+) where, for every Z ⊆ V,

p+(Z) = p1(Z) + p2(Z), (53)

b+(Z) = b1(Z) + b2(Z). (54)

Q3 6= ∅: As the vector (h, . . . , h) ∈ Q(p̂,∞0) ∩ T (0, h) = Q3, Q3 6= ∅. Then, by Theorem 1.2(b)
and the fact that p̂ is non-decreasing, Q3 = Q(p3, b3) where, for every Z ⊆ V ,

b3(Z) = h|Z|, (55)

p3(Z) = max{p̂(X)− h|X − Z| : X ⊆ V }. (56)

We now show that (56) can be simplified.
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Claim 3. We have
p3(Z) = p̂(Z) for every Z ⊆ V. (57)

Proof. For a given Z ⊆ V , by (56) and (40), let X ⊆ V and P a subpartition of X such that

p3(Z) = h|P| − eE∪A(P)− h|X − Z|. (58)

Let P ′ be the set of the elements of P contained in Z. Then, by (56), since P ′ is a subpartition of
Z, by eE∪A(P) ≥ eE∪A(P

′), (58), and |X − Z| ≥ |P| − |P ′|, we have

p3(Z) ≥ p̂(Z) ≥ h|P ′| − eE∪A(P
′)

≥ h|P| − eE∪A(P)− h|X − Z|+ h(|X − Z| − (|P| − |P ′|))

≥ p3(Z).

Thus, equality holds everywhere and therefore (57) holds.

(Q1 +Q2)∩Q3 6= ∅: By Theorem 1.5(a), Q4 6= ∅ if and only if the above conditions hold and
p3 ≤ b+ (which, by (57), (54), (48), (52), is equivalent to (38)) and p+ ≤ b3 (which, by (53), (47),
(51), and (55), is equivalent to (37)).

By summarizing the above arguments we may conclude that (b) holds.

Let m ∈ Z
V . By Lemma 1(a), there exists an (f ′, g′)-indegree-bounded (q, q′)-size-limited new arc

set F such that F +F has an (f, g)-bounded M-independent-rooted (α, β)-limited h-regular packing
of mixed hyperarborescences containing F such that m(v) = d−F (v)+ |Rv| for every v ∈ V if and only
if m ∈ Q4. By Theorem 1.5(b), this is equivalent to Q4 6= ∅. This holds, by Lemma 1(b), if and only
if (8), (19), (35), (36), (37), and (38) hold. This completes the proof of Theorem 20.

Remark 24. If F = (V,A) is a digraph, S is a multiset of vertices in V, f(v) = |S{v}| = g(v), f ′(v) =
0, g′(v) = ∞ for every v ∈ V , h = α = β = k = |S|, q = 0, q′ = γ, M is the free matroid on S, then
Theorem 20 reduces to Theorem 19(a).

Proof. In this case an (f ′, g′)-indegree-bounded (q, q′)-size-limited arc set is an arc set of size at most
γ and an h-regular M-independent-rooted (f, g)-bounded (α, β)-limited packing of mixed hyperar-
borescences is a packing of k spanning arborescences with roots s1, . . . , sk, where S = {s1, . . . , sk},
max{f ′(Z), q − g′(Z)} = 0 for every Z ⊆ V, max{h, α} = k, rM(SX) = |SX | for every X ⊆ V,

f(Y ) = |SY | = g(Y ) for every Y ⊆ V, min{g′(Z), q′ − f ′(Z)} = γ for every non-empty Z ⊆ V and 0
for Z = ∅, (35), (36), and (38) for Z = ∅ trivially hold. By |S| = k = h, we have

max{f ′(Z), q − g′(Z)}+max{f(Z),max{h, α} − rM(SX) + f(Z −X)− gh(X − Z)}

= 0 +max{|SZ|, k − |SX |+ |SZ−X| − |SX−Z |} = max{|SZ|, |SX∩Z|+ |SZ−X|} = |SZ |

≤ h|Z|,

so (37) also holds. Finally, (38) for ∅ 6= Z ⊆ V becomes γ+eA(P)+|SZ | ≥ k|P| for every subpartition
P of Z which is clearly equivalent to (33).

We now present the augmentation version of Theorem 13 as an easy corollary of Theorem 20.

Corollary 2. Let F = (V, E ∪ A) be a mixed hypergraph, f, g : V → Z+ functions, h, α, β, γ ∈ Z+,

S a multiset of vertices in V , and M = (S, rM) a matroid. We can add an arc set F of size at most
γ to F to have an h-regular M-independent-rooted (f, g)-bounded (α, β)-limited packing of mixed
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hyperarborescences that contains F if and only if (8), (19), and (20) hold and for all X,Z ⊆ V and
subpartition P of Z,

β ≥ f(V ), (59)

rM(SX) ≥ f(X), (60)

γ + eE∪A(P) + min{β − f(Z), rM(SX)− f(X − Z) + gh(Z −X)} ≥ h|P|. (61)

Proof. We show that if q = 0, q′ = γ, and f ′(v) = 0, g′(v) = ∞ for every v ∈ V , then Theorem
20 reduces to Corollary 2. In this case an (f ′, g′)-indegree-bounded (q, q′)-size-limited arc set is an
arc set of size at most γ, max{f ′(Z), q − g′(Z)} = 0 for every Z ⊆ V, min{g′(Z), q′ − f ′(Z)} = γ

for every non-empty Z ⊆ V and 0 for Z = ∅, (35) and (36) trivially hold. Further, by (8), we
have f(Z) ≤ h|Z| for every Z ⊆ V. Hence (37) is equivalent to (20). (38) is equivalent to (61) for
non-empty Z ⊆ V and to (59) and (60) for Z = ∅.

Remark 25. If γ = 0, then Corollary 2 reduces to Theorem 13.

Proof. In this case the arc set F to be added must be empty. Further, (61) applied for Z = ∅ = P
provides (59) and (60). Note that (17) and (21) are equivalent to (61).

Remark 26. If F = (V,A) is a digraph, f(v) = 0, g(v) = k for every v ∈ V , h = α = β = k, M is
the free matroid on k × V , then Corollary 2 reduces to Theorem 19(b).

Proof. In this case an h-regular M-independent-rooted (f, g)-bounded (α, β)-limited packing of mixed
hyperarborescences is a packing of k spanning arborescences, rM(SX) = k|X| for every X ⊆ V , (8),
(19), (59), (60), and (61) for Z = ∅ trivially hold. Further, since

max{h, α} − rM(SX) + f(Z −X)− gh(X − Z)

= k − k|X| − k|X − Z| = k − k|V |+ k|X ∩ Z|

≤ k|Z| = h|Z|,

(20) also holds. (61) for Z 6= ∅ becomes γ + eA(P) +min{k, k|X ∪Z|} ≥ k|P| for every subpartition
P of Z which is clearly equivalent to (34).

5.2 Augmentation to have a packing of hyperbranchings

We now provide the second main result of the paper which is the augmentation version of Theorem
16.

Theorem 21. Let D = (V,A) be a dypergraph, h, k, α, β, γ ∈ Z+, and ℓ, ℓ′ : Zk → Z+ such that (22)
and (23) hold. We can add at most γ arcs to D to have an h-regular (ℓ, ℓ′)-bordered (α, β)-limited
packing of k hyperbranchings if and only if (26) holds and

k ≥ h, (62)

γ + β − ℓ(Zk) +
k

∑

i=1

min{|P|, ℓ(i)}+ eA(P) ≥ h|P| for every subpartition P of V, (63)

γ +
k

∑

i=1

min{|P|, ℓ′(i)}+ eA(P) ≥ h|P| for every subpartition P of V. (64)
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Proof. The necessity easily follows from Theorem 16 and the fact that eA∪F (P) ≤ eA(P)+γ, where
F is the new arc set added to D.

To prove the sufficiency, suppose that (22), (23), (26), (62), (63), and (64) hold. We use
Theorem 16 to show the existence of an intermediate packing that has more roots (and thus fewer
hyperarcs) than the desired packing. We then tranform it by adding γ arcs to obtain the desired
packing. To do so, we prove Lemma 2 which shows the existence of α̂, β̂ ∈ Z+, and ℓ̂, ℓ̂′ : Zk → Z+

for which the conditions of Theorem 16 are satisfied. In Lemma 2, the conditions (65) and (66)
ensure that the new parameters are greater or equal to the old ones but not by more than γ, while
the conditions (67)–(71) ensure that Theorem 16 can be applied.

Lemma 2. Let h, k, n, α, β, γ ∈ Z+, ℓ, ℓ
′ : Zk → Z+, and e : {1, . . . , n} → Z+. There exist α̂, β̂ ∈ Z+,

and ℓ̂, ℓ̂′ : Zk → Z+ such that

ℓ̂(i)− ℓ(i) ≥ ℓ̂′(i)− ℓ′(i) ≥ 0 for every 1 ≤ i ≤ k, (65)

γ ≥ ℓ̂(Zk)− ℓ(Zk) = β̂ − β = α̂− α, (66)

ℓ̂′(Zk) ≥ β̂ ≥ α̂ ≥ ℓ̂(Zk), (67)

n ≥ ℓ̂′(i) ≥ ℓ̂(i) for every 1 ≤ i ≤ k, (68)

hn ≥ α̂, (69)

β̂ +
∑k

i=1
min{p− ℓ̂(i), 0} ≥ hp− e(p) for every 1 ≤ p ≤ n, (70)

ℓ̂′(Zk) +
∑k

i=1
min{p− ℓ̂′(i), 0} ≥ hp− e(p) for every 1 ≤ p ≤ n, (71)

if and only if

ℓ′(Zk) ≥ β ≥ α ≥ ℓ(Zk), (72)

n ≥ ℓ′(i) ≥ ℓ(i) for every 1 ≤ i ≤ k, (73)

hn ≥ α, (74)

γ + β +
∑k

i=1
min{p− ℓ(i), 0} ≥ hp− e(p) for every 1 ≤ p ≤ n, (75)

γ + ℓ′(Zk) +
∑k

i=1
min{p− ℓ′(i), 0} ≥ hp− e(p) for every 1 ≤ p ≤ n, (76)

kp ≥ hp− e(p) for every 1 ≤ p ≤ n. (77)

Proof. We first show the necessity. Suppose that (65)–(71) hold for some α̂, β̂, ℓ̂, and ℓ̂′. By
summing up (65) and applying (66), we get that ℓ′(Zk) − ℓ̂′(Zk) ≥ β − β̂ = α − α̂ = ℓ(Zk)− ℓ̂(Zk).
By adding this to (67), we obtain (72). By (68) and (65), we have, for every 1 ≤ i ≤ k, ℓ(i) ≤
ℓ̂′(i) − ℓ̂(i) + ℓ(i) ≤ ℓ′(i) ≤ ℓ̂′(i) ≤ n, so (73) holds. By applying (69), (66), and summing up (65),
we get that hn − α ≥ α̂ − α = ℓ̂(Zk) − ℓ(Zk) ≥ 0, so (74) holds. By (66), (65), and (70), we have
γ+β+

∑k

i=1
min{p−ℓ(i), 0} ≥ β̂+

∑k

i=1
min{p−ℓ̂(i), 0} ≥ hp−e(p) for every 1 ≤ p ≤ n, so (75) holds.

By (66), (65), and (71), we have γ+ℓ′(Zk)+
∑k

i=1
min{p−ℓ′(i), 0} ≥ ℓ̂′(Zk)+

∑k

i=1
min{p− ℓ̂′(i), 0} ≥

hp− e(p) for every 1 ≤ p ≤ n, so (76) holds. By (71), we have kp ≥
∑k

i=1
min{p, ℓ̂′(i)} ≥ hp− e(p),

for every 1 ≤ p ≤ n, so (77) holds.

To prove the sufficiency, suppose that (72)–(77) hold. Let γ̂ be the smallest non-negative integer
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such that there exist α̂, β̂ ∈ Z+, and ℓ̂, ℓ̂′ : Zk → Z+ satisfying (65), (67), (68), (69) and

γ − γ̂ ≥ ℓ̂(Zk)− ℓ(Zk) = β̂ − β = α̂− α, (78)

γ̂ + β̂ +
k

∑

i=1

min{p− ℓ̂(i), 0} ≥ hp− e(p) for every 1 ≤ p ≤ n, (79)

γ̂ + ℓ̂′(Zk) +

k
∑

i=1

min{p− ℓ̂′(i), 0} ≥ hp− e(p) for every 1 ≤ p ≤ n. (80)

Since (72)–(77) hold for α, β, γ, ℓ, and ℓ′, it follows that α̂, β̂, γ̂, ℓ̂, and ℓ̂′ exist. We show that γ̂ = 0,
and hence, by (78)–(80), it follows that α̂, β̂, ℓ̂, and ℓ̂′ also satisfy (66), (70), (71) and we are done.
Suppose that γ̂ > 0. By the minimality of γ̂, there exists a minimum p̂ ∈ {1, . . . , n} such that at
least one of (79) and (80) is tight for p̂. Let X be the set of indices where p̂− ℓ̂(i) ≤ 0 and X ′ the
set of indices where p̂− ℓ̂′(i) ≤ 0. We first prove the following claim.

Claim 4. The following hold.

(a) hn > α̂.

(b) If (79) is tight for p̂, then X 6= Zk.

(c) If X ′ = Zk, then (80) is strict for every 1 ≤ p ≤ n and ℓ̂′(Zk) > β̂.

Proof. (a) If α̂ ≥ hn, then, by (67), we have

ℓ̂′(Zk) ≥ β̂ ≥ hn. (81)

Case 1. If (79) is tight for p̂, then, by (81), e ≥ 0, and γ̂ > 0, we have

hp̂− hn ≥ hp̂− β̂ >

k
∑

i=1

min{p̂− ℓ̂(i), 0} = |X|p̂− ℓ̂(X). (82)

If |X| ≥ h, then, by (82), p̂, ℓ̂ ≥ 0, and (67), we have a contradiction: −β̂ > (|X| − h)p̂ − ℓ̂(X) ≥
−ℓ̂(Zk) ≥ −β̂. If |X| ≤ h, then, by (82), n ≥ p̂, and (73), we have a contradiction:
0 > (h− |X|)(n− p̂) + |X|n− ℓ̂(X) ≥

∑

i∈X(n− ℓ̂(i)) ≥ 0.

Case 2. If (80) is tight for p̂, then, by (81), e ≥ 0, and γ̂ > 0, we have

hp̂− hn ≥ hp̂− ℓ̂′(Zk) >
k

∑

i=1

min{p̂− ℓ̂′(i), 0} = |X ′|p̂− ℓ̂′(X ′). (83)

If |X ′| ≥ h, then, by (83) and p̂, ℓ̂′ ≥ 0, we have a contradiction: hp̂ > ℓ̂′(Zk) + |X ′|p̂− ℓ̂′(X ′) ≥ hp̂.

If |X ′| ≤ h, then, by (83), n ≥ p̂, and (73), we have a contradiction:
0 > (h− |X ′|)(n− p̂) + |X ′|n− ℓ̂′(X ′) ≥

∑

i∈X′(n− ℓ̂′(i)) ≥ 0.

(b) If X = Zk, then, by γ̂ > 0, (67), (79) is tight for p̂, and (77), we have a contradiction:
kp̂ < γ̂ + β̂ − ℓ̂(Zk) + kp̂ = γ̂ + β̂ +

∑k

i=1
min{p̂− ℓ̂(i), 0} = hp̂− e(p̂) ≤ kp̂.

(c) Suppose that X ′ = Zk. If p < p̂, then, by the minimality of p̂, (80) is strict for p.
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If p = p̂, then, by (77) and X ′ = Zk, we have hp̂ − e(p̂) ≤ kp̂ = ℓ̂′(Zk) +
∑k

i=1
min{p̂ − ℓ̂′(i), 0},

so, by γ̂ > 0, we get that (80) is strict for p̂. Then, by the definition of p̂, (79) is tight for p̂. Hence,
we have

γ̂ + β̂ +
k

∑

i=1

min{p̂− ℓ̂(i), 0} = hp̂− e(p̂) < γ̂ + ℓ̂′(Zk) +
k

∑

i=1

min{p̂− ℓ̂′(i), 0}. (84)

By (84) and (68), we get that β̂ < ℓ̂′(Zk).
If p ≥ p̂, then, by (68) and Claim 8 of [13],

k
∑

i=1

min{p− ℓ̂(i), 0} −
k

∑

i=1

min{p̂− ℓ̂(i), 0} ≤
k

∑

i=1

min{p− ℓ̂′(i), 0} −
k

∑

i=1

min{p̂− ℓ̂′(i), 0}. (85)

By adding (84) and (85), we get γ̂ + β̂ +
∑k

i=1
min{p− ℓ̂(i), 0} < γ̂ + ℓ̂′(Zk) +

∑k

i=1
min{p− ℓ̂′(i), 0}.

Thus, by (79), we get that (80) is strict for p.

This completes the proof of Claim 4.

We now distinguish two cases and we give a contradiction in both cases.

Case I. Suppose that X ′ 6= Zk. Let m ∈ X ′. Then, by the definition of X ′ and (68), we have

n ≥ p̂ > ℓ̂′(m) ≥ ℓ̂(m). (86)

We modify the values as follows. Let γ̃ = γ̂ − 1, α̃ = α̂+ 1, β̃ = β̂ + 1, ℓ̃(m) = ℓ̂(m) + 1, ℓ̃′(m) =
ℓ̂′(m) + 1 and ℓ̃(i) = ℓ̂(i), ℓ̃′(i) = ℓ̂′(i) for i ∈ Zk − {m}. We show that (65), (67), (68), (69), (78),
(79), and (80) hold for α̃, β̃, γ̃, ℓ̃, and ℓ̃′ that contradicts the minimality of γ̂.

(i) By (65), we have ℓ̃(i)− ℓ(i) ≥ ℓ̃′(i)− ℓ′(i) ≥ 0 for every 1 ≤ i ≤ k, so (65) holds for ℓ̃ and ℓ̃′.

(ii) By (67), we have ℓ̃′(Zk) ≥ β̃ ≥ α̃ ≥ ℓ̃(Zk), so (67) holds for α̃, β̃, ℓ̃ and ℓ̃′.

(iii) By (68) and (86), we have n ≥ ℓ̃′(i) ≥ ℓ̃(i) for every 1 ≤ i ≤ k, so (68) holds for ℓ̃ and ℓ̃′.

(iv) By Claim 4(a), (69) holds for α̃.

(v) By (78), we have γ − γ̃ ≥ ℓ̃(Zk)− ℓ(Zk) = β̃ − β = α̃− α, so (78) holds for α̃, β̃, ℓ̃, and γ̃.

(vi) Note that, by (86), we have
∑k

i=1
min{p− ℓ̃(i), 0} =

∑k

i=1
min{p− ℓ̂(i), 0} for every p̂ ≤ p ≤ n

and
∑k

i=1
min{p − ℓ̃(i), 0} ≥

∑k

i=1
min{p − ℓ̂(i), 0} − 1 for every 1 ≤ p < p̂. Hence, by

γ̃+β̃ = γ̂+β̂, and (79) (which is strict for p < p̂), we have γ̃+β̃+
∑k

i=1
min{p−ℓ̃(i), 0} ≥ hp−e(p)

for every 1 ≤ p ≤ n, so (79) holds for β̃, ℓ̃, and γ̃.

(vii) Finally, by (86), we have
∑k

i=1
min{p − ℓ̃′(i), 0} =

∑k

i=1
min{p − ℓ̂′(i), 0} for every p̂ ≤ p ≤ n

and
∑k

i=1
min{p − ℓ̃′(i), 0} ≥

∑k

i=1
min{p − ℓ̂′(i), 0} − 1 for every 1 ≤ p < p̂. Hence, by

γ̃+ ℓ̃′(Zk) = γ̂+ ℓ̂′(Zk), and (80) (which is strict for p < p̂), we have γ̃+ ℓ̃′(Zk)+
∑k

i=1
min{p−

ℓ̃′(i), 0} ≥ hp− e(p) for every 1 ≤ p ≤ n, so (79) holds for ℓ̃′, and γ̃.

Case II. Suppose that X ′ = Zk. By Claim 4(c), (80) is strict for every 1 ≤ p ≤ n. Then, (79) is
tight for p̂, so, by Claim 4(b), we have X 6= Zk. Let m ∈ X. Then, by (68), we have

n ≥ ℓ̂′(m) ≥ p̂ > ℓ̂(m). (87)
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We modify the values again. Let γ̃ = γ̂ − 1, α̃ = α̂ + 1, β̃ = β̂ + 1, ℓ̃(m) = ℓ̂(m) + 1, ℓ̃(i) = ℓ̂(i)
for i ∈ Zk − {m}, and ℓ̃′(i) = ℓ̂′(i) for i ∈ Zk. We show similarly as in Case I that (65), (67), (68),
(69), (78), (79), and (80) hold for α̃, β̃, γ̃, ℓ̃, and ℓ̃′ that contradicts again the minimality of γ̂. More
precisely, (i), (iv), (v), and (vi) are the same in Case II. (ii) is similar to (ii) in Case I using that, by
Claim 4(c), we have ℓ̂′(Zk) > β̂. (iii) is similar to (iii) in Case I using (87) instead of (86). Finally,
(vii) for every 1 ≤ p ≤ n, by γ̃+ℓ̃′(Zk) = γ̂+ℓ̂′(Zk)−1,

∑k

i=1
min{p−ℓ̃′(i), 0} =

∑k

i=1
min{p−ℓ̂′(i), 0}

and (80) is strict, we have γ̃+ ℓ̃′(Zk)+
∑k

i=1
min{p− ℓ̃′(i), 0} ≥ hp− e(p), so (79) holds for ℓ̃′, and γ̃.

This completes the proof of Lemma 2.

We now are in a position to prove Theorem 21. Let n = |V |. By (22), (23), and (26), we have
that (72), (73) and (74) hold. Let e(p) = min{eA(P) : P subpartition of V such that |P| = p}
for every 1 ≤ p ≤ n. Note that e(p) ≥ 0 for every 1 ≤ p ≤ n. Then, by (62), (63), and (64),
we obtain (77), (75) and (76). Hence, by Lemma 2, there exist α̂, β̂ ∈ Z+ and ℓ̂, ℓ̂′ : Zk → Z+

such that (65)–(71) hold. Then (22), (23) (26), (27), and (28) hold for α̂, β̂, ℓ̂ and ℓ̂′. Hence, by
Theorem 16, there exists an h-regular (ℓ̂, ℓ̂′)-bordered (α̂, β̂)-limited packing of hyperbranchings B̂i

with root sets Ŝ1, . . . , Ŝk in D. Let i ∈ Zk. By (65), ℓ̂(i) ≤ |Ŝi| ≤ ℓ̂′(i), and ℓ ≥ 0, there exists
Si ⊆ Ŝi with |Si| = |Ŝi| − ℓ̂(i) + ℓ(i). Further, ℓ(i) ≤ |Si| ≤ ℓ′(i). Let Bi be obtained from B̂i

by adding a set Ai of new arcs consisting of an arc from any vertex si ∈ Si to every vertex in
Ŝi − Si. Then Bi is an Si-hyperbranching. Let D′ be obtained from D by adding

⋃k

i=1
Ai. Since

∑k

i=1
(|Ŝi|−|Si|) =

∑k

i=1
(ℓ̂(i)−ℓ(i)) and α̂ ≤

∑k

i=1
|Ŝi| ≤ β̂, (66) implies that α ≤

∑k

i=1
|Si| ≤ β. By

(66), the number of new arcs is |
⋃k

i=1
Ai| =

∑k

i=1
(ℓ̂(i) − ℓ(i)) ≤ γ. Hence, B1, . . . ,Bk is the desired

h-regular (ℓ, ℓ′)-bordered (α, β)-limited packing of hyperbranchings in D′ that completes the proof
of Theorem 21.

Remark 27. If γ = 0, then Theorem 21 reduces to Theorem 16.

5.3 Augmentation to have a packing of rooted hyperforests

In Subsection 5.2, we have seen that Theorem 21 can be proved by Theorem 16 and Lemma 2. We
finish the paper by another application of Lemma 2 to get the augmentation version of Theorem 17
which is the following undirected version of Theorem 21. It can be proved similarly as Theorem 17,
by applying Theorem 17 and Lemma 2.

Theorem 22. Let G = (V, E) be a hypergraph, h, k, α, β, γ ∈ Z+ and ℓ, ℓ′ : Zk → Z+ such that (22)
and (23) hold. We can add at most γ edges to G to have an h-regular (ℓ, ℓ′)-bordered (α, β)-limited
packing of k rooted hyperforests if and only if (26) and (62) hold and

γ + β − ℓ(Zk) +

k
∑

i=1

min{|P|, ℓ(i)}+ eE(P) ≥ h|P| for every partition P of V,

γ +

k
∑

i=1

min{|P|, ℓ′(i)}+ eE(P) ≥ h|P| for every partition P of V.

Remark 28. If γ = 0, then Theorem 22 reduces to Theorem 17.
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