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Matchings in general graphs

Planning

1 Theorems of existence and min-max,

2 Algorithms to find a perfect matching / maximum cardinality
matching,

3 Structure theorem.

Application : Assignment of pilots

The manager of an airline wants to fly as many planes as possible at
the same time.

Two pilots must be assigned to each plane.

Unfortunately, some pilots can not fly together.

The manager knows all the pilotes, he knows hence wether two pilots
are compatible or not.

How would you model this problem?
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Examples

Graphs with perfect matching

Graphs without perfect matching

Z. Szigeti OCG-ORCO 2 / 35



Definitions

Definitions
1 Graph odd/even : |V (G )| is odd/even.

2 co(G − X ) : number of odd connected components of G − X .

3 barrier : X ⊆ V (G ) such that co(G − X ) = |X |.
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Parity

Lemma: G = (V ,E ) graph, X ⊆ V .

1 |V | ≡ co(G − X ) + |X | (2).

2 If |V | is even, then co(G − X ) ≡ |X | (2).

Proof

{X ,V1,V2, ...,Vk the connected components of G − X} = partition of V .

|V | = |X |+
k
∑

1

|Vi |

= |X |+
∑

|Vi | odd

|Vi |+
∑

|Vi | even

|Vi |

≡ |X |+
∑

|Vi | odd

1 +
∑

|Vi | even

0

= |X |+ co(G − X ) (2).
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Necessary condition to have a perfect matching

Lemma

If G has a perfect matching M, then ∀X ⊆ V (G ), co(G − X ) ≤ |X |.

Proof
1 Let K1, ...,Kℓ be the odd connected components of G − X .

2 M is a perfect matching and |V (Ki )| is odd, there exists thus an edge
of M that connects Ki to a vertex xi in X .

3 Since M is a matching, xi 6= xj if i 6= j .

4 co(G − X ) = ℓ = |{x1, ..., xℓ}| ≤ |X |.
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Characterization of the existence of a perfect matching

Theorem of Tutte

G has a perfect matching ⇐⇒ co(G − X ) ≤ |X | ∀X ⊆ V (G ) (T ).

Proof

Let G be a connected graph that satisfies (T) and X a maximal barrier.

1 |V (G )| is even.

2 X 6= ∅.

3 G − X has no even connected component.

4 For each vertex v of each odd connected component K of G − X ,
K − v satisfies (T).

5 Let BX = (X ,Y ;F ) be the bipartite graph obtained from G by
contracting each odd connected component of G − X and by deleting
all the edges in G [X ]. BX has a perfect matching.

6 These imply that G has a perfect matching.
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Proof of Theorem of Tutte

Proof of 1.
1 By (T) for the set ∅, we have 0 ≤ co(G − ∅) ≤ |∅| = 0.

2 Hence G has no odd connected component.

3 Since G is connected, G has one connected component that is even.

Proof of 2.
1 Let v be an arbitrary vertex of G .

2 By (T) for {v}, we have, by parity, 1 ≤ co(G − v) ≤ |{v}| = 1.

3 v is hence a barrier.

4 Since X is a maximal barrier, X 6= ∅.
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Proof of Theorem of Tutte

Proof of 3.
1 Suppose by contradiction that K is an even component of G − X .

2 By parity, co(K − v) ≥ 1 ∀v ∈ V (K ).

3 By (T ) for X ′ := X ∪ {v}, we have
|X ′| ≥ co(G − X ′) = co(G − X ) + co(K − v) ≥ |X |+ 1 = |X ′|,

4 X ′ is hence a barrier.

5 This is a contradiction because X was a maximal barrier.
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components

K

v

X ′
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Proof of Theorem of Tutte

Proof of 4.
1 Suppose by contradiction that for an odd component K of G − X

and a vertex v of K , H := K − v violates the condition (T), that is
there exists Y ⊂ V (H) with co(H − Y ) > |Y |.

2 Since |V (H)| is even, by parity, co(H − Y ) ≥ |Y |+ 2.

3 By (T ) for X ′ := X ∪ v ∪ Y , we have |X ′| ≥ co(G − X ′) =
(co(G − X )− 1) + co(H − Y ) ≥ (|X | − 1) + (|Y |+ 2) = |X ′|,

4 X ′ is hence a barrier.

5 This is a contradiction because X was a maximal barrier.
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Proof of Theorem of Tutte

Proof of 5.
1 Since X is a barrier, we have |X | = |Y |.

2 Suppose by contradiction that BX has no perfect matching. Then, by
Hall’s Theorem, there exists a set Z ⊆ Y such that for the set
W ⊆ X of neighbors of Z , we have |Z | > |W |.

3 Each v ∈ Z corresponds to an odd component of G − X ,

4 Since W = Γ(Z ), v corresponds to an odd component of G −W .

5 Thus co(G −W ) ≥ |Z | > |W |.

6 Then the condition (T) is violated, contradiction.

X

Z

W W

X
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Z. Szigeti OCG-ORCO 10 / 35



Proof of Theorem of Tutte

Proof of 6.
1 Let G be a counterexample with |V (G )| minimum.

2 Let X be a maximal barrier of G . By 2, X 6= ∅.

3 By 5, BX has a perfect matching M ′.

4 For each odd component Ki of G − X , M ′ connects
exactly one vertex vi of Ki to X .

5 By 4, Hi := Ki − vi satisfies (T) and |V (Hi )| < |V (G)|,

Hi has hence a perfect matching Mi .

6 By 3, G − X has no even component.

7 M := M ′ ∪
⋃

Ki
Mi is a perfect matching of G ,

8 G is not hence a counterexample.

M
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Mi

Ki

X
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Application

Theorem of Petersen

Every 2-edge-connected 3-regular graph G has a perfect matching.

Proof
1 Let X be a subset of vertices of G , ℓ := co(G − X ),

2 K1, ...,Kℓ the odd components of G − X and

3 E ′ the set of edges between X and
⋃ℓ

1 Ki .

4 Since G is 2-edge-connected and 3-regular, d(Ki ) ≥ 2 and by parity,
d(Ki) ≥ 3, so 3co(G − X ) = 3ℓ ≤

∑ℓ
i=1 d(Ki ) = |E ′|.

5 Since G is 3-regular, |E ′| ≤
∑

v∈X d(v) = 3|X |.

6 By consequence, 3co(G − X ) ≤ |E ′| ≤ 3|X |.

7 By Tutte’s theorem, G has a perfect matching.
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Maximum cardinality matching

Formula of Berge −Tutte

1 max{2|M| : M matching of G} =
min{|V | − co(G − X ) + |X | : X ⊆ V (G )}.

2 min{|M-unsaturated vertices| : M matching of G} =
max{co(G − X )− |X | : X ⊆ V (G )}.

Proof (min ≥ max)

Let M be a matching of G ,X ⊆ V (G ) and K1, . . . ,Kco (G−X ) the odd
components of G − X .

1 |V (Ki)| odd ⇒ each Ki contains at least one vertex vi such that
1 either vi is M-unsaturated,
2 or vi is connected to a vertex of X by an edge of M .

2 M matching ⇒ ≤ |X | of them are connected to X by an edge of M,

3 ≥ co(G − X )− |X | of them contain an M-unsaturated vertex.
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Matchings in general graphs

Theorem of Tutte

G has a perfect matching ⇐⇒ co(G − X ) ≤ |X | ∀X ⊆ V (G ).

Problem

Find a perfect matching.

Theorem of Berge

A matching M of G is of maximum cardinality ⇐⇒
there exists no M-augmenting path.

r

a

b

c

d
f

e

g h

i j

k

Idea 1
1 Find an augmenting path.

2 As a searching algorithm uses an arborescence to find a path from s

to t, we will construct an alternating tree.
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Alternating trees

Definition : Given a graph G and a matching M of G ,

1 M-alternating tree:
1 a tree F in G ,
2 a vertex rF of F is M-unsaturated (rF is the root of F ),
3 in F , every vertex of odd distance from rF is of degree 2,
4 every unique elementary (rF , v)-path in F is M-alternating.

2 odd/even vertex: v ∈ V (F ) such that distF (rF , v) is odd/even.

3 AF and DF : Set of odd/even vertices of F .

Remark

|DF | = |AF |+ 1 :

1 F − rF has a perfect matching connecting always a
vertex of AF to a vertex of DF ,

2 rF is in DF .
rF

F

M

AF

DF
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Blossoms

Example

Constructing an alternating tree is not sufficient.
r

u v

w

Definition: Given an M-alernating tree F

blossom: the unique odd cycle C of F + uv where u

and v are two even vertices of F .

Idea 2 of Edmonds

Let’s shrink the blossom!

1 We will have pseudo-vertices wC !

2 M/C is a matching of G/C .

3 F/C is an M/C -alternating tree.

4 Every pseudo-vertex is an even vertex.

rF
F

M

AF

DF

u v

C

rF/C
F/C

M/C

AF/C

DF/C

wC
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Blowing up a blossom

Lemma

For every odd cycle C and for every z ∈ V (C ),
C − z has a perfect matching.

z

C

Definition

blow up a blossom: wC is replaced by the odd cycle C .

Lemma

When we blow up a blossom we can extend the matching such that the
number of unsaturated vertices does not augment.

z

C ee

wC

when wC is saturated rF

C

wC

when wC is unsaturated
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Perfect matching algorithm of Edmonds

Input: G = (V ,E ) a graph.
Output: Either a perfect matching M of G

or a set X violating the Tutte condition.
Step 0. Initialization.

M0 := ∅, i := 0,
G0 := G , j := 0.

Step 1. Stopping rule 1.

If all the vertices of G are Mi -saturated then Stop with Mi .
Step 2. Beginning of the construction of an alternating tree.

Let r be an Mi -unsaturated vertex.
F0 := (r , ∅), k := 0.

Step 3. Stopping rule 2.

If every edge of Gj leaving an Fk -even vertex enters
an Fk -odd vertex then stop with X := set of Fk -odd vertices.
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Perfect matching algorithm of Edmonds
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Perfect matching algorithm of Edmonds

Step 4. Choice of the edge ukvk .
Let ukvk be an edge of Gj such that uk is an Fk -even vertex and
vk is not an Fk-odd vertex.

Step 5. Augmenting the alternating tree.

If vk is not in Fk and there exists vkwk ∈ Mi then do
Fk+1 := Fk + ukvk + vkwk , k := k + 1,
Go to Step 3.

Step 6. Shrinking a blossom.

If vk is in Fk then do
Cj := be the unique cycle in Fk + ukvk ,
Mi+1 := Mi/Cj , i := i + 1,
Gj+1 := Gj/Cj , j := j + 1,
Fk+1 := Fk/Cj , k := k + 1,
Go to Step 3.
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Perfect matching algorithm of Edmonds

Step 7. Augmenting the matching in G .

If vk is not in Fk and vk is Mi -unsaturated then do
Constructing an Mi -augmenting path in Gj .

Qi := the unique elementary path in Fk from rF to uk ,
Pi := Qi + ukvk .
Augmenting the matching in Gj .

Mi+1 := (Mi \ E (Pi )) ∪ (E (Pi ) \Mi), i := i + 1.
Blowing up the shrunk blossoms in reverse order.

If the shrunk blossoms are C0, . . . ,Cj−1 then
While j 6= 0 do

ej−1 := the edge of Mi incident to wCj−1
,

Gj−1 := Gj ÷ Cj−1 (blowing up of Cj−1),
zj−1 := the vertex of Cj−1 incident to ej−1,
Mi+1 := Mi ∪ the perfect matching of Cj−1 − zj−1.
i := i + 1, j := j − 1.

Go to Step 1.
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Justification of the perfect matching algorithm

Theorem
1 If the algorithm stops at Step 3 then

1 the vertices in DFk
are isolated in Gj − AFk

,
2 every vertex of DFk

corresponds to a set of vertices of G of odd
cardinality,

3 X = AFk
violates Tutte’s condition.

2 At Step 7 the size of the matching of G increased.

3 The algorithm stops in polynomial time.

Remark

Edmonds’ algorithm implies Tutte’s theorem.

Input: G = (V ,E ) a graph.
Output: Either a perfect matching M of G

or a set X violating the Tutte condition.
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Justification of the perfect matching algorithm
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Justification of the perfect matching algorithm

Proof
1 If algorithm stops at Step 3: uv ∈ E (Gj), u ∈ DFk

=⇒ v ∈ AFk
.

1 The vertices in DFk
are hence isolated in Gj − AFk

.
2 When we blow up a pseudo-vertex wC , we replace a vertex by an odd

number of vertices since C is a blossom.
3 By 1 and 2, co(G − X ) = co(G − AF ) ≥ |DF | = |AF |+ 1 > |X |.

2 The size of the matching increases:
1 in the shrunk graph: two Mi -unsaturated vertices become

Mi+1-saturated and the Mi -saturated vertices remain Mi+1-saturated.
2 Blowing up a blossom does not increase the number of unsaturated

vertices (by the blowing up lemma).

3 The algorithm stops in polynomial time:
1 Every step is polynomial.
2 Matching augmentation may happen at most n/2 times.
3 Between two matching augmentations:

1 tree augmentation may happen at most n/2 times,

2 blossom shrinking may happen at most n/2 times.
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Maximum cardinality matching algorithm of Edmonds

Input: G = (V ,E ) a graph.
Output: A maximum cardinality matching of G .

Step 1. Constructing alternating trees.

While there exists an unsaturated vertex do
Execute the perfect matching algorithm with the
following modification :

before stopping at Step 3 delete the vertices
of the alternating tree.

Step 2. Blowing up the shrunk blossoms in reverse order.

As in the perfect matching algorithm by adding that
if wCj−1

= rFk
then zj−1 := rFk−1

.
Step 3. Stop.

z

C ee

wC

when wC is saturated rF

C

wC

when wC is unsaturated
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Justification of the max. cardinality matching algorithm

Structure

When the algorithm stops we have t vertex disjoint alternating trees
F1, . . . ,Ft and a perfect matching M ′ of the remaining graph.

Every vertex of Di corresponds to an odd connected subgraph of G .

Every Fi corresponds to a subgraph Gi of G .

At

Dt

A1

r1
F1

D1

rt
Ft

M ′

r1
G1

A1 At

rt

Gt

M ′
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Justification of the max. cardinality matching algorithm

Theorem
1 Gi has a matching Mi with exactly one Mi -unsaturated vertex ri in Gi .

2 co(G − X )− |X | = t where X :=
⋃t

i=1AFi
.

3 M := M ′ ∪
⋃t

i=1Mi is a maximum cardinality matching of G .

4 The algorithm stops in polynomial time.

r1
G1

A1 At

rt

Gt

M ′

M1 Mt

X
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Justification of the max. cardinality matching algorithm

Proof
1 Fk has one unsaturated vertex (rFk

) and blowing up a blossom does
not increase the number of unsaturated vertices (by the blowing up
lemma).

2 co(G − X ) = co(G −
⋃t

i=1 AFi
) =

∑t
i=1 |Fi − AFi

| =
∑t

i=1 |DFi
| =

∑t
i=1(|AFi

|+ 1) = |
⋃t

i=1 AFi
|+ t = |X |+ t.
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rt
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rt
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X
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Justification of the max. cardinality matching algorithm

Proof
3 By the trivial direction of the formula of Berge −Tutte, 1 and 2,

max ≤ min ≤ |{M-unsaturated vertices}| = t = co(G − X ) − |X | ≤ max.

Thus min{|M-unsaturated vertices| : M matching of G} =
max{co(G − X )− |X | : X ⊆ V (G )}.

4 We execute at most n times the perfect matching algorithm which is
polynomial, and hence this algorithm is polynomial.

Remark

This algorithm of Edmonds implies the Berge −Tutte formula.
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Structure theorem

Definitions
1 near-perfect matching : a matching of G covering all but one vertex,

2 Factor-critical graph : G − v has a perfect matching ∀v ∈ V (G ),

3 D(G ) := {v ∈ V : ν(G − v) = ν(G )},

4 A(G ) := set of neighbors of D(G ) in V (G ) \ D(G ),

5 C (G ) := V (G ) \ (D(G ) ∪ A(G )).

A(G )

D(G )

C (G )
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Structure theorem

Theorem (Gallai-Edmonds)

1 The connected components of G [D(G )] are factor-critical.

2 C (G ) has a perfect matching.

3 co(G − A(G ))− |A(G )| = max{co(G − X )− |X | : X ⊆ V }.
4 BA(G) has a matching

1 covering A(G) and
2 not covering any given vertex v /∈ A(G).

5 A matching M is of maximum cardinality if and only if M contains
1 a near-perfect matching of each connected components of G [D(G)],
2 a perfect matching of C (G) and
3 a matching of BA(G) covering A(G).

A(G )

D(G )

C (G )
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Structure theorem

Proof
1 Execute Edmonds’ maximum cardinality matching algorithm and let

D :=
⋃t

i=1Di ,A :=
⋃t

i=1 Ai ,C := V (G ) \ (D ∪ A).

2 D,A,C verify the assertions of the theorem.

3 D = D(G ),A = A(G ),C = C (G ).

4 Thus D(G ),A(G ),C (G ) verify the assertions of the theorem.

r1
G1
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rt

Gt

M ′

M1 Mt

X
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Structure theorem

Proof of (1) for D

1 By the blowing up lemma, blowing up an odd cycle in a factor-critical
graph results a factor-critical graph.

2 Since a connected component of G [D] is obtained from a (pseudo-)
vertex (which is factor-critical) by blowing up odd cycles, it is hence
factor-critical.

Proof of (2) for C

M ′ is a perfect matching of C .

Proof of (3) for A

co(G − A)− |A| = max{co(G − X )− |X | : X ⊆ V } was proved in the
previous theorem.
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Structure theorem

Proof of (4) for A

1 BA is the union of the alternating trees found by the algorithm.

2 For a given v ∈ Di , let P be the alternating path between ri and v .

3 By changing the role of matching edges and non-matching edges in
P , we get the required matching.

At

Dt
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r1
F1

D1

rt
Ft

M ′

r1
G1

A1 At

rt

Gt

M ′

M1 Mt

X

Proof of (5) for D,C ,A

It follows directly from (3).
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Structure theorem

Proof of D = D(G ),A = A(G ),C = C (G )

1 It is enough to prove that D = D(G ).

2 Since D,C ,A satisfy (5), we have D(G ) ⊆ D.

3 Since D satisfies (1) and A satisfies (4), we have D ⊆ D(G ).
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