Combinatorial Optimization and Graph Theory ORCO

 Matchings in general graphs

 Matchings in general graphs}

Zoltán Szigeti

Matchings in general graphs

Planning

(1) Theorems of existence and min-max,
(2) Algorithms to find a perfect matching / maximum cardinality matching,
(3) Structure theorem.

Application : Assignment of pilots

- The manager of an airline wants to fly as many planes as possible at the same time.
- Two pilots must be assigned to each plane.
- Unfortunately, some pilots can not fly together.
- The manager knows all the pilotes, he knows hence wether two pilots are compatible or not.
- How would you model this problem?

Examples

Graphs with perfect matching

Graphs without perfect matching

Definitions

Definitions

(1) Graph odd/even : $|V(G)|$ is odd/even.
(2) $c_{o}(G-X)$: number of odd connected components of $G-X$.
(3) barrier : $X \subseteq V(G)$ such that $c_{o}(G-X)=|X|$.

Parity

Lemma: $G=(V, E)$ graph, $X \subseteq V$.
(1) $|V| \equiv c_{o}(G-X)+|X|$ (2).
(2) If $|V|$ is even, then $c_{o}(G-X) \equiv|X|$

Proof

$\left\{X, V_{1}, V_{2}, \ldots, V_{k}\right.$ the connected components of $\left.G-X\right\}=$ partition of V.

$$
\begin{aligned}
|V| & =|X|+\sum_{1}^{k}\left|V_{i}\right| \\
& =|X|+\sum_{\left|V_{i}\right| \text { odd }}\left|V_{i}\right|+\sum_{\left|V_{i}\right| \text { even }}\left|V_{i}\right| \\
& \equiv|X|+\sum_{\left|V_{i}\right| \text { odd }} 1+\sum_{\left|V_{i}\right| \text { even }} 0 \\
& =|X|+c_{o}(G-X) \quad(2) .
\end{aligned}
$$

$\leftrightarrow \quad \longleftrightarrow V_{k} \quad \underset{\sim}{\bullet}$ components

Necessary condition to have a perfect matching

Lemma

If G has a perfect matching M, then $\forall X \subseteq V(G), c_{0}(G-X) \leq|X|$.

Proof

(1) Let K_{1}, \ldots, K_{ℓ} be the odd connected components of $G-X$.
(2) M is a perfect matching and $\left|V\left(K_{i}\right)\right|$ is odd, there exists thus an edge of M that connects K_{i} to a vertex x_{i} in X.
(3) Since M is a matching, $x_{i} \neq x_{j}$ if $i \neq j$.
(3) $c_{o}(G-X)=\ell=\left|\left\{x_{1}, \ldots, x_{\ell}\right\}\right| \leq|X|$.

Characterization of the existence of a perfect matching

Theorem of Tutte

G has a perfect matching $\Longleftrightarrow c_{o}(G-X) \leq|X| \quad \forall X \subseteq V(G) \quad(T)$.

Proof

Let G be a connected graph that satisfies (T) and X a maximal barrier.
(1) $|V(G)|$ is even.
(2) $X \neq \emptyset$.
(3) $G-X$ has no even connected component.
(1) For each vertex v of each odd connected component K of $G-X$, $K-v$ satisfies (T).
(0) Let $B_{X}=(X, Y ; F)$ be the bipartite graph obtained from G by contracting each odd connected component of $G-X$ and by deleting all the edges in $G[X]$. B_{X} has a perfect matching.
(0) These imply that G has a perfect matching.

Proof of Theorem of Tutte

Proof of 1.

(1) By (T) for the set \emptyset, we have $0 \leq c_{o}(G-\emptyset) \leq|\emptyset|=0$.
(2) Hence G has no odd connected component.
(3) Since G is connected, G has one connected component that is even.

Proof of 2.

(1) Let v be an arbitrary vertex of G.
(2) By (T) for $\{v\}$, we have, by parity, $1 \leq c_{o}(G-v) \leq|\{v\}|=1$.
(3) v is hence a barrier.
(9) Since X is a maximal barrier, $X \neq \emptyset$.

Proof of Theorem of Tutte

Proof of 3.

(1) Suppose by contradiction that K is an even component of $G-X$.
(2) By parity, $c_{o}(K-v) \geq 1 \forall v \in V(K)$.
(3) $\operatorname{By}(T)$ for $X^{\prime}:=X \cup\{v\}$, we have

$$
\left|X^{\prime}\right| \geq c_{o}\left(G-X^{\prime}\right)=c_{o}(G-X)+c_{o}(K-v) \geq|X|+1=\left|X^{\prime}\right|
$$

(1) X^{\prime} is hence a barrier.
(2) This is a contradiction because X was a maximal barrier.

odd
components

components \square

Proof of Theorem of Tutte

Proof of 4.

(1) Suppose by contradiction that for an odd component K of $G-X$ and a vertex v of $K, H:=K-v$ violates the condition (T), that is there exists $Y \subset V(H)$ with $c_{o}(H-Y)>|Y|$.
(2) Since $|V(H)|$ is even, by parity, $c_{o}(H-Y) \geq|Y|+2$.
(3) By (T) for $X^{\prime}:=X \cup v \cup Y$, we have $\left|X^{\prime}\right| \geq c_{o}\left(G-X^{\prime}\right)=$ $\left(c_{o}(G-X)-1\right)+c_{o}(H-Y) \geq(|X|-1)+(|Y|+2)=\left|X^{\prime}\right|$,
(1) X^{\prime} is hence a barrier.
(0) This is a contradiction because X was a maximal barrier.

Proof of Theorem of Tutte

Proof of 5.

(1) Since X is a barrier, we have $|X|=|Y|$.
(2) Suppose by contradiction that B_{X} has no perfect matching. Then, by Hall's Theorem, there exists a set $Z \subseteq Y$ such that for the set $W \subseteq X$ of neighbors of Z, we have $|Z|>|W|$.
(3) Each $v \in Z$ corresponds to an odd component of $G-X$,
(3) Since $W=\Gamma(Z)$, v corresponds to an odd component of $G-W$.
(3) Thus $c_{o}(G-W) \geq|Z|>|W|$.
(0) Then the condition (T) is violated, contradiction.

Proof of Theorem of Tutte

Proof of 6.

(1) Let G be a counterexample with $|V(G)|$ minimum.
(2) Let X be a maximal barrier of G. By $2, X \neq \emptyset$.
(3) By $5, B_{X}$ has a perfect matching M^{\prime}.
(9) For each odd component K_{i} of $G-X, M^{\prime}$ connects exactly one vertex v_{i} of K_{i} to X.
(5) By $4, H_{i}:=K_{i}-v_{i}$ satisfies (T) and $\left|V\left(H_{i}\right)\right|<|V(G)|$, H_{i} has hence a perfect matching M_{i}.

(0) By $3, G-X$ has no even component.
(1) $M:=M^{\prime} \cup \bigcup_{K_{i}} M_{i}$ is a perfect matching of G,
(3) G is not hence a counterexample.

Application

Theorem of Petersen

Every 2-edge-connected 3-regular graph G has a perfect matching.

Proof

(1) Let X be a subset of vertices of $G, \ell:=c_{o}(G-X)$,
(2) K_{1}, \ldots, K_{ℓ} the odd components of $G-X$ and
(3) E^{\prime} the set of edges between X and $\bigcup_{1}^{\ell} K_{i}$.
(9) Since G is 2-edge-connected and 3-regular, $d\left(K_{i}\right) \geq 2$ and by parity, $d\left(K_{i}\right) \geq 3$, so $3 c_{o}(G-X)=3 \ell \leq \sum_{i=1}^{\ell} d\left(K_{i}\right)=\left|E^{\prime}\right|$.
(3) Since G is 3-regular, $\left|E^{\prime}\right| \leq \sum_{v \in X} d(v)=3|X|$.
(0) By consequence, $3 c_{o}(G-X) \leq\left|E^{\prime}\right| \leq 3|X|$.
((By Tutte's theorem, G has a perfect matching.

Maximum cardinality matching

Formula of Berge - Tutte

(1) $\max \{2|M|: M$ matching of $G\}=$ $\min \left\{|V|-c_{o}(G-X)+|X|: X \subseteq V(G)\right\}$.
(2) $\min \{\mid M$-unsaturated vertices $\mid: M$ matching of $G\}=$ $\max \left\{c_{o}(G-X)-|X|: X \subseteq V(G)\right\}$.

Proof (min $\geq \max$)

Let M be a matching of $G, X \subseteq V(G)$ and $K_{1}, \ldots, K_{c_{o}(G-X)}$ the odd components of $G-X$.
(1) $\left|V\left(K_{i}\right)\right|$ odd \Rightarrow each K_{i} contains at least one vertex v_{i} such that
(1) either v_{i} is M-unsaturated,
(2) or v_{i} is connected to a vertex of X by an edge of M.
(2) M matching $\Rightarrow \leq|X|$ of them are connected to X by an edge of M,
(3) $\geq c_{o}(G-X)-|X|$ of them contain an M-unsaturated vertex.

Matchings in general graphs

Theorem of Tutte

G has a perfect matching $\Longleftrightarrow c_{o}(G-X) \leq|X| \quad \forall X \subseteq V(G)$.

Problem

Find a perfect matching.

Theorem of Berge

A matching M of G is of maximum cardinality there exists no M-augmenting path.

Idea 1

(1) Find an augmenting path.
(2) As a searching algorithm uses an arborescence to find a path from s to t, we will construct an alternating tree.

Alternating trees

Definition: Given a graph G and a matching M of G,

(1) M-alternating tree:
(1) a tree F in G,
(2) a vertex r_{F} of F is M-unsaturated (r_{F} is the root of F),
(3) in F, every vertex of odd distance from r_{F} is of degree 2,
(4) every unique elementary $\left(r_{F}, v\right)$-path in F is M-alternating.
(2) odd/even vertex: $v \in V(F)$ such that $\operatorname{dist}_{F}\left(r_{F}, v\right)$ is odd/even.
(3) A_{F} and D_{F} : Set of odd/even vertices of F.

Remark

$\left|D_{F}\right|=\left|A_{F}\right|+1$:
(1) $F-r_{F}$ has a perfect matching connecting always a vertex of A_{F} to a vertex of D_{F},
(2) r_{F} is in D_{F}.

Blossoms

Example

Constructing an alternating tree is not sufficient.

Definition: Given an M-alernating tree F

blossom: the unique odd cycle C of $F+u v$ where u and v are two even vertices of F.

Idea 2 of Edmonds

Let's shrink the blossom!
(1) We will have pseudo-vertices w_{C} !
(2) M / C is a matching of G / C.
(3) F / C is an M / C-alternating tree.
(9) Every pseudo-vertex is an even vertex.

Blowing up a blossom

Lemma

For every odd cycle C and for every $z \in V(C)$,
$C-z$ has a perfect matching.

Definition

blow up a blossom: w_{C} is replaced by the odd cycle C.

Lemma

When we blow up a blossom we can extend the matching such that the number of unsaturated vertices does not augment.

Perfect matching algorithm of Edmonds

Input: $\quad G=(V, E)$ a graph.
Output: Either a perfect matching M of G
or a set X violating the Tutte condition.
Step 0. Initialization.

$$
\begin{aligned}
& M_{0}:=\emptyset, i:=0, \\
& G_{0}:=G, j:=0 .
\end{aligned}
$$

Step 1. Stopping rule 1.
If all the vertices of G are M_{i}-saturated then Stop with M_{i}.
Step 2. Beginning of the construction of an alternating tree.
Let r be an M_{i}-unsaturated vertex.
$F_{0}:=(r, \emptyset), k:=0$.
Step 3. Stopping rule 2.
If every edge of G_{j} leaving an F_{k}-even vertex enters
an F_{k}-odd vertex then stop with $X:=$ set of F_{k}-odd vertices.

Perfect matching algorithm of Edmonds

Perfect matching algorithm of Edmonds

Step 4. Choice of the edge $u_{k} v_{k}$.
Let $u_{k} v_{k}$ be an edge of G_{j} such that u_{k} is an F_{k}-even vertex and v_{k} is not an F_{k}-odd vertex.
Step 5. Augmenting the alternating tree.
If v_{k} is not in F_{k} and there exists $v_{k} w_{k} \in M_{i}$ then do

$$
F_{k+1}:=F_{k}+u_{k} v_{k}+v_{k} w_{k}, k:=k+1,
$$

Go to Step 3.
Step 6. Shrinking a blossom.
If v_{k} is in F_{k} then do
$C_{j}:=$ be the unique cycle in $F_{k}+u_{k} v_{k}$,
$M_{i+1}:=M_{i} / C_{j}, i:=i+1$,
$G_{j+1}:=G_{j} / C_{j}, j:=j+1$,
$F_{k+1}:=F_{k} / C_{j}, k:=k+1$,
Go to Step 3.

Perfect matching algorithm of Edmonds

Step 7. Augmenting the matching in G.
If v_{k} is not in F_{k} and v_{k} is M_{i}-unsaturated then do
Constructing an M_{i}-augmenting path in G_{j}.
$Q_{i}:=$ the unique elementary path in F_{k} from r_{F} to u_{k},
$P_{i}:=Q_{i}+u_{k} v_{k}$.
Augmenting the matching in G_{j}.
$M_{i+1}:=\left(M_{i} \backslash E\left(P_{i}\right)\right) \cup\left(E\left(P_{i}\right) \backslash M_{i}\right), i:=i+1$.
Blowing up the shrunk blossoms in reverse order.
If the shrunk blossoms are C_{0}, \ldots, C_{j-1} then
While $j \neq 0$ do

$$
\begin{aligned}
& e_{j-1}:=\text { the edge of } M_{i} \text { incident to } w_{C_{j-1}}, \\
& \left.G_{j-1}:=G_{j} \div C_{j-1} \text { (blowing up of } C_{j-1}\right)^{\prime} \\
& z_{j-1}:=\text { the vertex of } C_{j-1} \text { incident to } e_{j-1}, \\
& M_{i+1}:=M_{i} \cup \text { the perfect matching of } C_{j-1}-z_{j-1} . \\
& i:=i+1, j:=j-1 .
\end{aligned}
$$

Go to Step 1.

Justification of the perfect matching algorithm

Theorem

(1) If the algorithm stops at Step 3 then
(1) the vertices in $D_{F_{k}}$ are isolated in $G_{j}-A_{F_{k}}$,
(2) every vertex of $D_{F_{k}}$ corresponds to a set of vertices of G of odd cardinality,
(3) $X=A_{F_{k}}$ violates Tutte's condition.
(2) At Step 7 the size of the matching of G increased.
(3) The algorithm stops in polynomial time.

Remark

Edmonds' algorithm implies Tutte's theorem.

$$
\text { Input: } \quad G=(V, E) \text { a graph. }
$$

Output: Either a perfect matching M of G
or a set X violating the Tutte condition.

Justification of the perfect matching algorithm

Justification of the perfect matching algorithm

Proof

(1) If algorithm stops at Step 3: $u v \in E\left(G_{j}\right), u \in D_{F_{k}} \Longrightarrow v \in A_{F_{k}}$.
(1) The vertices in $D_{F_{k}}$ are hence isolated in $G_{j}-A_{F_{k}}$.
(2) When we blow up a pseudo-vertex w_{C}, we replace a vertex by an odd number of vertices since C is a blossom.
(3) By 1 and $2, c_{o}(G-X)=c_{o}\left(G-A_{F}\right) \geq\left|D_{F}\right|=\left|A_{F}\right|+1>|X|$.
(2) The size of the matching increases:
(1) in the shrunk graph: two M_{i}-unsaturated vertices become
M_{i+1}-saturated and the M_{i}-saturated vertices remain M_{i+1}-saturated.
(2) Blowing up a blossom does not increase the number of unsaturated vertices (by the blowing up lemma).
(3) The algorithm stops in polynomial time:
(1) Every step is polynomial.
(2) Matching augmentation may happen at most $n / 2$ times.
(3) Between two matching augmentations:
(1) tree augmentation may happen at most $n / 2$ times,
(2) blossom shrinking may happen at most $n / 2$ times.

Maximum cardinality matching algorithm of Edmonds

Input: $\quad G=(V, E)$ a graph.
Output: A maximum cardinality matching of G.
Step 1. Constructing alternating trees.
While there exists an unsaturated vertex do
Execute the perfect matching algorithm with the following modification :
before stopping at Step 3 delete the vertices of the alternating tree.
Step 2. Blowing up the shrunk blossoms in reverse order.
As in the perfect matching algorithm by adding that
if $w_{C_{j-1}}=r_{F_{k}}$ then $z_{j-1}:=r_{F_{k-1}}$.
Step 3. Stop.

Justification of the max. cardinality matching algorithm

Structure

- When the algorithm stops we have t vertex disjoint alternating trees F_{1}, \ldots, F_{t} and a perfect matching M^{\prime} of the remaining graph.
- Every vertex of D_{i} corresponds to an odd connected subgraph of G.
- Every F_{i} corresponds to a subgraph G_{i} of G.

Justification of the max. cardinality matching algorithm

Theorem

(1) G_{i} has a matching M_{i} with exactly one M_{i}-unsaturated vertex r_{i} in G_{i}.
(2) $c_{o}(G-X)-|X|=t$ where $X:=\bigcup_{i=1}^{t} A_{F_{i}}$.
(3) $M:=M^{\prime} \cup \bigcup_{i=1}^{t} M_{i}$ is a maximum cardinality matching of G.
(9) The algorithm stops in polynomial time.

Justification of the max. cardinality matching algorithm

Proof

(1) F_{k} has one unsaturated vertex $\left(r_{F_{k}}\right)$ and blowing up a blossom does not increase the number of unsaturated vertices (by the blowing up lemma).
(2) $c_{o}(G-X)=c_{o}\left(G-\bigcup_{i=1}^{t} A_{F_{i}}\right)=\sum_{i=1}^{t}\left|F_{i}-A_{F_{i}}\right|=\sum_{i=1}^{t}\left|D_{F_{i}}\right|=$ $\sum_{i=1}^{t}\left(\left|A_{F_{i}}\right|+1\right)=\left|\bigcup_{i=1}^{t} A_{F_{i}}\right|+t=|X|+t$.

Justification of the max. cardinality matching algorithm

Proof

(3) By the trivial direction of the formula of Berge -Tutte, 1 and 2, $\max \leq \min \leq \mid\{M$-unsaturated vertices $\}\left|=t=c_{o}(G-X)-|X| \leq \max\right.$. Thus $\min \{\mid M$-unsaturated vertices $\mid: M$ matching of $G\}=$ $\max \left\{c_{o}(G-X)-|X|: X \subseteq V(G)\right\}$.
(9) We execute at most n times the perfect matching algorithm which is polynomial, and hence this algorithm is polynomial.

Remark

This algorithm of Edmonds implies the Berge -Tutte formula.

Structure theorem

Definitions

(1) near-perfect matching : a matching of G covering all but one vertex,
(2) Factor-critical graph: $G-v$ has a perfect matching $\forall v \in V(G)$,
(3) $D(G):=\{v \in V: \nu(G-v)=\nu(G)\}$,
(9) $A(G):=$ set of neighbors of $D(G)$ in $V(G) \backslash D(G)$,
(6) $C(G):=V(G) \backslash(D(G) \cup A(G))$.

Structure theorem

Theorem (Gallai-Edmonds)

(1) The connected components of $G[D(G)]$ are factor-critical.
(2) $C(G)$ has a perfect matching.
(3) $c_{o}(G-A(G))-|A(G)|=\max \left\{c_{o}(G-X)-|X|: X \subseteq V\right\}$.
(9) $B_{A(G)}$ has a matching
(1) covering $A(G)$ and
(2) not covering any given vertex $v \notin A(G)$.
(3) A matching M is of maximum cardinality if and only if M contains
(1) a near-perfect matching of each connected components of $G[D(G)]$,
(2) a perfect matching of $C(G)$ and
(3) a matching of $B_{A(G)}$ covering $A(G)$.

Structure theorem

Proof

(1) Execute Edmonds' maximum cardinality matching algorithm and let

$$
D:=\bigcup_{i=1}^{t} D_{i}, A:=\bigcup_{i=1}^{t} A_{i}, C:=V(G) \backslash(D \cup A)
$$

(2) D, A, C verify the assertions of the theorem.
(3) $D=D(G), A=A(G), C=C(G)$.
(3) Thus $D(G), A(G), C(G)$ verify the assertions of the theorem.

Structure theorem

Proof of (1) for D

(1) By the blowing up lemma, blowing up an odd cycle in a factor-critical graph results a factor-critical graph.
(2) Since a connected component of $G[D]$ is obtained from a (pseudo-) vertex (which is factor-critical) by blowing up odd cycles, it is hence factor-critical.

Proof of (2) for C

M^{\prime} is a perfect matching of C.

Proof of (3) for A

$c_{o}(G-A)-|A|=\max \left\{c_{o}(G-X)-|X|: X \subseteq V\right\}$ was proved in the previous theorem.

Structure theorem

Proof of (4) for A

(1) B_{A} is the union of the alternating trees found by the algorithm.
(2) For a given $v \in D_{i}$, let P be the alternating path between r_{i} and v.
(3) By changing the role of matching edges and non-matching edges in P, we get the required matching.

Proof of (5) for D, C, A

It follows directly from (3).

Structure theorem

Proof of $D=D(G), A=A(G), C=C(G)$

(1) It is enough to prove that $D=D(G)$.
(2) Since D, C, A satisfy (5), we have $D(G) \subseteq D$.
(3) Since D satisfies (1) and A satisfies (4), we have $D \subseteq D(G)$.

