Combinatorial Optimization and Graph Theory ORCO Matchings in general graphs

Zoltán Szigeti

Matchings in general graphs

Planning

- Theorems of existence and min-max,
- Algorithms to find a perfect matching / maximum cardinality matching,
- Structure theorem.

Application : Assignment of pilots

- The manager of an airline wants to fly as many planes as possible at the same time.
- Two pilots must be assigned to each plane.
- Unfortunately, some pilots can not fly together.
- The manager knows all the pilotes, he knows hence wether two pilots are compatible or not.
- How would you model this problem?

Examples

Graphs with perfect matching

Graphs without perfect matching

Definitions

Definitions

- Graph odd/even : |V(G)| is odd/even.
- 2 $c_o(G X)$: number of odd connected components of G X.
- Solution barrier : $X \subseteq V(G)$ such that $c_o(G X) = |X|$.

Parity

Lemma: G = (V, E) graph, $X \subseteq V$.

• $|V| \equiv c_o(G - X) + |X|$ (2).

If |V| is even, then $c_o(G - X) \equiv |X|$ (2).

Proof

Necessary condition to have a perfect matching

Lemma

If G has a perfect matching M, then $\forall X \subseteq V(G), c_o(G - X) \leq |X|$.

Proof

- Let K_1, \ldots, K_ℓ be the odd connected components of G X.
- 2 M is a perfect matching and $|V(K_i)|$ is odd, there exists thus an edge of M that connects K_i to a vertex x_i in X.
- Since M is a matching, $x_i \neq x_i$ if $i \neq j$.
- $c_o(G X) = \ell = |\{x_1, ..., x_\ell\}| \le |X|.$

Z. Szigeti

Characterization of the existence of a perfect matching

Theorem of Tutte

G has a perfect matching $\iff c_o(G - X) \le |X| \quad \forall X \subseteq V(G) \quad (T).$

Proof

Let G be a connected graph that satisfies (T) and X a maximal barrier.

- |V(G)| is even.
- $X \neq \emptyset.$
- **(3)** G X has no even connected component.
- For each vertex v of each odd connected component K of G X, K - v satisfies (T).
- Let B_X = (X, Y; F) be the bipartite graph obtained from G by contracting each odd connected component of G X and by deleting all the edges in G[X]. B_X has a perfect matching.
- These imply that G has a perfect matching.

Proof of 1.

- **3** By (T) for the set \emptyset , we have $0 \le c_o(G \emptyset) \le |\emptyset| = 0$.
- Hence G has no odd connected component.
- Since G is connected, G has one connected component that is even.

Proof of 2.

- Let v be an arbitrary vertex of G.
- 2 By (T) for $\{v\}$, we have, by parity, $1 \le c_o(G v) \le |\{v\}| = 1$.
- v is hence a barrier.
- Since X is a maximal barrier, $X \neq \emptyset$.

Proof of Theorem of Tutte

Proof of 3.

O Suppose by contradiction that K is an even component of G - X.

- **2** By parity, $c_o(K v) \ge 1 \ \forall v \in V(K)$.
- By (*T*) for $X' := X \cup \{v\}$, we have $|X'| \ge c_o(G - X') = c_o(G - X) + c_o(K - v) \ge |X| + 1 = |X'|$,
- X' is hence a barrier.
- This is a contradiction because X was a maximal barrier.

Proof of Theorem of Tutte

Proof of 4.

- Suppose by contradiction that for an odd component K of G − X and a vertex v of K, H := K − v violates the condition (T), that is there exists Y ⊂ V(H) with c_o(H − Y) > |Y|.
- Since |V(H)| is even, by parity, $c_o(H Y) \ge |Y| + 2$.
- **3** By (T) for $X' := X \cup v \cup Y$, we have $|X'| \ge c_o(G X') = (c_o(G X) 1) + c_o(H Y) \ge (|X| 1) + (|Y| + 2) = |X'|$,
- X' is hence a barrier.
- This is a contradiction because X was a maximal barrier.

Proof of Theorem of Tutte

Proof of 5.

- **1** Since X is a barrier, we have |X| = |Y|.
- Suppose by contradiction that B_X has no perfect matching. Then, by Hall's Theorem, there exists a set Z ⊆ Y such that for the set W ⊆ X of neighbors of Z, we have |Z| > |W|.
- Solution Sector Sector Sector Contrast $v \in Z$ corresponds to an odd component of G X,
- Since $W = \Gamma(Z)$, v corresponds to an odd component of G W.
- **5** Thus $c_o(G W) \ge |Z| > |W|$.
- Then the condition (T) is violated, contradiction.

Z. Szigeti

Proof of 6.

- Let G be a counterexample with |V(G)| minimum.
- 2 Let X be a maximal barrier of G. By 2, $X \neq \emptyset$.
- So By 5, B_X has a perfect matching M'.
- For each odd component K_i of G X, M' connects exactly one vertex v_i of K_i to X.
- By 4, $H_i := K_i v_i$ satisfies (T) and $|V(H_i)| < |V(G)|$, H_i has hence a perfect matching M_i .
- **()** By 3, G X has no even component.
- $M := M' \cup \bigcup_{K_i} M_i$ is a perfect matching of G,
- **G** is not hence a counterexample.

Theorem of Petersen

Every 2-edge-connected 3-regular graph G has a perfect matching.

Proof

- Let X be a subset of vertices of G, $\ell := c_o(G X)$,
- **2** $K_1, ..., K_\ell$ the odd components of G X and
- So E' the set of edges between X and $\bigcup_{1}^{\ell} K_{i}$.
- Since G is 2-edge-connected and 3-regular, $d(K_i) \ge 2$ and by parity, $d(K_i) \ge 3$, so $3c_o(G X) = 3\ell \le \sum_{i=1}^{\ell} d(K_i) = |E'|$.
- Since G is 3-regular, $|E'| \leq \sum_{v \in X} d(v) = 3|X|$.
- By consequence, $3c_o(G X) \le |E'| \le 3|X|$.
- Ø By Tutte's theorem, G has a perfect matching.

Formula of Berge – Tutte

- max{2|M| : M matching of G} = min{ $|V| - c_o(G - X) + |X| : X \subseteq V(G)$ }.
- min{|M-unsaturated vertices| : M matching of G} = max{ $c_o(G X) |X| : X \subseteq V(G)$ }.

Proof (min \geq max)

Let *M* be a matching of $G, X \subseteq V(G)$ and $K_1, \ldots, K_{c_o(G-X)}$ the odd components of G - X.

- $|V(K_i)|$ odd \Rightarrow each K_i contains at least one vertex v_i such that
 - either v_i is *M*-unsaturated,
 - **Q** or v_i is connected to a vertex of X by an edge of M.
- **2** *M* matching $\Rightarrow \leq |X|$ of them are connected to *X* by an edge of *M*,
- $\ge c_o(G X) |X|$ of them contain an *M*-unsaturated vertex.

Matchings in general graphs

Theorem of Tutte

G has a perfect matching $\iff c_o(G - X) \le |X| \quad \forall X \subseteq V(G).$

Problem

Find a perfect matching.

Theorem of Berge

A matching M of G is of maximum cardinality \iff there exists no M-augmenting path.

Idea 1

- Find an augmenting path.
- As a searching algorithm uses an arborescence to find a path from s to t, we will construct an alternating tree.

Alternating trees

Definition : Given a graph G and a matching M of G,

M-alternating tree:

- **①** a tree F in G,
- **2** a vertex r_F of F is M-unsaturated (r_F is the root of F),
- **(3)** in F, every vertex of odd distance from r_F is of degree 2,
- every unique elementary (r_F, v) -path in F is M-alternating.
- **2** odd/even vertex: $v \in V(F)$ such that dist_F(r_F , v) is odd/even.
- **3** A_F and D_F : Set of odd/even vertices of F.

Remark

- $F r_F$ has a perfect matching connecting always a vertex of A_F to a vertex of D_F ,
- 2 r_F is in D_F .

OCG-ORCO

М

Example

Constructing an alternating tree is not sufficient.

Definition: Given an *M*-alernating tree *F*

blossom: the unique odd cycle C of F + uv where u and v are two even vertices of F.

Idea 2 of Edmonds

Let's shrink the blossom!

- We will have pseudo-vertices w_C!
- M/C is a matching of G/C.
- F/C is an M/C-alternating tree.
- Every pseudo-vertex is an even vertex.

Blowing up a blossom

Lemma

For every odd cycle C and for every $z \in V(C)$, C – z has a perfect matching.

Definition

blow up a blossom: w_C is replaced by the odd cycle C.

Lemma

When we blow up a blossom we can extend the matching such that the number of unsaturated vertices does not augment.

INPUT: G = (V, E) a graph. OUTPUT: Either a perfect matching M of Gor a set X violating the Tutte condition. Step 0. Initialization. $M_0 := \emptyset, i := 0.$ $G_0 := G, j := 0.$ Step 1. Stopping rule 1. If all the vertices of G are M_i -saturated then Stop with M_i . Step 2. Beginning of the construction of an alternating tree. Let r be an M_i -unsaturated vertex. $F_0 := (r, \emptyset), k := 0.$ Step 3. Stopping rule 2. If every edge of G_i leaving an F_k -even vertex enters an F_k -odd vertex then stop with X := set of F_k -odd vertices.

Perfect matching algorithm of Edmonds

Step 4. Choice of the edge $u_k v_k$. Let $u_k v_k$ be an edge of G_i such that u_k is an F_k -even vertex and v_k is not an F_k -odd vertex. Step 5. Augmenting the alternating tree. If v_k is not in F_k and there exists $v_k w_k \in M_i$ then do $F_{k+1} := F_k + u_k v_k + v_k w_k, k := k+1,$ Go to Step 3. Step 6. Shrinking a blossom. If v_k is in F_k then do $C_i :=$ be the unique cycle in $F_k + u_k v_k$, $M_{i+1} := M_i/C_i, i := i+1,$ $G_{i+1} := G_i/C_i, \ j := j+1,$ $F_{k+1} := F_k / C_i, k := k+1,$ Go to Step 3.

Perfect matching algorithm of Edmonds

Step 7. Augmenting the matching in G. If v_k is not in F_k and v_k is M_i -unsaturated then do Constructing an M_i -augmenting path in G_i . $Q_i :=$ the unique elementary path in F_k from r_F to u_k , $P_i := Q_i + u_k v_k$ Augmenting the matching in G_i . $M_{i+1} := (M_i \setminus E(P_i)) \cup (E(P_i) \setminus M_i), i := i+1.$ Blowing up the shrunk blossoms in reverse order. If the shrunk blossoms are C_0, \ldots, C_{i-1} then While $i \neq 0$ do e_{i-1} := the edge of M_i incident to $w_{C_{i-1}}$, $G_{i-1} := G_i \div C_{i-1}$ (blowing up of C_{i-1}), z_{i-1} := the vertex of C_{i-1} incident to e_{i-1} , $M_{i+1} := M_i \cup$ the perfect matching of $C_{i-1} - z_{i-1}$. i := i + 1, i := i - 1Go to Step 1.

Justification of the perfect matching algorithm

Theorem

If the algorithm stops at Step 3 then

- the vertices in D_{F_k} are isolated in $G_j A_{F_k}$,
- every vertex of D_{Fk} corresponds to a set of vertices of G of odd cardinality,
- $X = A_{F_k}$ violates Tutte's condition.
- At Step 7 the size of the matching of G increased.
- The algorithm stops in polynomial time.

Remark

Edmonds' algorithm implies Tutte's theorem.

INPUT: G = (V, E) a graph. OUTPUT: Either a perfect matching M of G or a set X violating the Tutte condition.

Z. Szigeti

Justification of the perfect matching algorithm

Justification of the perfect matching algorithm

Proof

- If algorithm stops at Step 3: $uv \in E(G_j), u \in D_{F_k} \Longrightarrow v \in A_{F_k}$.
 - The vertices in D_{F_k} are hence isolated in $G_j A_{F_k}$.
 - When we blow up a pseudo-vertex w_C, we replace a vertex by an odd number of vertices since C is a blossom.
 - By 1 and 2, $c_o(G X) = c_o(G A_F) \ge |D_F| = |A_F| + 1 > |X|$.

The size of the matching increases:

- in the shrunk graph: two M_i-unsaturated vertices become
 M_{i+1}-saturated and the M_i-saturated vertices remain M_{i+1}-saturated.
- Blowing up a blossom does not increase the number of unsaturated vertices (by the blowing up lemma).
- The algorithm stops in polynomial time:
 - Every step is polynomial.
 - **2** Matching augmentation may happen at most n/2 times.
 - Setween two matching augmentations:
 - tree augmentation may happen at most n/2 times,
 - **2** blossom shrinking may happen at most n/2 times.

Maximum cardinality matching algorithm of Edmonds

INPUT: G = (V, E) a graph.

OUTPUT: A maximum cardinality matching of G.

Step 1. Constructing alternating trees.

While there exists an unsaturated vertex do Execute the perfect matching algorithm with the following modification :

before stopping at Step 3 delete the vertices of the alternating tree.

Step 2. Blowing up the shrunk blossoms in reverse order.

As in the perfect matching algorithm by adding that

if
$$w_{C_{i-1}} = r_{F_k}$$
 then $z_{j-1} := r_{F_{k-1}}$.

Step 3. Stop.

Structure

- When the algorithm stops we have t vertex disjoint alternating trees F_1, \ldots, F_t and a perfect matching M' of the remaining graph.
- Every vertex of D_i corresponds to an odd connected subgraph of G.
- Every F_i corresponds to a subgraph G_i of G.

Justification of the max. cardinality matching algorithm

Theorem

() G_i has a matching M_i with exactly one M_i -unsaturated vertex r_i in G_i .

- $c_o(G-X) |X| = t \text{ where } X := \bigcup_{i=1}^t A_{F_i}.$
- **3** $M := M' \cup \bigcup_{i=1}^{t} M_i$ is a maximum cardinality matching of *G*.
- The algorithm stops in polynomial time.

Proof

- F_k has one unsaturated vertex (r_{F_k}) and blowing up a blossom does not increase the number of unsaturated vertices (by the blowing up lemma).
- $c_o(G X) = c_o(G \bigcup_{i=1}^t A_{F_i}) = \sum_{i=1}^t |F_i A_{F_i}| = \sum_{i=1}^t |D_{F_i}| = \sum_{i=1}^t |D_{F_i}| = \sum_{i=1}^t |A_{F_i}| + 1 = |\bigcup_{i=1}^t A_{F_i}| + t = |X| + t.$

Proof

- Sy the trivial direction of the formula of Berge –Tutte, 1 and 2, max ≤ min ≤ $|\{M$ -unsaturated vertices} $| = t = c_o(G - X) - |X| ≤ max$. Thus min{|M-unsaturated vertices| : M matching of G} = max{ $c_o(G - X) - |X| : X ⊆ V(G)$ }.
- We execute at most *n* times the perfect matching algorithm which is polynomial, and hence this algorithm is polynomial.

Remark

This algorithm of Edmonds implies the Berge – Tutte formula.

Definitions

- near-perfect matching : a matching of G covering all but one vertex,
- **2** Factor-critical graph : G v has a perfect matching $\forall v \in V(G)$,
- **③** $D(G) := \{v \in V : v(G v) = v(G)\},$
- A(G) := set of neighbors of D(G) in $V(G) \setminus D(G)$,

Theorem (Gallai-Edmonds)

- **()** The connected components of G[D(G)] are factor-critical.
- **2** C(G) has a perfect matching.
- **③** $c_o(G A(G)) |A(G)| = \max\{c_o(G X) |X| : X \subseteq V\}.$
- \bigcirc $B_{A(G)}$ has a matching
 - covering A(G) and
 - 2 not covering any given vertex $v \notin A(G)$.
- S A matching M is of maximum cardinality if and only if M contains
 - **Q** a near-perfect matching of each connected components of G[D(G)],
 - **2** a perfect matching of C(G) and
 - **③** a matching of $B_{A(G)}$ covering A(G).

Proof

- Execute Edmonds' maximum cardinality matching algorithm and let $D := \bigcup_{i=1}^{t} D_i, A := \bigcup_{i=1}^{t} A_i, C := V(G) \setminus (D \cup A).$
- **2** D, A, C verify the assertions of the theorem.
- **3** D = D(G), A = A(G), C = C(G).
- Thus D(G), A(G), C(G) verify the assertions of the theorem.

Proof of (1) for D

- By the blowing up lemma, blowing up an odd cycle in a factor-critical graph results a factor-critical graph.
- 2 Since a connected component of G[D] is obtained from a (pseudo-) vertex (which is factor-critical) by blowing up odd cycles, it is hence factor-critical.

Proof of (2) for C

M' is a perfect matching of C.

Proof of (3) for A

 $c_o(G - A) - |A| = \max\{c_o(G - X) - |X| : X \subseteq V\}$ was proved in the previous theorem.

Proof of (4) for A

B_A is the union of the alternating trees found by the algorithm.

- **2** For a given $v \in D_i$, let **P** be the alternating path between r_i and v.
- By changing the role of matching edges and non-matching edges in *P*, we get the required matching.

Proof of (5) for D, C, A

It follows directly from (3).

Z. Szigeti

Proof of D = D(G), A = A(G), C = C(G)

- It is enough to prove that D = D(G).
- Since D, C, A satisfy (5), we have $D(G) \subseteq D$.
- Since D satisfies (1) and A satisfies (4), we have $D \subseteq D(G)$.

