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Matchings in general graphs

Planning

© Theorems of existence and min-max,

@ Algorithms to find a perfect matching / maximum cardinality
matching,

© Structure theorem.

Application : Assignment of pilots

@ The manager of an airline wants to fly as many planes as possible at
the same time.

@ Two pilots must be assigned to each plane.
@ Unfortunately, some pilots can not fly together.

@ The manager knows all the pilotes, he knows hence wether two pilots
are compatible or not.

@ How would you model this problem?
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Examples

Graphs with perfect matching

Pl

Graphs without perfect matching
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Definitions

© Graph odd/even : |V(G)| is odd/even.
Q (G — X) : number of odd connected components of G — X.
© barrier : X C V(G) such that ¢,(G — X) = | X].
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Lemma: G = (V, E) graph, X C V.

Q |V[=c(G—-X)+IX] (2)
Q If |V]is even, then ¢,(G — X) = |X| (2).

v

Proof
{X, Vi, Vs, ..., V) the connected components of G — X} = partition of V.
k
VI = IXI+) Vil
1

|Vi| odd |Vi| even
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Necessary condition to have a perfect matching

If G has a perfect matching M, then VX C V(G), c,(G — X) < |X]|.

Proof

Q Let Ki,..., Ky be the odd connected components of G — X.

© M is a perfect matching and |V/(K;)| is odd, there exists thus an edge
of M that connects K; to a vertex x; in X.

© Since M is a matching, x; # x; if i # j.
Q (G —X)=10=|{x1, ..., xe}| <|X].

éo

X

components

l)

components

Z. Szigeti 0OCG-ORCO 5/35



Characterization of the existence of a perfect matching

Theorem of Tutte
G has a perfect matching <= ¢,(G — X) < |X| ¥YX C V(G) (T).

Proof

Let G be a connected graph that satisfies (T) and X a maximal barrier.
O |V(G)| is even.
Q@ X 0.

© G — X has no even connected component.

© For each vertex v of each odd connected component K of G — X,
K — v satisfies (T).

O Let Bx = (X, Y, F) be the bipartite graph obtained from G by
contracting each odd connected component of G — X and by deleting
all the edges in G[X]. Bx has a perfect matching.

O These imply that G has a perfect matching.
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Proof of Theorem of Tutte

Proof of 1.

© By (T) for the set ), we have 0 < ¢,(G —0) < || = 0.

© Hence G has no odd connected component.

© Since G is connected, G has one connected component that is even.

Proof of 2.

© Let v be an arbitrary vertex of G.

Q By (T) for {v}, we have, by parity, 1 < ¢c,(G — v) < [{v}| =1.
© v is hence a barrier.

@ Since X is a maximal barrier, X # ().
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Proof of Theorem of Tutte

Proof of 3.

© Suppose by contradiction that K is an even component of G — X.
© By parity, ¢o(K — v) > 1 Vv € V(K).
© By (T) for X’ := X U{v}, we have

IX'| > co(G—X')=¢co(G—X)+ co(K—v)>|X|+1=|X,
@ X’ is hence a barrier.

@ This is a contradiction because X was a maximal barrier.
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Proof of Theorem of Tutte

Proof of 4.

© Suppose by contradiction that for an odd component K of G — X
and a vertex v of K, H := K — v violates the condition (T), that is
there exists Y C V(H) with ¢o(H — Y) > |Y]|.

@ Since |V (H)| is even, by parity, co(H—Y) > |Y| + 2.

O By (T) for X' :=XUvUY, we have |[X'| > c,(G — X') =
(co(G=X) =)+ co(H=Y) 2 (IXI =1) + (Y] +2) = X,

© X’ is hence a barrier.

© This is a contradiction because X was a maximal barrier.
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Proof of Theorem of Tutte

Proof of 5.

© Since X is a barrier, we have |[X| = |Y|.

© Suppose by contradiction that Bx has no perfect matching. Then, by
Hall’s Theorem, there exists a set Z C Y such that for the set
W C X of neighbors of Z, we have |Z| > |W/|.

© Each v € Z corresponds to an odd component of G — X,

Q Since W =T(Z), v corresponds to an odd component of G — W.
Q Thus (G — W) > |Z]| > |W|.

© Then the condition (T) is violated, contradiction.
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Proof of Theorem of Tutte

Proof of 6.

By 3, G — X has no even component.
M = MU Uk, M; is a perfect matching of G,

G is not hence a counterexample.

Q Let G be a counterexample with |V(G)| minimum.
Q Let X be a maximal barrier of G. By 2, X # ().
© By 5, Bx has a perfect matching M'.
@ For each odd component K; of G — X, M’ connects .
exactly one vertex v; of K; to X. @ ® a
© By 4, Hi:= K; — v; satisfies (T) and |V(H;)| < |[V(G)], M
H; has hence a perfect matching M;. “
o
7
o
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Application

Theorem of Petersen
Every 2-edge-connected 3-regular graph G has a perfect matching.

Proof

O Let X be a subset of vertices of G, / := ¢,(G — X),

Q Ki,..., Ky the odd components of G — X and

© E’ the set of edges between X and U{ K;.

© Since G is 2-edge-connected and 3-regular, d(K;) > 2 and by parity,
d(K;) > 3,50 3¢,(G — X) =3¢ < S0_, d(K) = |E'|.

@ Since G is 3-regular, |[E'| <>y d(v) = 3[X]|.

O By consequence, 3¢,(G — X) < |E'| < 3|X]|.

@ By Tutte's theorem, G has a perfect matching.
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Maximum cardinality matching

Formula of Berge —Tutte

O max{2|M| : M matching of G} =
min{|V| — c,(G — X) + |X| : X C V(G)}.

@ min{|M-unsaturated vertices| : M matching of G} =
max{c,(G — X) — |X| : X C V(G)}.

Proof (min > max)
Let M be a matching of G, X C V(G) and Ki, ..., K, (G—x) the odd
components of G — X.

© |V(K;)| odd = each K; contains at least one vertex v; such that

@ ceither v; is M-unsaturated,
@ or v; is connected to a vertex of X by an edge of M.

@ M matching = < |X| of them are connected to X by an edge of M,
© > (G — X) — |X]| of them contain an M-unsaturated vertex.
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Matchings in general graphs

Theorem of Tutte
G has a perfect matching <= ¢,(G — X) < |X| VX C V(G).

Problem

Find a perfect matching. i
Theorem of Berge o7 Ktk

A matching M of G is of maximum cardinality <= | 2 c8& h

there exists no M-augmenting path.

© Find an augmenting path.

© As a searching algorithm uses an arborescence to find a path from s
to t, we will construct an alternating tree.
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Alternating trees

Definition : Given a graph G and a matching M of G,

© M-alternating tree:
©® atree Fin G,
@ a vertex rr of F is M-unsaturated (rr is the root of F),
© in F, every vertex of odd distance from rg is of degree 2,
@ every unique elementary (rr, v)-path in F is M-alternating.

© odd/even vertex: v € V(F) such that distg(rr, v) is odd/even.
© Ar and Df: Set of odd/even vertices of F.

|DF|:|AF|+1: k)

© F — rr has a perfect matching connecting always a Dr
vertex of Afr to a vertex of Df, M
A
Q rrisin Df. :
F

Z. Szigeti 0OCG-ORCO 15/35



Blossoms
Constructing an alternating tree is not sufficient. [ S

Definition: Given an M-alernating tree F

blossom: the unique odd cycle C of F 4+ uv where u
and v are two even vertices of F.

Idea 2 of Edmonds

Let's shrink the blossom!

© We will have pseudo-vertices w¢!

wc

@ M/C is a matching of G/C. M Dryc
© F/Cis an M/C-alternating tree. Ar/c

F/C

© Every pseudo-vertex is an even vertex. P
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Blowing up a blossom

For every odd cycle C and for every z € V(C),
C — z has a perfect matching.

blow up a blossom: wc is replaced by the odd cycle C.

When we blow up a blossom we can extend the matching such that the
number of unsaturated vertices does not augment.

wc

when wc is saturated

Z. Szigeti
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Perfect matching algorithm of Edmonds

Invur: G = (V, E) a graph.
Output: Either a perfect matching M of G
or a set X violating the Tutte condition.
Step 0. Initialization.
MO = @,I = 0,
Go:=G,j:=0.
Step 1. Stopping rule 1.
If all the vertices of G are M;-saturated then Stop with M;.
Step 2. Beginning of the construction of an alternating tree.
Let r be an M;-unsaturated vertex.
Fo := (r,0),k := 0.
Step 3. Stopping rule 2.
If every edge of G; leaving an F-even vertex enters
an F-odd vertex then stop with X := set of F,-odd vertices.
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Perfect matching algorithm of Edmonds
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Perfect matching algorithm of Edmonds

Step 4. Choice of the edge uyvy.
Let uxvi be an edge of G; such that uy is an Fy-even vertex and
Vi is not an Fx-odd vertex.
Step 5. Augmenting the alternating tree.
If v is not in F, and there exists v, w, € M; then do
Fri1 = Fe + ugvie + viewy, k == k+ 1,
Go to Step 3.
Step 6. Shrinking a blossom.
If v is in Fx then do
C; := be the unique cycle in Fj + uj vy,
M,’+1 = M,’/Cj, =i+ 1,
Gt = Gj/G, j=j+1,
Fk+1 = Fk/Cj, k:=k+ 1,
Go to Step 3.
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Perfect matching algorithm of Edmonds

Step 7. Augmenting the matching in G.
If vi is not in Fx and vy is M;-unsaturated then do
Constructing an M;-augmenting path in G;.
Q; := the unique elementary path in Fy from rg to uy,
Pi = Qi + uj vk.
Augmenting the matching in G;.
Miiq = (M,‘ \ E(P,)) U (E(P,) \ M,'),i =1
Blowing up the shrunk blossoms in reverse order.
If the shrunk blossoms are Cy, ..., C;_1 then
While j # 0 do
ej—1 := the edge of M; incident to w¢,_,,
Gj_1 := Gj + Cj_1 (blowing up of C;_1),
zj_1 = the vertex of C;_; incident to e;_1,
Mit1 := M; U the perfect matching of C;_1 — zj_;.
i=i4+1j:=j—1.
Go to Step 1.
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Justification of the perfect matching algorithm

O If the algorithm stops at Step 3 then

@ the vertices in D, are isolated in G; — Af,,

@ every vertex of D, corresponds to a set of vertices of G of odd
cardinality,

© X = Af, violates Tutte's condition.

© At Step 7 the size of the matching of G increased.

© The algorithm stops in polynomial time.

Edmonds’ algorithm implies Tutte's theorem.

Invur: G = (V, E) a graph.
Output: Either a perfect matching M of G
or a set X violating the Tutte condition.
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Justification of the perfect matching algorithm
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Justification of the perfect matching algorithm

© |[f algorithm stops at Step 3: uv € E(G;),u € Df, = v € Af,.
@ The vertices in Df, are hence isolated in G; — Af,.
@ When we blow up a pseudo-vertex wc, we replace a vertex by an odd
number of vertices since C is a blossom.
© By land 2 c,(G—X)=1c,(G—Ar) >|De| = |Ae| +1 > [X].
© The size of the matching increases:

@ in the shrunk graph: two M;-unsaturated vertices become
M 1-saturated and the Mj-saturated vertices remain M;1-saturated.
@ Blowing up a blossom does not increase the number of unsaturated
vertices (by the blowing up lemma).

© The algorithm stops in polynomial time:
@ Every step is polynomial.

® Matching augmentation may happen at most n/2 times.
© Between two matching augmentations:

@ tree augmentation may happen at most n/2 times,
@ blossom shrinking may happen at most n/2 times.
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Maximum cardinality matching algorithm of Edmonds

Ineur: G = (V, E) a graph.
OutpuT: A maximum cardinality matching of G.

Step 1. Constructing alternating trees.
While there exists an unsaturated vertex do
Execute the perfect matching algorithm with the
following modification :
before stopping at Step 3 delete the vertices
of the alternating tree.
Step 2. Blowing up the shrunk blossoms in reverse order.
As in the perfect matching algorithm by adding that
if we_, = rr then zj_1 :==rg,_,.
Step 3. Stop.

e C e
— e — .

we z

» —
wc

when wc is saturated when wc is unsaturated I3
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Justification of the max. cardinality matching algorithm

@ When the algorithm stops we have t vertex disjoint alternating trees
Fi,...,F: and a perfect matching M’ of the remaining graph.

@ Every vertex of D; corresponds to an odd connected subgraph of G.

@ Every F; corresponds to a subgraph G; of G.
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Justification of the max. cardinality matching algorithm

© G; has a matching M; with exactly one M;-unsaturated vertex r; in G;.
Q ¢ (G — X)— |X| =t where X :=J_, Ar..

O M:=MuU Ule M; is a maximum cardinality matching of G.

© The algorithm stops in polynomial time.

G N
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Justification of the max. cardinality matching algorithm

@ Fy has one unsaturated vertex (rr,) and blowing up a blossom does
not increase the number of unsaturated vertices (by the blowing up
lemma).

@ (G —X) =66 — LtJf:1 AR) =1 |Fi = Al = ¥i1 |0 | =
>i—1(lArI +1) = Uiz ARl +t = [X[ + .
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Justification of the max. cardinality matching algorithm

© By the trivial direction of the formula of Berge —Tutte, 1 and 2,
max < min < |[{M-unsaturated vertices}| = t = ¢,(G — X) — | X| < max.
Thus min{|M-unsaturated vertices| : M matching of G} =
max{co(G — X) — |X| : X C V(G)}.

@ We execute at most n times the perfect matching algorithm which is
polynomial, and hence this algorithm is polynomial.

This algorithm of Edmonds implies the Berge —Tutte formula.
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Structure theorem

© near-perfect matching : a matching of G covering all but one vertex,

© Factor-critical graph : G — v has a perfect matching Vv € V(G),
Q D(G)={veV:v(G-v)=r(G)},

Q A(G) := set of neighbors of D(G) in V(G) \ D(G),

o = V(G)\ (D(G) UA(G)).

Z. Szigeti 0OCG-ORCO 30/35



Structure theorem

Theorem (Gallai-Edmonds)
© The connected components of G[D(G)] are factor-critical.

9 has a perfect matching.
O (G —A(G))— |A(G)| = max{co(G — X) — |X| : X C V}.
Q By(c) has a matching
@ covering A(G) and
@ not covering any given vertex v ¢ A(G).
O A matching M is of maximum cardinality if and only if M contains

® a near-perfect matching of each connected components of G[D(G)],
® a perfect matching of and
© a matching of B,(¢) covering A(G).
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Structure theorem

© Execute Edmonds’ maximum cardinality matching algorithm and let
D:=Ui_; Di,A:=Ui_; A, C:=V(G)\ (DUA).

Q D, A, C verify the assertions of the theorem.

Q@ D=D(G),A=A(G),C = C(G).

©Q Thus D(G), A(G), C(G) verify the assertions of the theorem.

Gy b
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Structure theorem

Proof of (1) for D

© By the blowing up lemma, blowing up an odd cycle in a factor-critical
graph results a factor-critical graph.

@ Since a connected component of G[D] is obtained from a (pseudo-)
vertex (which is factor-critical) by blowing up odd cycles, it is hence
factor-critical.

Proof of (2) for C
M’ is a perfect matching of C.

Proof of (3) for A

(G — A) — |A| = max{co(G — X) — |X| : X C V} was proved in the
previous theorem.
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Structure theorem

Proof of (4) for A

© B, is the union of the alternating trees found by the algorithm.
© For a given v € D, let P be the alternating path between r; and v.

© By changing the role of matching edges and non-matching edges in
P, we get the required matching.

Fiop VR

Proof of (5) for D, C, A
It follows directly from (3).
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Structure theorem

Proof of D = D(G), A= A(G), C = C(G)

© It is enough to prove that D = D(G).
@ Since D, C, A satisfy (5), we have D(G) C D.
© Since D satisfies (1) and A satisfies (4), we have D C D(G).
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