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Bipartite graphs

Definition

Bipartite graph: if there exists a partition of V/(G) into two sets A and
such that every edge of G connects a vertex of A to a vertex of

G is bipartite <= G contains no odd cycle.

Proof of necessity
O Let G= (A, B; E) be bipartite and C an elementary cycle of G.
Q (A B; E(C)) is bipartite and dc(v) =0 or 2 for all v € A.
Q [E(C)[ =2 veadc(v) =22,ca0=0mod 2.

R R
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Bipartite graphs

Proof of sufficiency

O Let G=(V,E) be a connected graph.

@ Choose a vertex s of V, A:= {s}, B := 0.
While there exist u € AU B,v ¢ AU B,uv € E do:
=BU{v}ifueAand A:=AU{v}if ve B; p(v) :=u.

© If there exists xyx» € E st x; and x» have the same color then do :

@ Let P; be the (s, x;)-path obtained using p(.) (i = 1,2).

@ Let t be the last common vertex in P; and P, starting from s.

O C := Pi[x1, t] + Pz[t, x2] + xox1 is an elementary odd cycle of G,
contradiction.

@ G is hence bipartite.
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Basic definitions

Definitions : G = (V, E)

@ Matching : M C E such that dy(v) <1VveV.

@ Perfect matching : M C E such that dy(v) =1Vv e V.

© Transversal : T C V such that TN {u,v} # 0 Yuv € E.

Q v(G) := max{|M| : M matching of G}.

Q 7(G) :=min{|T|: T transversal of G}. )
v(G1) =4 =1(Gy) v(Gp) =3 =7(Gp)
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Relation between v(G) and 7(G) in general

For every graph G, v(G) < 7(G).

Proof

© Let M be a maximum matching and 7 a minimum transversal of G.

© Since T is a transversal, T contains at least one end-vertex of every
edge e of M, say ve.
© Since M is a matching, ve # vrif e,f € M and e # f.

O M =|{vecT:ecM}<|T|

Q v(G) = M| <|T|=7(G).
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Basic definitions

Definitions : G = (V, E), M matching of G

© M-satured vertex: v € V such that dy(v) = 1.
@ M-unsatured vertex: v € V such that dy(v) = 0.
© Me-alternating path: if its edges are alternating in M and in E\ M.

@ M-augmentanting path: if M-alternating with M-unsaturated
end-vertices.

Q@ G = (U,W;E) : bipartite graph with color classes U and W.

PR
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Construction of an auxiliary directed graph

Given a bipartite graph G = (U, W; E) and a matching M of G, we
construct a directed graph Dy, = (V, A) as follows:

Q V =UUWuU{s,t},
Q A = {su:u M-unsaturated in U}U {wt : w M-unsaturated in W }U
{wu:uw € M}U {uw : uw € E\ M}.

U
G,M
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Characterization of a matching of maximum cardinality

Given a bipartite graph G = (U, W; E) and a matching M of G, the
following conditions are equivalent:

Q v(G) = [M],

© no M-augmenting path exists in G,
O no (s, t)-path exists in Dy,

Q 7(G) < |M|.

U
G,M
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Characterization of a matching of maximum cardinality

(1) = (2) : ¥(G) = |[M| = no M-augmenting path

© Suppose that an M-augmenting path P exists in G.
Q Let M :=(M\ E(P))U (E(P)\ M).
© M’ is a matching and |[M'| = |M| + 1.

© M is not of maximum cardinality, contradiction.
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Characterization of a matching of maximum cardinality

(2) = (3) : no M-augmenting path in G = no (s, t)-path in Dy,

© Suppose for a contradiction that an (s, t)-path P exists in Dy.

Q Let PP:=P—s5—1t.

© Since P starts with an arc sv and finishes with an arc ut, the
end-vertices u and v of P’ are M-unsaturated.

Q Since P is a directed path, P’ is an M-alternating path.

© P’ is hence an M-augmenting path, contradiction.
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Characterization of a matching of maximum cardinality

(3) = (4) : no (s, t)-path in Dy = 7(G) < |M|

© Suppose no (s, t)-path exists in Dy.

@ Let S be the set of vertices attainable from s in Dy.

Q Let 7T :=(U\S)Uu(WnS).

© Since no arc leaves S in Dy, T is a transversal of G and | 7| < |[M]|.
Q 7(G) < |T|<[M].

W
[ 1 E:Ui[TQ
G,M
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Characterization of a matching of maximum cardinality

© Suppose that 7(G) < |M|.

@ Since M is a matching, IM| < v(G).

© By Lemma 1, v(G) < 7(G).

© Thus, equality holds everywhere, in particular : |M| = v(G).
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Consequences

Theorem 3 (Kénig)
For every bipartite graph G, v(G) = 7(G). [W

Maximum cardinality matching in a bipartite graph algorithm

IneuT: G bipartite graph.
OutpuT: Maximum cardinality matching M of G.

Step 0. Initialization.
M := 0.
Step 1. Matching augmentation.
While an (s, t)-path P exists in Dy, do
M:=(M\ E(P)U(E(P—s—t)\M).
Step 2. End of algorithm.
STOP.
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Matchings by flows

Theorem 3 (Kénig)
For every bipartite graph G, v(G) = 7(G). [W

Ford-Fulkerson = Konig

Let (D:= (W, A),g) be a network where W:= U U V U {s, t},
A={su:uveUtU{vt:veV}U{uv:uve U,ve V,uveE}
g(su):=1Vue U, g(vt) :=1Vv e Vand g(uv) = |U|+1VYuv € E,
x an integer feasible (s, t)-flow of max. value, Z an (s, t)-cut of min. capacity,
M:={uv € E : x(uv) =1} and T:= (U\ Z)U (V N Z).

(a) Prove that M is a matching of G of size val(x).
(b) Prove that T is a transversal of G of size cap(Z).
(c) Deduce Kénig Theorem from (a), (b) and Ford-Fulkerson Theorem.

4
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Matchings by flows

Proof of (a)
© There exists an integer g-feasible (s, t)-flow x of maximum value.
Q Since df (u) = d (v) = x(su) < g(su) =1Vue U,
and d; (v) =df(v) =x(vt) < g(vt) =1Vv € V, we have
® x(e)=0o0r1VeeAand
@ at most one edge of M is incident to w € UU V.
© Thus M is a matching of G.

Q val(x)=df (UUs) — d-(UUs)=dH(Uus)= S 1=|M|.
x(uv)=1l,uveE

v

Z. Szigeti 0OCG-ORCO 15/34



Matchings by flows

Proof of (b)
@ cap(Z) < d/f(s) = |U] since Z is an (s, t)-cut of minimum capacity.
O Let K be the set of arcs in D from UNZ to V' \ Z.

Ul = cap(Z) = > g(su)+ > gvt)+ > g(uv)
ueU\Z vevnz uveK

= > 14+ > 14 > (JU+1)

ueU\Z vevVnZ uveK
=|U\Z|+|VNnZ|l+|K|(|U +1)
=T+ |K|(|U| +1).
© Hence K =), so T is a transversal and cap(Z) = |T|.
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Matchings by flows

Proof of (c)

© By Ford-Fulkerson's theorem, (a), Lemma 1 and (b),
cap(Z) = val(x) = [M| < v(G) < 7(G) < |T| = cap(2),
@ Hence equality holds everywhere, in particular v(G) = 7(G).
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Perfect matchings in bipartite graphs

Given a bipartite graph G = (U, W; E) and X C U,
[c(X) : set of neighbors of X.

Theorem 4 (Hall)

A bipartite graph G = (U, W; E) has a perfect matching <=
(a) |U]=|wW|,
(b) IFe(X)| > |X] VX C U.

Proof of necessity :
O If G has a perfect matching M then |y (X)| = |X]| VX C U.
@ In particular, |U| = |[Ty(U)| = |W| and hence (a) is satisfied.
© Since [[g(X)| > |[Tm(X)], (b) is satisfied.
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Perfect matchings in bipartite graphs

Proof of sufficiency :

© By Theorem 3, 3 matching M and transversal T of G st [M| = |T|.
QUi =TnNnU Wy :=TnWet U, :=U-U.

© Since T is a transversal, ['(Uz) C Wi; and hence |W4| > [T(Us)].
Q By (b), [[(Ua)] > |Ua] and by (a), U] = [W].

Q M| =[T|=[U1UW|=|Ui] + [W1| = |Us| + [Uz| = |U| = |W].
@ The vertices of U and those of W are hence M-saturated.

@ Thus M is a perfect matching of G.

Wi
L T 1w
T
[ [T Ju
U> Ui
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Maximum weight matchings in bipartite graphs

P12

Given a bipartite graph G = (U, V; E) and a weight function c on E,
find a matching M of maximum weight (3" ..y c(e)) of G.

P>
P3
P4

Ps

Pe

maximum weight matching in a bipartite graph with ¢ > 0: delete the
edges of negative weight as they are not in a maximum weight matching.

maximum weight perfect matching in a complete bipartite graph K, .:

we add new vertices and new edges of weight zero.

minimum weight perfect matching in K, ,: ¢ := —c.

minimum weight perfect matching in K, , with ¢ > 0: ¢/ :=c+ L
where L := max{|c(e)| : e € E}. The new weighting is non-negative
and the weight of each perfect matching increased by constant (n- L).
minimum weight perfect matching in a bipartite graph having a
perfect matching with ¢ > 0: more general than Ps.
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Linear Programming

Linear Program (Primal)

The problem of finding a c-minimum weight perfect matching in a
bipartite graph G = (U, V; E) can be formulated as a linear program.

Z x(e) = 1 VYweUUV,
ecd(w)
x(e) > 0 Vee€kE,

> cle)x(e) = w(min).
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Linear Programming

Linear Program (Primal) for a graph G = (U, V; E)

Z x(e) = 1 VYweUUV,

x(e) > 0 Vee€E,
Zc(e)x(e) = w(min).

ecE

© The characteristic vector of a perfect matching of G is a feasible
solution of (P).

@ A basic solution of (P) is the characteristic vector of a perfect
matching of G since the polyhedron of (P) is integer by Cramer's rule
and since each square submatrix of the incidence matrix of a bipartite
graph is of determinant 0,1 or —1.

V.
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Linear Programming

Dual of (P)

y(u) + y(v) < c(uv) Yuv € E,
) = z(max).

O If x and y are feasible solutions of (P) and (D) and
© the complementary slackness conditions are satisfied:
x(uv) > 0= y(u) +y(v) = c(uv)

(uv is y-tight).
© then x and y are optimal solutions of (P) and (D).

v

Theorem (Egervary)

The minimum weight of a perfect matching in a bipartite graph is equal to
the optimal value of (D).

@ At that time, linear programming didn't exist!

V.
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How to find a minimum weight perfect matching in a
bipartite graph

Algorithm Hungarian method (Kuhn)

Input:  Bipartite graph G = (U, V; E) that has a perfect matching and
non-negative weighting c on E.
Output: Minimum c-weight perfect matching of G.

Idea : We will have in each step:
© a vector x (the characteristic vector of a matching M),
@ a feasible solution y of (D),

© such that the complementary slackness conditions are satisfied:
o x(e) > 0= e is y-tight, that is
@ M is a matching of the subgraph induced by y-tight edges.
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Algorithm Hungarian method (Kuhn)

Step 0. Initialization.
Mo :=0,i:=1.
) min{c(wv) : wv € E} ifwe U,
nw)i=1 o { } ifweV,
Step 1. Construction of subgraph G; of tight edges.
Gi = (U, V; E) where E; = {uv € E : yi(u) + yi(v) = c(uv)}.
Step 2. Construction of maximum matching and of minimum transversal of G;.
Starting from M;_; and using flows, find a maximum cardinality matching M;
and a minimum cardinality transversal T; of G;.
Step 3. Stopping rule.
If M; is a perfect matching of Gj, then STOP with M;.
Step 4. Modification of dual solution.
gi = min{c(uv) — yi(u) — yi(v) : uv € E(G — T;)}
yilw)+ei ifweU\T,
y,'+1(W) = y,'(W)—E,' ifweVnT;,
yi(w) otherwise.
i =174 1 and go to Step 1.
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Justification of the Hungarian method

Construction of partitions of U and V.

Ul= {u € U : Mj-unsaturated}, U?= U\ (T; U U}), U3= U\ (U} U U?),
Vi={v € V: Mj-unsaturated}, V?= V N T;, V3=V \ (VI U V?).

1

Reminder V3 V2 Vi
o U?={ue U\ U}:3/ e U!and DR < [ ]
an M;-alternating (v, u)-path}, b c
2 _ 2 i
° Vi = r"”"(Ug)’ : NS S
SRS rMi(Ui)‘ U3 U2 Ut

yilw)+ei ifweU\T,
y;+1(w) = y;(W) —¢g fweVnT;,
yi(w) otherwise.
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Justification of the Hungarian method

© i is a feasible solution of (D) Vi.

© E;.1 contains M; and an edge of G from U} U U,-2 to \/,-1 U \/,-3 Vi.
O After each execution of Step 2, [Mjy1] > [Mj| or [UZ 4] > [UZ].
© The algorithm stops in polynomial time

© with a minium weight perfect matching M; of G.

0 0 -2 0 0 0
[« ] <]
yi 0
3 2 1 1 5 4 1 3 E;A<iM; -
1) (2) uLvi =3
v =
U3, v3 =]
3 -1 0 0 —4 -2 -1 0 o
N B
> [N ~]
6 5 2 3 7 6 3 4
(3) (4)
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Justification of the Hungarian method

1. y; is a feasible solution of (D)
yi(u) + yi(v) < c(uv) Yuv € E.
Proof: By induction on i. Let uv be an arbitrary edge of G.
Q i=1:y(u)+yi(v) =min{c(uw) : uw € E} + 0 < c(uv).
© Suppose it is true for i.
O Ifue UlUU? and v € V2, then
yitr(u) + yir1(v) = (vi(u) + &) + (yi(v) — &) < c(uv).
@ Ifue Ul UU? and v € VI U V3, then, by definition of &;,

Yirr(u) +yira(v) = (yi(u) +&i) + yi(v)
yi(u) + yi(v) + (c(uv) = yi(u) = yi(v))
c(uv).

IN

O If ue U3, then yii1(u) + yir1(v) < yi(u) + yi(v) < c(uv).
© In each cases, y; 1 is a feasible solution of (D).
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Justification of the Hungarian method

2. E;;1 contains M; and an edge of G from Ul U U? to VU V3.
Proof :
Q y-tight edges from U! U U? to V? and from U3 to V? are y;,1-tight:

9 yita(u) + yira(v) = (yi(u) + &) + (vi(v) — &) = c(uv).
9 yit1(u) +yir1(v) = yi(u) + yi(v) = c(uv).
In particular, M; C E; ;.

© Since G has a perfect matching, by definition of ¢;, uv € E exists:
O & =c(uv) —yi(u) —yi(v),ue UtUU? v e VIU V3 Then
9 yir1(u) + yir1(v) = (yi(u) + i) + yi(v)
= yi(u) + (c(uv) = yi(u) = yi(v)) + yi(v)
= c(uv).

and so uv € Ej1.
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Justification of the Hungarian method

Proof: Let uv € E;;q such that u € Ut U U? v e VIU V3.
Q If v V3, then |[U2,| > |U2].

Q If v € V!, then an M;-augmenting path exists in G;.1, hence, by
Theorem 2, |Mit1| > |M;].

v V2 v Via Vi % % vi
[ = o ] [ = o ] RN N °
ixiacts mincs fupe
] [ ] [ ] [ ] R
U? u? ut Ui Ut v? U7 ut

Z. Szigeti 0OCG-ORCO 30/34



Justification of the Hungarian method

Proof :

© Each Step is polynomial.

© We show that the loop is executed a polynomial number times:
@ By 3, either |U2 | > |U?| or [Miy1] > [M;].
© The first case can happen at most 7 times so

after at most g executions of the loop, M; is augmented.
© One can augment M; at most 7 times.

© The algorithm is hence polynomial.

4. The algorithm stops in polynomial time.
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Justification of the Hungarian method

5. The algorithm stops with a min. weight perfect matching M; of G.
Proof :

© Let x; be characteristic vector of the perfect matching M; of G; when
the algorithm stops.

@ Then x; is a feasible solution of (P).
© By 1, y; is a feasible solution of (D).

Q Since M; C E;, if x;(uv) > 0 then uv is y;-tight, thus the
complementary slackness conditions are satisfied.

© It follows that x; and y; are optimal solutions.

Q M; is a minimum weight perfect matching of G.
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Applications

@ A director must assign his n employees to n tasks to be executed.

o Each employee will execute exactly one task and
@ each task will be executed by exactly one employee.

@ Since the director knows his employees well, he knows the profit c;; he
can earn by assigning the employee E£; to the task T;.

@ He hires you to help him to find the assignment of maximum profit.
@ How would you model this problem?
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Applications

Locating objects in space

@ We want to determine the exact positions of n objects in 3-dimensional
space using two fixed infrared sensors.

Each sensor provides us n straight lines, each containing one objects.
These 2n lines give theoretically the exact positions of the n objects.

Due to technical problems we only have approximately the lines.

e © ¢ ¢

We know that two lines corresponding to the same object have a very small
Euclidean distance.

@ How would you model this problem?

AT oo
XA LR

[2)
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