Combinatorial Optimization and Graph Theory ORCO
 Matchings in bipartite graphs

Zoltán Szigeti

Planning

- Bipartite graphs
- Matchings
- Maximum cardinality matchings in bipartite graphs
- Matchings in bipartite graphs by flows
- Perfect matchings in bipartite graphs
- Maximum weight matchings in bipartite graphs
- Linear Programming background
- Hungarian method
- Execution
- Justification
- Applications

Bipartite graphs

Definition

Bipartite graph: if there exists a partition of $V(G)$ into two sets A and B such that every edge of G connects a vertex of A to a vertex of B.

Theorem 1

G is bipartite $\Longleftrightarrow G$ contains no odd cycle.

Proof of necessity

(1) Let $G=(A, B ; E)$ be bipartite and C an elementary cycle of G.
(2) $(A, B ; E(C))$ is bipartite and $d_{C}(v)=0$ or 2 for all $v \in A$.
(3) $|E(C)|=\sum_{v \in A} d_{C}(v) \equiv \sum_{v \in A} 0=0 \bmod 2$.

Bipartite graphs

Proof of sufficiency

(1) Let $G=(V, E)$ be a connected graph.
(2) Choose a vertex s of $V, A:=\{s\}, B:=\emptyset$.

While there exist $u \in A \cup B, v \notin A \cup B, u v \in E$ do:
$B:=B \cup\{v\}$ if $u \in A$ and $A:=A \cup\{v\}$ if $u \in B ; p(v):=u$.
(3) If there exists $x_{1} x_{2} \in E$ st x_{1} and x_{2} have the same color then do:
(1) Let P_{i} be the $\left(s, x_{i}\right)$-path obtained using $p().(i=1,2)$.
(2) Let t be the last common vertex in P_{1} and P_{2} starting from s.
(3) $C:=P_{1}\left[x_{1}, t\right]+P_{2}\left[t, x_{2}\right]+x_{2} x_{1}$ is an elementary odd cycle of G, contradiction.
(3) G is hence bipartite.

Basic definitions

Definitions : $G=(V, E)$

(1) Matching $: M \subseteq E$ such that $d_{M}(v) \leq 1 \forall v \in V$.
(2) Perfect matching: $M \subseteq E$ such that $d_{M}(v)=1 \forall v \in V$.
(3) Transversal $: T \subseteq V$ such that $T \cap\{u, v\} \neq \emptyset \forall u v \in E$.
(9) $\nu(G) \quad:=\max \{|M|: M$ matching of $G\}$.
(3) $\tau(G) \quad:=\min \{|T|: T$ transversal of $G\}$.

$$
\nu\left(G_{1}\right)=4=\tau\left(G_{1}\right)
$$

$$
\nu\left(G_{2}\right)=3=\tau\left(G_{2}\right)
$$

Relation between $\nu(G)$ and $\tau(G)$ in general

Lemma 1

For every graph $G, \nu(G) \leq \tau(G)$.

Proof

(1) Let M be a maximum matching and T a minimum transversal of G.
(2) Since T is a transversal, T contains at least one end-vertex of every edge e of M, say v_{e}.
(3) Since M is a matching, $v_{e} \neq v_{f}$ if $e, f \in M$ and $e \neq f$.
(9) $|M|=\left|\left\{v_{e} \in T: e \in M\right\}\right| \leq|T|$.
(3) $\nu(G)=|M| \leq|T|=\tau(G)$.

Example

$\nu\left(K_{3}\right)=1<2=\tau\left(K_{3}\right)$.

Basic definitions

Definitions: $G=(V, E), M$ matching of G

(1) M-satured vertex: $v \in V$ such that $d_{M}(v)=1$.
(2) M-unsatured vertex: $v \in V$ such that $d_{M}(v)=0$.
(3) M-alternating path: if its edges are alternating in M and in $E \backslash M$.
(9) M-augmentanting path: if M-alternating with M-unsaturated end-vertices.
(3) $G=(U, W ; E)$: bipartite graph with color classes U and W.

Construction of an auxiliary directed graph

Definition

Given a bipartite graph $G=(U, W ; E)$ and a matching M of G, we construct a directed graph $D_{M}=(V, A)$ as follows:
(1) $V:=U \cup W \cup\{s, t\}$,
(2) $A:=\{s u: u M$-unsaturated in $U\} \cup\{w t: w M$-unsaturated in $W\} \cup$ $\{w u: u w \in M\} \cup\{u w: u w \in E \backslash M\}$.

G, M

Characterization of a matching of maximum cardinality

Theorem 2

Given a bipartite graph $G=(U, W ; E)$ and a matching M of G, the following conditions are equivalent:
(1) $\nu(G)=|M|$,
(2) no M-augmenting path exists in G,
(3) no (s, t)-path exists in D_{M},
(9) $\tau(G) \leq|M|$.

G, M

Characterization of a matching of maximum cardinality

$(1) \Longrightarrow(2): \nu(G)=|M| \Longrightarrow$ no M-augmenting path

(1) Suppose that an M-augmenting path P exists in G.
(2) Let $M^{\prime}:=(M \backslash E(P)) \cup(E(P) \backslash M)$.
(3) M^{\prime} is a matching and $\left|M^{\prime}\right|=|M|+1$.
(9) M is not of maximum cardinality, contradiction.

Characterization of a matching of maximum cardinality

(2) $\Longrightarrow(3)$: no M-augmenting path in $G \Longrightarrow$ no (s, t)-path in D_{M}
(1) Suppose for a contradiction that an (s, t)-path P exists in D_{M}.
(2) Let $P^{\prime}:=P-s-t$.
(3) Since P starts with an arc sv and finishes with an arc $u t$, the end-vertices u and v of P^{\prime} are M-unsaturated.
(9) Since P is a directed path, P^{\prime} is an M-alternating path.
(6) P^{\prime} is hence an M-augmenting path, contradiction.

Characterization of a matching of maximum cardinality

$(3) \Longrightarrow(4):$ no (s, t)-path in $D_{M} \Longrightarrow \tau(G) \leq|M|$

(1) Suppose no (s, t)-path exists in D_{M}.
(2) Let S be the set of vertices attainable from s in D_{M}.
(3) Let $T:=(U \backslash S) \cup(W \cap S)$.
(3) Since no arc leaves S in D_{M}, T is a transversal of G and $|T| \leq|M|$.
(3) $\tau(G) \leq|T| \leq|M|$.

G, M

Characterization of a matching of maximum cardinality

$(4) \Longrightarrow(1): \tau(G) \leq|M| \Longrightarrow \nu(G)=|M|$
(1) Suppose that $\quad \tau(G) \leq|M|$.
(2) Since M is a matching, $\quad|M| \leq \nu(G)$.
(3) By Lemma 1 , $\nu(G) \leq \tau(G)$.
(9) Thus, equality holds everywhere, in particular: $|M|=\nu(G)$.

Consequences

Theorem 3 (Kőnig)

For every bipartite graph $G, \nu(G)=\tau(G)$.

Maximum cardinality matching in a bipartite graph algorithm

Input: G bipartite graph.
Output: Maximum cardinality matching M of G.
Step 0. Initialization.
$M:=\emptyset$.
Step 1. Matching augmentation.
While an (s, t)-path P exists in D_{M} do
$M:=(M \backslash E(P)) \cup(E(P-s-t) \backslash M)$.
Step 2. End of algorithm.
STOP.

Matchings by flows

Theorem 3 (Kőnig)

For every bipartite graph $G, \nu(G)=\tau(G)$.

Ford-Fulkerson \Longrightarrow König

Let $(D:=(W, A), g)$ be a network where $W:=U \cup V \cup\{s, t\}$, $A:=\{s u: u \in U\} \cup\{v t: v \in V\} \cup\{u v: u \in U, v \in V, u v \in E\}$, $g(s u):=1 \forall u \in U, g(v t):=1 \forall v \in V$ and $g(u v):=|U|+1 \forall u v \in E$, x an integer feasible (s, t)-flow of max. value, Z an (s, t)-cut of min. capacity, $M:=\{u v \in E: x(u v)=1\}$ and $T:=(U \backslash Z) \cup(V \cap Z)$.
(a) Prove that M is a matching of G of size $\operatorname{val}(x)$.
(b) Prove that T is a transversal of G of size $\operatorname{cap}(Z)$.
(c) Deduce Kőnig Theorem from (a), (b) and Ford-Fulkerson Theorem.

Matchings by flows

Proof of (a)

(1) There exists an integer g-feasible (s, t)-flow x of maximum value.
(2) Since $d_{x}^{+}(u)=d_{x}^{-}(u)=x(s u) \leq g(s u)=1 \forall u \in U$, and $\quad d_{x}^{-}(v)=d_{x}^{+}(v)=x(v t) \leq g(v t)=1 \forall v \in V$, we have
(1) $x(e)=0$ or $1 \forall e \in A$ and
(2) at most one edge of M is incident to $w \in U \cup V$.
(3) Thus M is a matching of G.
(9) $\operatorname{val}(x)=d_{x}^{+}(U \cup s)-d_{x}^{-}(U \cup s)=d_{x}^{+}(U \cup s)=\sum_{x(u v)=1, u v \in E} 1=|M|$.

$$
\underline{x(e)=1} \quad \underline{x(e)=0}
$$

Matchings by flows

Proof of (b)

(1) $\operatorname{cap}(Z) \leq d_{g}^{+}(s)=|U|$ since Z is an (s, t)-cut of minimum capacity.
(2) Let K be the set of arcs in D from $U \cap Z$ to $V \backslash Z$.

$$
\begin{aligned}
|U| \geq \operatorname{cap}(Z) & =\sum_{u \in U \backslash Z} g(s u)+\sum_{v \in V \cap Z} g(v t)+\sum_{u v \in K} g(u v) \\
& =\sum_{u \in U \backslash Z} 1+\sum_{v \in V \cap Z} 1+\sum_{u v \in K}(|U|+1) \\
& =|U \backslash Z|+|V \cap Z|+|K|(|U|+1) \\
& =|T|+|K|(|U|+1) .
\end{aligned}
$$

(3) Hence $K=\emptyset$, so T is a transversal and $\operatorname{cap}(Z)=|T|$.

Matchings by flows

Proof of (c)

(1) By Ford-Fulkerson's theorem, (a), Lemma 1 and (b),

$$
\operatorname{cap}(Z)=\operatorname{val}(x)=|M| \leq \nu(G) \leq \tau(G) \leq|T|=\operatorname{cap}(Z),
$$

(2) Hence equality holds everywhere, in particular $\nu(G)=\tau(G)$.

Perfect matchings in bipartite graphs

Notation

Given a bipartite graph $G=(U, W ; E)$ and $X \subseteq U$, $\Gamma_{G}(X)$: set of neighbors of X.

Theorem 4 (Hall)

A bipartite graph $G=(U, W ; E)$ has a perfect matching \Longleftrightarrow
(a) $|U|=|W|$,
(b) $\left|\Gamma_{G}(X)\right| \geq|X| \forall X \subseteq U$.

Proof of necessity:
(1) If G has a perfect matching M then $\left|\Gamma_{M}(X)\right|=|X| \forall X \subseteq U$.
(2) In particular, $|U|=\left|\Gamma_{M}(U)\right|=|W|$ and hence (a) is satisfied.
(3) Since $\left|\Gamma_{G}(X)\right| \geq\left|\Gamma_{M}(X)\right|$, (b) is satisfied.

Perfect matchings in bipartite graphs

Proof of sufficiency :

(1) By Theorem 3, \exists matching M and transversal T of G st $|M|=|T|$.
(2) $U_{1}:=T \cap U, W_{1}:=T \cap W$ et $U_{2}:=U-U_{1}$.
(3) Since T is a transversal, $\Gamma\left(U_{2}\right) \subseteq W_{1}$; and hence $\left|W_{1}\right| \geq\left|\Gamma\left(U_{2}\right)\right|$.
(a) By (b), $\left|\Gamma\left(U_{2}\right)\right| \geq\left|U_{2}\right|$ and by (a), $|U|=|W|$.
(3) $|M|=|T|=\left|U_{1} \cup W_{1}\right|=\left|U_{1}\right|+\left|W_{1}\right| \geq\left|U_{1}\right|+\left|U_{2}\right|=|U|=|W|$.
(0) The vertices of U and those of W are hence M-saturated.
(1) Thus M is a perfect matching of G.

Maximum weight matchings in bipartite graphs

Problem

P_{1} : Given a bipartite graph $G=(U, V ; E)$ and a weight function c on E, find a matching M of maximum weight $\left(\sum_{e \in M} c(e)\right)$ of G.
P_{2} maximum weight matching in a bipartite graph with $c \geq 0$: delete the edges of negative weight as they are not in a maximum weight matching.
P_{3} maximum weight perfect matching in a complete bipartite graph $K_{n, n}$: we add new vertices and new edges of weight zero.
P_{4} minimum weight perfect matching in $K_{n, n}: c^{\prime}:=-c$.
P_{5} minimum weight perfect matching in $K_{n, n}$ with $c \geq 0: c^{\prime}:=c+L$ where $L:=\max \{|c(e)|: e \in E\}$. The new weighting is non-negative and the weight of each perfect matching increased by constant $(n \cdot L)$.
P_{6} minimum weight perfect matching in a bipartite graph having a perfect matching with $c \geq 0$: more general than P_{5}.

Linear Programming

Linear Program (Primal)

The problem of finding a c-minimum weight perfect matching in a bipartite graph $G=(U, V ; E)$ can be formulated as a linear program.

$$
\begin{aligned}
\sum_{e \in \delta(w)} x(e) & =1 \quad \forall w \in U \cup V \\
x(e) & \geq 0 \quad \forall e \in E \\
\sum_{e \in E} c(e) x(e) & =w(\min)
\end{aligned}
$$

Linear Programming

Linear Program (Primal) for a bipartite graph $G=(U, V ; E)$

$$
\begin{aligned}
\sum_{e \in \delta(w)} x(e) & =1 \quad \forall w \in U \cup V, \\
x(e) & \geq 0 \quad \forall e \in E, \\
\sum_{n} c(e) x(e) & =w(\min) .
\end{aligned}
$$

Remark

(1) The characteristic vector of a perfect matching of G is a feasible solution of (P).
(2) A basic solution of (P) is the characteristic vector of a perfect matching of G since the polyhedron of (P) is integer by Cramer's rule and since each square submatrix of the incidence matrix of a bipartite graph is of determinant 0,1 or -1 .

Linear Programming

Dual of (P)

$$
\begin{aligned}
y(u)+y(v) & \leq c(u v) \quad \forall u v \in E \\
\sum_{w \in U \cup V} y(w) & =z(\max)
\end{aligned}
$$

Complementary slackness theorem

(1) If x and y are feasible solutions of (P) and (D) and
(2) the complementary slackness conditions are satisfied:

$$
x(u v)>0 \Longrightarrow y(u)+y(v)=c(u v)
$$

$$
(u v \text { is } y \text {-tight). }
$$

(3) then x and y are optimal solutions of (P) and (D).

Theorem (Egerváry)

The minimum weight of a perfect matching in a bipartite graph is equal to the optimal value of (D).

- At that time, linear programming didn't exist!

How to find a minimum weight perfect matching in a bipartite graph

Algorithm Hungarian method (Kuhn)

Input: Bipartite graph $G=(U, V ; E)$ that has a perfect matching and non-negative weighting c on E.
Output: Minimum c-weight perfect matching of G.
Idea: We will have in each step:
(1) a vector x (the characteristic vector of a matching M),
(2) a feasible solution y of (D),
(3) such that the complementary slackness conditions are satisfied:

- $x(e)>0 \Longrightarrow e$ is y-tight, that is
- M is a matching of the subgraph induced by y-tight edges.

Algorithm Hungarian method (Kuhn)

Step 0. Initialization.
$M_{0}:=\emptyset, i:=1$.
$y_{1}(w):= \begin{cases}\min \{c(w v): w v \in E\} & \text { if } w \in U, \\ 0 & \text { if } w \in V,\end{cases}$
Step 1. Construction of subgraph G_{i} of tight edges.
$G_{i}:=\left(U, V ; E_{i}\right)$ where $E_{i}=\left\{u v \in E: y_{i}(u)+y_{i}(v)=c(u v)\right\}$.
Step 2. Construction of maximum matching and of minimum transversal of G_{i}.
Starting from M_{i-1} and using flows, find a maximum cardinality matching M_{i} and a minimum cardinality transversal T_{i} of G_{i}.
Step 3. Stopping rule.
If M_{i} is a perfect matching of G_{i}, then STOP with M_{i}.
Step 4. Modification of dual solution.
$\varepsilon_{i}:=\min \left\{c(u v)-y_{i}(u)-y_{i}(v): u v \in E\left(G-T_{i}\right)\right\}$
$y_{i+1}(w):= \begin{cases}y_{i}(w)+\varepsilon_{i} & \text { if } w \in U \backslash T_{i}, \\ y_{i}(w)-\varepsilon_{i} & \text { if } w \in V \cap T_{i}, \\ y_{i}(w) & \text { otherwise. }\end{cases}$
$i:=i+1$ and go to Step 1.

Justification of the Hungarian method

Construction of partitions of U and V.

$U_{i}^{1}=\left\{u \in U: M_{i}\right.$-unsaturated $\}, U_{i}^{2}=U \backslash\left(T_{i} \cup U_{i}^{1}\right), U_{i}^{3}=U \backslash\left(U_{i}^{1} \cup U_{i}^{2}\right)$,
$V_{i}^{1}=\left\{v \in V: M_{i}\right.$-unsaturated $\}, V_{i}^{2}=V \cap T_{i}, V_{i}^{3}=V \backslash\left(V_{i}^{1} \cup V_{i}^{2}\right)$.

Reminder

- $U_{i}^{2}=\left\{u \in U \backslash U_{i}^{1}: \exists u^{\prime} \in U_{i}^{1}\right.$ and an M_{i}-alternating $\left(u^{\prime}, u\right)$-path $\}$,
- $V_{i}^{2}=\Gamma_{M_{i}}\left(U_{i}^{2}\right)$,
- $V_{i}^{3}=\Gamma_{M_{i}}\left(U_{i}^{3}\right)$.

Remark

$\varepsilon_{i}:=\min \left\{c(u v)-y_{i}(u)-y_{i}(v): u v \in E\left(G-T_{i}\right)\right\}$
$y_{i+1}(w):= \begin{cases}y_{i}(w)+\varepsilon_{i} & \text { if } w \in U \backslash T_{i}, \\ y_{i}(w)-\varepsilon_{i} & \text { if } w \in V \cap T_{i}, \\ y_{i}(w) & \text { otherwise } .\end{cases}$

Justification of the Hungarian method

Theorem

(1) y_{i} is a feasible solution of (D) $\forall i$.
(2) E_{i+1} contains M_{i} and an edge of G from $U_{i}^{1} \cup U_{i}^{2}$ to $V_{i}^{1} \cup V_{i}^{3} \forall i$.
(3) After each execution of Step 2, $\left|M_{i+1}\right|>\left|M_{i}\right|$ or $\left|U_{i+1}^{2}\right|>\left|U_{i}^{2}\right|$.
(9) The algorithm stops in polynomial time
(3) with a minium weight perfect matching M_{i} of G.

Justification of the Hungarian method

1. y_{i} is a feasible solution of (D)

$$
y_{i}(u)+y_{i}(v) \leq c(u v) \forall u v \in E .
$$

Proof: By induction on i. Let $u v$ be an arbitrary edge of G.
(1) $i=1: y_{1}(u)+y_{1}(v)=\min \{c(u w): u w \in E\}+0 \leq c(u v)$.
(2) Suppose it is true for i.
(1) If $u \in U_{i}^{1} \cup U_{i}^{2}$ and $v \in V_{i}^{2}$, then

$$
y_{i+1}(u)+y_{i+1}(v)=\left(y_{i}(u)+\varepsilon_{i}\right)+\left(y_{i}(v)-\varepsilon_{i}\right) \leq c(u v) .
$$

(2) If $u \in U_{i}^{1} \cup U_{i}^{2}$ and $v \in V_{i}^{1} \cup V_{i}^{3}$, then, by definition of ε_{i},

$$
\begin{aligned}
y_{i+1}(u)+y_{i+1}(v) & =\left(y_{i}(u)+\varepsilon_{i}\right)+y_{i}(v) \\
& \leq y_{i}(u)+y_{i}(v)+\left(c(u v)-y_{i}(u)-y_{i}(v)\right) \\
& =c(u v) .
\end{aligned}
$$

(3) If $u \in U_{i}^{3}$, then $y_{i+1}(u)+y_{i+1}(v) \leq y_{i}(u)+y_{i}(v) \leq c(u v)$.
(3) In each cases, y_{i+1} is a feasible solution of (D).

Justification of the Hungarian method

2. E_{i+1} contains M_{i} and an edge of G from $U_{i}^{1} \cup U_{i}^{2}$ to $V_{i}^{1} \cup V_{i}^{3}$.

Proof :

(1) y_{i}-tight edges from $U_{i}^{1} \cup U_{i}^{2}$ to V_{i}^{2} and from U_{i}^{3} to V_{i}^{3} are y_{i+1}-tight:
(1) $y_{i+1}(u)+y_{i+1}(v)=\left(y_{i}(u)+\varepsilon_{i}\right)+\left(y_{i}(v)-\varepsilon_{i}\right)=c(u v)$.
(2) $y_{i+1}(u)+y_{i+1}(v)=y_{i}(u)+y_{i}(v)=c(u v)$.

In particular, $M_{i} \subseteq E_{i+1}$.
(2) Since G has a perfect matching, by definition of $\varepsilon_{i}, u v \in E$ exists:
(1) $\varepsilon_{i}=c(u v)-y_{i}(u)-y_{i}(v), u \in U_{i}^{1} \cup U_{i}^{2}, v \in V_{i}^{1} \cup V_{i}^{3}$. Then
(2) $y_{i+1}(u)+y_{i+1}(v)=\left(y_{i}(u)+\varepsilon_{i}\right)+y_{i}(v)$

$$
\begin{aligned}
& =y_{i}(u)+\left(c(u v)-y_{i}(u)-y_{i}(v)\right)+y_{i}(v) \\
& =c(u v) .
\end{aligned}
$$

and so $u v \in E_{i+1}$.

Justification of the Hungarian method

3. $\left|M_{i+1}\right|>\left|M_{i}\right|$ or $\left|U_{i+1}^{2}\right|>\left|U_{i}^{2}\right|$.

Proof: Let $u v \in E_{i+1}$ such that $u \in U_{i}^{1} \cup U_{i}^{2}, v \in V_{i}^{1} \cup V_{i}^{3}$.
(1) If $v \in V_{i}^{3}$, then $\left|U_{i+1}^{2}\right|>\left|U_{i}^{2}\right|$.
(2) If $v \in V_{i}^{1}$, then an M_{i}-augmenting path exists in G_{i+1}, hence, by Theorem 2, $\left|M_{i+1}\right|>\left|M_{i}\right|$.

Justification of the Hungarian method

4. The algorithm stops in polynomial time.

Proof :
(1) Each Step is polynomial.
(2) We show that the loop is executed a polynomial number times:
(1) By 3, either $\left|U_{i+1}^{2}\right|>\left|U_{i}^{2}\right|$ or $\left|M_{i+1}\right|>\left|M_{i}\right|$.
(2) The first case can happen at most $\frac{n}{2}$ times so after at most $\frac{n}{2}$ executions of the loop, M_{i} is augmented.
(3) One can augment M_{i} at most $\frac{n}{2}$ times.
(3) The algorithm is hence polynomial.

Justification of the Hungarian method

5. The algorithm stops with a min. weight perfect matching M_{i} of G. Proof :
(1) Let x_{i} be characteristic vector of the perfect matching M_{i} of G_{i} when the algorithm stops.
(2) Then x_{i} is a feasible solution of (P).
(3) By $1, y_{i}$ is a feasible solution of (D).
(9) Since $M_{i} \subseteq E_{i}$, if $x_{i}(u v)>0$ then $u v$ is y_{i}-tight, thus the complementary slackness conditions are satisfied.
(5) It follows that x_{i} and y_{i} are optimal solutions.
(0) M_{i} is a minimum weight perfect matching of G.

Applications

Assignment

- A director must assign his n employees to n tasks to be executed.
- Each employee will execute exactly one task and
- each task will be executed by exactly one employee.
- Since the director knows his employees well, he knows the profit $c_{i j}$ he can earn by assigning the employee E_{i} to the task T_{j}.
- He hires you to help him to find the assignment of maximum profit.
- How would you model this problem?

Applications

Locating objects in space

- We want to determine the exact positions of n objects in 3-dimensional space using two fixed infrared sensors.
- Each sensor provides us n straight lines, each containing one objects.
- These $2 n$ lines give theoretically the exact positions of the n objects.
- Due to technical problems we only have approximately the lines.
- We know that two lines corresponding to the same object have a very small Euclidean distance.
- How would you model this problem?

