Combinatorial Optimization and Graph Theory ORCO Matchings in bipartite graphs

Zoltán Szigeti

- Bipartite graphs
- Matchings
- Maximum cardinality matchings in bipartite graphs
- Matchings in bipartite graphs by flows
- Perfect matchings in bipartite graphs
- Maximum weight matchings in bipartite graphs
 - Linear Programming background
 - Hungarian method
 - Execution
 - Justification
 - Applications

Definition

Bipartite graph: if there exists a partition of V(G) into two sets A and B such that every edge of G connects a vertex of A to a vertex of B.

Theorem 1

G is bipartite \iff G contains no odd cycle.

Proof of necessity

• Let G = (A, B; E) be bipartite and C an elementary cycle of G.

- 2 (A, B; E(C)) is bipartite and $d_C(v) = 0$ or 2 for all $v \in A$.
- $|E(C)| = \sum_{v \in A} d_C(v) \equiv \sum_{v \in A} 0 = 0 \mod 2.$

Bipartite graphs

Proof of sufficiency

- Let G = (V, E) be a connected graph.
- Choose a vertex s of V, $A := \{s\}, B := \emptyset$. While there exist $u \in A \cup B, v \notin A \cup B, uv \in E$ do: $B := B \cup \{v\}$ if $u \in A$ and $A := A \cup \{v\}$ if $u \in B$; p(v) := u.
- **3** If there exists $x_1x_2 \in E$ st x_1 and x_2 have the same color then do :
 - Let P_i be the (s, x_i) -path obtained using p(.) (i = 1, 2).
 - **2** Let t be the last common vertex in P_1 and P_2 starting from s.
 - 𝔅 := P₁[x₁, t] + P₂[t, x₂] + x₂x₁ is an elementary odd cycle of G, contradiction.
- **G** is hence **bipartite**.

Basic definitions

Definitions : G = (V, E)

- Matching $M \subseteq E$ such that $d_M(v) \leq 1 \ \forall v \in V$.
- **2** Perfect matching : $M \subseteq E$ such that $d_M(v) = 1 \ \forall v \in V$.
- **3** Transversal $: T \subseteq V$ such that $T \cap \{u, v\} \neq \emptyset \ \forall uv \in E$.
- $\nu(G)$:= max{|M| : M matching of G}.

Relation between $\nu(G)$ and $\tau(G)$ in general

Lemma 1

For every graph G, $\nu(G) \leq \tau(G)$.

Proof

- Let M be a maximum matching and T a minimum transversal of G.
- Since T is a transversal, T contains at least one end-vertex of every edge e of M, say v_e .
- Since *M* is a matching, $v_e \neq v_f$ if $e, f \in M$ and $e \neq f$.
- $|M| = |\{v_e \in T : e \in M\}| \le |T|.$
- **3** $\nu(G) = |M| \le |T| = \tau(G).$

Example $u(\mathcal{K}_3) = 1 < 2 = \tau(\mathcal{K}_3).$

Basic definitions

Definitions : G = (V, E), M matching of G

- M-satured vertex: $v \in V$ such that $d_M(v) = 1$.
- **2** *M*-unsatured vertex: $v \in V$ such that $d_M(v) = 0$.
- So *M*-alternating path: if its edges are alternating in *M* and in $E \setminus M$.
- M-augmentanting path: if M-alternating with M-unsaturated end-vertices.
- G = (U, W; E): bipartite graph with color classes U and W.

Construction of an auxiliary directed graph

Definition

Given a bipartite graph G = (U, W; E) and a matching M of G, we construct a directed graph $D_M = (V, A)$ as follows:

 $U := U \cup W \cup \{s, t\},$

 $A := \{ su : u \text{ } M \text{-unsaturated in } U \} \cup \{ wt : w \text{ } M \text{-unsaturated in } W \} \cup \\ \{ wu : uw \in M \} \cup \{ uw : uw \in E \setminus M \}.$

Theorem 2

Given a bipartite graph G = (U, W; E) and a matching M of G, the following conditions are equivalent:

- $\bullet \ \nu(G) = |M|,$
- 2 no M-augmenting path exists in G,
- 3 no (s, t)-path exists in D_M ,
- $\ \, \bullet \ \, \tau(G) \leq |M|.$

G, **M**

- Suppose that an M-augmenting path P exists in G.
- 2 Let $M' := (M \setminus E(P)) \cup (E(P) \setminus M)$.
- M' is a matching and |M'| = |M| + 1.
- M is not of maximum cardinality, contradiction.

$(2) \Longrightarrow (3)$: no *M*-augmenting path in $G \Longrightarrow$ no (s, t)-path in D_M

- **O** Suppose for a contradiction that an (s, t)-path P exists in D_M .
- **2** Let P' := P s t.
- Since P starts with an arc sv and finishes with an arc ut, the end-vertices u and v of P' are M-unsaturated.
- Since *P* is a directed path, *P'* is an *M*-alternating path.
- **(5)** P' is hence an *M*-augmenting path, contradiction.

$(3) \Longrightarrow (4)$: no (s, t)-path in $D_M \Longrightarrow \tau(G) \le |M|$

• Suppose no (s, t)-path exists in D_M .

- 2 Let S be the set of vertices attainable from s in D_M .
- Let $T := (U \setminus S) \cup (W \cap S)$.
- Since no arc leaves S in D_M , T is a transversal of G and $|T| \leq |M|$.

 $T(G) \leq |T| \leq |M|.$

- Suppose that $\tau(G) \leq |M|$.
- Since *M* is a matching, $|M| \leq \nu(G)$.
- 3 By Lemma 1, $u(G) \leq \tau(G).$
- Solution Thus, equality holds everywhere, in particular : $|M| = \nu(G)$.

Theorem 3 (Kőnig)

For every bipartite graph G, $\nu(G) = \tau(G)$.

Maximum cardinality matching in a bipartite graph algorithm

INPUT: **G** bipartite graph.

OUTPUT: Maximum cardinality matching M of G.

Step 0. Initialization.

 $M := \emptyset.$

Step 1. Matching augmentation.

While an (s, t)-path P exists in D_M do

 $M := (M \setminus E(P)) \cup (E(P - s - t) \setminus M).$

Step 2. End of algorithm.

STOP.

Theorem 3 (Kőnig)

For every bipartite graph G, $\nu(G) = \tau(G)$.

Ford-Fulkerson \implies Kőnig

Let (D:=(W, A), g) be a network where $W:=U \cup V \cup \{s, t\}$, $A:=\{su: u \in U\} \cup \{vt: v \in V\} \cup \{uv: u \in U, v \in V, uv \in E\}$, $g(su) := 1 \forall u \in U, g(vt) := 1 \forall v \in V \text{ and } g(uv) := |U| + 1 \forall uv \in E$, x an integer feasible (s, t)-flow of max. value, Z an (s, t)-cut of min. capacity, $M:=\{uv \in E : x(uv) = 1\}$ and $T:=(U \setminus Z) \cup (V \cap Z)$.

- (a) Prove that M is a matching of G of size val(x).
- (b) Prove that T is a transversal of G of size cap(Z).
- (c) Deduce Kőnig Theorem from (a), (b) and Ford-Fulkerson Theorem.

Matchings by flows

Proof of (a)

- **1** There exists an integer g-feasible (s, t)-flow x of maximum value.
- Since $d_x^+(u) = d_x^-(u) = x(su) \le g(su) = 1 \quad \forall u \in U$, and $d_x^-(v) = d_x^+(v) = x(vt) \le g(vt) = 1 \quad \forall v \in V$, we have
 - x(e) = 0 or $1 \forall e \in A$ and

2 at most one edge of *M* is incident to $w \in U \cup V$.

• Thus M is a matching of G.

• $val(x) = d_x^+(U \cup s) - d_x^-(U \cup s) = d_x^+(U \cup s) = \sum_{x(uv)=1, uv \in E} 1 = |M|.$

Matchings by flows

Proof of (b)

• $cap(Z) \le d_g^+(s) = |U|$ since Z is an (s, t)-cut of minimum capacity.

② Let *K* be the set of arcs in *D* from $U \cap Z$ to $V \setminus Z$. $|U| \ge cap(Z) = \sum_{u \in U \setminus Z} g(su) + \sum_{v \in V \cap Z} g(vt) + \sum_{uv \in K} g(uv)$ $= \sum_{u \in U \setminus Z} 1 + \sum_{v \in V \cap Z} 1 + \sum_{uv \in K} (|U| + 1)$ $= |U \setminus Z| + |V \cap Z| + |K|(|U| + 1)$ = |T| + |K|(|U| + 1).

So Hence $K = \emptyset$, so T is a transversal and cap(Z) = |T|.

Matchings by flows

Proof of (c)

• By Ford-Fulkerson's theorem, (a), Lemma 1 and (b), $cap(Z) = val(x) = |M| \le v(G) \le \tau(G) \le |T| = cap(Z),$

2 Hence equality holds everywhere, in particular $\nu(G) = \tau(G)$.

Perfect matchings in bipartite graphs

Notation

Given a bipartite graph G = (U, W; E) and $X \subseteq U$, $\Gamma_G(X)$: set of neighbors of X.

Theorem 4 (Hall)

A bipartite graph G = (U, W; E) has a perfect matching \iff

(a) |U| = |W|, (b) $|\Gamma_{\mathcal{G}}(X)| \ge |X| \ \forall X \subseteq U$.

Proof of necessity :

If G has a perfect matching M then $|\Gamma_M(X)| = |X| \ \forall X \subseteq U$.

2 In particular, $|U| = |\Gamma_M(U)| = |W|$ and hence (a) is satisfied.

Since $|\Gamma_G(X)| \ge |\Gamma_M(X)|$, (b) is satisfied.

Perfect matchings in bipartite graphs

Proof of sufficiency :

- **1** By Theorem 3, \exists matching M and transversal T of G st |M| = |T|.
- **2** $U_1 := T \cap U$, $W_1 := T \cap W$ et $U_2 := U U_1$.
- Since T is a transversal, $\Gamma(U_2) \subseteq W_1$; and hence $|W_1| \ge |\Gamma(U_2)|$.
- By (b), $|\Gamma(U_2)| \ge |U_2|$ and by (a), |U| = |W|.
- $|M| = |T| = |U_1 \cup W_1| = |U_1| + |W_1| \ge |U_1| + |U_2| = |U| = |W|.$
- The vertices of U and those of W are hence M-saturated.
- Thus M is a perfect matching of G.

Maximum weight matchings in bipartite graphs

Problem

- P_1 : Given a bipartite graph G = (U, V; E) and a weight function c on E, find a matching M of maximum weight $(\sum_{e \in M} c(e))$ of G.
 - P_2 maximum weight matching in a bipartite graph with $c \ge 0$: delete the edges of negative weight as they are not in a maximum weight matching.
 - P_3 maximum weight perfect matching in a complete bipartite graph $K_{n,n}$: we add new vertices and new edges of weight zero.
 - P_4 minimum weight perfect matching in $K_{n,n}$: c' := -c.
 - P_5 minimum weight perfect matching in $K_{n,n}$ with $c \ge 0$: c' := c + Lwhere $L := \max\{|c(e)| : e \in E\}$. The new weighting is non-negative and the weight of each perfect matching increased by constant $(n \cdot L)$.
 - P_6 minimum weight perfect matching in a bipartite graph having a perfect matching with $c \ge 0$: more general than P_5 .

Linear Program (Primal)

The problem of finding a *c*-minimum weight perfect matching in a bipartite graph G = (U, V; E) can be formulated as a linear program.

$$\sum_{e \in \delta(w)} x(e) = 1 \quad \forall w \in U \cup V,$$
$$x(e) \geq 0 \quad \forall e \in E,$$
$$\sum_{e \in E} c(e)x(e) = w(\min).$$

Linear Programming

Linear Program (Primal) for a bipartite graph G = (U, V; E)

$$\sum_{e \in \delta(w)} x(e) = 1 \quad \forall w \in U \cup V,$$

 $x(e) \geq 0 \quad \forall e \in E,$
 $\sum_{e \in E} c(e)x(e) = w(\min).$

Remark

- The characteristic vector of a perfect matching of G is a feasible solution of (P).
- ② A basic solution of (P) is the characteristic vector of a perfect matching of *G* since the polyhedron of (P) is integer by Cramer's rule and since each square submatrix of the incidence matrix of a bipartite graph is of determinant 0, 1 or −1.

Linear Programming

Dual of (P)

$$y(u) + y(v) \le c(uv) \quad \forall uv \in E,$$

 $\sum_{w \in U \cup V} y(w) = z(\max).$

Complementary slackness theorem

- If x and y are feasible solutions of (P) and (D) and (D)
- The complementary slackness conditions are satisfied: $x(uv) > 0 \Longrightarrow y(u) + y(v) = c(uv) \qquad (uv \text{ is } y\text{-tight}).$

then x and y are optimal solutions of (P) and (D).

Theorem (Egerváry)

The minimum weight of a perfect matching in a bipartite graph is equal to the optimal value of (D).

• At that time, linear programming didn't exist!

Z. Szigeti

How to find a minimum weight perfect matching in a bipartite graph

Algorithm Hungarian method (Kuhn)

Input: Bipartite graph G = (U, V; E) that has a perfect matching and non-negative weighting c on E.

Output: Minimum *c*-weight perfect matching of *G*.

- Idea : We will have in each step:
 - **Q** a vector \mathbf{x} (the characteristic vector of a matching M),
 - 2 a feasible solution y of (D),
 - Such that the complementary slackness conditions are satisfied:
 - $x(e) > 0 \implies e$ is y-tight, that is
 - *M* is a matching of the subgraph induced by *y*-tight edges.

Algorithm Hungarian method (Kuhn)

Step 0. Initialization.

- Step 1. Construction of subgraph G_i of tight edges. $G_i := (U, V; E_i)$ where $E_i = \{uv \in E : y_i(u) + y_i(v) = c(uv)\}.$
- Step 2. Construction of maximum matching and of minimum transversal of G_i . Starting from M_{i-1} and using flows, find a maximum cardinality matching M_i and a minimum cardinality transversal T_i of G_i .
- Step 3. Stopping rule.

If M_i is a perfect matching of G_i , then STOP with M_i .

Step 4. Modification of dual solution.

$$\varepsilon_i := \min\{c(uv) - y_i(u) - y_i(v) : uv \in E(G - T_i)\}$$

$$y_{i+1}(w) := \begin{cases} y_i(w) + \varepsilon_i & \text{if } w \in U \setminus T_i, \\ y_i(w) - \varepsilon_i & \text{if } w \in V \cap T_i, \\ y_i(w) & \text{otherwise.} \end{cases}$$

$$i := i + 1 \text{ and go to Step 1.}$$

Justification of the Hungarian method

Construction of partitions of U and V.

 $U_i^1 = \{u \in U : M_i \text{-unsaturated}\}, U_i^2 = U \setminus (T_i \cup U_i^1), U_i^3 = U \setminus (U_i^1 \cup U_i^2), V_i^1 = \{v \in V : M_i \text{-unsaturated}\}, V_i^2 = V \cap T_i, V_i^3 = V \setminus (V_i^1 \cup V_i^2).$

Reminder • $U_i^2 = \{u \in U \setminus U_i^1 : \exists u' \in U_i^1 \text{ and} an \ M_i \text{-alternating } (u', u) \text{-path}\},$ • $V_i^2 = \Gamma_{M_i}(U_i^2),$ • $V_i^3 = \Gamma_{M_i}(U_i^3).$

Remark

$$\varepsilon_{i} := \min\{c(uv) - y_{i}(u) - y_{i}(v) : uv \in E(G - T_{i})\}$$

$$y_{i+1}(w) := \begin{cases} y_{i}(w) + \varepsilon_{i} & \text{if } w \in U \setminus T_{i}, \\ y_{i}(w) - \varepsilon_{i} & \text{if } w \in V \cap T_{i}, \\ y_{i}(w) & \text{otherwise.} \end{cases}$$
2. Szigeti OCG-ORCO

Justification of the Hungarian method

Theorem

- **1** y_i is a feasible solution of (D) $\forall i$.
- 2 E_{i+1} contains M_i and an edge of G from $U_i^1 \cup U_i^2$ to $V_i^1 \cup V_i^3 \forall i$.
- After each execution of Step 2, $|M_{i+1}| > |M_i|$ or $|U_{i+1}^2| > |U_i^2|$.
- The algorithm stops in polynomial time
- **(3)** with a minium weight perfect matching M_i of G.

OCG-ORCO

Justification of the Hungarian method

1. y_i is a feasible solution of (D) $y_i(u) + y_i(v) \le c(uv) \ \forall uv \in E.$

Proof: By induction on *i*. Let uv be an arbitrary edge of *G*.

- $i = 1 : y_1(u) + y_1(v) = \min\{c(uw) : uw \in E\} + 0 \le c(uv).$
- Suppose it is true for *i*.
 - If $u \in U_i^1 \cup U_i^2$ and $v \in V_i^2$, then

 $y_{i+1}(u) + y_{i+1}(v) = (y_i(u) + \varepsilon_i) + (y_i(v) - \varepsilon_i) \leq c(uv).$

 $\textbf{O} \quad \text{If } u \in U_i^1 \cup U_i^2 \text{ and } v \in V_i^1 \cup V_i^3 \text{, then, by definition of } \varepsilon_i,$

 $\begin{array}{rcl} y_{i+1}(u) + y_{i+1}(v) &=& (y_i(u) + \varepsilon_i) + y_i(v) \\ &\leq& y_i(u) + y_i(v) + (c(uv) - y_i(u) - y_i(v)) \\ &=& c(uv). \end{array}$

• If $u \in U_i^3$, then $y_{i+1}(u) + y_{i+1}(v) \le y_i(u) + y_i(v) \le c(uv)$. • In each cases, y_{i+1} is a feasible solution of (D).

2. E_{i+1} contains M_i and an edge of G from $U_i^1 \cup U_i^2$ to $V_i^1 \cup V_i^3$.

Proof :

y_i-tight edges from U¹_i ∪ U²_i to V²_i and from U³_i to V³_i are y_{i+1}-tight:
 y_{i+1}(u) + y_{i+1}(v) = (y_i(u) + ε_i) + (y_i(v) - ε_i) = c(uv).
 y_{i+1}(u) + y_{i+1}(v) = y_i(u) + y_i(v) = c(uv).

In particular, $M_i \subseteq E_{i+1}$.

 Q Since G has a perfect matching, by definition of ε_i, uv ∈ E exists:
 Q ε_i = c(uv) - y_i(u) - y_i(v), u ∈ U¹_i ∪ U²_i, v ∈ V¹_i ∪ V³_i. Then
 Q y_{i+1}(u) + y_{i+1}(v) = (y_i(u) + ε_i) + y_i(v) = y_i(u) + (c(uv) - y_i(u) - y_i(v)) + y_i(v) = c(uv).

and so $uv \in E_{i+1}$.

3. $|M_{i+1}| > |M_i|$ or $|U_{i+1}^2| > |U_i^2|$.

Proof: Let $uv \in E_{i+1}$ such that $u \in U_i^1 \cup U_i^2$, $v \in V_i^1 \cup V_i^3$.

• If $v \in V_i^3$, then $|U_{i+1}^2| > |U_i^2|$.

② If $v \in V_i^1$, then an M_i -augmenting path exists in G_{i+1} , hence, by Theorem 2, $|M_{i+1}| > |M_i|$.

4. The algorithm stops in polynomial time.

Proof :

- Each Step is polynomial.
- We show that the loop is executed a polynomial number times:
 - By 3, either $|U_{i+1}^2| > |U_i^2|$ or $|M_{i+1}| > |M_i|$.
 - The first case can happen at most ⁿ/₂ times so after at most ⁿ/₂ executions of the loop, M_i is augmented.
 - (c) One can augment M_i at most $\frac{n}{2}$ times.
- Solution The algorithm is hence polynomial.

5. The algorithm stops with a min. weight perfect matching M_i of G. Proof :

- Let x_i be characteristic vector of the perfect matching M_i of G_i when the algorithm stops.
- 2 Then x_i is a feasible solution of (P).
- Solution By 1, y_i is a feasible solution of (D).
- Since $M_i \subseteq E_i$, if $x_i(uv) > 0$ then uv is y_i -tight, thus the complementary slackness conditions are satisfied.
- **(3)** It follows that x_i and y_i are optimal solutions.
- M_i is a minimum weight perfect matching of G.

Applications

Assignment

• A director must assign his *n* employees to *n* tasks to be executed.

- Each employee will execute exactly one task and
- each task will be executed by exactly one employee.
- Since the director knows his employees well, he knows the profit c_{ij} he can earn by assigning the employee E_i to the task T_j .
- He hires you to help him to find the assignment of maximum profit.

• How would you model this problem?

Applications

Locating objects in space

- We want to determine the exact positions of *n* objects in 3-dimensional space using two fixed infrared sensors.
- Each sensor provides us *n* straight lines, each containing one objects.
- These 2*n* lines give theoretically the exact positions of the *n* objects.
- Due to technical problems we only have approximately the lines.
- We know that two lines corresponding to the same object have a very small Euclidean distance.
- How would you model this problem?

