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© Set of linearly independent vectors in a vector space,
© Set of edge sets of forests in a graph,

© Set of subsets of cardinality at most k in a set of cardinality n > k.

v

What common properties do the above examples have ?
(h) D ez,

(b) If Y C X €T then Y €1,

(k) f X, Y €T and |X| > |Y] then 3x € X \ Y such that YU {x} € Z. )
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Properties of independent sets

(h) Ve,

(b) fY C X €T then Y €71,

(k) f X, Y €T and |X| > |Y] then 3x € X\ Y such that YU {x} € Z.

Definition:

Let S be a set and 7 a set of subsets of S that satisfies (1), (k) and (/3).
O M =(S,Z) is called matroid.
© The elements of Z are called independent sets.

© The maximal elements of Z are called bases.
Q Therank of X C S'is r(X) :=max{|Z]: ZC X and Z € T}.
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Exercise: Properties of bases

The set B of bases of a matroid satisfies:

(B1) B#0,

(B2) |X|=1Y] forall X,Y € B,

(B3) If X, Y €Band x € X\ Y then 3y € Y\ Xst. (X\{x})U{y}ehB.

© Let us suppose that B satisfies (B1), (B2) and (Bs).
@ ThenZ:={X CS:3Y € B,X C Y} satisfies (/1), (k) and (3).

© Deduce from (2) that there exists a matroid M such that B is the set
of bases of M.
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Exercise: Properties of the rank function r of a matroid M = (S,7)

(Ry) r(X) is an integer,

(Ro) 0< r(X) < X,

(R3) If X C Y then r(X) < r(Y),

(Ra) r(X)+r(Y)>r(XNY)+r(XUY)VX,Y CS. (Submodularity)

O (R1), (R2) and (R3) are trivially satisfied. To prove (Rs) let X, Y C S.
Q Lt AcT,LACXNY,|Al=r(XNY), BET,ACBCXUY,
Bl =r(XUY), (3B by (k)), X:=BnXand Y :=BnNY.
O By (h), X', Y' €Z,s0r(X)>|X'| and r(Y) > |Y’|.
© By definition of A, B, and (h): X'NnY' =A, X'UY’ =B.
@ r(X)+r(Y) = X[+ Y[ =X 0nY[+[XUY]|=]|A+|B| =
r(XNY)+r(XUY).
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Properties of the rank function r of a matroid M = (S,7)

R1) r(X) is an integer,
) 0< r(X) < |X],
R3) If X C Y then r(X) < r(Y),
) r(X)+r(Y)>r(XNY)+r(XUY)V¥X,YCS.

© Let us suppose that a function r satisfies (Ry), (R2), (R3) and (Rs).
@ Prove that 7 := {X C S : r(X) = |X|} satisfies (1), (k) and (/).

© Deduce from (2) that there exists a matroid M such that r is the
rank function of M.
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Rank function

Previous exercise in an exam

o

Q
o

0 060

Deduce from (R;) that Z satisfies (/).

Let Y C X € Z. Deduce from (Rs) and (R») that Z satisfies (k).

Let X, Y € Z such that |[X| > |Y]. Let Y’ be a maximal subset of
X UY such that Y C Y and r(Y) = r(Y’).
@ Deduce from (R3) that there exists x € X \ Y.
@ Prove that r(Y' Ux) > r(Y).
© Deduce from (R4) and 3.2 that r(Y U x) > r(Y).
O Deduce from (R2), 3.3, (R1) and Y € 7 that r(Y Ux) = |Y Ux|.
@ Conclude that 7 satisfies (5).

Deduce that (S,Z) is a matroid with rank function r’.

Let X € S, Y C X be a maximal independent set in (S,Z) and
Y C Z C X a maximal set with r(Y) = r(2).

Prove that Z = X.

Conclude that r' = r.
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Rank function

Q By (R:), 0<r(0) <|0| =0, so r(0) =|0| that is § € Z, and Z satisfies (/).

Q [X|=|Y[+[X\Y|=>r(Y)+r(X\Y)>r0)+r(X)=|X]| by (Ra),
(Rs), (k). Thus |Y| = r(Y) and Z satisfies (k).

Otherwise, X C Y/, so by (R3), r(X) < r(Y') = r(Y) < r(X),

contradiction.

By the definition of Y/, r(Y' Ux) > r(Y).

By (Rs) and 3.2, r(YUX)+r(Y') > r(Y)+r(Y' Ux) > r(Y')+r(Y).

By (R2), 33, (R1), YETZ: |[YUx|>r(YUx)>r(Y)+1=|Y Ux|.

By 3.4, [YUx|=r(YUx)so YUx €Z and Z satisfies (/3).

© By 1,2 and 3, 7 satisfies (/1), (k) and (/) so (S,Z) is a matroid
whose rank function is r’.

Q IfIxe X\ Z then r(Y) < r(YUx) <|Y|=r(Y) so
2r(Y)=r(YUx)+r(Z2) > r(Y)+ r(ZUx) > 2r(Y), contradiction.

Q@ (X) =Y =r(Y) = r(2) = r(X).

o

000 ©
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Constructions

Exercise:

O Let S beaset, S;U---US, a partition of S and a1,...,ax € Z.
Q Let Z:={XCS:|XNSj|<aforl<i<k}.

© Prove that Z satisfies (), (k) and (5).

© The matroid (S,Z) is called partition matroid.

v
Exercise:

© Let B be the set of bases of a matroid M on S and

Q B ={XCS:5\XeB}

© Prove that B* satisfies (B1), (B2) and (Bs).

© The matroid M* whose set of bases is B* is called the dual of M.

@ Prove that the rank function of the dual M* is
r*(X) =|X|+ r(S\ X) = r(S).
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Constructions

Exercise:

O Let M, :=(S,Z;) be k matroids on S with rank functions r;.

Q Let Z:={X C S: 3 a partition Xy U---U Xy of X, X; € Z; Vi}.
© Prove that 7, satisfies (), (k) and (h).

© The matroid My, := (5,Z,) is called sum of the k matroids M.
Q Prove that in My: r,(Z) = minxcz{|Z \ X| + S ri(X)}.

v
Corollary:

Given a connected graph G and k € Z., we can decide using matroid
theory whether G contains k edge-disjoint spanning trees.

Exercise: Given a graph = (V, E),
Q 7 :={X C V:3a matching M of G s.t. X C M-saturated vertices}.
@ Prove that M := (V,Z) is a matroid.
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Constructions

Exercise:

O Let M = (5,7) be a matroid and s an element of S and
Q I, ={XCS\s:XeI}

© Prove that 7’ satisfies (1), (k) and (3).

© The operation is called deletion of the element s.

© The matroid (S \ s, Z,) is denoted by M \ s.

v
Exercise:

O Let M =(5,7) be a matroid and s € S.

Q Let 7, :={XCS\{s}: XU{s} €T}

© Prove that 7 satisfies (/), (1) and (5).

© The operation is called contraction of the element s.

@ The matroid (S \ {s},Z/s) is denoted by M/s.

©Q Prove that the rank function of M/s is r/s(X) = r(XUs) — 1.
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Algorithmic aspects

Greedy algorithm

Input: A matroid M = (S,7) and non-negative weight function c on S.
Output: A base of M of maximum weight.

Step 0: Initialization. J := ().
Step 1: Augmentation.
While 3s€ S\ J: JUs €T do
choose such an s of maximum c-weight,
J:=JUs.
Step 2: End of algorithm. STOP.

Greedy algorithm finds a maximum weight base of M.

A maximum weight spanning tree can be found by the greedy algorithm.
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Algorithmic aspects

© By (h) and (h), the greedy algorithm stops with a base B, of M.
© Suppose indirect that there exists a base By, of M : ¢(Bp) > ¢(B.,).
O By (Bz), |Ba| = |Bpl, let n be this value.

© Let us sort the elements of B, and B, the following way :
c(a1) > c(a2) > --- > c(ap) and c(b1) > c(b2) > --- > c(bn).

@ Since > I c(bj) = ¢(Bp) > c(Bs) =Y iy c(ai), 3k : c(bk) > c(ak).
O Let A:i={a1,...,axk_1} and B :={by,..., bk}.

@ Since, by (h), A,B € Z and |B| > |A|, there exists, by (),
b € B\ Asuch that AU b; € T.

@ Since, by the order of By, and by assumption, c(b;) > c(bx) > c(ax),

O the greedy algorithm should have chosen b; and not ay,

@ which is a contradiction.
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Algorithmic aspects

© Suppose that (S5,7) satisfies (1) and (/) but does not satisfy (/3).

© Prove that there exists a non-negative weight function on S such that
the greedy algorithm finds a set of Z that is not of maximum weight.

©Q By assumption, 3X,Y € Z, |X| > |Y],¥x e X\ Y, YUx ¢Z.

Q By [ X\Y|>|Y\X]|,Fa/beRy:1>a/b>|Y\X]|/IX\Y]

OQ Letc(s):=aifse X\ Y, bifsc Y, 0 otherwise.

Q By (h), (), b>a>0, (1), greedy finds Y C ZC S\ (X Y).

Q c(2)=|Y|b=IXNY|b+|Y\X|b<|XNY|b+]|X\ Y|a=c(X),
© Thus the set Z € 7 found by greedy is not of maximum weight.
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Matroid intersection

© Matching in a bipartite graph G := (4, Va; E).
O M;:=(E,T;),Z; ={F CE:dr(v) <1Vv eV}
@ M C E is a matching of G if and only if M € 7; N Z,.
@ Spanning s-arborescence in a digraph G := (V, A).
@ M= (A B1), Bii={F C A: (V,F) is a spanning tree of G},
0 My=(ADBy), Ba:={F CA dr(v) =1Vv eV )\ {s},=0 for s}.
® (V, F) is a spanning s-arborescence of G if and only if F € By N Bs.

v
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Matroid intersection

Theorem (Edmonds)

Given two matroids M; = (S,Z;) with rank functions r;,
max{|Y|: Y €1 N} = min{n(X)+ rn(S\ X): X C S}.

Proof of max < min

O Let Y € 71N T, and X C S be the sets that provide max and min.
Q@ By (b), YNX €Z;and YN (S\ X) € L.
© max=|Y|=|YNX|+|YN(S\X)| <n(X)+r(S\X)=min.
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Matroid intersection

Proof of max > min

© By induction on |S]|.
Q Let k be the minimum.

Case: 1 NI, = 0.
© For all s € S, either ri(s) =0 or ra(s) = 0.
Q Let X :={se€ S:r(s) =0}
O Thus n(s)=0Vse S\ X.
Q By (h), n(X) =0and n(S\ X) =0.
© Then ri(X)+ rn(S\ X) =0 and hence

@ min =0 < max, so we are done.
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Matroid intersection

Case: 4 €7 NDI,.
© We delete first s from both matroids: /\/l: =M, \s.
@ If the minimum concerning M and My, is at least k then there

exists, by induction, a common independent set of M} and M (and
hence of M and M3) of size k; and we are done.

© We may hence suppose that there exists A C S\ {s} such that
n(A) + n((S\ {s})\ A) < k— 1.
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Matroid intersection

© We contract now s in both matroids: M” := M;/s.

@ If the minimum concerning MY and M} is at least k — 1 then there
exists, by induction, a common independent set Y of MY and M/
of size k — 1. Thus Y” U s is a common independent set of M; and
M, of size k; and we are done.

© We may hence suppose that there exists B C S\ {s} such that
r(B) 4+ rj((S\ {s}) \ B) < k — 2, that is, by (b) of the exercise on
contraction, ri(BUs) =14+ n(((S\{s})\B)Us) —1< k —2.
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Matroid intersection

© Using (Rs) for 1 and r» and adding the inequalities on A and B:

Q n(AUBUsS)+n(ANB)+n(S\(ANB))+rn(S\ (AUBUsS)) <
r(A)+r((S\{s})\A)+n(BUs)+r(((S\{s})\B)Us) < 2k—1.

© Thenfor X =ANnBor AUBUs:
Q k=min < n(X)+ rn(S\X) < k-1, which is a contradiction.
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Matroid intersection

Theorem (Edmonds)

© Given two matroids on S and a non-negative weight function on S,
one can find in polynomial time a common independent set of the two
matroids of maximum weight.

© Intersection of three matroids is NP-complet.

Proof of (2)

O For a digraph G = (V,A),sc Vand i =1,2,3,
M; = (A,Z;) where
T :={F CA:(V,F)is a forest of G},
Ip:={F CA:dr(v) <1Vve V\{s}and =0 for s},
I3 :={F CA:df(v) <1Vv eV}
Q FeIinNIyNZs with |F| =|V| —1<= (V,F) is a Hamiltonian
path of G whose first vertex is s, which is an NP-complet problem.

v
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Matroid intersection

Edmonds implies Kénig

© Matching in a bipartite graph G := (4, Va; E).
O M, :=(E,7;),Z; ={F CE :dr(v) <1Vv eV}
® M C E is a matching of G if and only if M € 7; N Z,.

© By Edmonds, max{|M|: M € Zy NZo} = min{n(F) + n(E\ F): F C E}.

© Let M and F be the sets that provide max and min.

© M is a matching of size max.

QO T:=(VinV(F)Uu(Van V(E\ F)).

Q For any vivy € E, either vivp € F or viva € E\ F and hence wnweT
or vp € T, thatis T is a transversal of G.

Q |T|=|VinV(F)|+|Van V(E\ F)| = n(F) + n(E\ F) = min.
O v(G) > |M| = max = min = | T| > 7(G) > v(G).
O Hence v(G) = 7(G), and the theorem of Kénig is proven.
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Minimum weight spanning arborescence

Minimum weight spanning arborescence algorithm (Edmonds)

Input: Digraph G = (V/,A), s € V, non-negative weight function ¢ on A.
Output: A spanning s-arborescence F of G of minimum c-weight.

| \

Ideas
© If a spanning s-arborescence of G is of c-weight 0, then it is optimal.

O If we decrease the weight of all arcs entering a vertex by the same
value, then we get an equivalent problem.

© If we contract the arcs of a circuit of c-weight 0, then we get an
equivalent problem.
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Minimum weight spanning arborescence

Step 0: Initialization.
G :=G,cp :=c,i:=1.
Step 1: Modification of the weight.
For all v € V(G)) \ {s},
gi(v) := min{ci(uv) : uv € A(G))},
ciy1(uv) == ci(uv) —ei(v) Yuv € A(G;)).
Step 2: Searching.
Let G,-O be the subgraph of G; induced by the arcs of ¢jy1-weight 0.
Execute any searching algorithm on G,-O and s to obtain
- the set S; of vertices that can be attained from s by a path in G?,
- a set F; of arcs of G,-0 such that (S;, F;) is an s-arborescence.

v
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Minimum weight spanning arborescence

Step 3: Contraction of a circuit.
If S; # V(G,) then
C; := an elementary circuit of G° — S;,
G,'+1 = G,'/C,', =i+ 1,
go to Step 1.
Step 4: Expand the contracted circuits in reverse order.
A; = F;.
While i > 1 do:
ve, , € V(Gj) obtained by contracting Cj_1 in Gj_1,
e; € A; the unique arc entering v¢, |,
w;_1 := the head of ¢ in G;_1,
fi_1 := the arc entering w;_1 in C;_q,
Ai—1 = Ai U (A(Gi-1) \ {fi-1}),
i=1i—1.
Step 5: End of algorithm. F := (V, A1), STOP.
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Minimum weight spanning arborescence
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