Combinatorial Optimization and Graph Theory ORCO Matroids

Zoltán Szigeti

Planning

- Examples, Definitions, Constructions
- Algorithmic aspects,
- Matroid intersection,
- Minimum Weight Spanning Arborescences

Examples

- Set of linearly independent vectors in a vector space,
- Set of edge sets of forests in a graph,
- Set of subsets of cardinality at most k in a set of cardinality $n \ge k$.

What common properties do the above examples have ?

$$(I_1) \ \emptyset \in \mathcal{I},$$

- (I_2) If $Y \subseteq X \in \mathcal{I}$ then $Y \in \mathcal{I}$,
- (I_3) If $X, Y \in \mathcal{I}$ and |X| > |Y| then $\exists x \in X \setminus Y$ such that $Y \cup \{x\} \in \mathcal{I}$.

Properties of independent sets

 $(I_1) \ \emptyset \in \mathcal{I},$

- (I_2) If $Y \subseteq X \in \mathcal{I}$ then $Y \in \mathcal{I}$,
- (*I*₃) If $X, Y \in \mathcal{I}$ and |X| > |Y| then $\exists x \in X \setminus Y$ such that $Y \cup \{x\} \in \mathcal{I}$.

Definition:

Let S be a set and \mathcal{I} a set of subsets of S that satisfies (I_1) , (I_2) and (I_3) .

- $\mathcal{M} = (S, \mathcal{I})$ is called matroid.
- **2** The elements of \mathcal{I} are called independent sets.
- **③** The maximal elements of \mathcal{I} are called bases.
- The rank of $X \subseteq S$ is $r(X) := \max\{|Z| : Z \subseteq X \text{ and } Z \in \mathcal{I}\}.$

Exercise: Properties of bases

The set \mathcal{B} of bases of a matroid satisfies:

- $(B_1) \ \mathcal{B} \neq \emptyset,$
- (B_2) |X| = |Y| for all $X, Y \in \mathcal{B}$,
- $(B_3) \text{ If } X, Y \in \mathcal{B} \text{ and } x \in X \setminus Y \text{ then } \exists y \in Y \setminus X \text{ s.t. } (X \setminus \{x\}) \cup \{y\} \in \mathcal{B}.$

Exercise:

- Let us suppose that \mathcal{B} satisfies (B_1) , (B_2) and (B_3) .
- **2** Then $\mathcal{I} := \{X \subseteq S : \exists Y \in \mathcal{B}, X \subseteq Y\}$ satisfies $(I_1), (I_2)$ and (I_3) .
- Obduce from (2) that there exists a matroid *M* such that *B* is the set of bases of *M*.

Rank function

Exercise: Properties of the rank function r of a matroid $\mathcal{M} = (\mathcal{S}, \mathcal{I})$

- (R_1) r(X) is an integer,
- $(R_2) \ 0 \leq r(X) \leq |X|,$
- (R_3) If $X \subseteq Y$ then $r(X) \leq r(Y)$,
- (R_4) $r(X) + r(Y) \ge r(X \cap Y) + r(X \cup Y) \ \forall X, Y \subseteq S.$ (Submodularity)

Proof:

- (*R*₁), (*R*₂) and (*R*₃) are trivially satisfied. To prove (*R*₄) let $X, Y \subseteq S$.
- 2 Let $A \in \mathcal{I}, A \subseteq X \cap Y, |A| = r(X \cap Y), B \in \mathcal{I}, A \subseteq B \subseteq X \cup Y,$ $|B| = r(X \cup Y), (\exists B \text{ by } (I_3)), X' := B \cap X \text{ and } Y' := B \cap Y.$
- So By (I_2), $X', Y' \in \mathcal{I}$, so $r(X) \ge |X'|$ and $r(Y) \ge |Y'|$.
- **9** By definition of A, B, and (I_2) : $X' \cap Y' = A$, $X' \cup Y' = B$.
- r(X) + r(Y) ≥ |X'| + |Y'| = |X' ∩ Y'| + |X' ∪ Y'| = |A| + |B| = r(X ∩ Y) + r(X ∪ Y).

Properties of the rank function r of a matroid $\mathcal{M} = (\mathcal{S}, \mathcal{I})$

- (R_1) r(X) is an integer,
- $(R_2) \ 0 \leq r(X) \leq |X|,$
- (R_3) If $X \subseteq Y$ then $r(X) \leq r(Y)$,
- $(R_4) \ r(X) + r(Y) \ge r(X \cap Y) + r(X \cup Y) \ \forall X, Y \subseteq S.$

Exercise:

- Let us suppose that a function r satisfies (R_1) , (R_2) , (R_3) and (R_4) .
- 2 Prove that $\mathcal{I} := \{X \subseteq S : r(X) = |X|\}$ satisfies $(I_1), (I_2)$ and (I_3) .
- Obduce from (2) that there exists a matroid *M* such that *r* is the rank function of *M*.

Rank function

Previous exercise in an exam

- **O** Deduce from (R_2) that \mathcal{I} satisfies (I_1) .
- **2** Let $Y \subseteq X \in \mathcal{I}$. Deduce from (R_4) and (R_2) that \mathcal{I} satisfies (I_2) .
- 3 Let $X, Y \in \mathcal{I}$ such that |X| > |Y|. Let Y' be a maximal subset of $X \cup Y$ such that $Y \subseteq Y'$ and r(Y) = r(Y').
 - Deduce from (R_3) that there exists $x \in X \setminus Y'$.
 - **2** Prove that $r(Y' \cup x) > r(Y)$.
 - Obduce from (R_4) and 3.2 that $r(Y \cup x) > r(Y)$.
 - Obeduce from (R_2) , 3.3, (R_1) and $Y \in \mathcal{I}$ that $r(Y \cup x) = |Y \cup x|$.
 - **6** Conclude that \mathcal{I} satisfies (I_3) .
- Obduce that (S, \mathcal{I}) is a matroid with rank function r'.
- Let $X \subseteq S, Y \subseteq X$ be a maximal independent set in (S, \mathcal{I}) and $Y \subseteq Z \subseteq X$ a maximal set with r(Y) = r(Z).
- Prove that Z = X.
- Conclude that r' = r.

Rank function

Solution

- By (R_2) , $0 \le r(\emptyset) \le |\emptyset| = 0$, so $r(\emptyset) = |\emptyset|$ that is $\emptyset \in \mathcal{I}$, and \mathcal{I} satisfies (I_1) .
- ② $|X| = |Y| + |X \setminus Y| \ge r(Y) + r(X \setminus Y) \ge r(\emptyset) + r(X) = |X|$ by (R_2) , (R_4) , (I_1) . Thus |Y| = r(Y) and \mathcal{I} satisfies (I_2) .
- Otherwise, $X \subseteq Y'$, so by (R_3) , $r(X) \leq r(Y') = r(Y) < r(X)$, contradiction.
 - **2** By the definition of Y', $r(Y' \cup x) > r(Y)$.
 - By (R_4) and 3.2, $r(Y \cup x) + r(Y') \ge r(Y) + r(Y' \cup x) > r(Y') + r(Y)$.
 - By (R_2) , 3.3, (R_1) , $Y \in \mathcal{I}$: $|Y \cup x| \ge r(Y \cup x) \ge r(Y) + 1 = |Y \cup x|$.
 - **3** By 3.4, $|Y \cup x| = r(Y \cup x)$ so $Y \cup x \in \mathcal{I}$ and \mathcal{I} satisfies (I_3) .
- By 1,2 and 3, *I* satisfies (*l*₁), (*l*₂) and (*l*₃) so (*S*, *I*) is a matroid whose rank function is r'.
- If $\exists x \in X \setminus Z$, then $r(Y) \le r(Y \cup x) \le |Y| = r(Y)$ so $2r(Y) = r(Y \cup x) + r(Z) \ge r(Y) + r(Z \cup x) > 2r(Y)$, contradiction.
- r'(X) = |Y| = r(Y) = r(Z) = r(X).

Constructions

Exercise:

- Let S be a set, $S_1 \cup \cdots \cup S_k$ a partition of S and $a_1, \ldots, a_k \in \mathbb{Z}_+$.
- 2 Let $\mathcal{I} := \{ X \subseteq S : |X \cap S_i| \le a_i \text{ for } 1 \le i \le k \}.$
- **O** Prove that \mathcal{I} satisfies (I_1) , (I_2) and (I_3) .
- The matroid (S, \mathcal{I}) is called partition matroid.

Exercise:

- **1** Let \mathcal{B} be the set of bases of a matroid \mathcal{M} on S and
- $2 \mathcal{B}^* := \{ X \subseteq S : S \setminus X \in \mathcal{B} \}.$
- Solution Prove that \mathcal{B}^* satisfies (B_1) , (B_2) and (B_3) .
- The matroid \mathcal{M}^* whose set of bases is \mathcal{B}^* is called the dual of \mathcal{M} .
- Prove that the rank function of the dual \mathcal{M}^* is $r^*(X) = |X| + r(S \setminus X) r(S)$.

Constructions

Exercise:

- Let $\mathcal{M}_i := (S, \mathcal{I}_i)$ be k matroids on S with rank functions r_i .
- **2** Let $\mathcal{I}_{\cup} := \{X \subseteq S : \exists \text{ a partition } X_1 \cup \cdots \cup X_k \text{ of } X, X_i \in \mathcal{I}_i \forall i\}.$
- Solution Prove that \mathcal{I}_{\cup} satisfies (I_1) , (I_2) and (I_3) .
- **(**) The matroid $\mathcal{M}_{\cup} := (S, \mathcal{I}_{\cup})$ is called sum of the *k* matroids \mathcal{M}_i .
- Solution Prove that in \mathcal{M}_{\cup} : $r_{\cup}(Z) = \min_{X \subset Z} \{ |Z \setminus X| + \sum_{i=1}^{k} r_i(X) \}.$

Corollary:

Given a connected graph G and $k \in \mathbb{Z}_+$, we can decide using matroid theory whether G contains k edge-disjoint spanning trees.

Exercise: Given a graph G := (V, E),

Q $\mathcal{I} := \{X \subseteq V : \exists a \text{ matching } M \text{ of } G \text{ s.t. } X \subseteq M \text{-saturated vertices} \}.$

2 Prove that $\mathcal{M} := (V, \mathcal{I})$ is a matroid.

Constructions

Exercise:

- Let $\mathcal{M} = (S, \mathcal{I})$ be a matroid and s an element of S and
- $\mathbf{2} \ \mathcal{I}_{\backslash s} := \{ X \subseteq S \setminus s : X \in \mathcal{I} \}.$
- Solution Prove that \mathcal{I}' satisfies (I_1) , (I_2) and (I_3) .
- The operation is called <u>deletion</u> of the element s.
- The matroid $(S \setminus s, \mathcal{I}_{\setminus s})$ is denoted by $\mathcal{M} \setminus s$.

Exercise:

- Let $\mathcal{M} = (S, \mathcal{I})$ be a matroid and $s \in S$.
- Solution Prove that $\mathcal{I}_{/s}$ satisfies (I_1) , (I_2) and (I_3) .
- The operation is called contraction of the element s.
- The matroid $(S \setminus \{s\}, \mathcal{I}_{/s})$ is denoted by \mathcal{M}/s .
- Prove that the rank function of \mathcal{M}/s is $r_{/s}(X) = r(X \cup s) 1$.

Z. Szigeti

Algorithmic aspects

Greedy algorithm

Input: A matroid $\mathcal{M} = (S, \mathcal{I})$ and non-negative weight function c on S. Output: A base of \mathcal{M} of maximum weight.

```
Step 0: Initialization. J := \emptyset.Step 1: Augmentation.While \exists s \in S \setminus J : J \cup s \in \mathcal{I} do<br/>choose such an s of maximum c-weight,<br/>J := J \cup s.Step 2: End of algorithm. STOP.
```

Theorem

Greedy algorithm finds a maximum weight base of $\mathcal{M}.$

Corollary

A maximum weight spanning tree can be found by the greedy algorithm.

Algorithmic aspects

Proof:

- **O** By (I_1) and (I_3) , the greedy algorithm stops with a base B_a of \mathcal{M} .
- **2** Suppose indirect that there exists a base B_b of $\mathcal{M} : c(B_b) > c(B_a)$.
- Solution By (B_2) , $|B_a| = |B_b|$, let *n* be this value.
- Let us sort the elements of B_a and B_b the following way : $c(a_1) \ge c(a_2) \ge \cdots \ge c(a_n)$ and $c(b_1) \ge c(b_2) \ge \cdots \ge c(b_n)$.
- **3** Since $\sum_{i=1}^{n} c(b_i) = c(B_b) > c(B_a) = \sum_{i=1}^{n} c(a_i), \exists k : c(b_k) > c(a_k).$
- Let $A := \{a_1, \ldots, a_{k-1}\}$ and $B := \{b_1, \ldots, b_k\}$.
- Since, by (I_2) , $A, B \in \mathcal{I}$ and |B| > |A|, there exists, by (I_3) , $b_j \in B \setminus A$ such that $A \cup b_j \in \mathcal{I}$.
- **③** Since, by the order of B_b and by assumption, $c(b_j) \ge c(b_k) > c(a_k)$,
- the greedy algorithm should have chosen b_j and not a_k ,
- which is a contradiction.

Theorem

• Suppose that (S, \mathcal{I}) satisfies (I_1) and (I_2) but does not satisfy (I_3) .

Prove that there exists a non-negative weight function on S such that the greedy algorithm finds a set of I that is not of maximum weight.

Proof:

- **9** By assumption, $\exists X, Y \in \mathcal{I}, |X| > |Y|, \forall x \in X \setminus Y, Y \cup x \notin \mathcal{I}.$
- $@ By |X \setminus Y| > |Y \setminus X|, \exists a/b \in \mathbb{R}_+ : 1 > a/b > |Y \setminus X|/|X \setminus Y|.$
- So Let c(s) := a if $s \in X \setminus Y$, b if $s \in Y$, 0 otherwise.
- **3** By (I_1) , (I_2) , b > a > 0, (1), greedy finds $Y \subseteq Z \subseteq S \setminus (X \setminus Y)$.
- - **)** Thus the set $Z \in \mathcal{I}$ found by greedy is not of maximum weight.

Examples

Matching in a bipartite graph G := (V₁, V₂; E).
M_i := (E, I_i), I_i := {F ⊆ E : d_F(v) ≤ 1 ∀v ∈ V_i}.
M ⊆ E is a matching of G if and only if M ∈ I₁ ∩ I₂.
Spanning s-arborescence in a digraph G := (V, A).
M₁:= (A, B₁), B₁:= {F ⊆ A: (V, F) is a spanning tree of G},
M₂:= (A, B₂), B₂:= {F ⊆ A: d_F(v) = 1 ∀v ∈ V \ {s}, = 0 for s}.
(V, F) is a spanning s-arborescence of G if and only if F ∈ B₁ ∩ B₂.

Theorem (Edmonds)

Given two matroids $\mathcal{M}_i = (S, \mathcal{I}_i)$ with rank functions r_i , max{ $|Y| : Y \in \mathcal{I}_1 \cap \mathcal{I}_2$ } = min{ $r_1(X) + r_2(S \setminus X) : X \subseteq S$ }.

Proof of $max \leq min$

Let \$\hat{Y} \in \$\mathcal{I}_1 \cap \$\mathcal{I}_2\$ and \$\hat{X} \subset \$S\$ be the sets that provide max and min.
By \$(I_2)\$, \$\hat{Y} \cap \$\hat{X} \in \$\mathcal{I}_1\$ and \$\hat{Y} \cap \$(S \ \hat{X}) \in \$\mathcal{I}_2\$.
max = \$|\hat{Y}| = \$|\hat{Y} \cap \$\hat{X}| + \$|\hat{Y} \cap \$(S \ \hat{X})| \le \$r_1\$(\$\hat{X}) + \$r_2\$(\$S \ \hat{X}) = min.

Matroid intersection

$\mathsf{Proof} \text{ of } \mathsf{max} \geq \mathsf{min}$

- **()** By induction on |S|.
- 2 Let k be the minimum.

Case: $\mathcal{I}_1 \cap \mathcal{I}_2 = \emptyset$.

- For all $s \in S$, either $r_1(s) = 0$ or $r_2(s) = 0$.
- **2** Let $X := \{s \in S : r_1(s) = 0\}.$
- 3 Thus $r_2(s) = 0 \forall s \in S \setminus X$.
- By (I_2) , $r_1(X) = 0$ and $r_2(S \setminus X) = 0$.
- Then $r_1(X) + r_2(S \setminus X) = 0$ and hence
- **(**) $\min = 0 \le \max$, so we are done.

Case: $\exists s \in \mathcal{I}_1 \cap \mathcal{I}_2$.

- **()** We delete first *s* from both matroids: $\mathcal{M}'_i := \mathcal{M}_i \setminus s$.
- If the minimum concerning M'₁ and M'₂ is at least k then there exists, by induction, a common independent set of M'₁ and M'₂ (and hence of M₁ and M₂) of size k; and we are done.
- **③** We may hence suppose that there exists $A \subseteq S \setminus \{s\}$ such that $r_1(A) + r_2((S \setminus \{s\}) \setminus A) \le k 1$.

Case: $\mathbf{s} \in \mathcal{I}_1 \cap \mathcal{I}_2$.

- **1** We contract now *s* in both matroids: $\mathcal{M}''_i := \mathcal{M}_i/s$.
- If the minimum concerning M["]₁ and M["]₂ is at least k − 1 then there exists, by induction, a common independent set Y["] of M["]₁ and M["]₂ of size k − 1. Thus Y["] ∪ s is a common independent set of M₁ and M₂ of size k; and we are done.
- We may hence suppose that there exists $B \subseteq S \setminus \{s\}$ such that $r_1''(B) + r_2''((S \setminus \{s\}) \setminus B) \le k 2$, that is, by (b) of the exercise on contraction, $r_1(B \cup s) 1 + r_2(((S \setminus \{s\}) \setminus B) \cup s) 1 \le k 2$.

Case: $\mathbf{s} \in \mathcal{I}_1 \cap \mathcal{I}_2$.

- **1** Using (R_4) for r_1 and r_2 and adding the inequalities on A and B:
- 2
 $r_1(A \cup B \cup s) + r_1(A \cap B) + r_2(S \setminus (A \cap B)) + r_2(S \setminus (A \cup B \cup s)) ≤
 r_1(A) + r_2((S \setminus \{s\}) \setminus A) + r_1(B \cup s) + r_2(((S \setminus \{s\}) \setminus B) \cup s) ≤ 2k 1.$
- **③** Then for $X = A \cap B$ or $A \cup B \cup s$:
- $k = \min \le r_1(X) + r_2(S \setminus X) \le k 1$, which is a contradiction.

Matroid intersection

Theorem (Edmonds)

- Given two matroids on S and a non-negative weight function on S, one can find in polynomial time a common independent set of the two matroids of maximum weight.
- Intersection of three matroids is NP-complet.

Proof of (2)

• For a digraph
$$\overline{G} = (V, A), s \in V$$
 and $i = 1, 2, 3$,
 $\mathcal{M}_i := (A, \mathcal{I}_i)$ where
 $\mathcal{I}_1 := \{F \subseteq A : (V, F) \text{ is a forest of } G\},$
 $\mathcal{I}_2 := \{F \subseteq A : d_F^-(v) \le 1 \ \forall v \in V \setminus \{s\} \text{ and } = 0 \text{ for } s\},$
 $\mathcal{I}_3 := \{F \subseteq A : d_F^+(v) \le 1 \ \forall v \in V\}.$

2 $F \in \mathcal{I}_1 \cap \mathcal{I}_2 \cap \mathcal{I}_3$ with $|F| = |V| - 1 \iff (V, F)$ is a Hamiltonian path of \vec{G} whose first vertex is s, which is an NP-complet problem.

Matroid intersection

Edmonds implies Kőnig

- Matching in a bipartite graph $G := (V_1, V_2; E)$.
 - $\mathcal{M}_i := (E, \mathcal{I}_i), \mathcal{I}_i := \{F \subseteq E : d_F(v) \leq 1 \ \forall v \in V_i\}.$
 - $\textbf{O} \quad \textbf{M} \subseteq \textbf{E} \text{ is a matching of } \textbf{G} \text{ if and only if } \textbf{M} \in \mathcal{I}_1 \cap \mathcal{I}_2.$
- **2** By Edmonds, $\max\{|M|: M \in \mathcal{I}_1 \cap \mathcal{I}_2\} = \min\{r_1(F) + r_2(E \setminus F): F \subseteq E\}.$
- Solution Let \hat{M} and \hat{F} be the sets that provide max and min.
- \hat{M} is a matching of size max.
- $T := (V_1 \cap V(\hat{F})) \cup (V_2 \cap V(E \setminus \hat{F})).$
- For any $v_1v_2 \in E$, either $v_1v_2 \in \hat{F}$ or $v_1v_2 \in E \setminus \hat{F}$ and hence $v_1 \in T$ or $v_2 \in T$, that is T is a transversal of G.
- **②** $|T| = |V_1 \cap V(\hat{F})| + |V_2 \cap V(E \setminus \hat{F})| = r_1(\hat{F}) + r_2(E \setminus \hat{F}) = \min$.
- $v(G) \ge |\hat{M}| = \max = \min = |T| \ge \tau(G) \ge \nu(G).$
- If Hence $\nu(G) = \tau(G)$, and the theorem of König is proven.

Minimum weight spanning arborescence algorithm (Edmonds)

Input: Digraph G = (V, A), $s \in V$, non-negative weight function c on A. Output: A spanning *s*-arborescence F of G of minimum c-weight.

Ideas

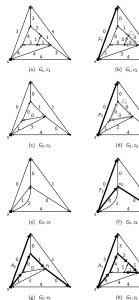
- **()** If a spanning *s*-arborescence of *G* is of *c*-weight 0, then it is optimal.
- If we decrease the weight of all arcs entering a vertex by the same value, then we get an equivalent problem.
- If we contract the arcs of a circuit of *c*-weight 0, then we get an equivalent problem.

Step 0: Initialization. $G_1 := G, c_1 := c, i := 1.$ Step 1: Modification of the weight. For all $v \in V(G_i) \setminus \{s\}$. $\varepsilon_i(\mathbf{v}) := \min\{c_i(u\mathbf{v}) : u\mathbf{v} \in A(G_i)\},\$ $c_{i+1}(uv) := c_i(uv) - \varepsilon_i(v) \ \forall uv \in A(G_i).$ Step 2: Searching. Let G_i^0 be the subgraph of G_i induced by the arcs of c_{i+1} -weight 0. Execute any searching algorithm on G_i^0 and s to obtain - the set S_i of vertices that can be attained from s by a path in G_i^0 , - a set F_i of arcs of G_i^0 such that (S_i, F_i) is an s-arborescence.

Step 3: Contraction of a circuit. If $S_i \neq V(G_i)$ then $C_i :=$ an elementary circuit of $G_i^0 - S_i$, $G_{i+1} := G_i/C_i, i := i+1,$ go to Step 1. Step 4: Expand the contracted circuits in reverse order. $A_i := F_i$. While i > 1 do: $v_{C_{i-1}} \in V(G_i)$ obtained by contracting C_{i-1} in G_{i-1} , $e_i \in A_i$ the unique arc entering $v_{C_{i-1}}$, $w_{i-1} :=$ the head of e_i in G_{i-1} , $f_{i-1} :=$ the arc entering w_{i-1} in C_{i-1} , $A_{i-1} := A_i \cup (A(C_{i-1}) \setminus \{f_{i-1}\}),$ i = i - 1

Step 5: End of algorithm. $F := (V, A_1)$, STOP.

Minimum weight spanning arborescence



(d) G₂, c₃

OCG-ORCO