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Matroids

Examples

1 Set of linearly independent vectors in a vector space,

2 Set of edge sets of forests in a graph,

3 Set of subsets of cardinality at most k in a set of cardinality n ≥ k .

What common properties do the above examples have ?

(I1) ∅ ∈ I,

(I2) If Y ⊆ X ∈ I then Y ∈ I,

(I3) If X ,Y ∈ I and |X | > |Y | then ∃x ∈ X \ Y such that Y ∪ {x} ∈ I.
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Matroids

Properties of independent sets

(I1) ∅ ∈ I,

(I2) If Y ⊆ X ∈ I then Y ∈ I,

(I3) If X ,Y ∈ I and |X | > |Y | then ∃x ∈ X \ Y such that Y ∪ {x} ∈ I.

Definition:

Let S be a set and I a set of subsets of S that satisfies (I1), (I2) and (I3).

1 M = (S ,I) is called matroid.

2 The elements of I are called independent sets.

3 The maximal elements of I are called bases.

4 The rank of X ⊆ S is r(X ) := max{|Z | : Z ⊆ X and Z ∈ I}.
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Bases

Exercise: Properties of bases

The set B of bases of a matroid satisfies:

(B1) B 6= ∅,

(B2) |X | = |Y | for all X ,Y ∈ B,

(B3) If X ,Y ∈ B and x ∈ X \Y then ∃y ∈ Y \X s.t. (X \ {x})∪{y} ∈ B.

Exercise:
1 Let us suppose that B satisfies (B1), (B2) and (B3).

2 Then I := {X ⊆ S : ∃Y ∈ B,X ⊆ Y } satisfies (I1), (I2) and (I3).

3 Deduce from (2) that there exists a matroid M such that B is the set
of bases of M.
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Rank function

Exercise: Properties of the rank function r of a matroid M = (S, I)

(R1) r(X ) is an integer,

(R2) 0 ≤ r(X ) ≤ |X |,

(R3) If X ⊆ Y then r(X ) ≤ r(Y ),

(R4) r(X ) + r(Y ) ≥ r(X ∩ Y ) + r(X ∪ Y ) ∀X ,Y ⊆ S . (Submodularity)

Proof:
1 (R1), (R2) and (R3) are trivially satisfied. To prove (R4) let X ,Y ⊆ S .

2 Let A ∈ I,A ⊆ X ∩ Y , |A| = r(X ∩ Y ), B ∈ I,A ⊆ B ⊆ X ∪ Y ,
|B | = r(X ∪ Y ), (∃B by (I3)), X

′ := B ∩ X and Y ′ := B ∩ Y .

3 By (I2), X
′,Y ′ ∈ I, so r(X ) ≥ |X ′| and r(Y ) ≥ |Y ′|.

4 By definition of A,B , and (I2): X
′ ∩ Y ′ = A, X ′ ∪ Y ′ = B .

5 r(X ) + r(Y ) ≥ |X ′|+ |Y ′| = |X ′ ∩ Y ′|+ |X ′ ∪ Y ′| = |A|+ |B | =
r(X ∩ Y ) + r(X ∪ Y ).
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Rank function

Properties of the rank function r of a matroid M = (S, I)

(R1) r(X ) is an integer,

(R2) 0 ≤ r(X ) ≤ |X |,

(R3) If X ⊆ Y then r(X ) ≤ r(Y ),

(R4) r(X ) + r(Y ) ≥ r(X ∩ Y ) + r(X ∪ Y ) ∀X ,Y ⊆ S .

Exercise:
1 Let us suppose that a function r satisfies (R1), (R2), (R3) and (R4).

2 Prove that I := {X ⊆ S : r(X ) = |X |} satisfies (I1), (I2) and (I3).

3 Deduce from (2) that there exists a matroid M such that r is the
rank function of M.
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Rank function

Previous exercise in an exam
1 Deduce from (R2) that I satisfies (I1).

2 Let Y ⊆ X ∈ I. Deduce from (R4) and (R2) that I satisfies (I2).
3 Let X ,Y ∈ I such that |X | > |Y |. Let Y ′ be a maximal subset of

X ∪ Y such that Y ⊆ Y ′ and r(Y ) = r(Y ′).
1 Deduce from (R3) that there exists x ∈ X \ Y ′.
2 Prove that r(Y ′ ∪ x) > r(Y ).
3 Deduce from (R4) and 3.2 that r(Y ∪ x) > r(Y ).
4 Deduce from (R2), 3.3, (R1) and Y ∈ I that r(Y ∪ x) = |Y ∪ x |.
5 Conclude that I satisfies (I3).

4 Deduce that (S ,I) is a matroid with rank function r ′.

5 Let X ⊆ S ,Y ⊆ X be a maximal independent set in (S ,I) and
Y ⊆ Z ⊆ X a maximal set with r(Y ) = r(Z ).

6 Prove that Z = X .

7 Conclude that r ′ = r .
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Rank function

Solution
1 By (R2), 0 ≤ r(∅) ≤ |∅| = 0, so r(∅) = |∅| that is ∅ ∈ I, and I satisfies (I1).

2 |X | = |Y |+ |X \Y | ≥ r(Y ) + r(X \Y ) ≥ r(∅) + r(X ) = |X | by (R2),
(R4), (I1). Thus |Y | = r(Y ) and I satisfies (I2).

3 1 Otherwise, X ⊆ Y ′, so by (R3), r(X ) ≤ r(Y ′) = r(Y ) < r(X ),
contradiction.

2 By the definition of Y ′, r(Y ′ ∪ x) > r(Y ).
3 By (R4) and 3.2, r(Y ∪ x)+ r(Y ′) ≥ r(Y )+ r(Y ′ ∪ x) > r(Y ′)+ r(Y ).
4 By (R2), 3.3, (R1), Y ∈ I: |Y ∪ x | ≥ r(Y ∪ x) ≥ r(Y ) + 1 = |Y ∪ x |.
5 By 3.4, |Y ∪ x | = r(Y ∪ x) so Y ∪ x ∈ I and I satisfies (I3).

4 By 1,2 and 3, I satisfies (I1), (I2) and (I3) so (S ,I) is a matroid
whose rank function is r ′.

6 If ∃x ∈ X \ Z , then r(Y ) ≤ r(Y ∪ x) ≤ |Y | = r(Y ) so
2r(Y ) = r(Y ∪ x) + r(Z ) ≥ r(Y ) + r(Z ∪ x) > 2r(Y ), contradiction.

7 r ′(X ) = |Y | = r(Y ) = r(Z ) = r(X ).
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Constructions

Exercise:
1 Let S be a set, S1 ∪ · · · ∪ Sk a partition of S and a1, . . . , ak ∈ Z+.

2 Let I := {X ⊆ S : |X ∩ Si | ≤ ai for 1 ≤ i ≤ k}.

3 Prove that I satisfies (I1), (I2) and (I3).

4 The matroid (S ,I) is called partition matroid.

Exercise:
1 Let B be the set of bases of a matroid M on S and

2 B∗ := {X ⊆ S : S \ X ∈ B}.

3 Prove that B∗ satisfies (B1), (B2) and (B3).

4 The matroid M∗ whose set of bases is B∗ is called the dual of M.

5 Prove that the rank function of the dual M∗ is
r∗(X ) = |X |+ r(S \ X )− r(S).
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Constructions

Exercise:
1 Let Mi := (S ,Ii) be k matroids on S with rank functions ri .

2 Let I∪:= {X ⊆ S : ∃ a partition X1 ∪ · · · ∪ Xk of X ,Xi ∈ Ii ∀i}.

3 Prove that I∪ satisfies (I1), (I2) and (I3).

4 The matroid M∪ := (S ,I∪) is called sum of the k matroids Mi .

5 Prove that in M∪: r∪(Z ) = minX⊂Z{|Z \ X |+
∑k

1
ri (X )}.

Corollary:

Given a connected graph G and k ∈ Z+, we can decide using matroid
theory whether G contains k edge-disjoint spanning trees.

Exercise: Given a graph G := (V ,E ),

1 I := {X ⊆ V : ∃ a matching M of G s.t. X ⊆ M-saturated vertices}.

2 Prove that M := (V ,I) is a matroid.
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Constructions

Exercise:
1 Let M = (S ,I) be a matroid and s an element of S and

2 I\s := {X ⊆ S \ s : X ∈ I}.

3 Prove that I ′ satisfies (I1), (I2) and (I3).

4 The operation is called deletion of the element s.

5 The matroid (S \ s,I\s) is denoted by M\ s.

Exercise:
1 Let M = (S ,I) be a matroid and s ∈ S .

2 Let I/s := {X ⊆ S \ {s} : X ∪ {s} ∈ I}.

3 Prove that I/s satisfies (I1), (I2) and (I3).

4 The operation is called contraction of the element s.

5 The matroid (S \ {s},I/s) is denoted by M/s.

6 Prove that the rank function of M/s is r/s(X ) = r(X ∪ s)− 1.
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Algorithmic aspects

Greedy algorithm

Input: A matroid M = (S ,I) and non-negative weight function c on S .
Output: A base of M of maximum weight.

Step 0: Initialization. J := ∅.
Step 1: Augmentation.

While ∃s ∈ S \ J : J ∪ s ∈ I do
choose such an s of maximum c-weight,
J := J ∪ s.

Step 2: End of algorithm. STOP.

Theorem

Greedy algorithm finds a maximum weight base of M.

Corollary

A maximum weight spanning tree can be found by the greedy algorithm.
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Algorithmic aspects

Proof:
1 By (I1) and (I3), the greedy algorithm stops with a base Ba of M.

2 Suppose indirect that there exists a base Bb of M : c(Bb) > c(Ba).

3 By (B2), |Ba| = |Bb|, let n be this value.

4 Let us sort the elements of Ba and Bb the following way :
c(a1) ≥ c(a2) ≥ · · · ≥ c(an) and c(b1) ≥ c(b2) ≥ · · · ≥ c(bn).

5 Since
∑n

i=1
c(bi ) = c(Bb) > c(Ba) =

∑n
i=1

c(ai ),∃k : c(bk) > c(ak).

6 Let A := {a1, . . . , ak−1} and B := {b1, . . . , bk}.

7 Since, by (I2), A,B ∈ I and |B | > |A|, there exists, by (I3),
bj ∈ B \ A such that A ∪ bj ∈ I.

8 Since, by the order of Bb and by assumption, c(bj) ≥ c(bk) > c(ak),

9 the greedy algorithm should have chosen bj and not ak ,

10 which is a contradiction.
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Algorithmic aspects

Theorem
1 Suppose that (S ,I) satisfies (I1) and (I2) but does not satisfy (I3).

2 Prove that there exists a non-negative weight function on S such that
the greedy algorithm finds a set of I that is not of maximum weight.

Proof:
1 By assumption, ∃X ,Y ∈ I, |X | > |Y |,∀x ∈ X \ Y ,Y ∪ x /∈ I.

2 By |X \ Y | > |Y \ X |,∃a/b ∈ R+ : 1 > a/b > |Y \ X |/|X \ Y |.

3 Let c(s) := a if s ∈ X \ Y , b if s ∈ Y , 0 otherwise.

4 By (I1), (I2), b > a > 0, (1), greedy finds Y ⊆ Z ⊆ S \ (X \ Y ).

5 c(Z ) = |Y |b = |X ∩ Y |b + |Y \ X |b < |X ∩ Y |b + |X \ Y |a = c(X ),

6 Thus the set Z ∈ I found by greedy is not of maximum weight.
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Matroid intersection

Examples

1 Matching in a bipartite graph G := (V1,V2;E ).
1 Mi := (E , Ii), Ii := {F ⊆ E : dF (v) ≤ 1 ∀v ∈ Vi}.
2 M ⊆ E is a matching of G if and only if M ∈ I1 ∩ I2.

2 Spanning s-arborescence in a digraph ~G := (V ,A).
1 M1:= (A,B1), B1:= {F ⊆ A: (V ,F ) is a spanning tree of G},
2 M2:= (A,B2), B2:= {F ⊆ A: d−

F (v) = 1 ∀v ∈V \ {s},= 0 for s}.

3 (V ,F ) is a spanning s-arborescence of ~G if and only if F ∈ B1 ∩ B2.
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Matroid intersection

Theorem (Edmonds)

Given two matroids Mi = (S ,Ii) with rank functions ri ,
max{|Y | : Y ∈ I1 ∩ I2} = min{r1(X ) + r2(S \ X ) : X ⊆ S}.

Proof of max ≤ min

1 Let Ŷ ∈ I1 ∩ I2 and X̂ ⊆ S be the sets that provide max and min.

2 By (I2), Ŷ ∩ X̂ ∈ I1 and Ŷ ∩ (S \ X̂ ) ∈ I2.

3 max = |Ŷ | = |Ŷ ∩ X̂ |+ |Ŷ ∩ (S \ X̂ )| ≤ r1(X̂ ) + r2(S \ X̂ ) = min .
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Matroid intersection

Proof of max ≥ min
1 By induction on |S |.

2 Let k be the minimum.

Case: I1 ∩ I2 = ∅.
1 For all s ∈ S , either r1(s) = 0 or r2(s) = 0.

2 Let X := {s ∈ S : r1(s) = 0}.

3 Thus r2(s) = 0 ∀s ∈ S \ X .

4 By (I2), r1(X ) = 0 and r2(S \ X ) = 0.

5 Then r1(X ) + r2(S \ X ) = 0 and hence

6 min = 0 ≤ max, so we are done.
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Matroid intersection

Case: ∃s ∈ I1 ∩ I2.

1 We delete first s from both matroids: M′
i := Mi \ s.

2 If the minimum concerning M′
1 and M′

2 is at least k then there
exists, by induction, a common independent set of M′

1 and M′
2 (and

hence of M1 and M2) of size k ; and we are done.

3 We may hence suppose that there exists A ⊆ S \ {s} such that
r1(A) + r2((S \ {s}) \ A) ≤ k − 1.
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Matroid intersection

Case: s ∈ I1 ∩ I2.

1 We contract now s in both matroids: M′′
i := Mi/s.

2 If the minimum concerning M′′
1 and M′′

2 is at least k − 1 then there
exists, by induction, a common independent set Y ′′ of M′′

1 and M′′
2

of size k − 1. Thus Y ′′ ∪ s is a common independent set of M1 and
M2 of size k ; and we are done.

3 We may hence suppose that there exists B ⊆ S \ {s} such that
r ′′
1
(B) + r ′′

2
((S \ {s}) \ B) ≤ k − 2, that is, by (b) of the exercise on

contraction, r1(B ∪ s)− 1 + r2(((S \ {s}) \ B) ∪ s)− 1 ≤ k − 2.
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Matroid intersection

Case: s ∈ I1 ∩ I2.

1 Using (R4) for r1 and r2 and adding the inequalities on A and B :

2 r1(A ∪ B ∪ s) + r1(A ∩ B) + r2(S \ (A ∩ B)) + r2(S \ (A ∪ B ∪ s)) ≤
r1(A)+ r2((S \{s}) \A)+ r1(B ∪ s)+ r2(((S \{s}) \B)∪ s) ≤ 2k − 1.

3 Then for X = A ∩ B or A ∪ B ∪ s:

4 k = min ≤ r1(X ) + r2(S \ X ) ≤ k − 1, which is a contradiction.
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Matroid intersection

Theorem (Edmonds)

1 Given two matroids on S and a non-negative weight function on S ,
one can find in polynomial time a common independent set of the two
matroids of maximum weight.

2 Intersection of three matroids is NP-complet.

Proof of (2)

1 For a digraph ~G = (V ,A), s ∈ V and i = 1, 2, 3,
Mi := (A,Ii) where
I1 := {F ⊆ A : (V ,F ) is a forest of G},
I2 := {F ⊆ A : d−

F (v) ≤ 1 ∀v ∈ V \ {s} and = 0 for s},
I3 := {F ⊆ A : d+

F (v) ≤ 1 ∀v ∈ V }.

2 F ∈ I1 ∩ I2 ∩ I3 with |F | = |V | − 1 ⇐⇒ (V ,F ) is a Hamiltonian
path of ~G whose first vertex is s, which is an NP-complet problem.
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Matroid intersection

Edmonds implies Kőnig

1 Matching in a bipartite graph G := (V1,V2;E ).
1 Mi := (E , Ii), Ii := {F ⊆ E : dF (v) ≤ 1 ∀v ∈ Vi}.
2 M ⊆ E is a matching of G if and only if M ∈ I1 ∩ I2.

2 By Edmonds, max{|M | : M ∈ I1 ∩ I2} = min{r1(F ) + r2(E \ F ) : F ⊆ E}.

3 Let M̂ and F̂ be the sets that provide max and min .

4 M̂ is a matching of size max.

5 T := (V1 ∩ V (F̂ )) ∪ (V2 ∩ V (E \ F̂ )).

6 For any v1v2 ∈ E , either v1v2 ∈ F̂ or v1v2 ∈ E \ F̂ and hence v1 ∈ T

or v2 ∈ T , that is T is a transversal of G .

7 |T | = |V1 ∩ V (F̂ )|+ |V2 ∩ V (E \ F̂ )| = r1(F̂ ) + r2(E \ F̂ ) = min .

8 ν(G ) ≥ |M̂| = max = min = |T | ≥ τ(G ) ≥ ν(G ).

9 Hence ν(G ) = τ(G ), and the theorem of Kőnig is proven.
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Minimum weight spanning arborescence

Minimum weight spanning arborescence algorithm (Edmonds)

Input: Digraph G = (V ,A), s ∈ V , non-negative weight function c on A.
Output: A spanning s-arborescence F of G of minimum c-weight.

Ideas
1 If a spanning s-arborescence of G is of c-weight 0, then it is optimal.

2 If we decrease the weight of all arcs entering a vertex by the same
value, then we get an equivalent problem.

3 If we contract the arcs of a circuit of c-weight 0, then we get an
equivalent problem.
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Minimum weight spanning arborescence

Step 0: Initialization.
G1 := G , c1 := c , i := 1.

Step 1: Modification of the weight.

For all v ∈ V (Gi) \ {s},
εi (v) := min{ci (uv) : uv ∈ A(Gi)},
ci+1(uv) := ci (uv)− εi (v) ∀uv ∈ A(Gi).

Step 2: Searching.
Let G 0

i be the subgraph of Gi induced by the arcs of ci+1-weight 0.
Execute any searching algorithm on G 0

i and s to obtain
- the set Si of vertices that can be attained from s by a path in G 0

i ,
- a set Fi of arcs of G

0
i such that (Si ,Fi ) is an s-arborescence.
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Minimum weight spanning arborescence

Step 3: Contraction of a circuit.

If Si 6= V (Gi) then
Ci := an elementary circuit of G 0

i − Si ,
Gi+1 := Gi/Ci , i := i + 1,
go to Step 1.

Step 4: Expand the contracted circuits in reverse order.

Ai := Fi .
While i > 1 do:

vCi−1
∈ V (Gi) obtained by contracting Ci−1 in Gi−1,

ei ∈ Ai the unique arc entering vCi−1
,

wi−1 := the head of ei in Gi−1,
fi−1 := the arc entering wi−1 in Ci−1,
Ai−1 := Ai ∪ (A(Ci−1) \ {fi−1}),
i := i − 1.

Step 5: End of algorithm. F := (V ,A1), STOP.
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Minimum weight spanning arborescence
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