Combinatorial Optimization and Graph Theory ORCO
 Matroids

Zoltán Szigeti

Matroids

Planning

(1) Examples, Definitions, Constructions
(2) Algorithmic aspects,
(3) Matroid intersection,
(9) Minimum Weight Spanning Arborescences

Matroids

Examples

(1) Set of linearly independent vectors in a vector space,
(2) Set of edge sets of forests in a graph,
(3) Set of subsets of cardinality at most k in a set of cardinality $n \geq k$.

What common properties do the above examples have ?

$\left(I_{1}\right) \emptyset \in \mathcal{I}$,
(I_{2}) If $Y \subseteq X \in \mathcal{I}$ then $Y \in \mathcal{I}$,
(I3) If $X, Y \in \mathcal{I}$ and $|X|>|Y|$ then $\exists x \in X \backslash Y$ such that $Y \cup\{x\} \in \mathcal{I}$.

Matroids

Properties of independent sets

$\left(I_{1}\right) \emptyset \in \mathcal{I}$,
(I_{2}) If $Y \subseteq X \in \mathcal{I}$ then $Y \in \mathcal{I}$,
(I3) If $X, Y \in \mathcal{I}$ and $|X|>|Y|$ then $\exists x \in X \backslash Y$ such that $Y \cup\{x\} \in \mathcal{I}$.

Definition:

Let S be a set and \mathcal{I} a set of subsets of S that satisfies $\left(I_{1}\right),\left(I_{2}\right)$ and $\left(I_{3}\right)$.
(1) $\mathcal{M}=(S, \mathcal{I})$ is called matroid.
(2) The elements of \mathcal{I} are called independent sets.
(3) The maximal elements of \mathcal{I} are called bases.
(9) The rank of $X \subseteq S$ is $r(X):=\max \{|Z|: Z \subseteq X$ and $Z \in \mathcal{I}\}$.

Bases

Exercise: Properties of bases

The set \mathcal{B} of bases of a matroid satisfies:
$\left(B_{1}\right) \mathcal{B} \neq \emptyset$,
(B2) $|X|=|Y|$ for all $X, Y \in \mathcal{B}$,
(B_{3}) If $X, Y \in \mathcal{B}$ and $x \in X \backslash Y$ then $\exists y \in Y \backslash X$ s.t. $(X \backslash\{x\}) \cup\{y\} \in \mathcal{B}$.

Exercise:

(1) Let us suppose that \mathcal{B} satisfies $\left(B_{1}\right),\left(B_{2}\right)$ and $\left(B_{3}\right)$.
(2) Then $\mathcal{I}:=\{X \subseteq S: \exists Y \in \mathcal{B}, X \subseteq Y\}$ satisfies $\left(I_{1}\right)$, $\left(I_{2}\right)$ and $\left(I_{3}\right)$.
(3) Deduce from (2) that there exists a matroid \mathcal{M} such that \mathcal{B} is the set of bases of \mathcal{M}.

Rank function

Exercise: Properties of the rank function r of a matroid $\mathcal{M}=(\mathcal{S}, \mathcal{I})$
$\left(R_{1}\right) r(X)$ is an integer,
$\left(R_{2}\right) 0 \leq r(X) \leq|X|$,
(R_{3}) If $X \subseteq Y$ then $r(X) \leq r(Y)$,
$\left(R_{4}\right) r(X)+r(Y) \geq r(X \cap Y)+r(X \cup Y) \forall X, Y \subseteq S$. (Submodularity)

Proof:

(1) $\left(R_{1}\right),\left(R_{2}\right)$ and $\left(R_{3}\right)$ are trivially satisfied. To prove $\left(R_{4}\right)$ let $X, Y \subseteq S$.
(2) Let $A \in \mathcal{I}, A \subseteq X \cap Y,|A|=r(X \cap Y), B \in \mathcal{I}, A \subseteq B \subseteq X \cup Y$, $|B|=r(X \cup Y),\left(\exists B\right.$ by $\left.\left(I_{3}\right)\right), X^{\prime}:=B \cap X$ and $Y^{\prime}:=B \cap Y$.
(3) By $\left(I_{2}\right), X^{\prime}, Y^{\prime} \in \mathcal{I}$, so $r(X) \geq\left|X^{\prime}\right|$ and $r(Y) \geq\left|Y^{\prime}\right|$.
(1) By definition of A, B, and $\left(I_{2}\right): X^{\prime} \cap Y^{\prime}=A, X^{\prime} \cup Y^{\prime}=B$.
(0) $r(X)+r(Y) \geq\left|X^{\prime}\right|+\left|Y^{\prime}\right|=\left|X^{\prime} \cap Y^{\prime}\right|+\left|X^{\prime} \cup Y^{\prime}\right|=|A|+|B|=$ $r(X \cap Y)+r(X \cup Y)$.

Rank function

Properties of the rank function r of a matroid $\mathcal{M}=(\mathcal{S}, \mathcal{I})$

$\left(R_{1}\right) r(X)$ is an integer,
$\left(R_{2}\right) 0 \leq r(X) \leq|X|$,
(R_{3}) If $X \subseteq Y$ then $r(X) \leq r(Y)$,
$\left(R_{4}\right) r(X)+r(Y) \geq r(X \cap Y)+r(X \cup Y) \forall X, Y \subseteq S$.

Exercise:

(1) Let us suppose that a function r satisfies $\left(R_{1}\right),\left(R_{2}\right),\left(R_{3}\right)$ and $\left(R_{4}\right)$.
(2) Prove that $\mathcal{I}:=\{X \subseteq S: r(X)=|X|\}$ satisfies $\left(I_{1}\right),\left(I_{2}\right)$ and $\left(I_{3}\right)$.
(3) Deduce from (2) that there exists a matroid \mathcal{M} such that r is the rank function of \mathcal{M}.

Rank function

Previous exercise in an exam

(1) Deduce from $\left(R_{2}\right)$ that \mathcal{I} satisfies $\left(I_{1}\right)$.
(2) Let $Y \subseteq X \in \mathcal{I}$. Deduce from $\left(R_{4}\right)$ and $\left(R_{2}\right)$ that \mathcal{I} satisfies $\left(I_{2}\right)$.
(3) Let $X, Y \in \mathcal{I}$ such that $|X|>|Y|$. Let Y^{\prime} be a maximal subset of $X \cup Y$ such that $Y \subseteq Y^{\prime}$ and $r(Y)=r\left(Y^{\prime}\right)$.
(1) Deduce from $\left(R_{3}\right)$ that there exists $x \in X \backslash Y^{\prime}$.
(2) Prove that $r\left(Y^{\prime} \cup x\right)>r(Y)$.
(3) Deduce from $\left(R_{4}\right)$ and 3.2 that $r(Y \cup x)>r(Y)$.
(1) Deduce from $\left(R_{2}\right), 3.3,\left(R_{1}\right)$ and $Y \in \mathcal{I}$ that $r(Y \cup x)=|Y \cup x|$.
(0) Conclude that \mathcal{I} satisfies $\left(I_{3}\right)$.
(9) Deduce that (S, \mathcal{I}) is a matroid with rank function r^{\prime}.
(3) Let $X \subseteq S, Y \subseteq X$ be a maximal independent set in (S, \mathcal{I}) and $Y \subseteq Z \subseteq X$ a maximal set with $r(Y)=r(Z)$.
(0) Prove that $Z=X$.
(Conclude that $r^{\prime}=r$.

Rank function

Solution

(1) By $\left(R_{2}\right), 0 \leq r(\emptyset) \leq|\emptyset|=0$, so $r(\emptyset)=|\emptyset|$ that is $\emptyset \in \mathcal{I}$, and \mathcal{I} satisfies $\left(I_{1}\right)$.
(2) $|X|=|Y|+|X \backslash Y| \geq r(Y)+r(X \backslash Y) \geq r(\emptyset)+r(X)=|X|$ by $\left(R_{2}\right)$, $\left(R_{4}\right),\left(I_{1}\right)$. Thus $|Y|=r(Y)$ and \mathcal{I} satisfies $\left(I_{2}\right)$.
(3) (1) Otherwise, $X \subseteq Y^{\prime}$, so by $\left(R_{3}\right), r(X) \leq r\left(Y^{\prime}\right)=r(Y)<r(X)$, contradiction.
(2) By the definition of $Y^{\prime}, r\left(Y^{\prime} \cup x\right)>r(Y)$.
(3) By $\left(R_{4}\right)$ and 3.2, $r(Y \cup x)+r\left(Y^{\prime}\right) \geq r(Y)+r\left(Y^{\prime} \cup x\right)>r\left(Y^{\prime}\right)+r(Y)$.
(3) By $\left(R_{2}\right)$, 3.3, $\left(R_{1}\right), Y \in \mathcal{I}:|Y \cup x| \geq r(Y \cup x) \geq r(Y)+1=|Y \cup x|$.
(0. By 3.4, $|Y \cup x|=r(Y \cup x)$ so $Y \cup x \in \mathcal{I}$ and \mathcal{I} satisfies $\left(I_{3}\right)$.
(9) By 1,2 and $3, \mathcal{I}$ satisfies $\left(I_{1}\right),\left(I_{2}\right)$ and $\left(I_{3}\right)$ so (S, \mathcal{I}) is a matroid whose rank function is r^{\prime}.
(0) If $\exists x \in X \backslash Z$, then $r(Y) \leq r(Y \cup x) \leq|Y|=r(Y)$ so
$2 r(Y)=r(Y \cup x)+r(Z) \geq r(Y)+r(Z \cup x)>2 r(Y)$, contradiction.
(1) $r^{\prime}(X)=|Y|=r(Y)=r(Z)=r(X)$.

Constructions

Exercise:

(1) Let S be a set, $S_{1} \cup \cdots \cup S_{k}$ a partition of S and $a_{1}, \ldots, a_{k} \in \mathbb{Z}_{+}$.
(2) Let $\mathcal{I}:=\left\{X \subseteq S:\left|X \cap S_{i}\right| \leq a_{i}\right.$ for $\left.1 \leq i \leq k\right\}$.
(3) Prove that \mathcal{I} satisfies $\left(I_{1}\right),\left(I_{2}\right)$ and $\left(I_{3}\right)$.
(9) The matroid (S, \mathcal{I}) is called partition matroid.

Exercise:

(1) Let \mathcal{B} be the set of bases of a matroid \mathcal{M} on S and
(2) $\mathcal{B}^{*}:=\{X \subseteq S: S \backslash X \in \mathcal{B}\}$.
(3) Prove that \mathcal{B}^{*} satisfies $\left(B_{1}\right),\left(B_{2}\right)$ and $\left(B_{3}\right)$.
(9) The matroid \mathcal{M}^{*} whose set of bases is \mathcal{B}^{*} is called the dual of \mathcal{M}.
(3) Prove that the rank function of the dual \mathcal{M}^{*} is

$$
r^{*}(X)=|X|+r(S \backslash X)-r(S)
$$

Constructions

Exercise:

(1) Let $\mathcal{M}_{i}:=\left(S, \mathcal{I}_{i}\right)$ be k matroids on S with rank functions r_{i}.
(2) Let $\mathcal{I}_{\cup}:=\left\{X \subseteq S: \exists\right.$ a partition $X_{1} \cup \cdots \cup X_{k}$ of $\left.X, X_{i} \in \mathcal{I}_{i} \forall i\right\}$.
(3) Prove that \mathcal{I}_{\cup} satisfies $\left(I_{1}\right),\left(I_{2}\right)$ and $\left(I_{3}\right)$.
(9) The matroid $\mathcal{M}_{\cup}:=\left(S, \mathcal{I}_{\cup}\right)$ is called sum of the k matroids \mathcal{M}_{i}.
(5) Prove that in $\mathcal{M}_{\cup}: r_{\cup}(Z)=\min _{X \subset Z}\left\{|Z \backslash X|+\sum_{1}^{k} r_{i}(X)\right\}$.

Corollary:

Given a connected graph G and $k \in \mathbb{Z}_{+}$, we can decide using matroid theory whether G contains k edge-disjoint spanning trees.

Exercise: Given a graph $G:=(V, E)$,
(1) $\mathcal{I}:=\{X \subseteq V: \exists$ a matching M of G s.t. $X \subseteq M$-saturated vertices $\}$.
(2) Prove that $\mathcal{M}:=(V, \mathcal{I})$ is a matroid.

Constructions

Exercise:

(1) Let $\mathcal{M}=(S, \mathcal{I})$ be a matroid and s an element of S and
(2) $\mathcal{I}_{\backslash s}:=\{X \subseteq S \backslash s: X \in \mathcal{I}\}$.
(3) Prove that \mathcal{I}^{\prime} satisfies $\left(I_{1}\right),\left(I_{2}\right)$ and $\left(I_{3}\right)$.
(9) The operation is called deletion of the element s.
(5) The matroid $\left(S \backslash s, \mathcal{I}_{\backslash s}\right)$ is denoted by $\mathcal{M} \backslash s$.

Exercise:

(1) Let $\mathcal{M}=(S, \mathcal{I})$ be a matroid and $s \in S$.
(2) Let $\mathcal{I}_{/ s}:=\{X \subseteq S \backslash\{s\}: X \cup\{s\} \in \mathcal{I}\}$.
(3) Prove that $\mathcal{I}_{/ s}$ satisfies $\left(I_{1}\right),\left(I_{2}\right)$ and $\left(I_{3}\right)$.
(9) The operation is called contraction of the element s.
(5) The matroid $\left(S \backslash\{s\}, \mathcal{I}_{/ s}\right)$ is denoted by \mathcal{M} / s.
(0) Prove that the rank function of \mathcal{M} / s is $r_{/ s}(X)=r(X \cup s)-1$.

Algorithmic aspects

Greedy algorithm

Input: A matroid $\mathcal{M}=(S, \mathcal{I})$ and non-negative weight function c on S.
Output: A base of \mathcal{M} of maximum weight.
Step 0: Initialization. J := \emptyset.
Step 1: Augmentation.
While $\exists s \in S \backslash J: J \cup s \in \mathcal{I}$ do
choose such an s of maximum c-weight, $J:=J \cup s$.
Step 2: End of algorithm. STOP.

Theorem

Greedy algorithm finds a maximum weight base of \mathcal{M}.

Corollary

A maximum weight spanning tree can be found by the greedy algorithm.

Algorithmic aspects

Proof:

(1) By $\left(l_{1}\right)$ and $\left(l_{3}\right)$, the greedy algorithm stops with a base B_{a} of \mathcal{M}.
(2) Suppose indirect that there exists a base B_{b} of $\mathcal{M}: c\left(B_{b}\right)>c\left(B_{a}\right)$.
(3) By $\left(B_{2}\right),\left|B_{a}\right|=\left|B_{b}\right|$, let n be this value.
(9) Let us sort the elements of B_{a} and B_{b} the following way:

$$
c\left(a_{1}\right) \geq c\left(a_{2}\right) \geq \cdots \geq c\left(a_{n}\right) \text { and } c\left(b_{1}\right) \geq c\left(b_{2}\right) \geq \cdots \geq c\left(b_{n}\right)
$$

(3) Since $\sum_{i=1}^{n} c\left(b_{i}\right)=c\left(B_{b}\right)>c\left(B_{a}\right)=\sum_{i=1}^{n} c\left(a_{i}\right), \exists k: c\left(b_{k}\right)>c\left(a_{k}\right)$.
(0) Let $A:=\left\{a_{1}, \ldots, a_{k-1}\right\}$ and $B:=\left\{b_{1}, \ldots, b_{k}\right\}$.
(1) Since, by $\left(I_{2}\right), A, B \in \mathcal{I}$ and $|B|>|A|$, there exists, by $\left(I_{3}\right)$, $b_{j} \in B \backslash A$ such that $A \cup b_{j} \in \mathcal{I}$.
(8) Since, by the order of B_{b} and by assumption, $c\left(b_{j}\right) \geq c\left(b_{k}\right)>c\left(a_{k}\right)$,
(0) the greedy algorithm should have chosen b_{j} and not a_{k},
(10) which is a contradiction.

Algorithmic aspects

Theorem

(1) Suppose that (S, \mathcal{I}) satisfies $\left(I_{1}\right)$ and $\left(I_{2}\right)$ but does not satisfy $\left(I_{3}\right)$.
(2) Prove that there exists a non-negative weight function on S such that the greedy algorithm finds a set of \mathcal{I} that is not of maximum weight.

Proof:

(1) By assumption, $\exists X, Y \in \mathcal{I},|X|>|Y|, \forall x \in X \backslash Y, Y \cup x \notin \mathcal{I}$.
(2) By $|X \backslash Y|>|Y \backslash X|, \exists a / b \in \mathbb{R}_{+}: 1>a / b>|Y \backslash X| /|X \backslash Y|$.
(3) Let $c(s):=a$ if $s \in X \backslash Y, b$ if $s \in Y, 0$ otherwise.
(9) By $\left(I_{1}\right),\left(I_{2}\right), b>a>0,(1)$, greedy finds $Y \subseteq Z \subseteq S \backslash(X \backslash Y)$.
(3) $c(Z)=|Y| b=|X \cap Y| b+|Y \backslash X| b<|X \cap Y| b+|X \backslash Y| a=c(X)$,
(c) Thus the set $Z \in \mathcal{I}$ found by greedy is not of maximum weight.

Matroid intersection

Examples

(1) Matching in a bipartite graph $G:=\left(V_{1}, V_{2} ; E\right)$.
(1) $\mathcal{M}_{i}:=\left(E, \mathcal{I}_{i}\right), \mathcal{I}_{i}:=\left\{F \subseteq E: d_{F}(v) \leq 1 \forall v \in V_{i}\right\}$.
(2) $M \subseteq E$ is a matching of G if and only if $M \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$.
(2) Spanning s-arborescence in a digraph $\vec{G}:=(V, A)$.
(1) $\mathcal{M}_{1}:=\left(A, \mathcal{B}_{1}\right), \mathcal{B}_{1}:=\{F \subseteq A:(V, F)$ is a spanning tree of $G\}$,
(2) $\mathcal{M}_{2}:=\left(A, \mathcal{B}_{2}\right), \mathcal{B}_{2}:=\left\{F \subseteq A: d_{F}^{-}(v)=1 \forall v \in V \backslash\{s\}\right.$, $=0$ for $\left.s\right\}$.
(3) (V, F) is a spanning s-arborescence of \vec{G} if and only if $F \in \mathcal{B}_{1} \cap \mathcal{B}_{2}$.

Matroid intersection

Theorem (Edmonds)

Given two matroids $\mathcal{M}_{i}=\left(S, \mathcal{I}_{i}\right)$ with rank functions r_{i}, $\max \left\{|Y|: Y \in \mathcal{I}_{1} \cap \mathcal{I}_{2}\right\}=\min \left\{r_{1}(X)+r_{2}(S \backslash X): X \subseteq S\right\}$.

Proof of $\max \leq \min$

(1) Let $\hat{Y} \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ and $\hat{X} \subseteq S$ be the sets that provide max and min.
(2) By $\left(I_{2}\right), \hat{Y} \cap \hat{X} \in \mathcal{I}_{1}$ and $\hat{Y} \cap(S \backslash \hat{X}) \in \mathcal{I}_{2}$.
(3) $\max =|\hat{Y}|=|\hat{Y} \cap \hat{X}|+|\hat{Y} \cap(S \backslash \hat{X})| \leq r_{1}(\hat{X})+r_{2}(S \backslash \hat{X})=\min$.

Matroid intersection

Proof of $\max \geq \min$

(1) By induction on $|S|$.
(2) Let k be the minimum.

Case: $\mathcal{I}_{1} \cap \mathcal{I}_{2}=\emptyset$.
(1) For all $s \in S$, either $r_{1}(s)=0$ or $r_{2}(s)=0$.
(2) Let $X:=\left\{s \in S: r_{1}(s)=0\right\}$.
(3) Thus $r_{2}(s)=0 \forall s \in S \backslash X$.
(9) By $\left(l_{2}\right), r_{1}(X)=0$ and $r_{2}(S \backslash X)=0$.
(3) Then $r_{1}(X)+r_{2}(S \backslash X)=0$ and hence
(3) $\min =0 \leq \max$, so we are done.

Matroid intersection

Case: $\exists s \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$.

(1) We delete first s from both matroids: $\mathcal{M}_{i}^{\prime}:=\mathcal{M}_{i} \backslash s$.
(2) If the minimum concerning \mathcal{M}_{1}^{\prime} and \mathcal{M}_{2}^{\prime} is at least k then there exists, by induction, a common independent set of \mathcal{M}_{1}^{\prime} and \mathcal{M}_{2}^{\prime} (and hence of \mathcal{M}_{1} and \mathcal{M}_{2}) of size k; and we are done.
(3) We may hence suppose that there exists $A \subseteq S \backslash\{s\}$ such that $r_{1}(A)+r_{2}((S \backslash\{s\}) \backslash A) \leq k-1$.

Matroid intersection

Case: $s \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$.

(1) We contract now s in both matroids: $\mathcal{M}_{i}^{\prime \prime}:=\mathcal{M}_{i} / s$.
(2) If the minimum concerning $\mathcal{M}_{1}^{\prime \prime}$ and $\mathcal{M}_{2}^{\prime \prime}$ is at least $k-1$ then there exists, by induction, a common independent set $Y^{\prime \prime}$ of $\mathcal{M}_{1}^{\prime \prime}$ and $\mathcal{M}_{2}^{\prime \prime}$ of size $k-1$. Thus $Y^{\prime \prime} \cup s$ is a common independent set of \mathcal{M}_{1} and \mathcal{M}_{2} of size k; and we are done.
(3) We may hence suppose that there exists $B \subseteq S \backslash\{s\}$ such that $r_{1}^{\prime \prime}(B)+r_{2}^{\prime \prime}((S \backslash\{s\}) \backslash B) \leq k-2$, that is, by (b) of the exercise on contraction, $r_{1}(B \cup s)-1+r_{2}(((S \backslash\{s\}) \backslash B) \cup s)-1 \leq k-2$.

Matroid intersection

Case: $s \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$.

(1) Using $\left(R_{4}\right)$ for r_{1} and r_{2} and adding the inequalities on A and B :
(2) $r_{1}(A \cup B \cup s)+r_{1}(A \cap B)+r_{2}(S \backslash(A \cap B))+r_{2}(S \backslash(A \cup B \cup s)) \leq$

$$
r_{1}(A)+r_{2}((S \backslash\{s\}) \backslash A)+r_{1}(B \cup s)+r_{2}(((S \backslash\{s\}) \backslash B) \cup s) \leq 2 k-1
$$

(3) Then for $X=A \cap B$ or $A \cup B \cup s$:
(9) $k=\min \leq r_{1}(X)+r_{2}(S \backslash X) \leq k-1$, which is a contradiction.

Matroid intersection

Theorem (Edmonds)

(1) Given two matroids on S and a non-negative weight function on S, one can find in polynomial time a common independent set of the two matroids of maximum weight.
(2) Intersection of three matroids is NP-complet.

Proof of (2)

(1) For a digraph $\vec{G}=(V, A), s \in V$ and $i=1,2,3$,
$\mathcal{M}_{i}:=\left(A, \mathcal{I}_{i}\right)$ where
$\mathcal{I}_{1}:=\{F \subseteq A:(V, F)$ is a forest of $G\}$,
$\mathcal{I}_{2}:=\left\{F \subseteq A: d_{F}^{-}(v) \leq 1 \forall v \in V \backslash\{s\}\right.$ and $=0$ for $\left.s\right\}$,
$\mathcal{I}_{3}:=\left\{F \subseteq A: d_{F}^{+}(v) \leq 1 \forall v \in V\right\}$.
(2) $F \in \mathcal{I}_{1} \cap \mathcal{I}_{2} \cap \mathcal{I}_{3}$ with $|F|=|V|-1 \Longleftrightarrow(V, F)$ is a Hamiltonian path of \vec{G} whose first vertex is s, which is an NP-complet problem.

Matroid intersection

Edmonds implies König

(1) Matching in a bipartite graph $G:=\left(V_{1}, V_{2} ; E\right)$.
(1) $\mathcal{M}_{i}:=\left(E, \mathcal{I}_{i}\right), \mathcal{I}_{i}:=\left\{F \subseteq E: d_{F}(v) \leq 1 \forall v \in V_{i}\right\}$.
(2) $M \subseteq E$ is a matching of G if and only if $M \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$.
(2) By Edmonds, $\max \left\{|M|: M \in \mathcal{I}_{1} \cap \mathcal{I}_{2}\right\}=\min \left\{r_{1}(F)+r_{2}(E \backslash F): F \subseteq E\right\}$.
(3) Let \hat{M} and \hat{F} be the sets that provide max and \min.
(9) \hat{M} is a matching of size max.
(5) $T:=\left(V_{1} \cap V(\hat{F})\right) \cup\left(V_{2} \cap V(E \backslash \hat{F})\right)$.
(0) For any $v_{1} v_{2} \in E$, either $v_{1} v_{2} \in \hat{F}$ or $v_{1} v_{2} \in E \backslash \hat{F}$ and hence $v_{1} \in T$ or $v_{2} \in T$, that is T is a transversal of G.
(1) $|T|=\left|V_{1} \cap V(\hat{F})\right|+\left|V_{2} \cap V(E \backslash \hat{F})\right|=r_{1}(\hat{F})+r_{2}(E \backslash \hat{F})=\mathrm{min}$.
(8) $\nu(G) \geq|\hat{M}|=\max =\min =|T| \geq \tau(G) \geq \nu(G)$.
(0) Hence $\nu(G)=\tau(G)$, and the theorem of Kőnig is proven.

Minimum weight spanning arborescence

Minimum weight spanning arborescence algorithm (Edmonds)

Input: Digraph $G=(V, A), s \in V$, non-negative weight function c on A. Output: A spanning s-arborescence F of G of minimum c-weight.

Ideas

(1) If a spanning s-arborescence of G is of c-weight 0 , then it is optimal.
(2) If we decrease the weight of all arcs entering a vertex by the same value, then we get an equivalent problem.
(3) If we contract the arcs of a circuit of c-weight 0 , then we get an equivalent problem.

Minimum weight spanning arborescence

Step 0: Initialization.

$$
G_{1}:=G, c_{1}:=c, i:=1
$$

Step 1: Modification of the weight.
For all $v \in V\left(G_{i}\right) \backslash\{s\}$,

$$
\begin{aligned}
& \varepsilon_{i}(v):=\min \left\{c_{i}(u v): u v \in A\left(G_{i}\right)\right\}, \\
& c_{i+1}(u v):=c_{i}(u v)-\varepsilon_{i}(v) \forall u v \in A\left(G_{i}\right) .
\end{aligned}
$$

Step 2: Searching.
Let G_{i}^{0} be the subgraph of G_{i} induced by the arcs of c_{i+1}-weight 0 . Execute any searching algorithm on G_{i}^{0} and s to obtain

- the set S_{i} of vertices that can be attained from s by a path in G_{i}^{0},
- a set F_{i} of arcs of G_{i}^{0} such that $\left(S_{i}, F_{i}\right)$ is an s-arborescence.

Minimum weight spanning arborescence

Step 3: Contraction of a circuit.
If $S_{i} \neq V\left(G_{i}\right)$ then
$C_{i}:=$ an elementary circuit of $G_{i}^{0}-S_{i}$,
$G_{i+1}:=G_{i} / C_{i}, i:=i+1$,
go to Step 1.
Step 4: Expand the contracted circuits in reverse order.
$A_{i}:=F_{i}$.
While $i>1$ do:
${ }^{V_{C_{i-1}}} \in V\left(G_{i}\right)$ obtained by contracting C_{i-1} in G_{i-1},
$e_{i} \in A_{i}$ the unique arc entering $v_{C_{i-1}}$,
$w_{i-1}:=$ the head of e_{i} in G_{i-1},
$f_{i-1}:=$ the arc entering w_{i-1} in C_{i-1},
$A_{i-1}:=A_{i} \cup\left(A\left(C_{i-1}\right) \backslash\left\{f_{i-1}\right\}\right)$,
$i:=i-1$.
Step 5: End of algorithm. $F:=\left(V, A_{1}\right)$, sTOP.

Minimum weight spanning arborescence

(a) G_{1}, c_{1}

(b) G_{1}, c_{2}

(c) G_{2}, C_{2}

(d) G_{2}, C_{3}

(e) G_{3}, C_{3}

(f) G_{3}, c_{4}

(g) G_{2}, c_{2}

(h) G_{1}, c_{1}

