Combinatorial Optimization and Graph Theory ORCO Introduction + Flows

Zoltán Szigeti

Teachers

Teachers

- SZIGETI, Zoltán (8 weeks)
 - Professor at Ensimag, e-mail: zoltan.szigeti@grenoble-inp.fr
- STEHLIK, Matej (4 weeks)
 - Assistant Professor at UGA, e-mail: matej.stehlik@grenoble-inp.fr

Researchers:

- Research at G-SCOP Laboratory.
- Q Research subjects:
 - Combinatorial Optimization,
 - Graph Theory,
 - Connectivity,
 - Matchings,
 - Matroids.

Combinatorial Optimization

- Discrete optimization part of Operations Research, consists of "Finding the best solution in a very large set of possibilities".
 - Previously seen:
 - Shortest paths,
 - Minimum cost spanning trees.
- Structural results
 - Previously seen:
 - Subpath of a shortest path is a shortest path.
 - Maximal forest is maximum forest.
- Efficient algorithms
 - Previously seen:
 - Bellmann, Dijkstra, Floyd-Warshall for shortest paths,
 - Kruskal (greedy) for minimum cost spanning trees.

Planning

Subjects treated in my part:

- Network flows,
- Push-Relabel algorithm for flows,
- Matchings in bipartite graphs,
- Matchings in general graphs,
- Matroids,
- Submodular functions in graph theory,
- Paper presentations (2 weeks),

Citation about flows :

"But anyone who has experienced flow knows that the deep enjoyment it provides requires an equal degree of disciplined concentration."

Mihály Csikszentmihályi

Books for further study

- Ahuja, Magnanti, Orlin, Network flows; Theory, Algorithms and Applications,
- Cook, Cunningham, Pulleyblank, Schrijver, Combinatorial Optimization,
- **§ Frank,** Connections in Combinatorial Optimization,
- Sorte, Vygen, Combinatorial Optimization; Theory and Algorithms,
- S Lovász, Plummer, Matching Theory,
- Schrijver, Combinatorial Optimization; Polyhedra and Efficiency, 3 volumes.

Problem

How many trucks can we send from a starting point to a destination point respecting the capacity constraints of the streets?

Model

Given

- a directed graph G = (V, A),
- **2** source $s \in V$ and sink $t \in V$,
- \bigcirc a capacity function g on the arcs,

- find a set *P* of (s, t)-paths such that each arc e belongs to at most g(e) paths of *P*.
- It suffices to know the number x(e) of paths in \mathcal{P} containing $e \in A$.
- **3** The function $\mathbf{x} : \mathbf{A} \to \mathbb{R}$ is called flow.

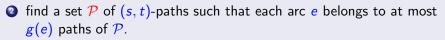
Problem

How many trucks can we send from a starting point to a destination point respecting the capacity constraints of the streets?

Model

Given

- a directed graph G = (V, A),
- **2** source $s \in V$ and sink $t \in V$,
- \bigcirc a capacity function g on the arcs,



- 3 It suffices to know the number x(e) of paths in \mathcal{P} containing $e \in A$.
- **•** The function $\mathbf{x} : \mathbf{A} \to \mathbb{R}$ is called flow.

OCG-ORCO

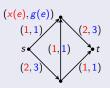
Problem

How many trucks can we send from a starting point to a destination point respecting the capacity constraints of the streets?

Model

Given

- a directed graph G = (V, A),
- **2** source $s \in V$ and sink $t \in V$,
- (c) a capacity function g on the arcs,



- If ind a set *P* of (s, t)-paths such that each arc e belongs to at most g(e) paths of *P*.
- 3 It suffices to know the number x(e) of paths in \mathcal{P} containing $e \in A$.
 - The function $\mathbf{x} : \mathbf{A} \to \mathbb{R}$ is called flow.

Definition of flows

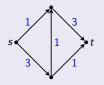
Definition

Given

- a directed graph G = (V, A),
- **2** s, $t \in V$ such that $\delta^{-}(s) = \emptyset = \delta^{+}(t)$,
- a non-negative capacity g on the arcs,
- 2 a function x on the arcs is
 - an (s, t)-flow if the flow conservation is satisfied:

$$\sum_{uv\in A} x(uv) = \sum_{vu\in A} x(vu) \ \forall v \in V \setminus \{s,t\}.$$

Q feasible if the capacity contraint is satisfied: $0 \le x(e) \le g(e) \quad \forall e \in A.$



Definition of flows

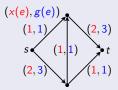
Definition

Given

- a directed graph G = (V, A),
- **2** s, $t \in V$ such that $\delta^{-}(s) = \emptyset = \delta^{+}(t)$,
- \bigcirc a non-negative capacity g on the arcs,
- a function x on the arcs is
 - an (s, t)-flow if the flow conservation is satisfied:

$$\sum_{uv\in A} x(uv) = \sum_{vu\in A} x(vu) \ \forall v \in V \setminus \{s,t\}.$$

Q feasible if the capacity contraint is satisfied: $0 \le x(e) \le g(e) \quad \forall e \in A.$



Notation

Notation

Given directed graph $G = (V, A), s, t \in V$, capacity g, flow x, $Z \subseteq V$,

- **Ο** δ⁺(Z):
- **Out-value of** *Z*:
- **I Flow conservation:**
- Flow value:
- **(***s*, *t***)-cut** *Z*:

the arcs leaving Z,

 $d_{x}^{+}(Z) := \sum_{e \in \delta^{+}(Z)} x(e),$ $d_{y}^{-}(v) = d_{y}^{+}(v),$

$$val(x) := d_x^+(s),$$

if $s \in Z \subseteq V \setminus t$.

• Capacity of (s, t)-cut Z: $cap(Z) := d_g^+(Z)$.

$$(x(e), g(e))$$

$$(1,1)$$

$$(2,3)$$

$$(2,3)$$

$$(1,1)$$

$$(2,3)$$

$$(1,1)$$

$$(2,3)$$

$$(1,1)$$

$$(2,3)$$

$$(1,1)$$

$$(2,3)$$

$$(1,1)$$

$$(2,3)$$

$$(1,1)$$

$$(2,3)$$

$$(1,1)$$

$$(2,3)$$

$$(1,1)$$

$$(2,3)$$

$$(1,1)$$

$$(2,3)$$

$$(1,1)$$

$$(2,3)$$

$$(1,1)$$

$$(2,3)$$

$$(1,1)$$

$$(2,3)$$

$$(1,1)$$

$$(2,3)$$

$$(1,1)$$

$$(2,3)$$

$$(1,1)$$

$$(2,3)$$

$$(1,1)$$

$$(2,3)$$

$$(1,1)$$

$$(2,3)$$

$$(1,1)$$

$$(2,3)$$

$$(1,1)$$

$$(2,3)$$

$$(1,1)$$

$$(2,3)$$

$$(1,1)$$

$$(2,3)$$

$$(1,1)$$

$$(2,3)$$

$$(2,3)$$

$$(1,1)$$

$$(2,3)$$

$$(1,1)$$

$$(2,3)$$

$$(1,1)$$

$$(1,1)$$

$$(2,3)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

$$(1,1)$$

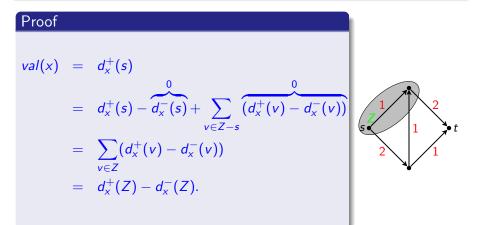
$$(1,1)$$

$$(1,1)$$

Flow value

Lemma

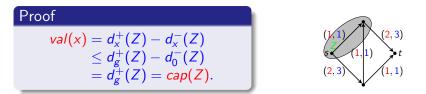
For all
$$(s, t)$$
-flow x and for all (s, t) -cut Z:
val $(x) = d_x^+(Z) - d_x^-(Z)$.



$\mathsf{Max}\;\mathsf{Flow}\leq\mathsf{Min}\;\mathsf{Cut}$

Lemma

For all g-feasible (s, t)-flow x and for all (s, t)-cut Z: val $(x) \le cap(Z)$.



Remark

If x is a g-feasible (s, t)-flow and Z is an (s, t)-cut such that val(x) = cap(Z), then they are optimal.

Problem: How to find

Q a *g*-feasible (s, t)-flow of maximum value and

2 an (s, t)-cut of minimum capacity?

Z. Szigeti

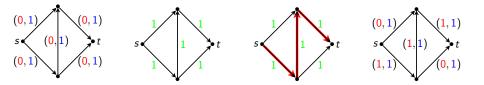
Flow augmentation

First ideas

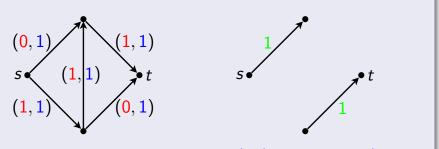
$$x(e) = 0 \ \forall e \in A \text{ is a feasible flow.}$$

- O How to augment a flow?
- **3** $G' := (V, A_x^1)$ where $A_x^1 := \{uv \in A : x(uv) < g(uv)\}.$
- If there exists an (s, t)-path P in G' then we can augment the value of the flow by $\varepsilon_x^1 := \min\{g(uv) x(uv) : uv \in A(P) \cap A_x^1\},\$

$$x'(uv) := \begin{cases} x(uv) + \varepsilon_x^1 & \text{if } uv \in A(P) \cap A_x^1 \\ x(uv) & \text{otherwise.} \end{cases}$$



Example: this idea is not enough

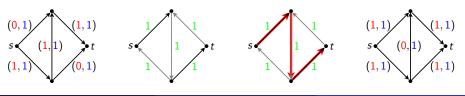


This flow is not of maximum value and no (s, t)-path exists in G'.

Flow augmentation

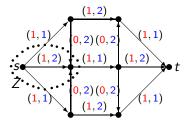
Second idea

- **(**) Use the arcs uv such that x(uv) > 0 in the reverse direction.



Theorem (Ford-Fulkerson)

- A feasible (s, t)-flow x is of maximum value if and only if there exists no (s, t)-path in G_x.
- 2 $\max\{val(x) : \text{ feasible } (s, t) \text{-flow } x\} = \min\{cap(Z) : (s, t) \text{-cut } Z\}.$



Proof of necessity

O Suppose there exists an (s, t)-path *P* in G_x . $2 x'(uv) := \begin{cases} x(uv) + \varepsilon_x & \text{if } uv \in A(P) \cap A_x^1 \\ x(uv) - \varepsilon_x & \text{if } vu \in A(P) \cap A_x^2 \\ x(uv) & \text{otherwise.} \end{cases}$ 3 x' is a feasible (s, t)-flow of value val $(x) + \varepsilon_x >$ val(x). $\bullet \ \varepsilon_{x} > 0,$ \bigcirc x' is an (s, t)-flow, \bigcirc x' is feasible. • val $(x') = val(x) + \varepsilon_x$. x is not of maximum value, contradiction.

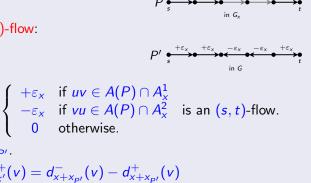
Proof of necessity

1. $\varepsilon_x > 0$:

•
$$g(uv) - x(uv) > 0 \quad \forall uv \in A_x^1$$
, hence
 $\varepsilon_x^1 = \min\{g(uv) - x(uv) : uv \in A(P) \cap A_x^1\} > 0$
• $x(uv) > 0 \quad \forall vu \in A_x^2$, hence
 $\varepsilon_x^2 = \min\{x(uv) : vu \in A(P) \cap A_x^2\} > 0$,
• thus $\varepsilon_x = \min\{\varepsilon_x^1, \varepsilon_x^2\} > 0$

3 thus
$$\varepsilon_x = \min{\{\varepsilon_x^1, \varepsilon_x^2\}} > 0.$$

Proof of necessity



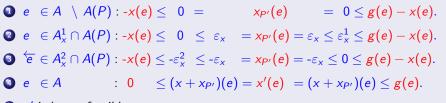
2. x' is an (s, t)-flow:

2 $x' = x + x_{P'}$. $d_{x'}^{-}(v) - d_{x'}^{+}(v) = d_{x+x_{D'}}^{-}(v) - d_{x+x_{D'}}^{+}(v)$ $= (d_{x}^{-}(v) - d_{x}^{+}(v)) + (d_{xo'}^{-}(v) - d_{xo'}^{+}(v)) \ \forall v \neq s, t$ = 0 + 0 = 0

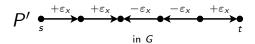
• x' is hence an (s, t)-flot.

Proof of necessity

3. x' is feasible: Since x is feasible, $0 \le x(e) \le g(e) \ \forall e \in A$.



 \bigcirc x' is hence feasible.



Proof of necessity

4. $\operatorname{val}(x') = \operatorname{val}(x) + \varepsilon_x$: Since $\delta_G^-(s) = \emptyset$, the first arc *su* of *P* belongs to A_x^1 and hence to *A*.

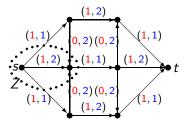
$$\begin{aligned} val(x') &= d_{x'}^+(s) = \left(\sum_{sv \in \delta_G^+(s) \setminus su} x'(sv)\right) + x'(su) \\ &= \left(\sum_{sv \in \delta_G^+(s) \setminus su} x(sv)\right) + (x(su) + \varepsilon_x) \\ &= d_x^+(s) + \varepsilon_x \\ &= val(x) + \varepsilon_x. \end{aligned}$$

Proof of sufficiency

- Suppose there exists no (s, t)-path in G_x .
- $Z := \{ v \in V : \exists an (s, v) \text{-path in } G_x \} \implies$
- $s \in Z \subseteq V \setminus t \text{ and }$
- $\forall uv \in \delta^+_G(Z) : x(uv) = g(uv)$ and,
- $cap(Z) = d_g^+(Z) = d_x^+(Z) d_x^-(Z) = val(x) ≤ Max$ Flow ≤ Min Cut ≤ cap(Z), ⇒
- We have hence equality everywhere, in particular,
- the flow x is of maximum value and

Algorithm of Edmonds-Karp

INPUT : Network (G, g) such that $g \ge 0$, $s, t \in V$: $\delta^{-}(s) = \emptyset = \delta^{+}(t)$. OUTPUT : feasible (s, t)-flow x and (s, t)-cut Z such that val(x) = cap(Z).



Algorithm

Step 0: $x_0(e) = 0 \ \forall e \in A, i := 0$. Step 1: Construct the auxiliary graph $G_i := (V, A_i^1 \cup A_i^2)$ where $A_i^1 := \{uv : uv \in A, x_i(uv) < g(uv)\}$ and $A_i^2 := \{vu : uv \in A, x_i(uv) > 0\}$. Step 2: Execute algorithm Breadth First Search on G_i and s to get $Z_i \subseteq V$

and an *s*-arborescence F_i of $G_i[Z_i]$ such that $\delta_{G_i}^+(Z_i) = \emptyset$. Step 3: If $t \notin Z_i$ then stop with $x := x_i$ and $Z := Z_i$. Step 4: Otherwise, $P_i := F_i[s, t]$, the unique (s, t)-path in F_i . Step 5: $\varepsilon_i^1 := \min\{g(uv) - x_i(uv) : uv \in A(P_i) \cap A_i^1\}, \\ \varepsilon_i^2 := \min\{x_i(uv) : vu \in A(P_i) \cap A_i^2\}, \\ \varepsilon_i := \min\{\varepsilon_i^1, \varepsilon_i^2\}.$ Step 6: $x_{i+1}(uv) := \begin{cases} x_i(uv) + \varepsilon_i & \text{if } uv \in A(P_i) \cap A_i^1 \\ x_i(uv) - \varepsilon_i & \text{if } vu \in A(P_i) \cap A_i^2 \\ x_i(uv) & \text{otherwise.} \end{cases}$

Step 7: i = i + 1 and go to Step 1.

Theorem

The algorithm of Edmonds-Karp stops in polynomial time.

Remark

- Since the algorithm BFS is executed in Step 2, the algorithm always augments the flow on a shortest (s, t)-path in G_x .
- If the algorithm BFS is replaced in Step 2 by an arbitrary search algorithm, then it may happen that the algorithm does not stop.

Theorem

If g(e) is integer for every arc e of G, then there exists a feasible flow x of maximum value such that x(e) is integer for every arc e of G.

Proof

- By executing the algorithm of Edmonds-Karp, we see by induction on *i* that every x_i(e) is integer:
- **2** For $i = 0, x_0(e) = 0$ is integer $\forall e \in A$.
- Suppose that it is true for *i*.
- $\varepsilon_i = \min{\{\varepsilon_i^1, \varepsilon_i^2\}}$ is integer:
 - $\varepsilon_i^1 = \min\{g(uv) x_i(uv) : uv \in A(P_i) \cap A_i^1\}$ is integer: every $g(e) x_i(e)$ is integer.

• $\varepsilon_i^2 = \min\{x_i(uv) : vu \in A(P_i) \cap A_i^2\}$ is integer: every $x_i(e)$ is integer.

• $x_{i+1}(e)$, = either $x_i(e)$ or $x_i(e) + \varepsilon_i$ or $x_i(e) - \varepsilon_i$, is integer $\forall e \in A$.

Citation

"Knowledge is useless without consistent application." - Julian Hall

Applications of integer flows

- Menger's Theorem on connectivity,
- Kőnig's Theorem on matchings.

Applications of flows and cuts

- Open pit mining,
- Distributed computing on a two-processor computer,
- Image segmentation.

Exercise 1

Let G := (V, A) be a directed graph, $s, t \in V$ and $k \in \mathbb{Z}^+$ such that

$$d^{+}(s) - d^{-}(s) = k,$$

$$d^{+}(t) - d^{-}(t) = -k,$$

$$d^{+}(v) - d^{-}(v) = 0 \quad \forall v \in V \setminus \{s, t\}.$$

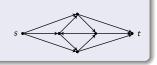
Prove that G admits k arc-disjoints directed (s, t)-paths.

Exercise 2

Given a directed graph G = (V, A), $s, t \in V$ and a non-negative integer (s, t)-flow x, prove that G contains val(x) directed (s, t)-paths such that each arc a belongs to at most x(a) of the paths.

Theorem of Menger

Given a directed graph G = (V, A) and $s, t \in V$, maximum number of arc-disjoint (s, t)-paths = minimum out-degree of an (s, t)-cut.



Ford-Fulkerson \implies Menger

Let $G':=G-\delta^+(t)-\delta^-(s)$ and g(e):=1 $e\in A(G')$.

- (a) Prove that $\max = \max \operatorname{maximum} \operatorname{value} \operatorname{of} a$ feasible (s, t)-flow in (G', g).
- (b) Prove that min = minimum capacity of an (s, t)-cut in (G', g).
- (c) Deduce Menger's Theorem from (a), (b) and the integer version of Ford-Fulkerson's Theorem.

Theorem of Kőnig:

Given a bipartite graph G = (U, V; E), maximum cardinality of a matching of G =minimum cardinality of a transversal of G.

Ford-Fulkerson \implies Kőnig

Let (D := (W, A), g) be a network where $W := U \cup V \cup \{s, t\}$, $A := \{su : u \in U\} \cup \{vt : v \in V\} \cup \{uv : u \in U, v \in V, uv \in E\}$, $g(su) := 1 \ \forall u \in U, g(vt) := 1 \ \forall v \in V \text{ and } g(uv) := |U| + 1 \ \forall uv \in E$, x an integer feasible (s, t)-flow of max. value, Z an (s, t)-cut of min. capacity,

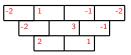
 $M:=\{uv \in E : x(uv)=1\}$ and $T:=(U-Z) \cup (V \cap Z)$.

- (a) Prove that M is a matching of G of size val(x).
- (b) Prove that T is a transversal of G of size cap(Z).
- (c) Deduce Kőnig Theorem from (a), (b) and Ford-Fulkerson Theorem.

Applications: Open pit mining

Open pit mining

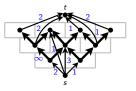
- A company wants to exploit an open pit mining
 - by removing blocks
 - to maximize the profit.
 - A block can be removed only if the blocks lying above it have already been removed.
- Each block has a net profit obtained from removing it.
 - This value can be positive or negative, it depends on the cost of
 - exploiting the block and
 - the richness of its contents.
- We show how to model the problem by a problem of minimum capacity cut in a network.



Open pit mining

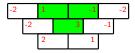
Model

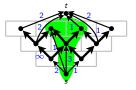
- p(v) := profit of the block v,
- **2** P := blocks of positive profit,
- N := blocks of negative profit,
- Network (G := (V, A), g) where
 - $V := P \cup N \cup \{s, t\},$ • $A := \{\text{the arcs of constraint}\} \cup \{sv : v \in P\} \cup \{ut : u \in N\},$ • $g(uv) := \begin{cases} \infty & \text{if } uv \text{ arc of constraint,} \\ p(v) & \text{if } u = s, \\ -p(u) & \text{if } v = t. \end{cases}$



Lemma

The blocks in *B* satisfy the removal contraint $\iff cap(B \cup s) < \infty$. (By construction.)

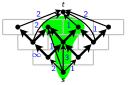




Open pit mining

Lemma

$$cap(B \cup s) = \sum_{v \in P \setminus B} g(sv) + \sum_{v \in N \cap B} g(vt) = \sum_{v \in P \setminus B} p(v) + \sum_{v \in N \cap B} -p(v)$$
$$= (\sum_{v \in P} p(v) - \sum_{v \in P \cap B} p(v)) - (\sum_{v \in B} p(v) - \sum_{v \in P \cap B} p(v))$$
$$= \sum_{v \in P} p(v) - \sum_{v \in B} p(v).$$
minimize = constant - maximize



Distributed computing on a two-processor computer

- Assign the modules of a program to two processors in a way that
 - minimizes the total cost of
 - computation and
 - interprocessor communication.
- We know in advance
 - for each module, its computation cost on each of the two processors,
 - for each pair of modules, their interprocessor communication cost
 - if they are assigned to different processors.
- We show how to model the problem by a problem of minimum capacity cut in a network.

Distributed computing on a two-processor computer

computation cost								
	M_1	<i>M</i> ₂	<i>M</i> ₃	<i>M</i> 4		٦		
P_1	4	4	1	2	a _i	1		
P_2	1	2	4	4	bi			

communication cost								
	M_1	<i>M</i> ₂	M ₃	<i>M</i> 4				
M_1	0	5	1	1				
M_2	5	0	1	1	Cij			
<i>M</i> 3	1	1	0	5				
<i>M</i> 3	1	1	5	0				

Cost to minimize

total cost =

computation cost of modules executed on P_1 (C_1) + computation cost of modules executed on P_2 (C_2) + communication cost for the pair of modules executed on differents processors

$$=\sum_{M_i\in C_1}a_i+\sum_{M_j\in C_2}b_j+\sum_{M_i\in C_1,M_j\in C_2}c_{ij}.$$

Model

Network $(G := (V, A), g)$ where											
• $V := \{M_1, M_2, M_3, M_4, s = P_1, t = P_2\},$											
$\cup \{ sv : v \in V \setminus \{s,t\} \} $											
$\cup \{ vt : v \in V \setminus \{s, t\} \},$											
		(Dj	IT UV	$= N_{ij}t.$		• •	N //	N /	• •	
							M_1	-	<i>M</i> ₃		
Λ	Λ_1	M_2	M_3	M_4		M_1	0	5	1	1	
P_1						M_2	5	0	1	1	Cij
P_2	1	2	4	4	b _i	<i>M</i> 3	1	1	0	5	
						<i>M</i> ₃	1	1	5	0	

Distributed computing on a two-processor computer

Lemme

$$cap(C_{2} \cup s) = \sum_{M_{i} \in C_{1}} g(sM_{i}) + \sum_{M_{j} \in C_{2}} g(M_{j}t) + \sum_{M_{i} \in C_{1}, M_{j} \in C_{2}} g(M_{i}M_{j})$$

$$= \sum_{M_{i} \in C_{1}} a_{i} + \sum_{M_{j} \in C_{2}} b_{j} + \sum_{M_{i} \in C_{1}, M_{j} \in C_{2}} c_{ij},$$

which is the total cost to minimize $(C_i = \text{the modules executed on } P_i)$.

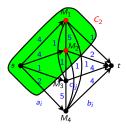


Image segmentation

Image segmentation

- We have to locate objects in a digital image.
- Every $i \in V$, where V is the set of pixels of the image,
 - belongs to an object with likelihood p_i and
 - belongs to the background with likelihood q_i.
- We also have a penalty function r(i, j) of separation for every pair (i, j) ∈ E where E is the set of pairs of neighboring pixels.
- We have to find a partition *S*, *T* of *V* that maximizes

$$\sum_{i\in S} p_i + \sum_{j\in T} q_j - \sum_{i\in S, j\in T, (i,j)\in E} r(i,j).$$

• We show how to model the problem by a problem of minimum capacity cut in a network.

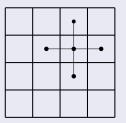


Image segmentation

Model

Network
$$(G = (V', A), g)$$
 where
• $V' := V \cup \{s, t\},$
• $A := \{uv, vu : uv \in E\} \cup \{sv : v \in V\} \cup \{vt : v \in V\},$
• $g(uv) := \begin{cases} p_i & \text{if } uv = si, \\ q_j & \text{if } uv = jt, \\ r(i,j) & \text{if } uv = ij \in E. \end{cases}$

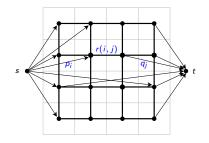


Image segmentation

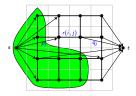
Lemma

$$cap(S \cup s) = \sum_{j \in T} g(sj) + \sum_{i \in S} g(it) + \sum_{i \in S, j \in T, ij \in E} g(ij)$$

$$= \sum_{j \in T} p_j + \sum_{i \in S} q_i + \sum_{i \in S, j \in T, ij \in E} r(i, j)$$

$$= \sum_{i \in V} (p_i + q_i) - (\sum_{i \in S} p_i + \sum_{j \in T} q_j - \sum_{i \in S, j \in T, ij \in E} r(i, j)).$$

minimize = constant – maximize



OCG-ORCO