
Combinatorial Optimization and Graph Theory
ORCO

Introduction + Flows

Zoltán Szigeti

Z. Szigeti OCG-ORCO 1 / 41

Teachers

Teachers
1 SZIGETI, Zoltán (8 weeks)

Professor at Ensimag, e-mail: zoltan.szigeti@grenoble-inp.fr

2 STEHLIK, Matej (4 weeks)

Assistant Professor at UGA, e-mail: matej.stehlik@grenoble-inp.fr

Researchers:
1 Research at G-SCOP Laboratory.
2 Research subjects:

Combinatorial Optimization,
Graph Theory,
Connectivity,
Matchings,
Matroids.

Z. Szigeti OCG-ORCO 1 / 41

Course:

Combinatorial Optimization

1 Discrete optimization part of Operations Research, consists of
”Finding the best solution in a very large set of possibilities”.

Previously seen:

Shortest paths,
Minimum cost spanning trees.

2 Structural results
Previously seen:

Subpath of a shortest path is a shortest path.
Maximal forest is maximum forest.

3 Efficient algorithms
Previously seen:

Bellmann, Dijkstra, Floyd-Warshall for shortest paths,
Kruskal (greedy) for minimum cost spanning trees.

Z. Szigeti OCG-ORCO 2 / 41

Planning

Subjects treated in my part:

1 Network flows,

2 Push-Relabel algorithm for flows,

3 Matchings in bipartite graphs,

4 Matchings in general graphs,

5 Matroids,

6 Submodular functions in graph theory,

7 Paper presentations (2 weeks),

Citation about flows :

”But anyone who has experienced flow knows that the deep enjoyment it

provides requires an equal degree of disciplined concentration.”
Mihály Csikszentmihályi

Z. Szigeti OCG-ORCO 3 / 41

Books

Books for further study

1 Ahuja, Magnanti, Orlin, Network flows; Theory, Algorithms and

Applications,

2 Cook, Cunningham, Pulleyblank, Schrijver, Combinatorial

Optimization,

3 Frank, Connections in Combinatorial Optimization,

4 Korte, Vygen, Combinatorial Optimization; Theory and Algorithms,

5 Lovász, Plummer, Matching Theory,

6 Schrijver, Combinatorial Optimization; Polyhedra and Efficiency, 3
volumes.

Z. Szigeti OCG-ORCO 4 / 41

Introduction to flows

Problem

How many trucks can we send from a starting point to a destination point
respecting the capacity constraints of the streets?

Model
1 Given

1 a directed graph G = (V ,A),

2 source s ∈ V and sink t ∈ V ,

3 a capacity function g on the arcs,

ts

1

3

1

1

3

2 find a set P of (s, t)-paths such that each arc e belongs to at most
g(e) paths of P.

3 It suffices to know the number x(e) of paths in P containing e ∈ A.

4 The function x : A→ R is called flow.

Z. Szigeti OCG-ORCO 5 / 41

Introduction to flows

Problem

How many trucks can we send from a starting point to a destination point
respecting the capacity constraints of the streets?

Model
1 Given

1 a directed graph G = (V ,A),

2 source s ∈ V and sink t ∈ V ,

3 a capacity function g on the arcs,

ts

1

3

1

1

3

2 find a set P of (s, t)-paths such that each arc e belongs to at most
g(e) paths of P.

3 It suffices to know the number x(e) of paths in P containing e ∈ A.

4 The function x : A→ R is called flow.

Z. Szigeti OCG-ORCO 6 / 41

Introduction to flows

Problem

How many trucks can we send from a starting point to a destination point
respecting the capacity constraints of the streets?

Model
1 Given

1 a directed graph G = (V ,A),

2 source s ∈ V and sink t ∈ V ,

3 a capacity function g on the arcs,

ts

(1, 1)

(2, 3)

(1, 1)

(1, 1)

(2, 3)

(x(e), g(e))

2 find a set P of (s, t)-paths such that each arc e belongs to at most
g(e) paths of P.

3 It suffices to know the number x(e) of paths in P containing e ∈ A.

4 The function x : A→ R is called flow.

Z. Szigeti OCG-ORCO 7 / 41

Definition of flows

Definition
1 Given

1 a directed graph G = (V ,A),

2 s, t ∈ V such that δ−(s) = ∅ = δ+(t),

3 a non-negative capacity g on the arcs,

ts

1

3

1

1

3

2 a function x on the arcs is

1 an (s, t)-flow if the flow conservation is satisfied:

∑

uv∈A

x(uv) =
∑

vu∈A

x(vu) ∀v ∈ V \ {s, t}.

2 feasible if the capacity contraint is satisfied:
0 ≤ x(e) ≤ g(e) ∀e ∈ A.

Z. Szigeti OCG-ORCO 8 / 41

Definition of flows

Definition
1 Given

1 a directed graph G = (V ,A),

2 s, t ∈ V such that δ−(s) = ∅ = δ+(t),

3 a non-negative capacity g on the arcs,

ts

(1, 1)

(2, 3)

(1, 1)

(1, 1)

(2, 3)

(x(e), g(e))

2 a function x on the arcs is

1 an (s, t)-flow if the flow conservation is satisfied:

∑

uv∈A

x(uv) =
∑

vu∈A

x(vu) ∀v ∈ V \ {s, t}.

2 feasible if the capacity contraint is satisfied:
0 ≤ x(e) ≤ g(e) ∀e ∈ A.

Z. Szigeti OCG-ORCO 9 / 41

Notation

Notation

Given directed graph G = (V ,A), s, t ∈ V , capacity g , flow x , Z ⊆ V ,

1 δ+(Z): the arcs leaving Z ,

2 Out-value of Z : d+
x (Z):=

∑

e∈δ+(Z) x(e),

3 Flow conservation: d−
x (v) = d+

x (v),

4 Flow value: val(x) := d+
x (s),

5 (s, t)-cut Z : if s ∈ Z ⊆ V \ t,

6 Capacity of (s, t)-cut Z : cap(Z) := d+
g (Z).

ts

(1, 1)

(2, 3)

(1, 1)

(1, 1)

(2, 3)

(x(e), g(e))

Z

d+
x (Z) = 4

d+
x (s) = 3

d+
g (Z) = 6

Z. Szigeti OCG-ORCO 10 / 41

Flow value

Lemma

For all (s, t)-flow x and for all (s, t)-cut Z :
val(x) = d+

x (Z)− d−
x (Z).

Proof

val(x) = d+
x (s)

= d+
x (s)−

0
︷ ︸︸ ︷

d−
x (s)+

∑

v∈Z−s

0
︷ ︸︸ ︷

(d+
x (v)− d−

x (v))

=
∑

v∈Z

(d+
x (v)− d−

x (v))

= d+
x (Z)− d−

x (Z).

ts

1

2

1

1

2

Z

Z. Szigeti OCG-ORCO 11 / 41

Max Flow ≤ Min Cut

Lemma

For all g -feasible (s, t)-flow x and for all (s, t)-cut Z : val(x) ≤ cap(Z).

Proof

val(x) = d+
x (Z)− d−

x (Z)
≤ d+

g (Z)− d−
0 (Z)

= d+
g (Z) = cap(Z).

ts

(1, 1)

(2, 3)

(1, 1)

(1, 1)

(2, 3)

Z

Remark

If x is a g -feasible (s, t)-flow and Z is an (s, t)-cut such that val(x) =
cap(Z), then they are optimal.

Problem: How to find
1 a g -feasible (s, t)-flow of maximum value and

2 an (s, t)-cut of minimum capacity?
Z. Szigeti OCG-ORCO 12 / 41

Flow augmentation

First ideas
1 x(e) = 0 ∀e ∈ A is a feasible flow.

2 How to augment a flow?

3 G ′:= (V ,A1
x) where A1

x := {uv ∈ A : x(uv) < g(uv)}.

4 If there exists an (s, t)-path P in G ′ then we can augment the value
of the flow by ε1x := min{g(uv)− x(uv) : uv ∈ A(P) ∩ A1

x},

5 x ′(uv) :=

{
x(uv) + ε1x if uv ∈ A(P) ∩ A1

x

x(uv) otherwise.

ts

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(0, 1)

ts

1

11

1

1

ts

1

11

1

1

ts

(0, 1)

(1, 1)

(1, 1)

(0, 1)

(1, 1)

Z. Szigeti OCG-ORCO 13 / 41

Flow augmentation

Example: this idea is not enough

ts

(0, 1)

(1, 1)

(1, 1)

(0, 1)

(1, 1)

ts

1

1

This flow is not of maximum value and no (s, t)-path exists in G ′.

Z. Szigeti OCG-ORCO 14 / 41

Flow augmentation

Second idea
1 Use the arcs uv such that x(uv) > 0 in the reverse direction.

2 Gx := (V ,A1
x ∪ A2

x) where A2
x := {vu : uv ∈ A, x(uv) > 0}.

3 If there exists an (s, t)-path P in Gx then we can augment the value
of the flow by εx := min{ε1x , ε

2
x}, where

ε2x := min{x(uv) : vu ∈ A(P) ∩ A2
x},

4 x ′(uv) :=

x(uv) + εx if uv ∈ A(P) ∩ A1
x

x(uv)− εx if vu ∈ A(P) ∩ A2
x

x(uv) otherwise.

ts

(0, 1)

(1, 1)

(1, 1)

(0, 1)

(1, 1)

ts

1

11

1

1

ts

1

11

1

1

ts

(1, 1)

(1, 1)

(0, 1)

(1, 1)

(1, 1)

Z. Szigeti OCG-ORCO 15 / 41

Min-Max theorem

Theorem (Ford-Fulkerson)

1 A feasible (s, t)-flow x is of maximum value if and only if there exists
no (s, t)-path in Gx .

2 max{val(x) : feasible (s, t)-flow x} = min{cap(Z) : (s, t)-cut Z}.

✒

✲

❘

❄
✻

✲

✲

✲
✻

❄

✒
✲❘s t

(1, 1)

(1, 1)

(1, 1)

(1, 1)

(1, 1)

(1, 2)

(1, 2)

(1, 2)

(0, 2)(0, 2)

(0, 2)(0, 2)

(1, 2)

Z

Z. Szigeti OCG-ORCO 16 / 41

Proof

Proof of necessity

1 Suppose there exists an (s, t)-path P in Gx .

2 x ′(uv) :=

x(uv) + εx if uv ∈ A(P) ∩ A1
x

x(uv)− εx if vu ∈ A(P) ∩ A2
x

x(uv) otherwise.

3 x ′ is a feasible (s, t)-flow of value val(x) + εx > val(x).
1 εx > 0,
2 x ′ is an (s, t)-flow,
3 x ′ is feasible,
4 val(x ′) = val(x) + εx .

4 x is not of maximum value, contradiction.

Z. Szigeti OCG-ORCO 17 / 41

Proof

Proof of necessity

1. εx > 0:

1 g(uv)− x(uv) > 0 ∀uv ∈ A1
x , hence

ε1x = min{g(uv)− x(uv) : uv ∈ A(P) ∩ A1
x} > 0,

2 x(uv) > 0 ∀vu ∈ A2
x , hence

ε2x = min{x(uv) : vu ∈ A(P) ∩ A2
x} > 0,

3 thus εx = min{ε1x , ε
2
x} > 0.

Z. Szigeti OCG-ORCO 18 / 41

Proof

Proof of necessity

2. x ′ is an (s, t)-flow:

P
in Gx

in G

P ′
+εx +εx −εx −εx +εx

s t

s t

1 xP′(uv) :=

+εx if uv ∈ A(P) ∩ A1
x

−εx if vu ∈ A(P) ∩ A2
x

0 otherwise.
is an (s, t)-flow.

2 x ′ = x + xP′ .

3 d−
x ′(v)− d+

x ′ (v) = d−
x+xP′

(v)− d+
x+xP′

(v)

= (d−
x (v)− d+

x (v)) + (d−
xP′

(v)− d+
xP′

(v)) ∀v 6= s, t
= 0 + 0 = 0

4 x ′ is hence an (s, t)-flot.

Z. Szigeti OCG-ORCO 19 / 41

Proof

Proof of necessity

3. x ′ is feasible: Since x is feasible, 0 ≤ x(e) ≤ g(e) ∀e ∈ A.

1 e ∈ A \ A(P) : -x(e) ≤ 0 = xP′(e) = 0 ≤ g(e)− x(e).

2 e ∈ A1
x ∩ A(P) : -x(e) ≤ 0 ≤ εx = xP′(e) = εx ≤ ε1x ≤ g(e)− x(e).

3
←−e ∈ A2

x ∩ A(P) : -x(e) ≤ -ε2x ≤ -εx = xP′(e) = -εx ≤ 0 ≤ g(e)− x(e).

4 e ∈ A : 0 ≤ (x + xP′)(e) = x ′(e) = (x + xP′)(e) ≤ g(e).

5 x ′ is hence feasible.

P
in Gx

in G

P ′
+εx +εx −εx −εx +εx

s t

s t

Z. Szigeti OCG-ORCO 20 / 41

Proof

Proof of necessity

4. val(x ′) = val(x) + εx : Since δ−G (s) = ∅, the first arc su of P belongs to
A1
x and hence to A.

val(x ′) = d+
x ′(s) =

∑

sv∈δ+
G
(s)\su

x ′(sv)

+ x ′(su)

=

∑

sv∈δ+
G
(s)\su

x(sv)

+ (x(su) + εx)

= d+
x (s) + εx

= val(x) + εx .

Z. Szigeti OCG-ORCO 21 / 41

Proof

Proof of sufficiency

1 Suppose there exists no (s, t)-path in Gx .

2 Z := {v ∈ V : ∃ an (s, v)-path in Gx} =⇒

3 s ∈ Z ⊆ V \ t and

4 δ+Gx
(Z) = ∅. =⇒

5 ∀uv ∈ δ+G (Z) : x(uv) = g(uv) and,

6 ∀uv ∈ δ−G (Z) : x(uv) = 0. =⇒

7 cap(Z) = d+
g (Z) = d+

x (Z)− d−
x (Z) = val(x) ≤ Max Flow ≤

Min Cut ≤ cap(Z), =⇒

8 We have hence equality everywhere, in particular,

9 the flow x is of maximum value and

10 Max Flow = Min Cut.

Z. Szigeti OCG-ORCO 22 / 41

Algorithm

Algorithm of Edmonds-Karp

Input : Network (G , g) such that g ≥ 0, s, t ∈ V : δ−(s) = ∅ = δ+(t).
Output : feasible (s, t)-flow x and (s, t)-cut Z such that val(x) = cap(Z).

✒

✲

❘

❄
✻

✲

✲

✲
✻

❄

✒
✲❘s t

(1, 1)

(1, 1)

(1, 1)

(1, 1)

(1, 1)

(1, 2)

(1, 2)

(1, 2)

(0, 2)(0, 2)

(0, 2)(0, 2)

(1, 2)

Z

Z. Szigeti OCG-ORCO 23 / 41

Algorithm

Step 0: x0(e) = 0 ∀e ∈ A, i := 0.
Step 1: Construct the auxiliary graph Gi := (V ,A1

i ∪ A2
i) where

A1
i := {uv : uv ∈ A, xi (uv) < g(uv)} and

A2
i := {vu : uv ∈ A, xi (uv) > 0}.

Step 2: Execute algorithm Breadth First Search on Gi and s to get Zi ⊆ V

and an s-arborescence Fi of Gi [Zi] such that δ+Gi
(Zi) = ∅.

Step 3: If t /∈ Zi then stop with x := xi and Z := Zi .
Step 4: Otherwise, Pi := Fi [s, t], the unique (s, t)-path in Fi .
Step 5: ε1i := min{g(uv)− xi (uv) : uv ∈ A(Pi) ∩ A1

i },
ε2i := min{xi (uv) : vu ∈ A(Pi) ∩ A2

i },
εi := min{ε1i , ε

2
i }.

Step 6: xi+1(uv) :=

xi(uv) + εi if uv ∈ A(Pi) ∩ A1
i

xi(uv)− εi if vu ∈ A(Pi) ∩ A2
i

xi(uv) otherwise.

Step 7: i := i + 1 and go to Step 1.

Z. Szigeti OCG-ORCO 24 / 41

Complexity of the algorithm

Theorem

The algorithm of Edmonds-Karp stops in polynomial time.

Remark
1 Since the algorithm BFS is executed in Step 2, the algorithm always

augments the flow on a shortest (s, t)-path in Gx .

2 If the algorithm BFS is replaced in Step 2 by an arbitrary search
algorithm, then it may happen that the algorithm does not stop.

Z. Szigeti OCG-ORCO 25 / 41

Integer Flows

Theorem

If g(e) is integer for every arc e of G , then there exists a feasible flow x of
maximum value such that x(e) is integer for every arc e of G .

Proof
1 By executing the algorithm of Edmonds-Karp, we see by induction on

i that every xi (e) is integer:

2 For i = 0, x0(e) = 0 is integer ∀e ∈ A.

3 Suppose that it is true for i .
4 εi = min{ε1i , ε

2
i } is integer:

1 ε1i = min{g(uv)− xi (uv) : uv ∈ A(Pi) ∩ A1
i } is integer: every

g(e)− xi (e) is integer.
2 ε2i = min{xi(uv) : vu ∈ A(Pi) ∩ A2

i } is integer: every xi(e) is integer.

5 xi+1(e), = either xi(e) or xi (e) + εi or xi(e) − εi , is integer ∀e ∈ A.

Z. Szigeti OCG-ORCO 26 / 41

Applications

Citation

”Knowledge is useless without consistent application.” - Julian Hall

Applications of integer flows

1 Menger’s Theorem on connectivity,

2 Kőnig’s Theorem on matchings.

Applications of flows and cuts

1 Open pit mining,

2 Distributed computing on a two-processor computer,

3 Image segmentation.

Z. Szigeti OCG-ORCO 27 / 41

Exercises

Exercise 1

Let G := (V ,A) be a directed graph, s, t ∈ V and k ∈ Z
+ such that

d+(s)− d−(s) = k ,

d+(t)− d−(t) = −k ,

d+(v)− d−(v) = 0 ∀v ∈ V \ {s, t}.
s t

Prove that G admits k arc-disjoints directed (s, t)-paths.

Exercise 2

Given a directed graph G = (V ,A), s, t ∈ V and a non-negative integer
(s, t)-flow x , prove that G contains val(x) directed (s, t)-paths such that
each arc a belongs to at most x(a) of the paths.

Z. Szigeti OCG-ORCO 28 / 41

Exercise 3

Theorem of Menger

Given a directed graph G = (V ,A) and s, t ∈ V ,
maximum number of arc-disjoint (s, t)-paths =
minimum out-degree of an (s, t)-cut.

s t

Ford-Fulkerson =⇒ Menger

Let G ′:= G − δ+(t)− δ−(s) and g(e) := 1 e ∈ A(G ′).

(a) Prove that max = maximum value of a feasible (s, t)-flow in (G ′, g).

(b) Prove that min = minimum capacity of an (s, t)-cut in (G ′, g).

(c) Deduce Menger’s Theorem from (a), (b) and the integer version of
Ford-Fulkerson’s Theorem.

Z. Szigeti OCG-ORCO 29 / 41

Exercise 4

Theorem of Kőnig:

Given a bipartite graph G= (U,V ;E),
maximum cardinality of a matching of G =
minimum cardinality of a transversal of G .

Ford-Fulkerson =⇒ Kőnig

Let (D:= (W ,A), g) be a network where W := U ∪ V ∪ {s, t},
A:= {su : u ∈ U} ∪ {vt : v ∈ V } ∪ {uv : u ∈ U, v ∈ V , uv ∈ E},
g(su) := 1 ∀u ∈ U, g(vt) := 1 ∀v ∈ V and g(uv) := |U|+ 1 ∀uv ∈ E ,

x an integer feasible (s, t)-flow of max. value, Z an (s, t)-cut of min. capacity,

M := {uv ∈ E : x(uv) = 1} and T := (U − Z) ∪ (V ∩ Z).

(a) Prove that M is a matching of G of size val(x).

(b) Prove that T is a transversal of G of size cap(Z).

(c) Deduce Kőnig Theorem from (a), (b) and Ford-Fulkerson Theorem.

Z. Szigeti OCG-ORCO 30 / 41

Applications: Open pit mining

Open pit mining

A company wants to exploit an open pit mining

by removing blocks
to maximize the profit.

A block can be removed only if the blocks lying above it have already
been removed.

Each block has a net profit obtained from removing it.
This value can be positive or negative, it depends on the cost of

exploiting the block and
the richness of its contents.

We show how to model the problem by a problem of minimum
capacity cut in a network.

2

-2

-2 -2-1

-1

1

1

3

Z. Szigeti OCG-ORCO 31 / 41

Open pit mining

Model
1 p(v) := profit of the block v ,

2 P := blocks of positive profit,

3 N := blocks of negative profit,
4 Network (G := (V ,A), g) where

1 V := P ∪ N ∪ {s, t},
2 A :={the arcs of constraint}∪{sv : v ∈ P} ∪ {ut : u ∈ N},

3 g(uv) :=

∞ if uv arc of constraint,
p(v) if u = s,
−p(u) if v = t.

2

-2

-2 -2-1

-1

1

1

3

2 1

1

3

2 2

2 1 1

∞

s

t

Z. Szigeti OCG-ORCO 32 / 41

Open pit mining

Lemma

The blocks in B satisfy the removal contraint ⇐⇒ cap(B ∪ s) <∞.
(By construction.)

2

-2

-2 -2-1

-1

1

1

3

2 1

1

3

2 2

2 1 1

∞

s

t

Z. Szigeti OCG-ORCO 33 / 41

Open pit mining

Lemma

cap(B ∪ s) =
∑

v∈P\B

g(sv) +
∑

v∈N∩B

g(vt) =
∑

v∈P\B

p(v) +
∑

v∈N∩B

−p(v)

= (
∑

v∈P

p(v)−
∑

v∈P∩B

p(v))− (
∑

v∈B

p(v)−
∑

v∈P∩B

p(v))

=
∑

v∈P

p(v)−
∑

v∈B

p(v).

minimize = constant − maximize

2

-2

-2 -2-1

-1

1

1

3

2 1

1

3

2 2

2 1 1

∞

s

t

Z. Szigeti OCG-ORCO 34 / 41

Distributed computing on a two-processor computer

Distributed computing on a two-processor computer

Assign the modules of a program to two processors in a way that
minimizes the total cost of

computation and
interprocessor communication.

We know in advance

for each module, its computation cost on each of the two processors,
for each pair of modules, their interprocessor communication cost

if they are assigned to different processors.

We show how to model the problem by a problem of minimum
capacity cut in a network.

Z. Szigeti OCG-ORCO 35 / 41

Distributed computing on a two-processor computer

computation cost

M1 M2 M3 M4

P1 4 4 1 2 ai
P2 1 2 4 4 bi

communication cost

M1 M2 M3 M4

M1 0 5 1 1
M2 5 0 1 1 cij
M3 1 1 0 5
M3 1 1 5 0

Cost to minimize

total cost =
computation cost of modules executed on P1 (C1) +
computation cost of modules executed on P2 (C2) +
communication cost for the pair of modules executed on differents processors

=
∑

Mi∈C1

ai +
∑

Mj∈C2

bj +
∑

Mi∈C1,Mj∈C2

cij .

Z. Szigeti OCG-ORCO 36 / 41

Distributed computing on a two-processor computer

Model

Network (G := (V ,A), g) where

1 V := {M1,M2,M3,M4, s = P1, t = P2},

2 A:= {uv , vu : u, v ∈ V \ {s, t}}
∪{sv : v ∈ V \ {s, t}}
∪{vt : v ∈ V \ {s, t}},

3 g(uv) :=

cij if uv = MiMj ,
ai if uv = sMi ,
bj if uv = Mj t.

1 1
4

M1

M4

M2

M3

s t

4

1

2 4

4

2

15

5

1

1

M1 M2 M3 M4

P1 4 4 1 2 ai
P2 1 2 4 4 bi

M1 M2 M3 M4

M1 0 5 1 1
M2 5 0 1 1 cij
M3 1 1 0 5
M3 1 1 5 0

Z. Szigeti OCG-ORCO 37 / 41

Distributed computing on a two-processor computer

Lemme

cap(C2 ∪ s) =
∑

Mi∈C1

g(sMi) +
∑

Mj∈C2

g(Mj t) +
∑

Mi∈C1,Mj∈C2

g(MiMj)

=
∑

Mi∈C1

ai +
∑

Mj∈C2

bj +
∑

Mi∈C1,Mj∈C2

cij ,

which is the total cost to minimize (Ci = the modules executed on Pi).

24

M1

M4

M2

M3

s t

4

1

2 4

4

15

5

1

1

1 1

ai bi

cij

C2

Z. Szigeti OCG-ORCO 38 / 41

Image segmentation

Image segmentation

We have to locate objects in a digital image.

Every i ∈ V , where V is the set of pixels of the image,

belongs to an object with likelihood pi and
belongs to the background with likelihood qi .

We also have a penalty function r(i , j) of separation for every pair
(i , j) ∈ E where E is the set of pairs of neighboring pixels.

We have to find a partition S ,T of V
that maximizes

∑

i∈S

pi +
∑

j∈T

qj −
∑

i∈S,j∈T ,(i ,j)∈E

r(i , j).

We show how to model the problem by a
problem of minimum capacity cut in a
network.

Z. Szigeti OCG-ORCO 39 / 41

Image segmentation

Model

Network (G = (V ′,A), g) where

1 V ′:= V ∪ {s, t},

2 A:= {uv , vu : uv ∈ E} ∪ {sv : v ∈ V } ∪ {vt : v ∈ V },

3 g(uv) :=

pi if uv = si ,
qj if uv = jt,
r(i , j) if uv = ij ∈ E .

s t

r(i, j)

pi qj

Z. Szigeti OCG-ORCO 40 / 41

Image segmentation

Lemma

cap(S ∪ s) =
∑

j∈T

g(sj) +
∑

i∈S

g(it) +
∑

i∈S,j∈T ,ij∈E

g(ij)

=
∑

j∈T

pj +
∑

i∈S

qi +
∑

i∈S,j∈T ,ij∈E

r(i , j)

=
∑

i∈V

(pi + qi)− (
∑

i∈S

pi +
∑

j∈T

qj −
∑

i∈S,j∈T ,ij∈E

r(i , j)).

minimize = constant − maximize

s t

r(i, j)

pi qj

Z. Szigeti OCG-ORCO 41 / 41

