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Course:

Combinatorial Optimization

© Discrete optimization part of Operations Research, consists of
"Finding the best solution in a very large set of possibilities”.
@ Previously seen:

@ Shortest paths,
@ Minimum cost spanning trees.

@ Structural results
@ Previously seen:
@ Subpath of a shortest path is a shortest path.
@ Maximal forest is maximum forest.
© Efficient algorithms
@ Previously seen:

@ Bellmann, Dijkstra, Floyd-Warshall for shortest paths,
@ Kruskal (greedy) for minimum cost spanning trees.
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Subjects treated in my part:

© Network flows,

© Push-Relabel algorithm for flows,

© Matchings in bipartite graphs,

© Matchings in general graphs,

© Matroids,

© Submodular functions in graph theory,
@ Paper presentations (2 weeks),

Citation about flows :

" But anyone who has experienced flow knows that the deep enjoyment it
provides requires an equal degree of disciplined concentration.”
Mihaly Csikszentmihalyi
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Books for further study

© Ahuja, Magnanti, Orlin, Network flows; Theory, Algorithms and
Applications,

© Cook, Cunningham, Pulleyblank, Schrijver, Combinatorial
Optimization,

© Frank, Connections in Combinatorial Optimization,
© Korte, Vygen, Combinatorial Optimization; Theory and Algorithms,
© Lovasz, Plummer, Matching Theory,

@ Schrijver, Combinatorial Optimization; Polyhedra and Efficiency, 3
volumes.
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Introduction to flows

Problem

How many trucks can we send from a starting point to a destination point
respecting the capacity constraints of the streets?

| A\

Model
© Given

©® a directed graph G = (V, A), 1

@ source s € V and sink t € V,

© a capacity function g on the arcs,

© find a set P of (s, t)-paths such that each arc e belongs to at most
g(e) paths of P.

O It suffices to know the number x(e) of paths in P containing e € A.
@ The function x : A — R is called flow.
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Model
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© a capacity function g on the arcs,

Q find a set P of (s, t)-paths such that each arc e belongs to at most
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Definition of flows

O Given

©® a directed graph G = (V, A),
@ s.t € Vsuchthat 6 (s)=0=45"(t),

© a non-negative capacity g on the arcs,

@ a function x on the arcs is

@ an (s, t)-flow if the flow conservation is satisfied:

Z x(uv) = Z x(vu) Vv e V\ {s,t}.

uveA vueA

@ feasible if the capacity contraint is satisfied:
0 < x(e) < g(e) VeecA.
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Notation

Notation
Given directed graph G = (V,A),s,t € V, capacity g, flow x, 7 C V,
Q i1 (2): the arcs leaving Z,
© Out-value of Z: A (Z):= Y ees+(2) X(8),
© Flow conservation: dy (v) = df(v),
O Flow value: val(x) := d (s),
O (s, t)-cut Z: ifse ZC V\t,
© Capacity of (s, t)-cut Z: cap(Z) := df (Z).
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Flow value

For all (s, t)-flow x and for all (s, t)-cut Z:
val(x) = df (Z2) — dg (2).

val(x) = df(s)

) -@+ Y G- ) 2
veZ—s t
= (W) - dr(v) | A
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Max Flow < Min Cut

For all g-feasible (s, t)-flow x and for all (s, t)-cut Z: val(x) < cap(Z2).

RENEILS

If x is a g-feasible (s, t)-flow and Z is an (s, t)-cut such that val(x) =
cap(Z), then they are optimal.

Problem: How to find
O a g-feasible (s, t)-flow of maximum value and

Q an (s, t)-cut of minimum capacity?
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Flow augmentation

O x(e) =0 Ve € Ais a feasible flow.

© How to augment a flow?

Q G':i=(V,Al) where Al:= {uv € A: x(uv) < g(uv)}.

Q If there exists an (s, t)-path P in G’ then we can augment the value
of the flow by cL:= min{g(uv) — x(uv) : uv € A(P) N AL},

ooy f x(uv)+el ifuv e A(P)N AL
&) ) '_{ x(uv) otherwise.
1 1 (0,1) (1,1)
s t s (1,{1) t
1 1 (17 1) (07 1)
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Flow augmentation

Example: this idea is not enough

(0,1)

(1,1)

(1

N"l)
1) ot
2t

ay
/

This flow is not of maximum value and no (s, t)-path exists in G’.
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Flow augmentation

© Use the arcs uv such that x(uv) > 0 in the reverse direction.
Q G.=(V,ALUA2) where A%2:= {vu: uv € A, x(uv) > 0}.
© If there exists an (s, t)-path P in Gy then we can augment the value
of the flow by £,:= min{cl, 2}, where
e2:= min{x(uv) : vu € A(P) N A%},
x(uv) +ex if uv € A(P)N AL
Q X(uv) :=¢ x(uv) —ex if vue A(P)N A2
x(uv) otherwise.

(0,1) (1,1) 1
s (1,1) t s

(1,1) (1,1)
; t s (0,{1) t
(1,1) (0,1) \ (1,1) (1,1)
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Min-Max theorem

Theorem (Ford-Fulkerson)

O A feasible (s, t)-flow x is of maximum value if and only if there exists

no (s, t)-path in G.

© max{val(x) : feasible (s, t)-flow x} = min{cap(Z) : (s, t)-cut Z}.

(1,2)

07 2) (07 2

&1
(1,2)

) k. (1 1)

: '-0, 2)(0,2
(1,2)
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Proof of necessity

© Suppose there exists an (s, t)-path P in Gy.
x(uv) +ex if uv € A(P)N AL
Q X(uv) :={ x(uv)—e, if vuec A(P)N A2
x(uv) otherwise.
© X' is a feasible (s, t)-flow of value val(x) + &, > val(x).
D >0,
O x'is an (s, t)-flow,
© X' is feasible,
O val(x’) = val(x) + .

@ x is not of maximum value, contradiction.
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Proof of necessity

1. e, > 0:

@ g(uv) — x(uv) > 0 Vuv € AL, hence

el = min{g(uv) — x(uv) : uv € A(P)N AL} > 0,
Q x(uv) >0 Vwu € A2, hence

e2 = min{x(uv) : vu € A(P)N A2} > 0,

Q thus &, = min{el, 2} > 0.
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Proof

Proof of necessity

P s t
n G
2. x"is an (s, t)-flow:
,  te +ex  —€ —€ +e
P s - t

+ex if uv € A(P)N AL
Q xp(uv) = —&x if vue A(P)N A2 isan (s,t)-flow.
0 otherwise.
9 X/ =X+ Xpr.
Q dy(v) — di(v) = dcp,, (v) — iy, (v)
= (d (v) = (V) + (dy, (v) =&, (V) Vv # s,
=0+0=0
Q X is hence an (s, t)-flot.
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Proof of necessity

3. x’ is feasible: Since x is feasible, 0 < x(e) < g(e) Ve € A.
Qe cA \AP): x(e)< 0
Qe cANAP): x(e)< 0 < & =xp g
Q@ T cANAP): x(e)<-e2 <-g, =xp(e)=-ex<0< g(e)—x(e).
Qe cA 10 <(x+xp)(e) =x'(e) =(x+xp)(e) <gle).

IA
I
X
T
—
(0]
~—
Il
o
VAN
0q
—
()]
~
|
X
—
()]
~

© X' is hence feasible.

in Gx
/ +ex +ex —Ex —E&x +ex
——>0—>0E—0C——0—>0
P s t
in G
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Proof

Proof of necessity

4. val(x") = val(x) + ex: Since §;(s) = 0, the first arc su of P belongs to
Al and hence to A.

val(x') = d;(s) = ( Z x'(sv)) + x'(su)

svesE(s)\su

= ( Z x(sv)) + (x(su) +ex)
svesE(s)\su

= df(s) + ex

= val(x) + ex.
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Proof

Proof of sufficiency

© Suppose there exists no (s, t)-path in Gy.

Q@ Z:={veV:Jan(s,v)pathin G} =

Q@ scZCV\tand

Qi (2)=0 =

Q Vuv € 5£(Z) : x(uv) = g(uv) and,

Q Vuv € (Z): x(uv) =0. =

Q cap(Z2) = df (Z) = df (Z) — d (Z) = val(x) < Max Flow <
Min Cut < cap(Z), =

© We have hence equality everywhere, in particular,

© the flow x is of maximum value and

@ Max Flow = Min Cut.
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Algorithm

ALGORITHM OF EDMONDS-KARP

Ineut : Network (G, g) such that g >0, s,t € V : §(s) =0 =45"(¢).
Outpur : feasible (s, t)-flow x and (s, t)-cut Z such that val(x) = cap(Z).

(1,2)

L {0.2)(0,2
Te,1)

&1
(1,2)

: '-0, 2)(0,2
(1,2)
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Algorithm

Step 0: xp(e) =0 Ve € A, i:=0.
Step 1: Construct the auxiliary graph G;:= (V, Al U A?) where
Al:={uv :uv € A xi(uv) < g(uv)} and
A?:={wu: uv € A, x(uv) > 0}.
Step 2: Execute algorithm Breadth First Search on G; and s to get Z; C V
and an s-arborescence F; of G;[Z;] such that 5'&,(2,-) = 0.
Step 3: If t ¢ Z; then stop with x:= x; and Z:= Z;.
Step 4: Otherwise, P; := Fi[s, t], the unique (s, t)-path in F;.
Step 5: e}:= min{g(uv) — x;(uv) : uv € A(P;) N Al},
e2:= min{x;(uv) : vu € A(P;) N A?},
;= min{el, e?}.
xi(uv) +¢; if uv € A(P;) N A}
Step 6: xi11(uv) :==1¢ xi(uv) —e; if vu e A(P;) N A?
xi(uv) otherwise.
Step 7: i:= i+ 1 and go to Step 1.
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Complexity of the algorithm
The algorithm of Edmonds-Karp stops in polynomial time.

© Since the algorithm BFS is executed in Step 2, the algorithm always
augments the flow on a shortest (s, t)-path in G.

@ If the algorithm BFS is replaced in Step 2 by an arbitrary search
algorithm, then it may happen that the algorithm does not stop.
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Integer Flows

Theorem

If g(e) is integer for every arc e of G, then there exists a feasible flow x of
maximum value such that x(e) is integer for every arc e of G.

Proof
© By executing the algorithm of Edmonds-Karp, we see by induction on
i that every x;(e) is integer:
Q For i =0,xp(e) = 0 is integer Ve € A.
© Suppose that it is true for /.
Q ¢ = min{el,?} is integer:
O =f = min{g(uv) — x;(uv) : uv € A(P;) N At} is integer: every
g(e) — xi(e) is integer.
9 22 = min{x(uv) : vu € A(P;) N A?} is integer: every x;(e) is integer.

| \

Q xit1(e), = either xj(e) or xj(e) + ¢; or xj(e) — ¢, is integer Ve € A.

v
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Applications
"Knowledge is useless without consistent application.” - Julian Hall

Applications of integer flows

© Menger's Theorem on connectivity,

© Konig's Theorem on matchings.

v

Applications of flows and cuts

© Open pit mining,
© Distributed computing on a two-processor computer,

© Image segmentation.
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Exercises

Exercise 1

Let G := (V,A) be a directed graph, s,t € V and k € Z* such that

dt(s)—d (s) = Kk,
() -d(0) = —k </>
d*(v)—d (v) = 0 VYveV\({st}

Prove that G admits k arc-disjoints directed (s, t)-paths.

v

Exercise 2

Given a directed graph G = (V, A), s,t € V and a non-negative integer
(s, t)-flow x, prove that G contains val(x) directed (s, t)-paths such that
each arc a belongs to at most x(a) of the paths.
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Exercise 3

Theorem of Menger

Given a directed graph G = (V,A) and s,t € V,

maximum number of arc-disjoint (s, t)-paths = . .
minimum out-degree of an (s, t)-cut.

Ford-Fulkerson = Menger

Let G':= G —67(t) — 6 (s) and g(e) :=1 e € A(G').

(a) Prove that max = maximum value of a feasible (s, t)-flow in (G, g).
(b) Prove that min = minimum capacity of an (s, t)-cut in (G’, g).

(c) Deduce Menger's Theorem from (a), (b) and the integer version of
Ford-Fulkerson’s Theorem.
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Exercise 4

Theorem of Konig:

Given a bipartite graph G= (U, V; E),

maximum cardinality of a matching of G = W

minimum cardinality of a transversal of G.

Ford-Fulkerson = Konig

Let (D:= (W, A),g) be a network where W:= U U V U {s, t},
A={su:uveUtU{vt:veV}U{uv:uve U,ve V,uveE}
g(su):=1VYue U, g(vt) :=1Vv e Vand g(uv) = |U|+1VYuv € E,
x an integer feasible (s, t)-flow of max. value, Z an (s, t)-cut of min. capacity,
M:={uv € E : x(uv) =1} and T:= (U - Z)U(V N 2).

(a) Prove that M is a matching of G of size val(x).

(b) Prove that T is a transversal of G of size cap(Z).
c)

(c) Deduce Kénig Theorem from (a), (b) and Ford-Fulkerson Theorem.

4
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Applications: Open pit mining

Open pit mining

@ A company wants to exploit an open pit mining
@ by removing blocks
o to maximize the profit.

@ A block can be removed only if the blocks lying above it have already
been removed.

@ Each block has a net profit obtained from removing it.
@ This value can be positive or negative, it depends on the cost of
@ exploiting the block and
@ the richness of its contents.
@ We show how to model the problem by a problem of minimum
capacity cut in a network.

Z. Szigeti 0OCG-ORCO 31/41



Open pit mining

Model
O p(v) := profit of the block v,
© P := blocks of positive profit,
© N := blocks of negative profit,
Q Network (G:=(V,A), g) where

@ V:=PUNU{s,t},
@ A :={the arcs of constraint}U{sv:v € P}U{ut:ue N},

00 if uv arc of constraint,
9 g(uv):= p(v) ifu=s,
—p(u) ifv=t.
t
2 2
N = LR
-2 3 -1
NN
2 1
s
Z. Szigeti 0OCG-ORCO
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Open pit mining

The blocks in £ satisfy the removal contraint <= cap(5 U 5) < oc.
(By construction.)
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Open pit mining

@p(BUs) = 3 g+ Y alv)= Y s+ 3 —p(v)

veP\B veNNB veP\B veNNB
= Q)= Y pM) = p(v)= > (V)
veP vePNB veB vePNB
= > p(v) =D p(v).
veP veB

minimize = constant — maximize
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Distributed computing on a two-processor computer

Distributed computing on a two-processor computer

@ Assign the modules of a program to two processors in a way that
@ minimizes the total cost of

@ computation and
@ interprocessor communication.

@ We know in advance

o for each module, its computation cost on each of the two processors,
o for each pair of modules, their interprocessor communication cost

@ if they are assigned to different processors.
@ We show how to model the problem by a problem of minimum
capacity cut in a network.
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Distributed computing on a two-processor computer

communication cost

computation cost My M,
M O 5
M, 5 0
My 1 1
My 1 1

M3
1

1O =

My
1

o o1 =

Cij

total cost =
computation cost of modules executed on Py () +
computation cost of modules executed on P, (() +

communication cost for the pair of modules executed on differents processors

:Za,-—f—ij—i— Z Cij.-

MieCy M;eC M;e G ,M;eC,
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Distributed computing on a two-processor computer

Network (G:= (V,A), g) where
Q V= {Ml, My, M3, My,s = Py, t = Pz},
Q A={uv,wu:u,veV\{st}}
Uf{sv:ve V\({s t}}
U{vt:ve V\{s,t}},
Cij if uv = M,'Mj,

O g(uv) :=¢ a; if uv=sM,,
bj if uv = th.
My My Mz M,
My My, Mz My My 0 5 1 1
P1 4 4 1 2 a; M2 5 0 1 1 Cij
P, 1 2 4 4 b Mz 1 1 0 5
Ms; 1 1 5 0
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Distributed computing on a two-processor computer

cap(G U s)

M;e G M;e G M;e C,M;e G

= Za,‘—l-ij—i- Z Cij,

M;e G M;e G M;eC,M;e G

which is the total cost to minimize (C; = the modules executed on P;).

> oglsM)+ D eMi)+ Y g(MiMy)
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Image segmentation

Image segmentation

@ We have to locate objects in a digital image.

@ Every i € V, where V is the set of pixels of the image,

@ belongs to an object with likelihood p; and
@ belongs to the background with likelihood g;.

@ We also have a penalty function r(/, /) of separation for every pair
(7,j) € E where E is the set of pairs of neighboring pixels.

@ We have to find a partition S, T of V
that maximizes

ZP;-I—ZCIJ— Z r(i,J)-

ieS JET i€SJET,(ij)EE

@ We show how to model the problem by a
problem of minimum capacity cut in a
network.
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Image segmentation

Network (G = (V’, A), g) where
Q Vi=VU({st}
Q A={uv,wu:uv e E}U{sv:ve V}U{vt:veV}
pi if uv = si,
Q g(uv)=¢ gqj if uv = jt,
r(i,j) ifuv=1i€E.

L

r(isJ)

i qj
s . —— t
— —
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Image segmentation

cap(SUs) = Y gls)+> e+ > alij)
JET ieS i€S jeT,ijeE
= > p+d g+ > (i)
JET ieS i€SjeT,ijeE
= > i+a)-O_pi+Y ag— > (i)
ieVv i€S JeT i€SJET,jeE
minimize = constant — maximize
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