Combinatorial Optimization and Graph Theory ORCO
 Introduction + Flows

Zoltán Szigeti

Teachers

Teachers

(1) SZIGETI, Zoltán (8 weeks)

- Professor at Ensimag, e-mail: zoltan.szigeti@grenoble-inp.fr
(2) STEHLIK, Matej (4 weeks)
- Assistant Professor at UGA, e-mail: matej.stehlik@grenoble-inp.fr

Researchers:

(1) Research at G-SCOP Laboratory.
(2) Research subjects:

- Combinatorial Optimization,
- Graph Theory,
- Connectivity,
- Matchings,
- Matroids.

Course:

Combinatorial Optimization

(1) Discrete optimization part of Operations Research, consists of "Finding the best solution in a very large set of possibilities".

- Previously seen:
- Shortest paths,
- Minimum cost spanning trees.
(2) Structural results
- Previously seen:
- Subpath of a shortest path is a shortest path.
- Maximal forest is maximum forest.
(3) Efficient algorithms
- Previously seen:
- Bellmann, Dijkstra, Floyd-Warshall for shortest paths,
- Kruskal (greedy) for minimum cost spanning trees.

Planning

Subjects treated in my part:

(1) Network flows,
(2) Push-Relabel algorithm for flows,
(3) Matchings in bipartite graphs,
(3) Matchings in general graphs,
(5) Matroids,
(0) Submodular functions in graph theory,
(1) Paper presentations (2 weeks),

Citation about flows:

"But anyone who has experienced flow knows that the deep enjoyment it provides requires an equal degree of disciplined concentration." Mihály Csikszentmihályi

Books

Books for further study

(1) Ahuja, Magnanti, Orlin, Network flows; Theory, Algorithms and Applications,
(2) Cook, Cunningham, Pulleyblank, Schrijver, Combinatorial Optimization,
(3) Frank, Connections in Combinatorial Optimization,
(9) Korte, Vygen, Combinatorial Optimization; Theory and Algorithms,
(3) Lovász, Plummer, Matching Theory,
(0) Schrijver, Combinatorial Optimization; Polyhedra and Efficiency, 3 volumes.

Introduction to flows

Problem

How many trucks can we send from a starting point to a destination point respecting the capacity constraints of the streets?

Model

(1) Given
(1) a directed graph $G=(V, A)$,
(2) source $s \in V$ and sink $t \in V$,
(3) a capacity function g on the arcs,

(2) find a set \mathcal{P} of (s, t)-paths such that each arc e belongs to at most $g(e)$ paths of \mathcal{P}.
(3) It suffices to know the number $x(e)$ of paths in \mathcal{P} containing $e \in A$.
(9) The function $x: A \rightarrow \mathbb{R}$ is called flow.

Introduction to flows

Problem

How many trucks can we send from a starting point to a destination point respecting the capacity constraints of the streets?

Model

(1) Given
(1) a directed graph $G=(V, A)$,
(2) source $s \in V$ and sink $t \in V$,
(3) a capacity function g on the arcs,

(2) find a set \mathcal{P} of (s, t)-paths such that each arc e belongs to at most $g(e)$ paths of \mathcal{P}.
(3) It suffices to know the number $x(e)$ of paths in \mathcal{P} containing $e \in A$.
(9) The function $x: A \rightarrow \mathbb{R}$ is called flow.

Introduction to flows

Problem

How many trucks can we send from a starting point to a destination point respecting the capacity constraints of the streets?

Model

(1) Given
(1) a directed graph $G=(V, A)$,
(2) source $s \in V$ and $\operatorname{sink} t \in V$,
(3) a capacity function g on the arcs,

(2) find a set \mathcal{P} of (s, t)-paths such that each arc e belongs to at most $g(e)$ paths of \mathcal{P}.
(3) It suffices to know the number $x(e)$ of paths in \mathcal{P} containing $e \in A$.
(9) The function $x: A \rightarrow \mathbb{R}$ is called flow.

Definition of flows

Definition

(1) Given
(1) a directed graph $G=(V, A)$,
(2) $s, t \in V$ such that $\delta^{-}(s)=\emptyset=\delta^{+}(t)$,
(3) a non-negative capacity g on the arcs,

(2) a function x on the arcs is
(1) an (s, t)-flow if the flow conservation is satisfied:

$$
\sum_{u v \in A} x(u v)=\sum_{v u \in A} x(v u) \quad \forall v \in V \backslash\{s, t\} .
$$

(2) feasible if the capacity contraint is satisfied:

$$
0 \leq x(e) \leq g(e) \quad \forall e \in A .
$$

Definition of flows

Definition

(1) Given
(1) a directed graph $G=(V, A)$,
(2) $s, t \in V$ such that $\delta^{-}(s)=\emptyset=\delta^{+}(t)$,
(3) a non-negative capacity g on the arcs,

(2) a function x on the arcs is
(1) an (s, t)-flow if the flow conservation is satisfied:

$$
\sum_{u v \in A} x(u v)=\sum_{v u \in A} x(v u) \quad \forall v \in V \backslash\{s, t\}
$$

(2) feasible if the capacity contraint is satisfied:

$$
0 \leq x(e) \leq g(e) \quad \forall e \in A
$$

Notation

Notation

Given directed graph $G=(V, A), s, t \in V$, capacity g, flow $x, Z \subseteq V$,
(1) $\delta^{+}(Z)$: the arcs leaving Z,
(2) Out-value of Z :

$$
d_{x}^{+}(Z):=\sum_{e \in \delta^{+}}(Z) x(e),
$$

(3) Flow conservation:

$$
d_{x}^{-}(v)=d_{x}^{+}(v)
$$

(3) Flow value:
$\operatorname{val}(x):=d_{x}^{+}(s)$,
(3) (s, t)-cut $Z: \quad$ if $s \in Z \subseteq V \backslash t$,
(0) Capacity of (s, t)-cut $Z: \operatorname{cap}(Z):=d_{g}^{+}(Z)$.

Flow value

Lemma

For all (s, t)-flow x and for all (s, t)-cut Z :

$$
\operatorname{val}(x)=d_{x}^{+}(Z)-d_{x}^{-}(Z)
$$

Proof

$$
\begin{aligned}
\operatorname{val}(x) & =d_{x}^{+}(s) \\
& =d_{x}^{+}(s)-\overbrace{d_{x}^{-}(s)}^{0}+\sum_{v \in Z-s} \overbrace{\left(d_{x}^{+}(v)-d_{x}^{-}(v)\right)}^{0} \\
& =\sum_{v \in Z}\left(d_{x}^{+}(v)-d_{x}^{-}(v)\right) \\
& =d_{x}^{+}(Z)-d_{x}^{-}(Z) .
\end{aligned}
$$

Max Flow \leq Min Cut

Lemma

For all g-feasible (s, t)-flow x and for all (s, t)-cut Z : $\operatorname{val}(x) \leq \operatorname{cap}(Z)$.

Proof

$$
\begin{aligned}
\operatorname{val}(x) & =d_{x}^{+}(Z)-d_{x}^{-}(Z) \\
& \leq d_{g}^{+}(Z)-d_{0}^{-}(Z) \\
& =d_{g}^{+}(Z)=\operatorname{cap}(Z) .
\end{aligned}
$$

Remark

If x is a g-feasible (s, t)-flow and Z is an (s, t)-cut such that $\operatorname{val}(x)=$ $\operatorname{cap}(Z)$, then they are optimal.

Problem: How to find
(1) a g-feasible (s, t)-flow of maximum value and
(2) an (s, t)-cut of minimum capacity?

Flow augmentation

First ideas

(1) $x(e)=0 \forall e \in A$ is a feasible flow.
(2) How to augment a flow?
(3) $G^{\prime}:=\left(V, A_{x}^{1}\right)$ where $A_{x}^{1}:=\{u v \in A: x(u v)<g(u v)\}$.
(9) If there exists an (s, t)-path P in G^{\prime} then we can augment the value of the flow by $\varepsilon_{x}^{1}:=\min \left\{g(u v)-x(u v): u v \in A(P) \cap A_{x}^{1}\right\}$,
(3) $x^{\prime}(u v):= \begin{cases}x(u v)+\varepsilon_{x}^{1} & \text { if } u v \in A(P) \cap A_{x}^{1} \\ x(u v) & \text { otherwise. }\end{cases}$

Flow augmentation

Example: this idea is not enough

This flow is not of maximum value and no (s, t)-path exists in G^{\prime}.

Flow augmentation

Second idea

(1) Use the arcs $u v$ such that $x(u v)>0$ in the reverse direction.
(2) $G_{x}:=\left(V, A_{x}^{1} \cup A_{x}^{2}\right)$ where $A_{x}^{2}:=\{v u: u v \in A, x(u v)>0\}$.
(3) If there exists an (s, t)-path P in G_{X} then we can augment the value of the flow by $\varepsilon_{x}:=\min \left\{\varepsilon_{x}^{1}, \varepsilon_{x}^{2}\right\}$, where
$\varepsilon_{x}^{2}:=\min \left\{x(u v): v u \in A(P) \cap A_{x}^{2}\right\}$,
(9) $x^{\prime}(u v):= \begin{cases}x(u v)+\varepsilon_{x} & \text { if } u v \in A(P) \cap A_{x}^{1} \\ x(u v)-\varepsilon_{x} & \text { if } v u \in A(P) \cap A_{x}^{2} \\ x(u v) & \text { otherwise. }\end{cases}$

Min-Max theorem

Theorem (Ford-Fulkerson)

(1) A feasible (s, t)-flow x is of maximum value if and only if there exists no (s, t)-path in G_{x}.
(2) $\max \{\operatorname{val}(x)$: feasible (s, t)-flow $x\}=\min \{\operatorname{cap}(Z):(s, t)$-cut $Z\}$.

Proof

Proof of necessity

(1) Suppose there exists an (s, t)-path P in G_{x}.
(2) $x^{\prime}(u v):= \begin{cases}x(u v)+\varepsilon_{x} & \text { if } u v \in A(P) \cap A_{x}^{1} \\ x(u v)-\varepsilon_{x} & \text { if } v u \in A(P) \cap A_{x}^{2} \\ x(u v) & \text { otherwise. }\end{cases}$
(3) x^{\prime} is a feasible (s, t)-flow of value $\operatorname{val}(x)+\varepsilon_{x}>\operatorname{val}(x)$.
(1) $\varepsilon_{x}>0$,
(2) x^{\prime} is an (s, t)-flow,
(3) x^{\prime} is feasible,
(1) $\operatorname{val}\left(x^{\prime}\right)=\operatorname{val}(x)+\varepsilon_{x}$.
(9) x is not of maximum value, contradiction.

Proof

Proof of necessity

1. $\varepsilon_{x}>0$:
(1) $g(u v)-x(u v)>0 \forall u v \in A_{x}^{1}$, hence
$\varepsilon_{x}^{1}=\min \left\{g(u v)-x(u v): u v \in A(P) \cap A_{x}^{1}\right\}>0$,
(2) $x(u v)>0 \forall v u \in A_{x}^{2}$, hence
$\varepsilon_{x}^{2}=\min \left\{x(u v): v u \in A(P) \cap A_{x}^{2}\right\}>0$,
(3) thus $\varepsilon_{x}=\min \left\{\varepsilon_{x}^{1}, \varepsilon_{x}^{2}\right\}>0$.

Proof

Proof of necessity

2. x^{\prime} is an (s, t)-flow:

(1) $x_{P^{\prime}}(u v):=\left\{\begin{array}{cl}+\varepsilon_{x} & \text { if } u v \in A(P) \cap A_{x}^{1} \\ -\varepsilon_{x} & \text { if } v u \in A(P) \cap A_{x}^{2} \\ 0 & \text { otherwise. }\end{array}\right.$ is an (s, t)-flow.
(2) $x^{\prime}=x+x_{p^{\prime}}$.
(3) $d_{x^{\prime}}^{-}(v)-d_{x^{\prime}}^{+}(v)=d_{x+x_{p^{\prime}}}^{-}(v)-d_{x+x_{p^{\prime}}}^{+}(v)$

$$
\begin{aligned}
& =\left(d_{x}^{-}(v)-d_{x}^{+}(v)\right)+\left(d_{x_{p^{\prime}}}^{-}(v)-d_{x_{p^{\prime}}}^{+}(v)\right) \forall v \neq s, t \\
& =0+0=0
\end{aligned}
$$

(4) x^{\prime} is hence an (s, t)-flot.

Proof

Proof of necessity

3. x^{\prime} is feasible: Since x is feasible, $0 \leq x(e) \leq g(e) \forall e \in A$.
(1) $e \in A \backslash A(P):-x(e) \leq 0=\quad x_{P^{\prime}}(e) \quad=0 \leq g(e)-x(e)$.
(2) $e \in A_{x}^{1} \cap A(P):-x(e) \leq 0 \leq \varepsilon_{x}=x_{P^{\prime}}(e)=\varepsilon_{x} \leq \varepsilon_{x}^{1} \leq g(e)-x(e)$.
(3) $\overleftarrow{e} \in A_{x}^{2} \cap A(P):-x(e) \leq-\varepsilon_{x}^{2} \leq-\varepsilon_{x} \quad=x_{P^{\prime}}(e)=-\varepsilon_{x} \leq 0 \leq g(e)-x(e)$.
(9) $e \in A \quad: 0 \leq\left(x+x_{P^{\prime}}\right)(e)=x^{\prime}(e)=\left(x+x_{P^{\prime}}\right)(e) \leq g(e)$.
(3) x^{\prime} is hence feasible.

Proof

Proof of necessity

4. $\operatorname{val}\left(x^{\prime}\right)=\operatorname{val}(x)+\varepsilon_{x}$: Since $\delta_{G}^{-}(s)=\emptyset$, the first arc su of P belongs to A_{x}^{1} and hence to A.

$$
\begin{aligned}
\operatorname{val}\left(x^{\prime}\right)= & d_{x^{\prime}}^{+}(s)=\left(\sum_{s v \in \delta_{G}^{+}(s) \backslash s u} x^{\prime}(s v)\right)+x^{\prime}(s u) \\
& =\left(\sum_{s v \in \delta_{G}^{+}(s) \backslash s u} x(s v)\right)+\left(x(s u)+\varepsilon_{x}\right) \\
& =d_{x}^{+}(s)+\varepsilon_{x} \\
& =\operatorname{val}(x)+\varepsilon_{x} .
\end{aligned}
$$

Proof

Proof of sufficiency

(1) Suppose there exists no (s, t)-path in G_{x}.
(2) $Z:=\left\{v \in V: \exists\right.$ an (s, v)-path in $\left.G_{x}\right\} \Longrightarrow$
(3) $s \in Z \subseteq V \backslash t$ and
(9) $\delta_{G_{x}}^{+}(Z)=\emptyset . \Longrightarrow$
(3) $\forall u v \in \delta_{G}^{+}(Z): x(u v)=g(u v)$ and,
(0) $\forall u v \in \delta_{G}^{-}(Z): x(u v)=0 . \Longrightarrow$
(1) $\operatorname{cap}(Z)=d_{g}^{+}(Z)=d_{x}^{+}(Z)-d_{x}^{-}(Z)=\operatorname{val}(x) \leq$ Max Flow \leq Min Cut $\leq \operatorname{cap}(Z), \Longrightarrow$
(3) We have hence equality everywhere, in particular,
(0) the flow x is of maximum value and
(5) Max Flow $=$ Min Cut.

Algorithm

Algorithm of EDMONDs-KARP

Input : Network (G, g) such that $g \geq 0, s, t \in V: \delta^{-}(s)=\emptyset=\delta^{+}(t)$. Output : feasible (s, t)-flow x and (s, t)-cut Z such that $\operatorname{val}(x)=\operatorname{cap}(Z)$.

Algorithm

Step 0: $x_{0}(e)=0 \forall e \in A, i:=0$.
Step 1: Construct the auxiliary graph $G_{i}:=\left(V, A_{i}^{1} \cup A_{i}^{2}\right)$ where $A_{i}^{1}:=\left\{u v: u v \in A, x_{i}(u v)<g(u v)\right\}$ and $A_{i}^{2}:=\left\{v u: u v \in A, x_{i}(u v)>0\right\}$.
Step 2: Execute algorithm Breadth First Search on G_{i} and s to get $Z_{i} \subseteq V$ and an s-arborescence F_{i} of $G_{i}\left[Z_{i}\right]$ such that $\delta_{G_{i}}^{+}\left(Z_{i}\right)=\emptyset$.
Step 3: If $t \notin Z_{i}$ then stop with $x:=x_{i}$ and $Z:=Z_{i}$.
Step 4: Otherwise, $P_{i}:=F_{i}[s, t]$, the unique (s, t)-path in F_{i}.
Step 5: $\varepsilon_{i}^{1}:=\min \left\{g(u v)-x_{i}(u v): u v \in A\left(P_{i}\right) \cap A_{i}^{1}\right\}$,
$\varepsilon_{i}^{2}:=\min \left\{x_{i}(u v): v u \in A\left(P_{i}\right) \cap A_{i}^{2}\right\}$,
$\varepsilon_{i}:=\min \left\{\varepsilon_{i}^{1}, \varepsilon_{i}^{2}\right\}$.
Step 6: $x_{i+1}(u v):= \begin{cases}x_{i}(u v)+\varepsilon_{i} & \text { if } u v \in A\left(P_{i}\right) \cap A_{i}^{1} \\ x_{i}(u v)-\varepsilon_{i} & \text { if } v u \in A\left(P_{i}\right) \cap A_{i}^{2} \\ x_{i}(u v) & \text { otherwise. }\end{cases}$
Step 7: $i:=i+1$ and go to Step 1.

Complexity of the algorithm

Theorem

The algorithm of Edmonds-Karp stops in polynomial time.

Remark

(1) Since the algorithm BFS is executed in Step 2, the algorithm always augments the flow on a shortest (s, t)-path in G_{x}.
(2) If the algorithm BFS is replaced in Step 2 by an arbitrary search algorithm, then it may happen that the algorithm does not stop.

Integer Flows

Theorem

If $g(e)$ is integer for every arc e of G, then there exists a feasible flow x of maximum value such that $x(e)$ is integer for every arc e of G.

Proof

(1) By executing the algorithm of Edmonds-Karp, we see by induction on i that every $x_{i}(e)$ is integer:
(2) For $i=0, x_{0}(e)=0$ is integer $\forall e \in A$.
(3) Suppose that it is true for i.
(9) $\varepsilon_{i}=\min \left\{\varepsilon_{i}^{1}, \varepsilon_{i}^{2}\right\}$ is integer:
(1) $\varepsilon_{i}^{1}=\min \left\{g(u v)-x_{i}(u v): u v \in A\left(P_{i}\right) \cap A_{i}^{1}\right\}$ is integer: every $g(e)-x_{i}(e)$ is integer.
(2) $\varepsilon_{i}^{2}=\min \left\{x_{i}(u v): v u \in A\left(P_{i}\right) \cap A_{i}^{2}\right\}$ is integer: every $x_{i}(e)$ is integer.
(3) $x_{i+1}(e)$, either $x_{i}(e)$ or $x_{i}(e)+\varepsilon_{i}$ or $x_{i}(e)-\varepsilon_{i}$, is integer $\forall e \in A$.

Applications

Citation

"Knowledge is useless without consistent application." - Julian Hall

Applications of integer flows
(1) Menger's Theorem on connectivity,
(2) Kőnig's Theorem on matchings.

Applications of flows and cuts
(1) Open pit mining,
(2) Distributed computing on a two-processor computer,
(3) Image segmentation.

Exercises

Exercise 1

Let $G:=(V, A)$ be a directed graph, $s, t \in V$ and $k \in \mathbb{Z}^{+}$such that

$$
\begin{aligned}
d^{+}(s)-d^{-}(s) & =k, \\
d^{+}(t)-d^{-}(t) & =-k, \\
d^{+}(v)-d^{-}(v) & =0 \quad \forall v \in V \backslash\{s, t\}
\end{aligned}
$$

Prove that G admits k arc-disjoints directed (s, t)-paths.

Exercise 2

Given a directed graph $G=(V, A), s, t \in V$ and a non-negative integer (s, t)-flow x, prove that G contains val (x) directed (s, t)-paths such that each arc a belongs to at most $x(a)$ of the paths.

Exercise 3

Theorem of Menger

Given a directed graph $G=(V, A)$ and $s, t \in V$, maximum number of arc-disjoint (s, t)-paths $=$ minimum out-degree of an (s, t)-cut.

Ford-Fulkerson \Longrightarrow Menger

Let $G^{\prime}:=G-\delta^{+}(t)-\delta^{-}(s)$ and $g(e):=1 e \in A\left(G^{\prime}\right)$.
(a) Prove that max $=$ maximum value of a feasible (s, t)-flow in $\left(G^{\prime}, g\right)$.
(b) Prove that $\min =$ minimum capacity of an (s, t)-cut in $\left(G^{\prime}, g\right)$.
(c) Deduce Menger's Theorem from (a), (b) and the integer version of Ford-Fulkerson's Theorem.

Exercise 4

Theorem of Kőnig:

Given a bipartite graph $G=(U, V ; E)$, maximum cardinality of a matching of $G=$ minimum cardinality of a transversal of G.

Ford-Fulkerson \Longrightarrow Kőnig

Let $(D:=(W, A), g)$ be a network where $W:=U \cup V \cup\{s, t\}$, $A:=\{s u: u \in U\} \cup\{v t: v \in V\} \cup\{u v: u \in U, v \in V, u v \in E\}$, $g(s u):=1 \forall u \in U, g(v t):=1 \forall v \in V$ and $g(u v):=|U|+1 \forall u v \in E$, x an integer feasible (s, t)-flow of max. value, Z an (s, t)-cut of min. capacity, $M:=\{u v \in E: x(u v)=1\}$ and $T:=(U-Z) \cup(V \cap Z)$.
(a) Prove that M is a matching of G of size $\operatorname{val}(x)$.
(b) Prove that T is a transversal of G of size $\operatorname{cap}(Z)$.
(c) Deduce Kőnig Theorem from (a), (b) and Ford-Fulkerson Theorem.

Applications: Open pit mining

Open pit mining

- A company wants to exploit an open pit mining
- by removing blocks
- to maximize the profit.
- A block can be removed only if the blocks lying above it have already been removed.
- Each block has a net profit obtained from removing it.
- This value can be positive or negative, it depends on the cost of
- exploiting the block and
- the richness of its contents.
- We show how to model the problem by a problem of minimum capacity cut in a network.

Open pit mining

Model

(1) $p(v):=$ profit of the block v,
(2) $P:=$ blocks of positive profit,
(3) $N:=$ blocks of negative profit,
(9) Network $(G:=(V, A), g)$ where
(1) $V:=P \cup N \cup\{s, t\}$,
(2) $A:=\{$ the arcs of constraint $\} \cup\{s v: v \in P\} \cup\{u t: u \in N\}$,
(3) $g(u v):=\left\{\begin{aligned} \infty & \text { if } u v \text { arc of constraint, } \\ p(v) & \text { if } u=s, \\ -p(u) & \text { if } v=t .\end{aligned}\right.$

Open pit mining

Lemma

The blocks in B satisfy the removal contraint $\Longleftrightarrow \operatorname{cap}(B \cup s)<\infty$. (By construction.)

Open pit mining

Lemma

$$
\begin{aligned}
\operatorname{cap}(B \cup s) & =\sum_{v \in P \backslash B} g(s v)+\sum_{v \in N \cap B} g(v t)=\sum_{v \in P \backslash B} p(v)+\sum_{v \in N \cap B}-p(v) \\
& =\left(\sum_{v \in P} p(v)-\sum_{v \in P \cap B} p(v)\right)-\left(\sum_{v \in B} p(v)-\sum_{v \in P \cap B} p(v)\right) \\
& =\sum_{v \in P} p(v)-\sum_{v \in B} p(v)
\end{aligned}
$$

minimize $=$ constant - maximize

Distributed computing on a two-processor computer

Distributed computing on a two-processor computer

- Assign the modules of a program to two processors in a way that
- minimizes the total cost of
- computation and
- interprocessor communication.
- We know in advance
- for each module, its computation cost on each of the two processors,
- for each pair of modules, their interprocessor communication cost
- if they are assigned to different processors.
- We show how to model the problem by a problem of minimum capacity cut in a network.

Distributed computing on a two-processor computer

computation cost

	M_{1}	M_{2}	M_{3}	M_{4}	
P_{1}	4	4	1	2	a_{i}
P_{2}	1	2	4	4	b_{i}

communication cost

	M_{1}	M_{2}	M_{3}	M_{4}	
M_{1}	0	5	1	1	
M_{2}	5	0	1	1	$c_{i j}$
M_{3}	1	1	0	5	
M_{3}	1	1	5	0	

Cost to minimize

total cost $=$
computation cost of modules executed on $P_{1}\left(C_{1}\right)+$ computation cost of modules executed on $P_{2}\left(C_{2}\right)+$ communication cost for the pair of modules executed on differents processors

$$
=\sum_{M_{i} \in C_{1}} a_{i}+\sum_{M_{j} \in C_{2}} b_{j}+\sum_{M_{i} \in C_{1}, M_{j} \in C_{2}} c_{i j}
$$

Distributed computing on a two-processor computer

Model

Network $(G:=(V, A), g)$ where
(1) $V:=\left\{M_{1}, M_{2}, M_{3}, M_{4}, s=P_{1}, t=P_{2}\right\}$,
(2) $A:=\{u v, v u: u, v \in V \backslash\{s, t\}\}$ $\cup\{s v: v \in V \backslash\{s, t\}\}$ $\cup\{v t: v \in V \backslash\{s, t\}\}$,
(3) $g(u v):= \begin{cases}c_{i j} & \text { if } u v=M_{i} M_{j}, \\ a_{i} & \text { if } u v=s M_{i}, \\ b_{j} & \text { if } u v=M_{j} t,\end{cases}$

$\begin{array}{llll}M_{1} & M_{2} & M_{3} & M_{4}\end{array}$

	M_{1}	M_{2}	M_{3}	M_{4}		M_{1}	0	5	1	1	
P_{1}	4	4	1	2	a_{i}	M_{2}	5	0	1	1	$c_{i j}$
P_{2}	1	2	4	4	b_{i}	M_{3}	1	1	0	5	
						M_{3}	1	1	5	0	

Distributed computing on a two-processor computer

Lemme

$$
\begin{aligned}
\operatorname{cap}\left(C_{2} \cup s\right) & =\sum_{M_{i} \in C_{1}} g\left(s M_{i}\right)+\sum_{M_{j} \in C_{2}} g\left(M_{j} t\right)+\sum_{M_{i} \in C_{1}, M_{j} \in C_{2}} g\left(M_{i} M_{j}\right) \\
& =\sum_{M_{i} \in C_{1}} a_{i}+\sum_{M_{j} \in C_{2}} b_{j}+\sum_{M_{i} \in C_{1}, M_{j} \in C_{2}} c_{i j},
\end{aligned}
$$

which is the total cost to minimize ($C_{i}=$ the modules executed on P_{i}).

Image segmentation

Image segmentation

- We have to locate objects in a digital image.
- Every $i \in V$, where V is the set of pixels of the image,
- belongs to an object with likelihood p_{i} and
- belongs to the background with likelihood q_{i}.
- We also have a penalty function $r(i, j)$ of separation for every pair $(i, j) \in E$ where E is the set of pairs of neighboring pixels.
- We have to find a partition S, T of V that maximizes

$$
\sum_{i \in S} p_{i}+\sum_{j \in T} q_{j}-\sum_{i \in S, j \in T,(i, j) \in E} r(i, j) .
$$

- We show how to model the problem by a problem of minimum capacity cut in a
 network.

Image segmentation

Model

Network $\left(G=\left(V^{\prime}, A\right), g\right)$ where
(1) $V^{\prime}:=V \cup\{s, t\}$,
(2) $A:=\{u v, v u: u v \in E\} \cup\{s v: v \in V\} \cup\{v t: v \in V\}$,
(3) $g(u v):= \begin{cases}p_{i} & \text { if } u v=s i, \\ q_{j} & \text { if } u v=j t, \\ r(i, j) & \text { if } u v=i j \in E .\end{cases}$

Image segmentation

Lemma

$$
\begin{aligned}
\operatorname{cap}(S \cup s) & =\sum_{j \in T} g(s j)+\sum_{i \in S} g(i t)+\sum_{i \in S, j \in T, i j \in E} g(i j) \\
& =\sum_{j \in T} p_{j}+\sum_{i \in S} q_{i}+\sum_{i \in S, j \in T, i j \in E} r(i, j) \\
& =\sum_{i \in V}\left(p_{i}+q_{i}\right)-\left(\sum_{i \in S} p_{i}+\sum_{j \in T} q_{j}-\sum_{i \in S, j \in T, i j \in E} r(i, j)\right) . \\
\text { minimize } & =\text { constant }-\quad \quad \text { maximize }
\end{aligned}
$$

