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Abstract

Recently Kamiyama, Katoh, and Takizawa have shown a theorem on packing
arc-disjoint arborescences that is a proper extension of Edmonds’ theorem on disjoint
spanning branchings. We show a further extension of their theorem, which makes
clear an essential rôle of a reachability condition played in the theorem. The right
concept required for the further extension is “convexity” instead of “reachability.”

1. Introduction: a theorem of Kamiyama, Katoh, and
Takizawa

Recently Kamiyama, Katoh, and Takizawa [3] have shown a theorem (KKT theorem for
short in the sequel) on packing arc-disjoint arborescences that is a proper extension of
Edmonds’ theorem [2] on disjoint spanning branchings, which is described as follows.
(The precise definitions of terms used here will be given later.)

Let G = (V,A) be a directed graph with a vertex set V and an arc set A. For any vertex
v ∈ V we denote by R+

G(v) the set of vertices reachable from v by directed paths in G.
Given a set of roots ri (i ∈ I), KKT theorem gives a characterization of the existence of a
set of arc-disjoint arborescences Hi (i ∈ I) such that for each i ∈ I arborescence Hi has
a root ri and exactly spans R+

G(ri).
In this note we show a further extension of KKT theorem, which makes clear an es-

sential rôle played by a reachability condition in the theorem. The right concept required
for the further extension is “convexity” instead of “reachability.”

For more information about disjoint arborescences, their extensions, and related topics
see [4, Part V] and [1].

1



2. An extension of KKT theorem
Let G = (V,A) be a directed graph with a vertex set V and an arc set A. Each arc a ∈ A
has a tail denoted by ∂+a and a head denoted by ∂−a. For any vertex v the in-degree of v
is equal to the number of arcs that have v as their heads. A branching in G is a subgraph
H = (U,B) of G without any cycle such that every vertex u in U has in-degrees at
most one in H . Each connected component of branching H has a unique vertex, called
a root, that has the in-degree equal to zero in H . A connected branching is called an
arborescence, which has a single root.

For any vertex v ∈ V we denote by R+
G(v) the set of vertices reachable from v by

directed paths in G and by R−
G(v) the set of vertices from which v is reachable by a

directed path in G. Also define for any W ⊆ V

R+
G(W ) =

∪
{R+

G(v) | v ∈ W}, R−
G(W ) =

∪
{R−

G(v) | v ∈ W}. (2.1)

A vertex subset W is called a convex set in G if we have W = R+
G(W )∩R−

G(W ), i.e., for
every directed path P from a vertex in W to a vertex in W all the intermediate vertices
of P also lie in W . The concept of convexity plays an essential rôle in our result, which
replaces the rôle of reachability from roots in KKT theorem [3]. It should be noted that
for any convex set U in G and the vertex set W of any strongly connected component of
G that satisfy U ∩ W 6= ∅, we must have U ⊇ W .

Suppose that we are given a finite index set I and, for each i ∈ I , a specified vertex
ri ∈ V . Here we may allow ri = rj for some distinct i, j ∈ I . For each i ∈ I we are also
given a convex set Ui ⊆ V such that ri ∈ Ui. For any v ∈ V define

I(v) = {i ∈ I | v ∈ Ui}. (2.2)

We assume that I(v) 6= ∅ for all v ∈ V .
Now we are ready to state our main theorem, which is an extension of KKT theorem.

It should be noted that replacing Ui by R+
G(ri) for all i ∈ I in our theorem yields KKT

theorem. Our proof employs KKT theorem recursively. For any vertex subset Z ⊆ V
denote by G[Z] the subgraph of G induced by Z.

Theorem 2.1: The following two statements are equivalent.

(a) There exist arc-disjoint arborescences Hi = (Ui, Bi) (i ∈ I) such that for each
i ∈ I arborescence Hi has a root ri.

(b) For each v ∈ V there exist arc-disjoint directed paths Pi (i ∈ I(v)) such that for
each i ∈ I(v) path Pi is from ri to v.

(Proof) ((a) ⇒ (b)): This implication is easy.
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((b) ⇒ (a)): Suppose (b) holds.
Consider the decomposition of graph G into strongly connected components, which

defines a partial order ¹ on the set of strongly connected components as follows. For two
strongly connected components H and H ′ we have H ¹ H ′ if and only if there exists
a directed path from H ′ to H . Let W ⊆ V be the vertex set of a strongly connected
component that is minimal with respect to the partial order ¹. In other words, W is the
vertex set of a strongly connected component in G such that R+

G(W ) = W .
Define

I(W ) =
∪
{I(v) | v ∈ W}(= {i ∈ I | W ⊆ Ui}), (2.3)

Ui(W ) = Ui ∩ R−
G(W ) (i ∈ I(W )), (2.4)

V (W ) =
∪
{Ui(W ) | i ∈ I(W )}. (2.5)

Then consider the subgraph Ĝ = G[V (W )] of G induced by V (W ). Because of the
convexity of Ui (i ∈ I), definitions (2.3)–(2.5), and assumption (b) we can show the
following two facts.

Fact 1: For each i ∈ I(W ) Ui(W ) is exactly the set of vertices that can be reached from
ri by directed paths in Ĝ, i.e., R+

Ĝ
(ri) = Ui(W ).

Fact 2: For any v ∈ V (W ) and any directed path P in G from ri (i ∈ I(W )) to v all the
intermediate vertices of P lie in Ui(W ).

It follows from these two facts that assumption (b) (appropriately modified) also holds for
graph Ĝ with index set I(W ) and convex (reachable) sets R+

Ĝ
(ri) = Ui(W ) (i ∈ I(W )).

More precisely, the following (*) holds.

(*) for each v ∈ V (W ) there exist arc-disjoint directed paths Pi (i ∈ I(v) ∩ I(W ))
such that for each i ∈ I(v) ∩ I(W ) path Pi is from ri to v in Ĝ.

Hence from KKT theorem there exist arc-disjoint arborescences Ĥi = (Ui(W ), B̂i) (i ∈
I(W )) such that each arborescence Ĥi (i ∈ I(W )) has a root ri.

Define
BW

i = B̂i ∩ δ−W (i ∈ I(W )), (2.6)

where δ−W is the set of arcs a ∈ A with ∂−a ∈ W . (Here note that we may have
∂+a ∈ W .) For all i ∈ I \ I(W ) define BW

i = ∅. Then put

G ← G \ W, (2.7)
Ui ← Ui \ W (i ∈ I), (2.8)
I ← I \ {i ∈ I | ri ∈ W}, (2.9)
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where G \ W is the graph obtained by removing from G the vertices of W and the arcs
incident to W . Note that if G\W has desired arc-disjoint arborescences H ′

i = (Ui\W,B′
i)

(i ∈ I) restricted on G \ W , then Hi = (Ui, B
′
i ∪ BW

i ) (i ∈ I) are desired ones for G.
It should also be noted that Ui \ W (i ∈ I) are convex sets in the original graph G and
hence in the new G as well. Since Ui \W (i ∈ I) are convex sets in the original graph G,
directed paths within Ui \W in the original G are also directed path in the new G. Hence
assumption (b) also holds for the new G, I , Ui (i ∈ I), and ri (i ∈ I).

Repeat this process until G becomes empty. Let W1, · · · ,Wk be the sequence of W s
chosen in the repeated above-mentioned process.

Define for each i ∈ I

Bi =
∪
{BW`

i | ` = 1, · · · , k}, (2.10)

where BW`
i is defined to be BW

i for W = W`. We can easily see that Hi ≡ (Ui, Bi)
(i ∈ I) are desired arborescences with roots ri (i ∈ I), one for each corresponding Hi.
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We can also show the following. Define I ′(v) = {i ∈ I(v) | ri 6= v} for all v ∈ V .

Theorem 2.2: The following two statements are equivalent to (a) (and (b)) in Theo-
rem 2.1.

(c) For any vertex subset Z ⊂ V

|∆−Z| ≥ |{i ∈ I(Z) | ri /∈ Z}|, (2.11)

where ∆−Z denotes the set of arcs a ∈ A such that ∂+a /∈ Z and ∂−a ∈ Z.

(d) There exist spanning trees Ti = (Ui, Ei) of G[Ui] (i ∈ I) such that Ei (i ∈ I) are
pairwise disjoint and every vertex v ∈ V has in-degree equal to |I ′(v)| in the union
of Ti (i ∈ I) (as a subgraph H = (V,∪i∈IEi) of G).

(Proof) We show the implications (c) ⇒ (b) ((a)) ⇒ (d) ⇒ (c).
((c) ⇒ (b)): Let v be any vertex in V . Consider any Z ⊂ V with v ∈ Z in (c). Then it

follows from (c) (with any such Z) and the max-flow min-cut theorem that (b) for v holds.
((b) ⇒ (d)): This is easy since (a) and (b) are equivalent.
((d) ⇒ (c)): Let Z be any subset of V . Denote by AH [Z] the set of arcs a in H with

∂+a, ∂−a ∈ Z. Then we have

|∆−Z| ≥
∑
v∈Z

|I ′(v)| − |AH [Z]| ≥ |{i ∈ I(Z) | ri /∈ Z}|, (2.12)

where the second inequality follows from the fact that |Ei ∩ AH [Z]| ≤ |Ui ∩ Z| − 1 for
all i ∈ I(Z). Hence (2.11) holds. 2
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