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Applications of submodular functions

© Definitions, Examples,
© Uncrossing technique,
© Splitting off technique,

© Constructive characterization,

© Orientation,
© Augmentation,

@ Submodular function minimization.

Z. Szigeti

0OCG-ORCO

1/32



Submodular functions

O A function m : 2° — R is modular if for all X,YCS,
m(X)+m(Y)=mXNY)+mXUY).

@ A function b: 2% — RU {+oc} is submodular if for all X,Y C S,
b(X)+ b(Y) > b(XNY)+ bXUY).

© A function p:2° — R U {—o0} is supermodular if for all X, Y C S,
p(X)+p(Y) < p(XNY)+p(XUY).
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Modular functions

Examples for Modular functions
© m(X) = k: constant function, where X C S, k € R,
@ m(X) = |X|: cardinality function on a set S,
O m(X)=m(0)+>,cx m(v): where X € S, m(0), m(v) e R Vv eS.
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Submodular functions

Examples for Submodular functions

o

00 ©000

dg(X): degree function of an undirected graph G,

(by dg(X)+dg(Y) = dg(X N Y)+de(XUY)+2de(X\ Y, Y\ X))
d}(X) : out-degree function of a directed graph D,

dg (X) : capacity function of a network (D, g),

IT(X)| : number of neighbors of X in a bipartite graph, (by modularity
of |-], T(X)UT(Y)=T(XUY)and [(X)NT(Y)2(XNY)),
r(X) : rank function of a matroid,

ri(X) + r(S\ X) : for rank functions r; and r> of two matroids on S,
g(|X|) : for a concave function g : Ry — R,.
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Supermodular functions

Examples for Supermodular functions

Q |E(X)| : where E(X) is the set of edges of G inside X C V,
(by [E(X)| = 3(Xvex da(v) — da (X)),
©Q cc(F) : the number of connected components of the subgraph of
G = (V,E) induced by F C E.
(by cG(F) =|V|— rc(F), where r¢ is the rank function of the forest
matroid of G).
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Uncrossing technique: Flows

In a network (D, g), the intersection and the union of two minimum
capacity (s, t)-cuts are minimum capacity (s, t)-cuts.

Proof:
O Let X and Y be two (s, t)-cuts of capacity min.
Q Then d; (X) = min and d;7(Y) = min.
© Since XNY and XU Y are (s, t)-cuts,
Q 4 (XNY)>minand df(XUY)>min,
© min+min=df(X)+df (Y)>df(XNY)+df(XUY)
> min+ min by (2), submodularity and (4).

O Hence equality holds everywhere: d; (X N Y) = min and
df (XUY)=min.
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Uncrossing technique: Matchings

Theorem (Frobenius)

A bipartite graph B = (U, V; E) has a matching covering U if and only if
(%) [T(X)| > |X] for all X C U.

Proof:

© We show only the difficult direction.

Q We call a set X C U tight if [T(X)| = |X|.

© If X and Y are tight, then XN Y and X U Y are also tight:

@ By the tightness of X and Y, the submodularity of |I'()], (x) and the
modularity of | - |, we have
IX]+ Y] = [[(X)] + [T (Y)
> [M(XNY) +[M(XUY)|
> XNY|+|XUY|
= [X|+1Y],
@ hence equality holds everywhere and X N'Y and X U Y are tight.
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Uncrossing technique: Matchings

© We may suppose that after deleting any edge of B, (*) doesn’t hold
anymore.

© Then every edge uv of B enters a tight set X, such that u is the
only neighbor of v in X,,:

hence equality holds everywhere, that is
Xuy is tight and u is the only neighbor of v in X, .

@ Since after deleting uv from B, (%) doesn’t hold,

2} Ei)<uv g U: |Xuv| =1 Z |rB—uv(Xuv)|-

® Moreover, ITg—u(Xu)| > ITe(Xu)| — 1, and

o by (*)7 |rB(Xuv)| -1> |Xuv| - 17
(5]

(6]
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Uncrossing technique: Matchings

O We show that every vertex of U is of degree 1 in B.
©® Suppose that v € U is incident to two edges uv and uw in B.
@ By (5), X:= Xyy N Xy is tight, u is unique neighbor of v (of w) in X.
© Then, by (%) and the tightness of X, we have a contradiction:

IX|=1=|X\ul <[Fe(X\u)] <Te(X)|—2=|X| -2
@ Two vertices u and v in U can not have a common neighbor since
Fe({u,u'})] > 2.
Q By (6) and (7), E is a matching of B covering U.
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Uncrossing technique: General lemma

© A graph G covers a function p on V if dg(X) > p(X) for all X C V.

Q X C Vs tight if dg(X) = p(X).

© Two sets X and Y of V are crossing if none of X\ Y, Y\ X, XNY
and V' \ (XU Y) is empty.

© A function is crossing supermodular if the supermodular inequality
holds for any crossing sets X and Y.
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Uncrossing technique: General lemma

Uncrossing Lemma
If G covers a crossing supermodular function p then the intersection and
the union of crossing tight sets are tight.

Proof:
O Let X and Y be two crossing tight sets of V.
@ Since they are tight, dg(-) is submodular, G covers p and p is
crossing supermodular, we have
p(X) + p(Y) = dg(X) + ds(Y)
>dg(XNY)+deg(XUY)
> p(XNY)+p(XUY)
> p(X) +p(Y),
© hence equality holds everywhere and the lemma follows.
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Uncrossing technique for minimum tight sets

Definitions:
O A graph G is called k-edge-connected if dg(X) > k V0 # X C V(G).
© G is minimally k-edge-connected if

©® G is k-edge-connected and
@ for each edge e of G, G — e is not k-edge-connected anymore.
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Uncrossing technique for minimum tight sets

Theorem (Mader)

A minimally k-edge-connected graph G has a vertex of degree k.

Q Let p(X) :=kif ) ## X C V and 0 otherwise.

© Then p is crossing supermodular.

© Since G is k-edge-connected, dg(X) > k = p(X), so G covers p.
© By minimality of G, each edge of G enters a tight set.

© Let X be a minimal non-empty tight set.

© Suppose that X is not a vertex.

@ By minimality of X, there exists an edge uv in X.
O Let Y be a tight set that uv enters.

A,
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Uncrossing technique for minimum tight sets

© By minimality of X, X and Y are crossing.
® Since uv enters Y, we may suppose that u € XN Y and v e X\ Y.
© By the minimality of X, X N Y is not tight, so Y \ X # 0.
© By the minimality of X, X \ Y is not tight, so V' \ (X U Y) # 0.
@ Then, by the Uncrossing Lemma, X N Y is a tight set that
contradicts the minimality of X.

@ Then X = v and dg(v) = p(v) = k.
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Uncrossing technique for minimum tight sets

O A directed graph D is k-arc-connected if d/j(X) > k V) # X C V.
© D is minimally k-arc-connected if

©® D is k-arc-connected and
@ for each arc e of D, D — e is not k-arc-connected anymore.

v

Theorem (Mader)

A minimally k-arc-connected directed graph has a vertex of in- and
out-degree k.

© One can easily show that there exists a vertex of in-degree k and a
vertex of out-degree k but

© it is not so easy to see that there exists a vertex with both in- and
out-degree k.
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Splitting off technique

Definitions: for G := (V Us, E)

© Operation splitting off at s: for su,sv € E, we replace su, sv by an
edge uv, thatis G,, := (V Us, (E\ {su,sv})U{uv}).
© Operation complete splitting off at s:
@ dg(s) is even,
Q dG( ) splitting off at s and
(3] deletmg the vertex s.

© The graph G is k-edge-connected in V if dg(X) > k VD # X C V.

4

Definitions

Complete
@ SpIttinglor @ ‘ Spiitting off
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Splitting off technique

Theorem (Lovasz)

If G =(VUs,E)is k-edge-connected in V' (k > 2) and dg(s) is even,
then there is a complete splitting off at s preserving k-edge-connectivity.

© We show that for every edge su there exists an edge sv so that G, is
k-edge-connected in V.

@ Then the theorem follows by induction on dg(s).
© If not, then, for every edge sv, there exists a dangerous set X C V
such that dg(X) < k+1and u,v € X.
@ Indeed, if G,, is not k-edge-connected in V/, then there exists X C V
such that k — 1 > dg,, (X).
@ Since dg,, (X) > dg(X) — 2 and dg(X) > k, X is dangerous.
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Splitting off technique

© By (3), there exists a minimal set M of dangerous sets such that
® ucxen X and
0 Ng(s) € Uxem X
O Any set X of M contains at most dcz(s) neighbors of s.
Indeed, k + 1 > dg(X)
=dg(V \ X) —dg(s, V\ X) + dg(s, X)
> k — dg(s) + 2dg(s, X).
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Splitting off technique

Q By v e Nxem X, Na(s) € Uxepq X and (5), 3A,B,C e M.
@ By the minimality of M, A\ (BUC),B\ (AU C),C\ (AUB) # 0.
© Since A, B, C are dangerous, this inequality holds, G is
k-edge-connected, u € ANBN C,su € E and k > 2, we have a
contradiction:
3(k+ 1) > dg(A) + dg(B) + dg(C)
> dg(A\ (BUC)) +dg(B\ (AU C)) + dg(C \ (AU B))
+ds(ANBNC)+2dg(ANBNC,(VUs)\ (AUBUC())
>k+k+k+k+2.

4
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Splitting off technique

Theorem (Mader)

If D= (V Us,A) is k-arc-connected (k > 1) and d/;(s) = d5(s), then
there is a complete directed splitting off at s preserving k-arc-connectivity.

Similar to previous one.
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Constructive characterization

Theorem (Loviss

A graph is 2k-edge-connected if and only if
it can be obtained from K22k by a sequence of >
the following two operations:

(a) adding a new edge,

(b) pinching k edges: subdivide each of the k
edges by a new vertex and identify these
new vertices.
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Constructive characterization

Proof:

© We show that G can be reduced to K22k via 2k-edge-connected
graphs by the inverse operations:
@ deleting an edge and
@ complete splitting off at a vertex of degree 2k.
Q While G # K2* repeat the following.
@ By deleting edges we get a minimally 2k-edge-connected graph.
©® By Theorem of Mader, it contains a vertex of degree 2k.
© By Theorem of Lovasz, there exists a complete splitting off at that
vertex that preserves 2k-edge-connectivity.
O Let G be the graph obtained after this complete splitting off.

0-7--N
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Constructive characterization

Theorem (Mader)

For k > 1, a graph is k-arc-connected if and only if it can be obtained
from sz’k, the directed graph on 2 vertices with k arcs between them in
both directions, by a sequence of the following two operations:

© adding a new arc,

© pinching k arcs.

Similar to previous one, by applying Mader's results on

© minimally k-arc-connected graphs and,

© complete directed splitting off.
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Theorem (Nash-Williams)

G has a k-arc-connected orientation if and only if G is 2k-edge-connected.
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Theorem (Nash-Williams)

G has a k-arc-connected orientation if and only if G is 2k-edge-connected.
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Theorem (Nash-Williams)

G has a k-arc-connected orientation if and only if G is 2k-edge-connected.

Necessity :

Sufficiency :

0---\1
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Theorem (Nash-Williams)

G has a k-arc-connected orientation if and only if G is 2k-edge-connected.

Necessity :

Sufficiency :

0\-7-7-A
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Augmentation

Edge-connectivity augmentation problem:

Given a graph G = (V,E) and k € Z, what is the minimum number ~ of
new edges whose addition results in a k-edge-connected graph?

v

Theorem (Watanabe-Nakamura)

Let G = (V, E) be a graph and k > 2 an integer.

min{|F|: (V,E UF) is k-edge-conn.} = [ max {3y y(k — da(X))}],
where X is a subpartition of V.

Graph G and k=4
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Augmentation

Edge-connectivity augmentation problem:

Given a graph G = (V,E) and k € Z, what is the minimum number ~ of
new edges whose addition results in a k-edge-connected graph?

v

Theorem (Watanabe-Nakamura)

Let G = (V, E) be a graph and k > 2 an integer.
min{|F|: (V,E UF) is k-edge-conn.} = [ max {3y (k — ds(X))}],
where X is a subpartition of V.

1. .2

Opt > [3]=3
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Augmentation

Edge-connectivity augmentation problem:

Given a graph G = (V,E) and k € Z, what is the minimum number ~ of
new edges whose addition results in a k-edge-connected graph?

4

Theorem (Watanabe-Nakamura)

Let G = (V, E) be a graph and k > 2 an integer.
min{|F|: (V,E UF) is k-edge-conn.} = [3 max {3y v(k — d(X))}]
where X is a subpartition of V.

1

Graph G + F is 4-edge-connected and |F| =3
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Augmentation

Edge-connectivity augmentation problem:

Given a graph G = (V,E) and k € Z, what is the minimum number ~ of
new edges whose addition results in a k-edge-connected graph?

v

Theorem (Watanabe-Nakamura)

Let G = (V, E) be a graph and k > 2 an integer.
min{|F|: (V,E UF) is k-edge-conn.} = [ max {3y (k — ds(X))}],
where X is a subpartition of V.

1 2

1

Opt = [$maximum deficiency of a subpartition of V]
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Augmentation

© First we provide the lower bound on 7.

© Suppose that G is not k-edge-connected.
© This is because there is a set X of degree dg(X) less than k.

© Then the deficiency of X is k — dg(X), that is, we must add at least
k — dg(X) edges between X and V \ X.

Q Let {Xi,...,Xs} be a subpartition of V.
O The deficiency of {Xi,..., Xy} is the sum of the deficiencies of X;'s.

@ By adding a new edge we may decrease the deficiency of at most two
Xi's so we may decrease the deficiency of {Xi,..., Xy} by at most 2,

© hence we obtain the following lower bound:
v > « := [half of the maximum deficiency of a subpartition of V.

v
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Augmentation

Frank's algorithm

© Minimal extension,
@ Add a new vertex s,
® Add a minimum number of new edges incident to s to satisfy the
edge-connectivity requirements,
© |If the degree of s is odd, then add an arbitrary edge incident to s.

© Complete splitting off preserving the edge-connectivity requirements.

v

AN

ini Complete
Minimal omp
Extension Splitting off
G=(V,E) G’ and G" are k-e-cin V G* is k-e-c
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Augmentation

Minimal extension:
© Add a new vertex s to G and connect it to each vertex of G by k
edges. The resulting graph is k-edge-connected in V.
© Delete as many new edges as possible preserving k-edge-connectivity
inVtoget G'=(VUs, EUF').

O If dg/(s) is odd, then add an arbitrary new edge incident to s to get
G" =(VUs, EUF") that is k-edge-connected in V and dg~(s) is
even.

S

/N

Minimal / A\ Complete
_Extension _ _Splitting off

G=(V,E) G' and G" are k-e-cin V G* is k-e-c
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Augmentation

Splitting off:

© By Theorem of Lovdsz, there exists in G” a complete splitting off at s
that preserves k-edge-connectivity.
© This way we obtain a k-edge-connected graph G* = (V, E U F) with

F// F/
IF1="51 =150,

AN

ini 4 Complet
Minimal omplete
Q Extension ® Splitting off,

G=(V,E) G' and G" are k-e-cin V G* is k-e-c
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Augmentation

Optimality:

O In G’, no edge incident to s can be deleted without violating
k-edge-connectivity in V/, so each edge e € F’ enters a maximal
proper subset X in V of degree k, that is, dg(X.) + dr/(Xe) = k.

© By Uncrossing Lemma, these sets form a subpartition {Xi,..., X;} of V.

© Suppose that X; N X; # 0.
@ Then, by Uncrossing Lemma and the maximality of X;, X; U X; = V.
© By k+ k= dg/(Xi) + de (X))
= de/(Xi \ Xj) + de/(Xj \ Xi) + 2de (X; N X}, Xi U X;)
> k+k+0,
O do/(Xi \ Xj) = k =dg/ (X \ Xi) and every edge incident to s enters
either X; \ Xj or X; \ X, that is {X; \ Xj, X; \ X} is the required
subpartition.

@ 7 < |F| =151 =351 dr(X)] = [3 Ti(k — ds(X))] <a <1.

4
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Augmentation

Theorem (Frank)

Let D = (V,A) be a directed graph and k > 1 an integer.
min{|F|: (V,AUF) is k-arc-connected } =

max{} xcx(k — dE)L(X)), > xex(k —dp (X))}
where X is a subpartition of V.

Similar to previous one, by applying Mader’s directed splitting off theorem.

Generalizations

© local edge-connectivity; polynomially solvable,
© hypergraphs; polynomially solvable,

© partition constrained; polynomially solvable,
@ weighted; NP-complete even for k = 2.
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Submodular function minimization

Theorem (Grétschel—Lovész—Schrijver, Fujishige-Fleicher-lwata, Schrijver)

The minimum value of a submodular function can be found in poly. time.

Corollary: One can decide in polynomial time whether

© a graph G is k-edge-connected
(by minimizing dg(XUu) X C V —v Yu,v € V),
© a network (D, g) has a feasible flow of value k
(by minimizing d;7 (ZUs) Z C V\ {s,t}),
© a bipartite graph G has a perfect matching
(by minimizing |I'(X)| — | X|),

© two matroids have a common independent set of size k
(by minimizing r1(X) + r2(S — X)),

© a digraph D has a packing of k spanning s-arborescences
(by minimizing d (X Uu) X CV —sVYueV —5s).
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