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Submodular functions

Definitions

1 A function m : 2S → R is modular if for all X ,Y ⊆ S ,

m(X ) +m(Y ) = m(X ∩ Y ) +m(X ∪ Y ).

2 A function b : 2S → R ∪ {+∞} is submodular if for all X ,Y ⊆ S ,

b(X ) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ).

3 A function p : 2S → R ∪ {−∞} is supermodular if for all X ,Y ⊆ S ,

p(X ) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ).
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Modular functions

Examples for Modular functions

1 m(X ) = k : constant function, where X ⊆ S , k ∈ R,

2 m(X ) = |X |: cardinality function on a set S ,

3 m(X ) = m(∅) +
∑

v∈X m(v): where X ⊆ S ,m(∅),m(v) ∈ R ∀v ∈ S .
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Submodular functions

Examples for Submodular functions

1 dG (X ): degree function of an undirected graph G ,

(by dG (X )+ dG (Y ) = dG (X ∩Y )+ dG (X ∪Y )+ 2dG (X \Y ,Y \X ))

2 d+
D (X ) : out-degree function of a directed graph D,

3 d+
g (X ) : capacity function of a network (D, g),

4 |Γ(X )| : number of neighbors of X in a bipartite graph, (by modularity
of | · |, Γ(X ) ∪ Γ(Y ) = Γ(X ∪ Y ) and Γ(X ) ∩ Γ(Y ) ⊇ Γ(X ∩ Y )),

5 r(X ) : rank function of a matroid,

6 r1(X ) + r2(S \ X ) : for rank functions r1 and r2 of two matroids on S ,

7 g(|X |) : for a concave function g : R+ → R+.
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Supermodular functions

Examples for Supermodular functions

1 |E (X )| : where E (X ) is the set of edges of G inside X ⊆ V ,

(by |E (X )| = 1
2(
∑

v∈X dG (v)− dG (X )),

2 cG (F ) : the number of connected components of the subgraph of
G = (V ,E ) induced by F ⊆ E .

(by cG (F ) = |V | − rG (F ), where rG is the rank function of the forest
matroid of G ).
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Uncrossing technique: Flows

Theorem

In a network (D, g), the intersection and the union of two minimum
capacity (s, t)-cuts are minimum capacity (s, t)-cuts.

Proof:
1 Let X and Y be two (s, t)-cuts of capacity min.

2 Then d+
g (X ) = min and d+

g (Y ) = min .

3 Since X ∩ Y and X ∪ Y are (s, t)-cuts,

4 d+
g (X ∩ Y ) ≥ min and d+

g (X ∪ Y ) ≥ min .

5 min+min = d+
g (X ) + d+

g (Y )≥ d+
g (X ∩ Y ) + d+

g (X ∪ Y )
≥ min+min by (2), submodularity and (4).

6 Hence equality holds everywhere: d+
g (X ∩ Y ) = min and

d+
g (X ∪ Y ) = min .
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Uncrossing technique: Matchings

Theorem (Frobenius)

A bipartite graph B = (U,V ;E ) has a matching covering U if and only if
(∗) |Γ(X )| ≥ |X | for all X ⊆ U.

Proof:
1 We show only the difficult direction.

2 We call a set X ⊆ U tight if |Γ(X )| = |X |.
3 If X and Y are tight, then X ∩ Y and X ∪ Y are also tight:

1 By the tightness of X and Y , the submodularity of |Γ(·)|, (∗) and the
modularity of | · |, we have
|X |+ |Y | = |Γ(X )| + |Γ(Y )|

≥ |Γ(X ∩ Y )|+ |Γ(X ∪ Y )|
≥ |X ∩ Y |+ |X ∪ Y |
= |X |+ |Y |,

2 hence equality holds everywhere and X ∩ Y and X ∪ Y are tight.
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Uncrossing technique: Matchings

Proof:
4 We may suppose that after deleting any edge of B , (∗) doesn’t hold

anymore.
5 Then every edge uv of B enters a tight set Xuv such that u is the

only neighbor of v in Xuv :
1 Since after deleting uv from B, (∗) doesn’t hold,
2 ∃Xuv ⊆ U : |Xuv | − 1 ≥ |ΓB−uv(Xuv )|.
3 Moreover, |ΓB−uv (Xuv )| ≥ |ΓB(Xuv )| − 1, and
4 by (∗), |ΓB(Xuv )| − 1 ≥ |Xuv | − 1,
5 hence equality holds everywhere, that is
6 Xuv is tight and u is the only neighbor of v in Xuv .
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Uncrossing technique: Matchings

Proof:
6 We show that every vertex of U is of degree 1 in B .

1 Suppose that u ∈ U is incident to two edges uv and uw in B.

2 By (5), X := Xuv ∩ Xuw is tight, u is unique neighbor of v (of w) in X .

3 Then, by (∗) and the tightness of X , we have a contradiction:
|X | − 1 = |X \ u| ≤ |ΓB(X \ u)| ≤ |ΓB (X )| − 2 = |X | − 2.

7 Two vertices u and u′ in U can not have a common neighbor since
|ΓB({u, u

′})| ≥ 2.

8 By (6) and (7), E is a matching of B covering U.
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Uncrossing technique: General lemma

Definitions:
1 A graph G covers a function p on V if dG (X ) ≥ p(X ) for all X ⊆ V .

2 X ⊆ V is tight if dG (X ) = p(X ).

3 Two sets X and Y of V are crossing if none of X \ Y ,Y \ X ,X ∩ Y

and V \ (X ∪ Y ) is empty.

4 A function is crossing supermodular if the supermodular inequality
holds for any crossing sets X and Y .
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Uncrossing technique: General lemma

Uncrossing Lemma

If G covers a crossing supermodular function p then the intersection and
the union of crossing tight sets are tight.

Proof:
1 Let X and Y be two crossing tight sets of V .

2 Since they are tight, dG (·) is submodular, G covers p and p is
crossing supermodular, we have
p(X ) + p(Y ) = dG (X ) + dG (Y )

≥ dG (X ∩ Y ) + dG (X ∪ Y )
≥ p(X ∩ Y ) + p(X ∪ Y )
≥ p(X ) + p(Y ),

3 hence equality holds everywhere and the lemma follows.
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Uncrossing technique for minimum tight sets

Definitions:
1 A graph G is called k-edge-connected if dG (X ) ≥ k ∀∅ 6= X ⊂ V (G ).
2 G is minimally k-edge-connected if

1 G is k-edge-connected and
2 for each edge e of G , G − e is not k-edge-connected anymore.
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Uncrossing technique for minimum tight sets

Theorem (Mader)

A minimally k-edge-connected graph G has a vertex of degree k .

Proof:
1 Let p(X ) := k if ∅ 6= X ⊂ V and 0 otherwise.

2 Then p is crossing supermodular.

3 Since G is k-edge-connected, dG (X ) ≥ k = p(X ), so G covers p.

4 By minimality of G , each edge of G enters a tight set.

5 Let X be a minimal non-empty tight set.

6 Suppose that X is not a vertex.

7 By minimality of X , there exists an edge uv in X .

8 Let Y be a tight set that uv enters.
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Uncrossing technique for minimum tight sets

Proof:
9 By minimality of X ,X and Y are crossing.

1 Since uv enters Y , we may suppose that u ∈ X ∩ Y and v ∈ X \ Y .

2 By the minimality of X ,X ∩ Y is not tight, so Y \ X 6= ∅.
3 By the minimality of X ,X \ Y is not tight, so V \ (X ∪ Y ) 6= ∅.

10 Then, by the Uncrossing Lemma, X ∩ Y is a tight set that
contradicts the minimality of X .

11 Then X = v and dG (v) = p(v) = k .
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Uncrossing technique for minimum tight sets

Definitions:

1 A directed graph D is k-arc-connected if d+
D (X ) ≥ k ∀∅ 6= X ⊂ V .

2 D is minimally k-arc-connected if
1 D is k-arc-connected and
2 for each arc e of D,D − e is not k-arc-connected anymore.

Theorem (Mader)

A minimally k-arc-connected directed graph has a vertex of in- and
out-degree k .

Remark
1 One can easily show that there exists a vertex of in-degree k and a

vertex of out-degree k but

2 it is not so easy to see that there exists a vertex with both in- and
out-degree k .
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Splitting off technique

Definitions: for G := (V ∪ s,E )

1 Operation splitting off at s: for su, sv ∈ E , we replace su, sv by an
edge uv , that is Guv := (V ∪ s, (E \ {su, sv}) ∪ {uv}).

2 Operation complete splitting off at s:
1 dG (s) is even,

2
dG (s)
2 splitting off at s and

3 deleting the vertex s.

3 The graph G is k-edge-connected in V if dG (X ) ≥ k ∀∅ 6= X ⊂ V .

Definitions
s s

u u

v v

G Guv

✲

Splitting off

V V

s s

u u

v v

G G
′

✲

Splitting off
Complete

V V

w

z

w
z

Z. Szigeti OCG-ORCO 16 / 32



Splitting off technique

Theorem (Lovász)

If G = (V ∪ s,E ) is k-edge-connected in V (k ≥ 2) and dG (s) is even,
then there is a complete splitting off at s preserving k-edge-connectivity.

Proof:
1 We show that for every edge su there exists an edge sv so that Guv is

k-edge-connected in V .

2 Then the theorem follows by induction on dG (s).
3 If not, then, for every edge sv , there exists a dangerous set X ⊂ V

such that dG (X ) ≤ k + 1 and u, v ∈ X .

1 Indeed, if Guv is not k-edge-connected in V , then there exists X ⊂ V

such that k − 1 ≥ dGuv
(X ).

2 Since dGuv
(X ) ≥ dG (X )− 2 and dG (X ) ≥ k , X is dangerous.
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Splitting off technique

Proof:
4 By (3), there exists a minimal set M of dangerous sets such that

1 u ∈
⋂

X∈M
X and

2 NG (s) ⊆
⋃

X∈M
X .

5 Any set X of M contains at most dG (s)
2 neighbors of s.

Indeed, k + 1 ≥ dG (X )
= dG (V \ X )− dG (s,V \ X ) + dG (s,X )
≥ k − dG (s) + 2dG (s,X ).
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Splitting off technique

Proof:
6 By u ∈

⋂

X∈M X ,NG (s) ⊆
⋃

X∈M X and (5), ∃ A,B ,C ∈ M.

7 By the minimality of M, A \ (B ∪ C ),B \ (A ∪ C ),C \ (A ∪ B) 6= ∅.

8 Since A,B ,C are dangerous, this inequality holds, G is
k-edge-connected, u ∈ A ∩ B ∩ C , su ∈ E and k ≥ 2, we have a
contradiction:
3(k + 1) ≥ dG (A) + dG (B) + dG (C )

≥ dG (A \ (B ∪ C )) +dG (B \ (A ∪ C )) + dG (C \ (A ∪ B))
+ dG (A∩B ∩ C ) + 2dG (A∩B ∩ C , (V ∪ s) \ (A∪B ∪C ))

≥ k + k + k + k + 2.
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Splitting off technique

Theorem (Mader)

If D = (V ∪ s,A) is k-arc-connected (k ≥ 1) and d+
D (s) = d−

D (s), then
there is a complete directed splitting off at s preserving k-arc-connectivity.

Proof

Similar to previous one.
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Constructive characterization

Theorem (Lovász)

A graph is 2k-edge-connected if and only if

it can be obtained from K 2k
2 by a sequence of

the following two operations:

(a) adding a new edge,

(b) pinching k edges: subdivide each of the k

edges by a new vertex and identify these

new vertices.

Example
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Constructive characterization

Proof:

1 We show that G can be reduced to K 2k
2 via 2k-edge-connected

graphs by the inverse operations:
1 deleting an edge and
2 complete splitting off at a vertex of degree 2k .

2 While G 6= K 2k
2 repeat the following.

1 By deleting edges we get a minimally 2k-edge-connected graph.
2 By Theorem of Mader, it contains a vertex of degree 2k .
3 By Theorem of Lovász, there exists a complete splitting off at that

vertex that preserves 2k-edge-connectivity.
4 Let G be the graph obtained after this complete splitting off.
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Constructive characterization

Theorem (Mader)

For k ≥ 1, a graph is k-arc-connected if and only if it can be obtained
from K

k,k
2 , the directed graph on 2 vertices with k arcs between them in

both directions, by a sequence of the following two operations:

1 adding a new arc,

2 pinching k arcs.

Proof

Similar to previous one, by applying Mader’s results on

1 minimally k-arc-connected graphs and,

2 complete directed splitting off.
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Orientation

Theorem (Nash-Williams)

G has a k-arc-connected orientation if and only if G is 2k-edge-connected.
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k
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Augmentation

Edge-connectivity augmentation problem:

Given a graph G = (V ,E ) and k ∈ Z+, what is the minimum number γ of
new edges whose addition results in a k-edge-connected graph?

Theorem (Watanabe-Nakamura)

Let G = (V ,E ) be a graph and k ≥ 2 an integer.
min{|F | : (V ,E ∪ F ) is k-edge-conn.} =

⌈

1
2 max

{
∑

X∈X (k − dG (X ))
}⌉

,

where X is a subpartition of V .

Graph G and k = 4
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Augmentation

Edge-connectivity augmentation problem:
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Augmentation

Proof:
1 First we provide the lower bound on γ.

2 Suppose that G is not k-edge-connected.

3 This is because there is a set X of degree dG (X ) less than k .

4 Then the deficiency of X is k − dG (X ), that is, we must add at least
k − dG (X ) edges between X and V \ X .

5 Let {X1, . . . ,Xℓ} be a subpartition of V .

6 The deficiency of {X1, . . . ,Xℓ} is the sum of the deficiencies of Xi ’s.

7 By adding a new edge we may decrease the deficiency of at most two
Xi ’s so we may decrease the deficiency of {X1, . . . ,Xℓ} by at most 2,

8 hence we obtain the following lower bound:
γ ≥ α := ⌈half of the maximum deficiency of a subpartition of V ⌉.
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Augmentation

Frank’s algorithm

1 Minimal extension,
1 Add a new vertex s,

2 Add a minimum number of new edges incident to s to satisfy the
edge-connectivity requirements,

3 If the degree of s is odd, then add an arbitrary edge incident to s.

2 Complete splitting off preserving the edge-connectivity requirements.

G = (V ,E )

w
✲

Extension

s

v
Minimal

u

z

G
′ and G

′′ are k-e-c in V

✲

Complete
Splitting off v

u w

z

G
∗ is k-e-c
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Augmentation

Minimal extension:
1 Add a new vertex s to G and connect it to each vertex of G by k

edges. The resulting graph is k-edge-connected in V .

2 Delete as many new edges as possible preserving k-edge-connectivity
in V to get G ′ = (V ∪ s,E ∪ F ′).

3 If dG ′(s) is odd, then add an arbitrary new edge incident to s to get
G ′′ = (V ∪ s,E ∪ F ′′) that is k-edge-connected in V and dG ′′(s) is
even.

G = (V ,E )

w
✲

Extension

s

v
Minimal

u

z

G
′ and G

′′ are k-e-c in V

✲

Complete
Splitting off v

u w

z

G
∗ is k-e-c
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Augmentation

Splitting off:

1 By Theorem of Lovász, there exists in G ′′ a complete splitting off at s
that preserves k-edge-connectivity.

2 This way we obtain a k-edge-connected graph G ∗ = (V ,E ∪ F ) with

|F | = |F ′′|
2 = ⌈ |F

′|
2 ⌉.

G = (V ,E )

w
✲

Extension

s

v
Minimal

u

z

G
′ and G

′′ are k-e-c in V

✲

Complete
Splitting off v

u w

z

G
∗ is k-e-c
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Augmentation

Optimality:

1 In G ′
, no edge incident to s can be deleted without violating

k-edge-connectivity in V , so each edge e ∈ F ′ enters a maximal
proper subset Xe in V of degree k , that is, dG (Xe) + dF ′(Xe) = k .

2 By Uncrossing Lemma, these sets form a subpartition {X1, . . . ,Xℓ} of V .

1 Suppose that Xi ∩ Xj 6= ∅.
2 Then, by Uncrossing Lemma and the maximality of Xi , Xi ∪ Xj = V .

3 By k + k = dG ′(Xi ) + dG ′(Xj )
= dG ′(Xi \ Xj) + dG ′(Xj \ Xi ) + 2dG ′(Xi ∩ Xj ,Xi ∪ Xj)
≥ k + k + 0,

4 dG ′(Xi \ Xj) = k = dG ′(Xj \ Xi ) and every edge incident to s enters
either Xi \ Xj or Xj \ Xi , that is {Xi \ Xj ,Xj \ Xi} is the required
subpartition.

3 γ ≤ |F | = ⌈ |F
′|
2 ⌉ = ⌈12

∑ℓ
1 dF ′(Xi )⌉ = ⌈12

∑ℓ
1(k − dG (Xi))⌉ ≤ α ≤ γ.

Z. Szigeti OCG-ORCO 30 / 32



Augmentation

Theorem (Frank)

Let D = (V ,A) be a directed graph and k ≥ 1 an integer.
min{|F | : (V ,A ∪ F ) is k-arc-connected} =
max{

∑

X∈X (k − d+
D (X )),

∑

X∈X (k − d−
D (X ))}

where X is a subpartition of V .

Proof

Similar to previous one, by applying Mader’s directed splitting off theorem.

Generalizations
1 local edge-connectivity; polynomially solvable,

2 hypergraphs; polynomially solvable,

3 partition constrained; polynomially solvable,

4 weighted; NP-complete even for k = 2.
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Submodular function minimization

Theorem (Grötschel-Lovász-Schrijver, Fujishige-Fleicher-Iwata, Schrijver)

The minimum value of a submodular function can be found in poly. time.

Corollary: One can decide in polynomial time whether

1 a graph G is k-edge-connected
(by minimizing dG (X ∪ u) X ⊆ V − v ∀u, v ∈ V ),

2 a network (D, g) has a feasible flow of value k

(by minimizing d+
g (Z ∪ s) Z ⊆ V \ {s, t}),

3 a bipartite graph G has a perfect matching
(by minimizing |Γ(X )| − |X |),

4 two matroids have a common independent set of size k

(by minimizing r1(X ) + r2(S − X )),

5 a digraph D has a packing of k spanning s-arborescences
(by minimizing d−

D (X ∪ u) X ⊆ V − s ∀u ∈ V − s).
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