Combinatorial Optimization and Graph Theory ORCO Applications of submodular functions

Zoltán Szigeti

Planning

- Definitions, Examples,
- Oncrossing technique,
- Splitting off technique,
- Constructive characterization,
- Orientation,
- Augmentation,
- Submodular function minimization.

Definitions

A function m: 2^S → ℝ is modular if for all X, Y ⊆ S, m(X) + m(Y) = m(X ∩ Y) + m(X ∪ Y).
A function b: 2^S → ℝ ∪ {+∞} is submodular if for all X, Y ⊆ S, b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y).
A function p: 2^S → ℝ ∪ {-∞} is supermodular if for all X, Y ⊆ S, p(X) + p(Y) ≤ p(X ∩ Y) + p(X ∪ Y).

Examples for Modular functions

• m(X) = k: constant function, where $X \subseteq S, k \in \mathbb{R}$,

2 m(X) = |X|: cardinality function on a set *S*,

• $m(X) = m(\emptyset) + \sum_{v \in X} m(v)$: where $X \subseteq S, m(\emptyset), m(v) \in \mathbb{R} \quad \forall v \in S$.

Examples for Submodular functions

- $d_G(X)$: degree function of an undirected graph G, (by $d_G(X) + d_G(Y) = d_G(X \cap Y) + d_G(X \cup Y) + 2d_G(X \setminus Y, Y \setminus X)$)
- **2** $d_D^+(X)$: out-degree function of a directed graph D,
- $d_g^+(X)$: capacity function of a network (D, g),
- $|\Gamma(X)|$: number of neighbors of X in a bipartite graph, (by modularity of $|\cdot|$, $\Gamma(X) \cup \Gamma(Y) = \Gamma(X \cup Y)$ and $\Gamma(X) \cap \Gamma(Y) \supseteq \Gamma(X \cap Y)$),
- r(X) : rank function of a matroid,
- $r_1(X) + r_2(S \setminus X)$: for rank functions r_1 and r_2 of two matroids on S,
- $\bigcirc g(|X|)$: for a concave function $g: \mathbb{R}_+ \to \mathbb{R}_+$.

Examples for Supermodular functions

- |E(X)|: where E(X) is the set of edges of G inside $X \subseteq V$, (by $|E(X)| = \frac{1}{2} (\sum_{v \in X} d_G(v) - d_G(X))$,
- *c_G(F)*: the number of connected components of the subgraph of *G* = (*V*, *E*) induced by *F* ⊆ *E*.
 (by *c_G(F)* = |*V*| − *r_G(F)*, where *r_G* is the rank function of the forest matroid of *G*).

Theorem

In a network (D, g), the intersection and the union of two minimum capacity (s, t)-cuts are minimum capacity (s, t)-cuts.

- Let X and Y be two (s, t)-cuts of capacity min.
- Then $d_g^+(X) = \min$ and $d_g^+(Y) = \min$.
- Since $X \cap Y$ and $X \cup Y$ are (s, t)-cuts,
- $d_g^+(X \cap Y) \ge \min \text{ and } d_g^+(X \cup Y) \ge \min$.
- Some min + min = $d_g^+(X) + d_g^+(Y) ≥ d_g^+(X ∩ Y) + d_g^+(X ∪ Y)$ ≥ min + min by (2), submodularity and (4).
- Hence equality holds everywhere: $d_g^+(X \cap Y) = \min$ and $d_g^+(X \cup Y) = \min$.

Uncrossing technique: Matchings

Theorem (Frobenius)

A bipartite graph B = (U, V; E) has a matching covering U if and only if (*) $|\Gamma(X)| \ge |X|$ for all $X \subseteq U$.

Proof:

We show only the difficult direction.
We call a set X ⊆ U tight if |Γ(X)| = |X|.
If X and Y are tight, then X ∩ Y and X ∪ Y are also tight:

• By the tightness of X and Y, the submodularity of $|\Gamma(\cdot)|$, (*) and the modularity of $|\cdot|$, we have $|X| + |Y| = |\Gamma(X)| + |\Gamma(Y)|$ $\geq |\Gamma(X \cap Y)| + |\Gamma(X \cup Y)|$ $\geq |X \cap Y| + |X \cup Y|$ = |X| + |Y|,

2 hence equality holds everywhere and $X \cap Y$ and $X \cup Y$ are tight.

- We may suppose that after deleting any edge of $B_{1}(*)$ doesn't hold anymore.
- Then every edge uv of B enters a tight set X_{uv} such that u is the only neighbor of v in X_{m} :
 - Since after deleting uv from B, (*) doesn't hold,
 - $\exists X_{uv} \subseteq U : |X_{uv}| 1 > |\Gamma_{B-uv}(X_{uv})|.$
 - Moreover. $|\Gamma_{B-uv}(X_{uv})| \geq |\Gamma_B(X_{uv})| - 1$, and $|\Gamma_B(X_{\mu\nu})| - 1 > |X_{\mu\nu}| - 1,$
 - O by (*),
 - 6 hence equality holds everywhere, that is
 - **3** X_{uv} is tight and u is the only neighbor of v in X_{uv} .

Proof:

• We show that every vertex of U is of degree 1 in B.

- Suppose that $u \in U$ is incident to two edges uv and uw in B.
- **2** By (5), $X := X_{uv} \cap X_{uw}$ is tight, *u* is unique neighbor of *v* (of *w*) in *X*.
- Then, by (*) and the tightness of X, we have a contradiction:

 $|X|-1=|X\setminus u|\leq |\Gamma_B(X\setminus u)|\leq |\Gamma_B(X)|-2=|X|-2.$

- Two vertices u and u' in U can not have a common neighbor since $|\Gamma_B(\{u, u'\})| \ge 2$.
- **3** By (6) and (7), E is a matching of B covering U.

Definitions:

- A graph G covers a function p on V if $d_G(X) \ge p(X)$ for all $X \subseteq V$.
- **2** $X \subseteq V$ is tight if $d_G(X) = p(X)$.
- **3** Two sets X and Y of V are crossing if none of $X \setminus Y, Y \setminus X, X \cap Y$ and $V \setminus (X \cup Y)$ is empty.
- A function is crossing supermodular if the supermodular inequality holds for any crossing sets X and Y.

Uncrossing Lemma

If G covers a crossing supermodular function p then the intersection and the union of crossing tight sets are tight.

- Let X and Y be two crossing tight sets of V.
- Since they are tight, d_G(·) is submodular, G covers p and p is crossing supermodular, we have
 p(X) + p(Y) = d_G(X) + d_G(Y)
 ≥ d_G(X ∩ Y) + d_G(X ∪ Y)
 ≥ p(X ∩ Y) + p(X ∪ Y)
 > p(X) + p(Y).

Definitions:

1 A graph G is called k-edge-connected if $d_G(X) \ge k \quad \forall \emptyset \neq X \subset V(G)$.

- G is minimally k-edge-connected if
 - G is k-edge-connected and
 - **Q** for each edge e of G, G e is not k-edge-connected anymore.

Uncrossing technique for minimum tight sets

Theorem (Mader)

A minimally k-edge-connected graph G has a vertex of degree k.

- Let p(X) := k if $\emptyset \neq X \subset V$ and 0 otherwise.
- 2 Then *p* is crossing supermodular.
- Since G is k-edge-connected, $d_G(X) \ge k = p(X)$, so G covers p.
- By minimality of G, each edge of G enters a tight set.
- Let X be a minimal non-empty tight set.
- Suppose that X is not a vertex.
- **O** By minimality of X, there exists an edge uv in X.
- Let Y be a tight set that uv enters.

- **9** By minimality of X, X and Y are crossing.
 - Since uv enters Y, we may suppose that $u \in X \cap Y$ and $v \in X \setminus Y$.
 - **2** By the minimality of $X, X \cap Y$ is not tight, so $Y \setminus X \neq \emptyset$.
 - **③** By the minimality of $X, X \setminus Y$ is not tight, so $V \setminus (X \cup Y) \neq \emptyset$.
- **(**) Then, by the Uncrossing Lemma, $X \cap Y$ is a tight set that contradicts the minimality of X.
- **①** Then X = v and $d_G(v) = p(v) = k$.

Uncrossing technique for minimum tight sets

Definitions:

- A directed graph *D* is *k*-arc-connected if $d_D^+(X) \ge k \ \forall \emptyset \neq X \subset V$.
- D is minimally k-arc-connected if
 - D is k-arc-connected and
 - **2** for each arc e of D, D e is not k-arc-connected anymore.

Theorem (Mader)

A minimally k-arc-connected directed graph has a vertex of in- and out-degree k.

Remark

One can easily show that there exists a vertex of in-degree k and a vertex of out-degree k but

it is not so easy to see that there exists a vertex with both in- and out-degree k.

Z. Szigeti

Splitting off technique

Definitions: for $G := (V \cup s, E)$

- Operation splitting off at s: for $su, sv \in E$, we replace su, sv by an edge uv, that is $G_{uv} := (V \cup s, (E \setminus \{su, sv\}) \cup \{uv\})$.
- Operation complete splitting off at s:
 - $d_G(s)$ is even,
 - 2 $\frac{d_G(s)}{2}$ splitting off at s and
 - eleting the vertex s.
- **③** The graph G is k-edge-connected in V if $d_G(X) \ge k \ \forall \emptyset \neq X \subset V$.

Definitions

Z. Szigeti

OCG-ORCO

If $G = (V \cup s, E)$ is k-edge-connected in V $(k \ge 2)$ and $d_G(s)$ is even, then there is a complete splitting off at s preserving k-edge-connectivity.

- We show that for every edge su there exists an edge sv so that G_{uv} is k-edge-connected in V.
- 2 Then the theorem follows by induction on $d_G(s)$.
- If not, then, for every edge sv, there exists a dangerous set X ⊂ V such that d_G(X) ≤ k + 1 and u, v ∈ X.
 - Indeed, if G_{uv} is not k-edge-connected in V, then there exists $X \subset V$ such that $k 1 \ge d_{G_{uv}}(X)$.
 - Since $d_{G_{uv}}(X) \ge d_G(X) 2$ and $d_G(X) \ge k$, X is dangerous.

Proof:

By (3), there exists a minimal set M of dangerous sets such that
u ∈ ∩_{X∈M} X and
N_G(s) ⊆ ∪_{X∈M} X.
Any set X of M contains at most d_G(s)/2 neighbors of s. Indeed, k + 1 ≥ d_G(X) = d_G(V \ X) - d_G(s, V \ X) + d_G(s, X)

 $\geq k - d_G(s) + 2d_G(s, X).$

- By $u \in \bigcap_{X \in \mathcal{M}} X, N_G(s) \subseteq \bigcup_{X \in \mathcal{M}} X$ and (5), $\exists A, B, C \in \mathcal{M}$.
- **3** By the minimality of \mathcal{M} , $A \setminus (B \cup C)$, $B \setminus (A \cup C)$, $C \setminus (A \cup B) \neq \emptyset$.
- Since A, B, C are dangerous, this inequality holds, G is k-edge-connected, u ∈ A ∩ B ∩ C, su ∈ E and k ≥ 2, we have a contradiction:
 - $3(k+1) \ge d_G(A) + d_G(B) + d_G(C)$ $\ge d_G(A \setminus (B \cup C)) + d_G(B \setminus (A \cup C)) + d_G(C \setminus (A \cup B))$ $+ d_G(A \cap B \cap C) + 2d_G(A \cap B \cap C, (V \cup s) \setminus (A \cup B \cup C))$ $\ge k + k + k + k + 2.$

Theorem (Mader)

If $D = (V \cup s, A)$ is k-arc-connected $(k \ge 1)$ and $d_D^+(s) = d_D^-(s)$, then there is a complete directed splitting off at s preserving k-arc-connectivity.

Proof

Similar to previous one.

A graph is 2k-edge-connected if and only if it can be obtained from K_2^{2k} by a sequence of the following two operations:

- (a) adding a new edge,
- (b) pinching k edges: subdivide each of the k edges by a new vertex and identify these new vertices.

A graph is 2k-edge-connected if and only if it can be obtained from K_2^{2k} by a sequence of the following two operations:

- (a) adding a new edge,
- (b) pinching *k* edges: subdivide each of the *k* edges by a new vertex and identify these new vertices.

A graph is 2k-edge-connected if and only if it can be obtained from K_2^{2k} by a sequence of the following two operations:

- (a) adding a new edge,
- (b) pinching k edges: subdivide each of the k edges by a new vertex and identify these new vertices.

A graph is 2k-edge-connected if and only if it can be obtained from K_2^{2k} by a sequence of the following two operations:

- (a) adding a new edge,
- (b) pinching k edges: subdivide each of the k edges by a new vertex and identify these new vertices.

A graph is 2k-edge-connected if and only if it can be obtained from K_2^{2k} by a sequence of the following two operations:

(a) adding a new edge,

(b) pinching k edges: subdivide each of the k edges by a new vertex and identify these new vertices.

A graph is 2k-edge-connected if and only if it can be obtained from K_2^{2k} by a sequence of the following two operations:

(a) adding a new edge,

(b) pinching k edges: subdivide each of the k edges by a new vertex and identify these new vertices.

A graph is 2k-edge-connected if and only if it can be obtained from K_2^{2k} by a sequence of the following two operations:

- (a) adding a new edge,
- (b) pinching k edges: subdivide each of the k edges by a new vertex and identify these new vertices.

A graph is 2k-edge-connected if and only if it can be obtained from K_2^{2k} by a sequence of the following two operations:

(a) adding a new edge,

(b) pinching k edges: subdivide each of the k edges by a new vertex and identify these new vertices.

A graph is 2k-edge-connected if and only if it can be obtained from K_2^{2k} by a sequence of the following two operations:

- (a) adding a new edge,
- (b) pinching k edges: subdivide each of the k edges by a new vertex and identify these new vertices.

A graph is 2k-edge-connected if and only if it can be obtained from K_2^{2k} by a sequence of the following two operations:

(a) adding a new edge,

(b) pinching k edges: subdivide each of the k edges by a new vertex and identify these new vertices.

Example

Constructive characterization

- We show that G can be reduced to K_2^{2k} via 2k-edge-connected graphs by the inverse operations:
 - deleting an edge and
 - **2** complete splitting off at a vertex of degree 2k.
- **2** While $G \neq K_2^{2k}$ repeat the following.
 - By deleting edges we get a minimally 2k-edge-connected graph.
 - **2** By Theorem of Mader, it contains a vertex of degree 2k.
 - By Theorem of Lovász, there exists a complete splitting off at that vertex that preserves 2k-edge-connectivity.
 - Let G be the graph obtained after this complete splitting off.

Theorem (Mader)

For $k \ge 1$, a graph is *k*-arc-connected if and only if it can be obtained from $K_2^{k,k}$, the directed graph on 2 vertices with *k* arcs between them in both directions, by a sequence of the following two operations:

- adding a new arc,
- **2** pinching k arcs.

Proof

Similar to previous one, by applying Mader's results on

- minimally k-arc-connected graphs and,
- complete directed splitting off.

Theorem (Nash-Williams)

G has a k-arc-connected orientation if and only if G is 2k-edge-connected.

Theorem (Nash-Williams)

G has a k-arc-connected orientation if and only if G is 2k-edge-connected.

Theorem (Nash-Williams)

G has a k-arc-connected orientation if and only if G is 2k-edge-connected.

Orientation

Theorem (Nash-Williams)

G has a k-arc-connected orientation if and only if G is 2k-edge-connected.

Necessity :

Sufficiency :

Orientation

Theorem (Nash-Williams)

G has a k-arc-connected orientation if and only if G is 2k-edge-connected.

Necessity :

Given a graph G = (V, E) and $k \in \mathbb{Z}_+$, what is the minimum number γ of new edges whose addition results in a *k*-edge-connected graph?

Theorem (Watanabe-Nakamura)

Let G = (V, E) be a graph and $k \ge 2$ an integer. $\min\{|F| : (V, E \cup F) \text{ is } k\text{-edge-conn.}\} = \left\lceil \frac{1}{2} \max\left\{\sum_{X \in \mathcal{X}} (k - d_G(X))\right\} \right\rceil$, where \mathcal{X} is a subpartition of V.

Graph G and k = 4

Z. Szigeti

Given a graph G = (V, E) and $k \in \mathbb{Z}_+$, what is the minimum number γ of new edges whose addition results in a *k*-edge-connected graph?

Theorem (Watanabe-Nakamura)

Let G = (V, E) be a graph and $k \ge 2$ an integer. $\min\{|F| : (V, E \cup F) \text{ is } k\text{-edge-conn.}\} = \left\lceil \frac{1}{2} \max\left\{ \sum_{X \in \mathcal{X}} (k - d_G(X)) \right\} \right\rceil$, where \mathcal{X} is a subpartition of V.

Deficient sets, deficiency = $4 - d_G(X)$

Z. Szigeti

Given a graph G = (V, E) and $k \in \mathbb{Z}_+$, what is the minimum number γ of new edges whose addition results in a *k*-edge-connected graph?

Theorem (Watanabe-Nakamura)

Let G = (V, E) be a graph and $k \ge 2$ an integer. $\min\{|F| : (V, E \cup F) \text{ is } k\text{-edge-conn.}\} = \left\lceil \frac{1}{2} \max\left\{ \sum_{X \in \mathcal{X}} (k - d_G(X)) \right\} \right\rceil$, where \mathcal{X} is a subpartition of V.

Deficient sets, deficiency = $4 - d_G(X)$

Z. Szigeti

Given a graph G = (V, E) and $k \in \mathbb{Z}_+$, what is the minimum number γ of new edges whose addition results in a *k*-edge-connected graph?

Theorem (Watanabe-Nakamura)

Let G = (V, E) be a graph and $k \ge 2$ an integer. $\min\{|F| : (V, E \cup F) \text{ is } k\text{-edge-conn.}\} = \left\lceil \frac{1}{2} \max\left\{ \sum_{X \in \mathcal{X}} (k - d_G(X)) \right\} \right\rceil$, where \mathcal{X} is a subpartition of V.

Deficient sets, deficiency = $4 - d_G(X)$

Z. Szigeti

Given a graph G = (V, E) and $k \in \mathbb{Z}_+$, what is the minimum number γ of new edges whose addition results in a *k*-edge-connected graph?

Theorem (Watanabe-Nakamura)

Let G = (V, E) be a graph and $k \ge 2$ an integer. $\min\{|F| : (V, E \cup F) \text{ is } k\text{-edge-conn.}\} = \left\lceil \frac{1}{2} \max\left\{\sum_{X \in \mathcal{X}} (k - d_G(X))\right\} \right\rceil$, where \mathcal{X} is a subpartition of V.

Deficient sets, deficiency = $4 - d_G(X)$

Z. Szigeti

Given a graph G = (V, E) and $k \in \mathbb{Z}_+$, what is the minimum number γ of new edges whose addition results in a *k*-edge-connected graph?

Theorem (Watanabe-Nakamura)

Let G = (V, E) be a graph and $k \ge 2$ an integer. $\min\{|F| : (V, E \cup F) \text{ is } k\text{-edge-conn.}\} = \left\lceil \frac{1}{2} \max\left\{\sum_{X \in \mathcal{X}} (k - d_G(X))\right\} \right\rceil$, where \mathcal{X} is a subpartition of V.

 $Opt \geq \lceil \frac{5}{2} \rceil = 3$

Given a graph G = (V, E) and $k \in \mathbb{Z}_+$, what is the minimum number γ of new edges whose addition results in a *k*-edge-connected graph?

Theorem (Watanabe-Nakamura)

Let G = (V, E) be a graph and $k \ge 2$ an integer. $\min\{|F| : (V, E \cup F) \text{ is } k\text{-edge-conn.}\} = \left\lceil \frac{1}{2} \max\left\{ \sum_{X \in \mathcal{X}} (k - d_G(X)) \right\} \right\rceil$, where \mathcal{X} is a subpartition of V.

Graph G + F is 4-edge-connected and |F| = 3

Z. Szigeti

Given a graph G = (V, E) and $k \in \mathbb{Z}_+$, what is the minimum number γ of new edges whose addition results in a *k*-edge-connected graph?

Theorem (Watanabe-Nakamura)

Let G = (V, E) be a graph and $k \ge 2$ an integer. $\min\{|F| : (V, E \cup F) \text{ is } k\text{-edge-conn.}\} = \left\lceil \frac{1}{2} \max\left\{ \sum_{X \in \mathcal{X}} (k - d_G(X)) \right\} \right\rceil$, where \mathcal{X} is a subpartition of V.

Opt = $\lceil \frac{1}{2} maximum$ deficiency of a subpartition of $V \rceil$

Proof:

- **()** First we provide the lower bound on γ .
- 2 Suppose that G is not k-edge-connected.
- **3** This is because there is a set X of degree $d_G(X)$ less than k.
- Then the deficiency of X is $k d_G(X)$, that is, we must add at least $k d_G(X)$ edges between X and $V \setminus X$.
- Let $\{X_1, \ldots, X_\ell\}$ be a subpartition of V.
- The deficiency of $\{X_1, \ldots, X_\ell\}$ is the sum of the deficiencies of X_i 's.
- By adding a new edge we may decrease the deficiency of at most two X_i's so we may decrease the deficiency of {X₁,..., X_ℓ} by at most 2,
- In the following lower bound: $\gamma \geq \alpha := \lceil \text{half of the maximum deficiency of a subpartition of } V \rceil.$

Frank's algorithm

Minimal extension,

- Add a new vertex s,
- Add a minimum number of new edges incident to s to satisfy the edge-connectivity requirements,
- If the degree of s is odd, then add an arbitrary edge incident to s.

2 Complete splitting off preserving the edge-connectivity requirements.

Minimal extension:

- Add a new vertex s to G and connect it to each vertex of G by k edges. The resulting graph is k-edge-connected in V.
- ② Delete as many new edges as possible preserving k-edge-connectivity in V to get G' = (V ∪ s, E ∪ F').
- If d_{G'}(s) is odd, then add an arbitrary new edge incident to s to get G'' = (V ∪ s, E ∪ F'') that is k-edge-connected in V and d_{G''}(s) is even.

Splitting off:

- By Theorem of Lovász, there exists in G" a complete splitting off at s that preserves k-edge-connectivity.
- **2** This way we obtain a *k*-edge-connected graph $G^* = (V, E \cup F)$ with $|F| = \frac{|F''|}{2} = \lceil \frac{|F'|}{2} \rceil$.

Optimality:

- In G', no edge incident to s can be deleted without violating k-edge-connectivity in V, so each edge e ∈ F' enters a maximal proper subset X_e in V of degree k, that is, d_G(X_e) + d_{F'}(X_e) = k.
- **3** By Uncrossing Lemma, these sets form a subpartition $\{X_1, \ldots, X_\ell\}$ of V.
 - Suppose that $X_i \cap X_j \neq \emptyset$.
 - **2** Then, by Uncrossing Lemma and the maximality of X_i , $X_i \cup X_j = V$.

 - $d_{G'}(X_i \setminus X_j) = k = d_{G'}(X_j \setminus X_i)$ and every edge incident to s enters either $X_i \setminus X_j$ or $X_j \setminus X_i$, that is $\{X_i \setminus X_j, X_j \setminus X_i\}$ is the required subpartition.

Theorem (Frank)

Let D = (V, A) be a directed graph and $k \ge 1$ an integer. $\min\{|F| : (V, A \cup F) \text{ is } k\text{-arc-connected}\} = \max\{\sum_{X \in \mathcal{X}} (k - d_D^+(X)), \sum_{X \in \mathcal{X}} (k - d_D^-(X))\}$ where \mathcal{X} is a subpartition of V.

Proof

Similar to previous one, by applying Mader's directed splitting off theorem.

Generalizations

- local edge-connectivity; polynomially solvable,
- hypergraphs; polynomially solvable,
- partition constrained; polynomially solvable,
- weighted; NP-complete even for k = 2.

Theorem (Grötschel-Lovász-Schrijver, Fujishige-Fleicher-Iwata, Schrijver)

The minimum value of a submodular function can be found in poly. time.

Corollary: One can decide in polynomial time whether

- a graph G is k-edge-connected (by minimizing $d_G(X \cup u) X \subseteq V - v \ \forall u, v \in V$),
- **2** a network (D, g) has a feasible flow of value k (by minimizing $d_g^+(Z \cup s)$ $Z \subseteq V \setminus \{s, t\}$),
- a bipartite graph G has a perfect matching (by minimizing $|\Gamma(X)| |X|$),
- two matroids have a common independent set of size k (by minimizing $r_1(X) + r_2(S X)$),
- a digraph D has a packing of k spanning s-arborescences (by minimizing d_D(X ∪ u) X ⊆ V − s ∀u ∈ V − s).