Combinatorial Optimization and Graph Theory ORCO
 Applications of submodular functions

Zoltán Szigeti

Applications of submodular functions

Planning

(1) Definitions, Examples,
(2) Uncrossing technique,
(3) Splitting off technique,
(3) Constructive characterization,
(5) Orientation,
(C) Augmentation,
(1) Submodular function minimization.

Submodular functions

Definitions

(1) A function $m: 2^{S} \rightarrow \mathbb{R}$ is modular if for all $X, Y \subseteq S$,

$$
m(X)+m(Y)=m(X \cap Y)+m(X \cup Y)
$$

(2) A function $b: 2^{S} \rightarrow \mathbb{R} \cup\{+\infty\}$ is submodular if for all $X, Y \subseteq S$,

$$
b(X)+b(Y) \geq b(X \cap Y)+b(X \cup Y)
$$

(3) A function $p: 2^{S} \rightarrow \mathbb{R} \cup\{-\infty\}$ is supermodular if for all $X, Y \subseteq S$,

$$
p(X)+p(Y) \leq p(X \cap Y)+p(X \cup Y)
$$

Modular functions

Examples for Modular functions

(1) $m(X)=k$: constant function, where $X \subseteq S, k \in \mathbb{R}$,
(2) $m(X)=|X|$: cardinality function on a set S,
(3) $m(X)=m(\emptyset)+\sum_{v \in X} m(v)$: where $X \subseteq S, m(\emptyset), m(v) \in \mathbb{R} \quad \forall v \in S$.

Submodular functions

Examples for Submodular functions

(1) $d_{G}(X)$: degree function of an undirected graph G, (by $d_{G}(X)+d_{G}(Y)=d_{G}(X \cap Y)+d_{G}(X \cup Y)+2 d_{G}(X \backslash Y, Y \backslash X)$)
(2) $d_{D}^{+}(X)$: out-degree function of a directed graph D,
(3) $d_{g}^{+}(X)$: capacity function of a network (D, g),
(9) $|\Gamma(X)|$: number of neighbors of X in a bipartite graph, (by modularity of $|\cdot|, \Gamma(X) \cup \Gamma(Y)=\Gamma(X \cup Y)$ and $\Gamma(X) \cap \Gamma(Y) \supseteq \Gamma(X \cap Y))$,
(3) $r(X)$: rank function of a matroid,
(0) $r_{1}(X)+r_{2}(S \backslash X)$: for rank functions r_{1} and r_{2} of two matroids on S,
(1) $g(|X|)$: for a concave function $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$.

Supermodular functions

Examples for Supermodular functions

(1) $|E(X)|:$ where $E(X)$ is the set of edges of G inside $X \subseteq V$, (by $|E(X)|=\frac{1}{2}\left(\sum_{v \in X} d_{G}(v)-d_{G}(X)\right)$,
(2) $c_{G}(F)$: the number of connected components of the subgraph of $G=(V, E)$ induced by $F \subseteq E$.
(by $c_{G}(F)=|V|-r_{G}(F)$, where r_{G} is the rank function of the forest matroid of G).

Uncrossing technique: Flows

Theorem

In a network (D, g), the intersection and the union of two minimum capacity (s, t)-cuts are minimum capacity (s, t)-cuts.

Proof:

(1) Let X and Y be two (s, t)-cuts of capacity min.
(2) Then $d_{g}^{+}(X)=\min$ and $d_{g}^{+}(Y)=\min$.
(3) Since $X \cap Y$ and $X \cup Y$ are (s, t)-cuts,
(9) $d_{g}^{+}(X \cap Y) \geq \min$ and $d_{g}^{+}(X \cup Y) \geq \min$.
(0) $\min +\min =d_{g}^{+}(X)+d_{g}^{+}(Y) \geq d_{g}^{+}(X \cap Y)+d_{g}^{+}(X \cup Y)$

$$
\geq \min +\min \text { by (2), submodularity and (4). }
$$

(0) Hence equality holds everywhere: $d_{g}^{+}(X \cap Y)=\min$ and $d_{g}^{+}(X \cup Y)=\min$.

Uncrossing technique: Matchings

Theorem (Frobenius)

A bipartite graph $B=(U, V ; E)$ has a matching covering U if and only if $(*)|\Gamma(X)| \geq|X|$ for all $X \subseteq U$.

Proof:

(1) We show only the difficult direction.
(2) We call a set $X \subseteq U$ tight if $|\Gamma(X)|=|X|$.
(3) If X and Y are tight, then $X \cap Y$ and $X \cup Y$ are also tight:
(1) By the tightness of X and Y, the submodularity of $|\Gamma(\cdot)|,(*)$ and the modularity of $|\cdot|$, we have

$$
\begin{aligned}
|X|+|Y| & =|\Gamma(X)|+|\Gamma(Y)| \\
& \geq|\Gamma(X \cap Y)|+|\Gamma(X \cup Y)| \\
& \geq|X \cap Y|+|X \cup Y| \\
& =|X|+|Y|,
\end{aligned}
$$

(2) hence equality holds everywhere and $X \cap Y$ and $X \cup Y$ are tight.

Uncrossing technique: Matchings

Proof:

(9) We may suppose that after deleting any edge of $B,(*)$ doesn't hold anymore.
(0) Then every edge $u v$ of B enters a tight set $X_{u v}$ such that u is the only neighbor of v in $X_{u v}$:
(1) Since after deleting $u v$ from $B,(*)$ doesn't hold,
(2) $\exists X_{u v} \subseteq U:\left|X_{u v}\right|-1 \geq\left|\Gamma_{B-u v}\left(X_{u v}\right)\right|$.
(3) Moreover,
(1) by $(*)$,

$$
\left|\Gamma_{B-u v}\left(X_{u v}\right)\right| \geq\left|\Gamma_{B}\left(X_{u v}\right)\right|-1, \text { and }
$$

$$
\left|\Gamma_{B}\left(X_{u v}\right)\right|-1 \geq\left|X_{u v}\right|-1
$$

(0) hence equality holds everywhere, that is
(0. $X_{u v}$ is tight and u is the only neighbor of v in $X_{u v}$.

Uncrossing technique: Matchings

Proof:

(0) We show that every vertex of U is of degree 1 in B.
(1) Suppose that $u \in U$ is incident to two edges $u v$ and $u w$ in B.
(2) By (5), $X:=X_{u v} \cap X_{u w}$ is tight, u is unique neighbor of v (of w) in X.
(3) Then, by $(*)$ and the tightness of X, we have a contradiction:

$$
|X|-1=|X \backslash u| \leq\left|\Gamma_{B}(X \backslash u)\right| \leq\left|\Gamma_{B}(X)\right|-2=|X|-2 .
$$

(1) Two vertices u and u^{\prime} in U can not have a common neighbor since $\left|\Gamma_{B}\left(\left\{u, u^{\prime}\right\}\right)\right| \geq 2$.
(3) By (6) and (7), E is a matching of B covering U.

Uncrossing technique: General lemma

Definitions:

(1) A graph G covers a function p on V if $d_{G}(X) \geq p(X)$ for all $X \subseteq V$.
(2) $X \subseteq V$ is tight if $d_{G}(X)=p(X)$.
(3) Two sets X and Y of V are crossing if none of $X \backslash Y, Y \backslash X, X \cap Y$ and $V \backslash(X \cup Y)$ is empty.
(4) A function is crossing supermodular if the supermodular inequality holds for any crossing sets X and Y.

Uncrossing technique: General lemma

Uncrossing Lemma

If G covers a crossing supermodular function p then the intersection and the union of crossing tight sets are tight.

Proof:

(1) Let X and Y be two crossing tight sets of V.
(2) Since they are tight, $d_{G}(\cdot)$ is submodular, G covers p and p is crossing supermodular, we have

$$
\begin{aligned}
p(X)+p(Y) & =d_{G}(X)+d_{G}(Y) \\
& \geq d_{G}(X \cap Y)+d_{G}(X \cup Y) \\
& \geq p(X \cap Y)+p(X \cup Y) \\
& \geq p(X)+p(Y)
\end{aligned}
$$

(3) hence equality holds everywhere and the lemma follows.

Uncrossing technique for minimum tight sets

Definitions:

(1) A graph G is called k-edge-connected if $d_{G}(X) \geq k \forall \emptyset \neq X \subset V(G)$.
(2) G is minimally k-edge-connected if
(1) G is k-edge-connected and
(2) for each edge e of $G, G-e$ is not k-edge-connected anymore.

Uncrossing technique for minimum tight sets

Theorem (Mader)

A minimally k-edge-connected graph G has a vertex of degree k.

Proof:

(1) Let $p(X):=k$ if $\emptyset \neq X \subset V$ and 0 otherwise.
(2) Then p is crossing supermodular.
(3) Since G is k-edge-connected, $d_{G}(X) \geq k=p(X)$, so G covers p.
(9) By minimality of G, each edge of G enters a tight set.
(5) Let X be a minimal non-empty tight set.
(0) Suppose that X is not a vertex.
(1) By minimality of X, there exists an edge $u v$ in X.
((Let Y be a tight set that $u v$ enters.

Uncrossing technique for minimum tight sets

Proof:

(0) By minimality of X, X and Y are crossing.
(1) Since $u v$ enters Y, we may suppose that $u \in X \cap Y$ and $v \in X \backslash Y$.
(2) By the minimality of $X, X \cap Y$ is not tight, so $Y \backslash X \neq \emptyset$.
(3) By the minimality of $X, X \backslash Y$ is not tight, so $V \backslash(X \cup Y) \neq \emptyset$.
(00) Then, by the Uncrossing Lemma, $X \cap Y$ is a tight set that contradicts the minimality of X.
(1) Then $X=v$ and $d_{G}(v)=p(v)=k$.

Uncrossing technique for minimum tight sets

Definitions:

(1) A directed graph D is k-arc-connected if $d_{D}^{+}(X) \geq k \forall \emptyset \neq X \subset V$.
(2) D is minimally k-arc-connected if
(1) D is k-arc-connected and
(2) for each arc e of $D, D-e$ is not k-arc-connected anymore.

Theorem (Mader)

A minimally k-arc-connected directed graph has a vertex of in- and out-degree k.

Remark

(1) One can easily show that there exists a vertex of in-degree k and a vertex of out-degree k but
(2) it is not so easy to see that there exists a vertex with both in- and out-degree k.

Splitting off technique

Definitions: for $G:=(V \cup s, E)$

(1) Operation splitting off at s : for $s u, s v \in E$, we replace $s u, s v$ by an edge $u v$, that is $G_{u v}:=(V \cup s,(E \backslash\{s u, s v\}) \cup\{u v\})$.
(2) Operation complete splitting off at s :
(1) $d_{G}(s)$ is even,
(2) $\frac{d_{G}(s)}{2}$ splitting off at s and
(3) deleting the vertex s.
(3) The graph G is k-edge-connected in V if $d_{G}(X) \geq k \forall \emptyset \neq X \subset V$.

Definitions

Splitting off technique

Theorem (Lovász)

If $G=(V \cup s, E)$ is k-edge-connected in $V(k \geq 2)$ and $d_{G}(s)$ is even, then there is a complete splitting off at s preserving k-edge-connectivity.

Proof:

(1) We show that for every edge su there exists an edge sv so that $G_{u v}$ is k-edge-connected in V.
(2) Then the theorem follows by induction on $d_{G}(s)$.
(3) If not, then, for every edge $s v$, there exists a dangerous set $X \subset V$ such that $d_{G}(X) \leq k+1$ and $u, v \in X$.
(1) Indeed, if $G_{u v}$ is not k-edge-connected in V, then there exists $X \subset V$ such that $k-1 \geq d_{G_{u v}}(X)$.
(2) Since $d_{G u v}(X) \geq d_{G}(X)-2$ and $d_{G}(X) \geq k, X$ is dangerous.

Splitting off technique

Proof:

(9) By (3), there exists a minimal set \mathcal{M} of dangerous sets such that (1) $u \in \bigcap_{X \in \mathcal{M}} X$ and
(2) $N_{G}(s) \subseteq \cup_{X \in \mathcal{M}} X$.
(3) Any set X of \mathcal{M} contains at most $\frac{d_{G}(s)}{2}$ neighbors of s. Indeed, $k+1 \geq d_{G}(X)$

$$
\begin{aligned}
& =d_{G}(V \backslash X)-d_{G}(s, V \backslash X)+d_{G}(s, X) \\
& \geq k-d_{G}(s)+2 d_{G}(s, X) .
\end{aligned}
$$

Splitting off technique

Proof:

(0) By $u \in \bigcap_{X \in \mathcal{M}} X, N_{G}(s) \subseteq \bigcup_{X \in \mathcal{M}} X$ and (5), $\exists A, B, C \in \mathcal{M}$.
(1) By the minimality of $\mathcal{M}, A \backslash(B \cup C), B \backslash(A \cup C), C \backslash(A \cup B) \neq \emptyset$.
(3) Since A, B, C are dangerous, this inequality holds, G is k-edge-connected, $u \in A \cap B \cap C, s u \in E$ and $k \geq 2$, we have a contradiction:

$$
\begin{aligned}
3(k+1) \geq & d_{G}(A)+d_{G}(B)+d_{G}(C) \\
\geq & d_{G}(A \backslash(B \cup C))+d_{G}(B \backslash(A \cup C))+d_{G}(C \backslash(A \cup B)) \\
& +d_{G}(A \cap B \cap C)+2 d_{G}(A \cap B \cap C,(V \cup s) \backslash(A \cup B \cup C)) \\
\geq & k+k+k+k+2 .
\end{aligned}
$$

Splitting off technique

> Theorem (Mader)
> If $D=(V \cup s, A)$ is k-arc-connected $(k \geq 1)$ and $d_{D}^{+}(s)=d_{D}^{-}(s)$, then there is a complete directed splitting off at s preserving k-arc-connectivity.

Proof

Similar to previous one.

Constructive characterization

Theorem (Lovász)

A graph is $2 k$-edge-connected if and only if it can be obtained from $K_{2}^{2 k}$ by a sequence of the following two operations:
(a) adding a new edge,
(b) pinching k edges: subdivide each of the k edges by a new vertex and identify these new vertices.

Example

Constructive characterization

Theorem (Lovász)

Example

A graph is $2 k$-edge-connected if and only if it can be obtained from $K_{2}^{2 k}$ by a sequence of the following two operations:
(a) adding a new edge,
(b) pinching k edges: subdivide each of the k edges by a new vertex and identify these new vertices.

Constructive characterization

Theorem (Lovász)

Example

A graph is $2 k$-edge-connected if and only if it can be obtained from $K_{2}^{2 k}$ by a sequence of the following two operations:
(a) adding a new edge,
(b) pinching k edges: subdivide each of the k edges by a new vertex and identify these new vertices.

Constructive characterization

Theorem (Lovász)

Example

A graph is $2 k$-edge-connected if and only if it can be obtained from $K_{2}^{2 k}$ by a sequence of the following two operations:
(a) adding a new edge,
(b) pinching k edges: subdivide each of the k edges by a new vertex and identify these new vertices.

Constructive characterization

Theorem (Lovász)

Example

A graph is $2 k$-edge-connected if and only if it can be obtained from $K_{2}^{2 k}$ by a sequence of the following two operations:
(a) adding a new edge,
(b) pinching k edges: subdivide each of the k edges by a new vertex and identify these new vertices.

Constructive characterization

Theorem (Lovász)

Example

A graph is $2 k$-edge-connected if and only if it can be obtained from $K_{2}^{2 k}$ by a sequence of the following two operations:
(a) adding a new edge,
(b) pinching k edges: subdivide each of the k edges by a new vertex and identify these new vertices.

Constructive characterization

Theorem (Lovász)

Example

A graph is $2 k$-edge-connected if and only if it can be obtained from $K_{2}^{2 k}$ by a sequence of the following two operations:
(a) adding a new edge,
(b) pinching k edges: subdivide each of the k edges by a new vertex and identify these new vertices.

Constructive characterization

Theorem (Lovász)

Example

A graph is $2 k$-edge-connected if and only if it can be obtained from $K_{2}^{2 k}$ by a sequence of the following two operations:
(a) adding a new edge,
(b) pinching k edges: subdivide each of the k edges by a new vertex and identify these new vertices.

Constructive characterization

Theorem (Lovász)

A graph is $2 k$-edge-connected if and only if it can be obtained from $K_{2}^{2 k}$ by a sequence of the following two operations:
(a) adding a new edge,
(b) pinching k edges: subdivide each of the k edges by a new vertex and identify these new vertices.

Example

Constructive characterization

Theorem (Lovász)

Example

A graph is $2 k$-edge-connected if and only if it can be obtained from $K_{2}^{2 k}$ by a sequence of the following two operations:
(a) adding a new edge,
(b) pinching k edges: subdivide each of the k edges by a new vertex and identify these new vertices.

Example

Constructive characterization

Proof:

(1) We show that G can be reduced to $K_{2}^{2 k}$ via $2 k$-edge-connected graphs by the inverse operations:
(1) deleting an edge and
(2) complete splitting off at a vertex of degree $2 k$.
(2) While $G \neq K_{2}^{2 k}$ repeat the following.
(1) By deleting edges we get a minimally $2 k$-edge-connected graph.
(2) By Theorem of Mader, it contains a vertex of degree $2 k$.
(3) By Theorem of Lovász, there exists a complete splitting off at that vertex that preserves $2 k$-edge-connectivity.
(9) Let G be the graph obtained after this complete splitting off.

Constructive characterization

Theorem (Mader)

For $k \geq 1$, a graph is k-arc-connected if and only if it can be obtained from $\overline{K_{2}^{k}}{ }^{k}$, the directed graph on 2 vertices with k arcs between them in both directions, by a sequence of the following two operations:
(1) adding a new arc,
(2) pinching k arcs.

Proof

Similar to previous one, by applying Mader's results on
(1) minimally k-arc-connected graphs and,
(2) complete directed splitting off.

Orientation

Theorem (Nash-Williams)

G has a k-arc-connected orientation if and only if G is $2 k$-edge-connected.

Orientation

Theorem (Nash-Williams)

G has a k-arc-connected orientation if and only if G is $2 k$-edge-connected.

Necessity :

Orientation

Theorem (Nash-Williams)

G has a k-arc-connected orientation if and only if G is $2 k$-edge-connected.

Necessity :

Orientation

Theorem (Nash-Williams)

G has a k-arc-connected orientation if and only if G is $2 k$-edge-connected.

Necessity :

Sufficiency :

Orientation

Theorem (Nash-Williams)

G has a k-arc-connected orientation if and only if G is $2 k$-edge-connected.

Necessity :

Sufficiency :

Augmentation

Edge-connectivity augmentation problem:

Given a graph $G=(V, E)$ and $k \in \mathbb{Z}_{+}$, what is the minimum number γ of new edges whose addition results in a k-edge-connected graph?

Theorem (Watanabe-Nakamura)

Let $G=(V, E)$ be a graph and $k \geq 2$ an integer. $\min \{|F|:(V, E \cup F)$ is k-edge-conn. $\}=\left\lceil\frac{1}{2} \max \left\{\sum_{X \in \mathcal{X}}\left(k-d_{G}(X)\right)\right\}\right\rceil$, where \mathcal{X} is a subpartition of V.

Graph G and $k=4$

Augmentation

Edge-connectivity augmentation problem:

Given a graph $G=(V, E)$ and $k \in \mathbb{Z}_{+}$, what is the minimum number γ of new edges whose addition results in a k-edge-connected graph?

Theorem (Watanabe-Nakamura)

Let $G=(V, E)$ be a graph and $k \geq 2$ an integer. $\min \{|F|:(V, E \cup F)$ is k-edge-conn. $\}=\left\lceil\frac{1}{2} \max \left\{\sum_{X \in \mathcal{X}}\left(k-d_{G}(X)\right)\right\}\right\rceil$, where \mathcal{X} is a subpartition of V.

Deficient sets, deficiency $=4-d_{G}(X)$

Augmentation

Edge-connectivity augmentation problem:

Given a graph $G=(V, E)$ and $k \in \mathbb{Z}_{+}$, what is the minimum number γ of new edges whose addition results in a k-edge-connected graph?

Theorem (Watanabe-Nakamura)

Let $G=(V, E)$ be a graph and $k \geq 2$ an integer. $\min \{|F|:(V, E \cup F)$ is k-edge-conn. $\}=\left\lceil\frac{1}{2} \max \left\{\sum_{X \in \mathcal{X}}\left(k-d_{G}(X)\right)\right\}\right\rceil$, where \mathcal{X} is a subpartition of V.

Deficient sets, deficiency $=4-d_{G}(X)$

Augmentation

Edge-connectivity augmentation problem:

Given a graph $G=(V, E)$ and $k \in \mathbb{Z}_{+}$, what is the minimum number γ of new edges whose addition results in a k-edge-connected graph?

Theorem (Watanabe-Nakamura)

Let $G=(V, E)$ be a graph and $k \geq 2$ an integer. $\min \{|F|:(V, E \cup F)$ is k-edge-conn. $\}=\left\lceil\frac{1}{2} \max \left\{\sum_{X \in \mathcal{X}}\left(k-d_{G}(X)\right)\right\}\right\rceil$, where \mathcal{X} is a subpartition of V.

Deficient sets, deficiency $=4-d_{G}(X)$

Augmentation

Edge-connectivity augmentation problem:

Given a graph $G=(V, E)$ and $k \in \mathbb{Z}_{+}$, what is the minimum number γ of new edges whose addition results in a k-edge-connected graph?

Theorem (Watanabe-Nakamura)

Let $G=(V, E)$ be a graph and $k \geq 2$ an integer. $\min \{|F|:(V, E \cup F)$ is k-edge-conn. $\}=\left\lceil\frac{1}{2} \max \left\{\sum_{X \in \mathcal{X}}\left(k-d_{G}(X)\right)\right\}\right\rceil$, where \mathcal{X} is a subpartition of V.

Deficient sets, deficiency $=4-d_{G}(X)$

Augmentation

Edge-connectivity augmentation problem:

Given a graph $G=(V, E)$ and $k \in \mathbb{Z}_{+}$, what is the minimum number γ of new edges whose addition results in a k-edge-connected graph?

Theorem (Watanabe-Nakamura)

Let $G=(V, E)$ be a graph and $k \geq 2$ an integer.
$\min \{|F|:(V, E \cup F)$ is k-edge-conn. $\}=\left\lceil\frac{1}{2} \max \left\{\sum_{X \in \mathcal{X}}\left(k-d_{G}(X)\right)\right\}\right\rceil$, where \mathcal{X} is a subpartition of V.

$$
\text { Opt } \geq\left\lceil\frac{5}{2}\right\rceil=3
$$

Augmentation

Edge-connectivity augmentation problem:

Given a graph $G=(V, E)$ and $k \in \mathbb{Z}_{+}$, what is the minimum number γ of new edges whose addition results in a k-edge-connected graph?

Theorem (Watanabe-Nakamura)

Let $G=(V, E)$ be a graph and $k \geq 2$ an integer. $\min \{|F|:(V, E \cup F)$ is k-edge-conn. $\}=\left\lceil\frac{1}{2} \max \left\{\sum_{X \in \mathcal{X}}\left(k-d_{G}(X)\right)\right\}\right\rceil$, where \mathcal{X} is a subpartition of V.

$$
\text { Graph } G+F \text { is 4-edge-connected and }|F|=3
$$

Augmentation

Edge-connectivity augmentation problem:

Given a graph $G=(V, E)$ and $k \in \mathbb{Z}_{+}$, what is the minimum number γ of new edges whose addition results in a k-edge-connected graph?

Theorem (Watanabe-Nakamura)

Let $G=(V, E)$ be a graph and $k \geq 2$ an integer.
$\min \{|F|:(V, E \cup F)$ is k-edge-conn. $\}=\left\lceil\frac{1}{2} \max \left\{\sum_{X \in \mathcal{X}}\left(k-d_{G}(X)\right)\right\}\right\rceil$, where \mathcal{X} is a subpartition of V.

Opt $=\left\lceil\frac{1}{2}\right.$ maximum deficiency of a subpartition of $\left.V\right\rceil$

Augmentation

Proof:

(1) First we provide the lower bound on γ.
(2) Suppose that G is not k-edge-connected.
(3) This is because there is a set X of degree $d_{G}(X)$ less than k.
(9) Then the deficiency of X is $k-d_{G}(X)$, that is, we must add at least $k-d_{G}(X)$ edges between X and $V \backslash X$.
(3) Let $\left\{X_{1}, \ldots, X_{\ell}\right\}$ be a subpartition of V.
(c) The deficiency of $\left\{X_{1}, \ldots, X_{\ell}\right\}$ is the sum of the deficiencies of X_{i} 's.
(1) By adding a new edge we may decrease the deficiency of at most two X_{i} 's so we may decrease the deficiency of $\left\{X_{1}, \ldots, X_{\ell}\right\}$ by at most 2 ,
(3) hence we obtain the following lower bound:
$\gamma \geq \alpha:=\lceil$ half of the maximum deficiency of a subpartition of $V\rceil$.

Augmentation

Frank's algorithm

(1) Minimal extension,
(1) Add a new vertex s,
(2) Add a minimum number of new edges incident to s to satisfy the edge-connectivity requirements,
(3) If the degree of s is odd, then add an arbitrary edge incident to s.
(2) Complete splitting off preserving the edge-connectivity requirements.

Augmentation

Minimal extension:

(1) Add a new vertex s to G and connect it to each vertex of G by k edges. The resulting graph is k-edge-connected in V.
(2) Delete as many new edges as possible preserving k-edge-connectivity in V to get $G^{\prime}=\left(V \cup s, E \cup F^{\prime}\right)$.
(3) If $d_{G^{\prime}}(s)$ is odd, then add an arbitrary new edge incident to s to get $G^{\prime \prime}=\left(V \cup s, E \cup F^{\prime \prime}\right)$ that is k-edge-connected in V and $d_{G^{\prime \prime}}(s)$ is even.

Augmentation

Splitting off:

(1) By Theorem of Lovász, there exists in $G^{\prime \prime}$ a complete splitting off at s that preserves k-edge-connectivity.
(2) This way we obtain a k-edge-connected graph $G^{*}=(V, E \cup F)$ with $|F|=\frac{\left|F^{\prime \prime}\right|}{2}=\left\lceil\frac{\left|F^{\prime}\right|}{2}\right\rceil$.

Augmentation

Optimality:

(1) In G^{\prime}, no edge incident to s can be deleted without violating k-edge-connectivity in V, so each edge $e \in F^{\prime}$ enters a maximal proper subset X_{e} in V of degree k, that is, $d_{G}\left(X_{e}\right)+d_{F^{\prime}}\left(X_{e}\right)=k$.
(2) By Uncrossing Lemma, these sets form a subpartition $\left\{X_{1}, \ldots, X_{\ell}\right\}$ of V.
(1) Suppose that $X_{i} \cap X_{j} \neq \emptyset$.
(2) Then, by Uncrossing Lemma and the maximality of $X_{i}, X_{i} \cup X_{j}=V$.
(3) By $k+k=d_{G^{\prime}}\left(X_{i}\right)+d_{G^{\prime}}\left(X_{j}\right)$

$$
\begin{aligned}
& =d_{G^{\prime}}\left(X_{i} \backslash X_{j}\right)+d_{G^{\prime}}\left(X_{j} \backslash X_{i}\right)+2 d_{G^{\prime}}\left(X_{i} \cap X_{j}, \overline{X_{i} \cup X_{j}}\right) \\
& \geq k+k+0,
\end{aligned}
$$

(1) $d_{G^{\prime}}\left(X_{i} \backslash X_{j}\right)=k=d_{G^{\prime}}\left(X_{j} \backslash X_{i}\right)$ and every edge incident to s enters either $X_{i} \backslash X_{j}$ or $X_{j} \backslash X_{i}$, that is $\left\{X_{i} \backslash X_{j}, X_{j} \backslash X_{i}\right\}$ is the required subpartition.
(3) $\gamma \leq|F|=\left\lceil\frac{\left|F^{\prime}\right|}{2}\right\rceil=\left\lceil\frac{1}{2} \sum_{1}^{\ell} d_{F^{\prime}}\left(X_{i}\right)\right\rceil=\left\lceil\frac{1}{2} \sum_{1}^{\ell}\left(k-d_{G}\left(X_{i}\right)\right)\right\rceil \leq \alpha \leq \gamma$.

Augmentation

Theorem (Frank)

Let $D=(V, A)$ be a directed graph and $k \geq 1$ an integer.

$$
\min \{|F|:(V, A \cup F) \text { is } k \text {-arc-connected }\}=
$$

$$
\max \left\{\sum_{X \in \mathcal{X}}\left(k-d_{D}^{+}(X)\right), \sum_{X \in \mathcal{X}}\left(k-d_{D}^{-}(X)\right)\right\}
$$

where \mathcal{X} is a subpartition of V.

Proof

Similar to previous one, by applying Mader's directed splitting off theorem.

Generalizations

(1) local edge-connectivity; polynomially solvable,
(2) hypergraphs; polynomially solvable,
(3) partition constrained; polynomially solvable,
(3) weighted; NP-complete even for $k=2$.

Submodular function minimization

Theorem (Grötschel-Lovász-Schrijver, Fujishige-Fleicher-Iwata, Schrijver)

The minimum value of a submodular function can be found in poly. time.

Corollary: One can decide in polynomial time whether

(1) a graph G is k-edge-connected
(by minimizing $d_{G}(X \cup u) X \subseteq V-v \forall u, v \in V$),
(2) a network (D, g) has a feasible flow of value k
(by minimizing $d_{g}^{+}(Z \cup s) Z \subseteq V \backslash\{s, t\}$),
(3) a bipartite graph G has a perfect matching (by minimizing $|\Gamma(X)|-|X|$),
(9) two matroids have a common independent set of size k (by minimizing $r_{1}(X)+r_{2}(S-X)$),
(3) a digraph D has a packing of k spanning s-arborescences (by minimizing $\left.d_{D}^{-}(X \cup u) X \subseteq V-s \forall u \in V-s\right)$.

