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1. Introduction

We study packings of arborescences in this paper. An r-arborescence is a directed tree on a vertex-set containing the
root vertex r in which each vertex has in-degree 1 except r. Throughout this paper, by packing subgraphs in a directed
(hyper)graph, we mean a set of arc-disjoint subgraphs. (For other definitions, see the next section.) The starting point of the
research on arborescence-packings is the following famous result of Edmonds [6] on packing spanning arborescences.

Theorem 1 ([6]). There exists a packing of k spanning r-arborescences in a digraph G= (V,A)ifand only if

oaX) = k (1)
holds for all @ # X C V \ r where pa(X) denotes the in-degree of X. ®

This result has extensions in many directions. For our purposes let us mention four of them: the result of Kamiyama,
Katoh, Takizawa [14] on packing reachability arborescences (Theorem 4 in this paper), Theorem 5 on packing matroid-
rooted arborescences with matroid constraint by Durand de Gevigney, Nguyen, Szigeti [5], Theorem 3 on packing spanning
hyper arborescences (Frank, T. Kiraly, Z. Kiraly [10]) and Theorem 7 on packing spanning mixed arborescences (Frank [8]).
Fig. 1 shows all possible combinations of these extensions. The results without citations corresponding to black boxes of the
diagram are presented in this paper, the ones in gray are yet to be proved to be in P (see Section 7.1).
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Fig. 1. All possible common generalizations of the 4 problems mentioned in the introduction.

The main contribution of this work is to show how the existing hypergraphical results can be derived directly from
their graphical counterparts. We note that the original proofs of these results were different. Both Frank, Z. Kiraly and T.
Kiraly [10] and Bérczi and Frank [1] showed that a directed hypergraph satisfying their condition for the packing problem
can be reduced - by an operation called trimming - to a digraph satisfying the condition of the graphical counterpart of their
problem.

Our method looks a bit similar to this; however, we also add some extra vertices to the digraph to ensure that the condition
of the graphical result holds automatically for the digraph if the hypergraphical condition holds for the directed hypergraph.
We also note that this method allows us to find a minimum cost solution of these problems for any cost function on the set
of directed hyperedges.

Using the same method, we solve the problem of reachability-based packing of matroid-rooted hyperarborescences, that
is, acommon generalization of three of the above four extensions, excluding the mixed one. We also consider a generalization
of other three of the above four extensions, excluding the reachability one this time, namely the problem of matroid-
based packing of matroid-rooted mixed hyperarborescences. Using a new orientation result (Theorem 11) on hypergraphs
covering intersecting supermodular functions, we reduce this problem to its directed version, the problem of matroid-based
packing of matroid-rooted hyperarborescences, which in turn is a special case of the problem of reachability-based packing
of matroid-rooted hyperarborescences.

2. Definitions

In this paper, H = (V, £) will be a hypergraph. We assume that all the hyperedges in &£ are of size at least 2. When all the
hyperedges are of size 2, that is, when the hypergraph is a graph, we will denote it by G = (V, E). For a vertex set X, ig(X)
denotes the number of hyperedges in £ that are contained in X. For a partition P = {Vp, V1, ..., Vy} of V, where only V, can
be empty, we denote by eg(P) the number of hyperedges in £ intersecting at least two members of P.

Let H = (V, A) be a directed hypergraph (dypergraph for short) where V denotes the set of vertices and .A denotes the
set of dyperedges of #. By a dyperedge we mean a pair (Z, z) such that z € Z C V, where z is the head of the dyperedge
(Z,z) and the elements of Z \ z are the tails of the dyperedge (Z, z). We assume that each dyperedge has one head and at
least one tail. When a dypergraph is a digraph, we will denote it by G = (V, A). Let X € V. We say that the dyperedge (Z, z)
enters X if the head of (Z, z) is in X and at least one tail of (Z, z) is not in X. We define the in-degree ¢ ,(X) of X as the
number of dyperedges in .4 entering X.

For a set function h on V, we say that the dypergraph # covers h if

04(X) > h(X)forallX C V. 2)

By trimming the dypergraph 7 we mean replacing each dyperedge (Z, z) of # by an arc tz where t is one of the tails of
the dyperedge (Z, z).

By an orientation of 7, we mean a dypergraph # obtained from # by choosing, for every Z € &, an orientation of Z, that
is by choosing a head z for Z.
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Fig. 2. 77 is a spanning ry-hyperarborescence while 73 is a reachability r,-hyperarborescence of the dypergraph.

Let p be a set function on V. We call p supermodular if for every X, Y C V,

pX)+p(Y) = pXNY)+pXUY). (3)

We say that p is intersecting supermodular if (3) is satisfied forevery X, Y € V whenXNY # (. A set function b is called
submodular if —b is supermodular. It is well known that i¢ is supermodular and that g 4 is submodular (see e.g. in [9]).
In a dypergraph # = (V, A), we say that a vertex w can be reached from a vertex u if there exists an alternating sequence

v1 =U,Z1, 02, ..., Y, Z, Vg1, . . ., Vj = w of vertices and dyperedges such that v; 1s atail of Z; and vjy 1 is the head of Z;. For a
setX C V,we denote by P 4(X) the set of vertices from which X can be reached in # and by Q_4(X) the set of vertices that can
be reached from X in H.Let R = {Ry, ..., R} be alist of t not necessarily distinct sets of vertices of 7. We call the pair (+, R)

arooted dypergraph. For X C V,we defme pR(X)asthe number of members of R dlSjOlrlt from X and g% (X) as the number
of R;'s which do not intersect X but from which X is reachable in #, in other words: qA( )= {i : RiNX = B, Qa(R;)NX # B}].
When each R; consists of a single vertex r;, we denote R by R.

For a non-empty set R C U, a subdigraph of G = (V, A) is called an R-branching if it consists of |R| vertex-disjoint
arborescences whose roots are in R. The results of Frank, Z. Kiraly and T. Kiraly [10] and Bérczi and Frank [1] inspire us to
extend the definition of arborescences and branchings to dypergraphs, as follows. Let 7 = (U, A’) be a subdypergraph of

= (V, A) such that U is the vertex set spanned by A" and R C U. Let U’ be the set of vertices in U whose in-degree in T
is not 0. We say that 7 is an R-hyperbranching if it can be trimmed to an R-branching with vertex-set U’ U R. (It is easy to
see that this is equivalent to the following: R C U, g 4(r) = Oforallr € R, o4/(u) = 1forallu € U’, p4(X) > 1 for all
X CV\R, XNU' # @.)WhenR = {r}, an R-hyperbranching is also called an r-hyperarborescence.

Remark 1. R-hyperbranchings and R-branchings coincide for digraphs, and our subsequent definitions for hypergraphs are
also straightforward generalizations of the original definitions for graphs. Therefore, we will define everything only for the
general hypergraphical case.

We call 7 a reachability R-hyperbranching in 7 if U’ U R contains the set Q4(R), in other words, if Q4/(R) = Q(R).
If all the vertices can be reached from R in #, then a reachability R-hyperbranching is called spanning. In a rooted
dypergraph (H, R = {Ry, ..., Ri}), a set of arc-disjoint spanning (reachability, resp.) hyperbranchings is called a packing
of spanning (reachability, resp.) R-hyperbranchings. Examples of a spanning hyperarborescence and of a reachability
hyperarborescence can be found in Fig. 2.

We also need some basic notions from matroid theory (for more details we refer to [9, Chapter 5]). Let M be a matroid
on S with rank function ra4. It is well known that r,, is non-negative, monotone, subcardinal and submodular. We define
Span 4 (Q) :={s € S : T((QU {s}) = rr((Q)}. .

A matroid-rooted dypergraph is a quadruple (H = (V, A), M, S, =) where # is a dypergraph, M is a matroid on the set

= {s1, ..., s;g;} withrank functionr, and 7 isamap from S to V. In general, r is not injective; different elements of S may
be mapped to the same vertex of V. The elements {sq, . . ., s/} mapped to the vertices of V are called the matroid-roots. For
X C V, we denote by Sy the set of matroid-roots mapped to X by 7. We say that r is M-independent if S, is independent
inMforallveV.

A matroid-rooted hyperarborescence is a triple (7, r, s) where 7 is an r-hyperarborescence and s is an element of S
mapped to r. We say that s is the matroid-root of the matroid-rooted hyperarborescence (7, r, s). A matroid-based packing
of matroid-rooted hyperarborescences in (7, M, S, ) is a set {(7:,r1,s1), - .., (Tjs|, Ijs|» Sjs)} of pairwise dyperedge-
disjoint matroid-rooted hyperarborescences such that for each v € V, the set B, of matroid-roots of the matroid-rooted
hyperarborescences in which the vertex v can be reached from their roots forms a base of the matroid M, thatis B, = {s; €
S:veQ A(ﬁ)(ri)} is a base of S. A reachability-based packing of matroid-rooted hyperarborescences in (H, M, S, ) is
aset {(71,r1,81), ..., (775\, 1 sis|)} of pairwise dyperedge-disjoint matroid-rooted hyperarborescences such that for each
v € V, the set B, is a base of Sp , (4).

Remark 2. Let (H = (V, A),R = {Ri,...,Ri}) be a rooted dypergraph. Let S = [ J*R (as a multiset), let ¥ map
each occurrence of r in S to the vertex r € V, and let M be the partition matroid on S given by R where a set
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P C Sy is independent if and only if [P N R;| < 1fori =1, ..., k. Then the problem of matroid-based (reachability-based,
resp.) packing of matroid-rooted hyperarborescences in (#, Mz, S, 7) and that of packing spanning (reachability, resp.)
‘R-hyperbranchings coincide.

Let F = (V,& U A) be a mixed hypergraph where £ is the set of hyperedges and A is the set of dyperedges of F.
The definitions of a rooted mixed hypergraph (7, R) and a matroid-rooted mixed hypergraph (7, M, S, ) are similar
to the previous definitions of a rooted and a matroid-rooted dypergraph, respectively. By a mixed r-hyperarborescence
(mixed R-hyperbranching, respectively) in a mixed hypergraph, we mean a mixed subhypergraph which, after a proper
orientation of its hyperedges, can become an r-hyperarborescence (R-hyperbranching, respectively). A matroid-rooted
mixed hyperarborescence is a triple (7, r, s) where 7 is a mixed r-hyperarborescence and s is an element of S mapped
to r. We define a matroid-based packing of matroid-rooted mixed hyperarborescences in (F, M, S, ) as a set
{(71,11,81), ..., (Tjs)» sy s1s1)} of pairwise (hyper-and-dyperedge)-disjoint matroid-rooted mixed hyperarborescences in
(F, M, S, ) such that, by a proper orientation of the hyperedges of each (7, r;, s;), one can get a matroid-based packing of
matroid-rooted hyperarborescences {(71, r1, 1), - - . , (7js), Iis|» Sjs|)} With the same roots. When a rooted (matroid-rooted,
respectively) mixed hypergraph has no dyperedges, it is a rooted (matroid-rooted, respectively) hypergraph. We call a
mixed hyperarborescence without dyperedges a hypertree.

3. Previous results

First we mention the strong form of Theorem 1 that considers a more general problem where we want to find a packing
of spanning R-branchings in G.

Theorem 2 ([G]). In a rooted digraph (6 = (V, A), R), there exists a packing of spanning R-branchings if and only if

oa(X) = p™(X) (4)
holds foralld X CV. ®

This result was generalized for rooted dypergraphs by Frank, T. Kiraly and Z. Kiraly [10] by observing that a dypergraph
satisfying condition (5) of the following theorem (which is an equivalent form of the result of [10] using the notion of
hyperbranchings) can be trimmed to a digraph satisfying (4). We should also cite here the paper of Frank, T. Kiraly and
Kriesell [11] for the corresponding result on packing hypertrees.

Theorem 3 ([10]). In a rooted dypergraph (H = (V, A), R), there exists a packing of spanning R-hyperbranchings if and only if

04X) = pR(X) (5)
holds foralld X CV. ®

A generalization of Theorem 2 for reachability branchings was given by Kamiyama, Katoh and Takizawa [ 14], as follows.
Theorem 4 ([14]). There exists a packing of reachability R-branchings in a rooted digraph (E; = (V, A), R) ifand only if

0a(X) = q(X) (6)
holdsforalld X C V. ®

Observe that, (4) holds if and only if (6) holds and each vertex v € V is reachable from each set R; € R.Bérczi and Frank [1]
noted that Theorem 4 extends to dypergraphs.

Recently, Durand de Gevigney, Nguyen and Szigeti [5] and Cs. Kiraly [16] extended Theorems 2 and 4 to matroid-rooted
digraphs, as follows.

-

Theorem 5 ([5]). Let (G = (V, A), M, S, ) be a matroid-rooted digraph. There exists a matroid-based packing of matroid-rooted
arborescences in (G, M, S, 7) if and only if m is M-independent and

0A(X) = 1a(S) — raq(Sx) (7)
holds forall #X C V. ®

Theorem 6 ([16]). Let ((1 = (V, A), M, S, ) be a matroid-rooted digraph. There exists a reachability-based packing of matroid-
rooted arborescences in (G, M, S, «) if and only if 7 is M-independent and

0a(X) = 1aa(Spyx)) — Taa(Sx) (8)
holdsforalld #X CV. ®
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In Section 4, we extend Theorems 5 and 6 to dypergraphs.
An extension of Theorem 1 for mixed graphs was given by Frank [8] as an application of an orientation result. We provide
a common generalization of this result and Theorem 2 later.

Theorem 7 ([8]). There exists a packing of k spanning mixed r-arborescences in a mixed graph F = (V, E U A) if and only if
¢

ex(P) = Y (k= 0a(Vy)) 9)

1
holds for every partition P = {r € Vo, V1, ..., Ve}of V. B

4. Reachability-based packing of matroid-rooted hyperarborescences

The following theorem, which is the main contribution of the present paper, provides a common generalization of
Theorems 3 and 6.

Theorem 8. Let (H = (V, A), M,S, 1) be a matroid-rooted dypergraph. There exists a reachability-based packing of matroid-
rooted hyperarborescences in (H, M, S, 7) if and only if 7 is M-independent and

0A(X) = ra(Spax)) — Tm(Sx) (10)
holds forallX C V.

Proof. To prove the ngcessity, let {(71,11,81), ..., (ﬂ5|, Tis|» Sjs)} be a reachability-based packing of matroid-rooted
hyperarborescences in (#, M, S, ). For any v € V, since S, C B, and B, is independent in M, so is S,, and hence = is
M-independent. Letnow X C V andB = | J,.,B,. Since Span , is monotone, B, is a base of Sp () and by definition of P 4(X),
we have Span ,((B) 2 | J,xSpan ((By) 2 UveXSpA(U) = Sp,x)- Then, since r, is monotone, (x )rM(B) > 1 am(Spax))-

For each matr01d roots; € B\ Sy, there exists avertexv € X such thats; € B, and then since 7;is an r;- -hyperarborescence
andv € Q A(Ti)(ri) N X, there exists a dyperedge of 7; that enters X. Since these matroid-rooted hyperarborescences are
dyperedge-disjoint, r 4 is subcardinal, submodular, and monotone, and by (x), we have g 4(X) > |B \ Sx| > ry(B\ Sx) >
Tm(B U Sx) — ram(Sx) = ram(B) — Tam(Sx) = raa(Sp 4x)) — Taa(Sx) that is, (10) is satisfied.

To prove the sufficiency, let (H = (V, A), M, S, ) be a matroid-rooted dypergraph such that 7 is M-independent and
(10) holds. First we define a matroid-rooted digraph (G = (V’, A), M, S, &) for which the conditions of Theorem 6 hold.
We define V' := V U A hence r is still well defined and M-independent in V'. Let A; := {(Z,z)z : (Z,z) € A} and
A, ={t(Z,z): (Z,z) € A, t € Z\ z}.Let A := A1 U (rp(S) - Ay) where r,4(S) - A, denotes the multiset consisting of the
union of r,(S) copies of A,. For the construction see Fig. 3.

Observe that g(X) > rM(SpA(X ) — ram(Sx) for a subset X C V/ whenever there exist a dyperedge (Z, z) and a tail vertex
t € Z\ zin#H such that,in G, (Z,z) € X and t & X since then the r,,(S) copies of the arc t(Z, z) enter X in G and hence
0a(X) = 1rm(S) = Tam(Spyx)) — Ta(Sx). Moreover, if there is no such dyperedge, then ga(X) = 04(X NV), 1y (Spyx) =
T Mm(Sp4xrwv))s Tam(Sx) = am(Sxnv) and hence (8) follows from (10).

Therefore, there exists a reachablhty based packing of matroid-rooted arborescences {(Tl, r,s1), - (ﬂs‘, Tisl> Sisp)} in
(G, M, S, ) by Theorem 6. We define 7; (i = 1,...,8]) to be the subdypergraph of # induced by dyperedges (Z,z) e A
such that the vertex (Z, z) has out-degree 1 in T It is easy to check that 7; is an r;-hyperarborescence with matroid-root
s; and the set of vertlces of T with in-degree 1 is the same as the set of vertices in V of in-degree 1 in T Moreover, the
hyperarborescences 77, . . TS| are dyperedge- dlS_]Oll‘lt since each vertex (Z, z) € A has out-degree 1 in G. Hence, as the
reachability of the vertices in V from r; coincides in T, and T(l =1,...,1SD.{(T1, 11, 51), . (Ts|, Tis|, Sis|)} is areachability-
based packing of matroid-rooted hyperarborescences in (H, M, S ). |

As a corollary of Theorem 8 (or from Theorem 5 with a proof similar to the previous one), one can get the following result
on matroid-based packing of matroid-rooted hyperarborescences.

Corollary 1. Let (H = (V, A), M, S, ) be a matroid-rooted dypergraph. There exists a matroid-based packing of matroid-rooted
hyperarborescences in (#, M, S, w) if and only if 7 is M-independent and

0a(X) = Tm(S) — Tm(Sx) (11)
holdsforalld X CV. ®

Similarly, one can get Theorem 3 and the result of Bérczi and Frank [1], that is, the extensions of Theorems 2 and 4 for
dypergraphs.
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TM(S)

(Z,2) i

Fig. 3. The construction.

Fig. 4. The trimming operation does not preserve minimum cost arborescence packings.

5. Algorithmic aspects

Bérczi and Frank [2] gave a TDI polyhedral description of the - so called - arborescence packable subgraphs. Using this
result it can be shown that there is a polynomial algorithm to find a minimum cost packing of spanning (reachability, resp.)
‘R-branchings for any cost function on the arc-set of a rooted digraph (G, R). [5] provided also an algorithm for the problem
of minimum cost matroid-based packing of matroid-rooted arborescences and recently Bérczi, T. Kiraly and Kobayashi [3,4]
solved the problem of minimum cost reachability-based packing of matroid-rooted arborescences.

As noted before, Frank, T. Kiraly and Z. Kiraly [ 10] showed that it is possible to trim a dypergraph satisfying (5) to a digraph
satisfying (4). However, this method fails to work for the generalization of the problem where we are seeking minimum cost
dyperedge-disjoint spanning hyperbranchings as Fig. 4 shows. Note that the minimum cost spanning hyperarborescence of
solid, red dyperedges of the dypergraph on the left-hand side of the figure has cost 0 while in the trimmed digraph on the
right-hand side there is only one spanning arborescence and it has cost 1.

Let us now assume that, in a matroid-rooted dypergraph (#, M, S, ), a cost function c is given on the dyperedges. Recall
the proof of Theorem 8. Observe that if we take a cost function ¢’ on the arc-set of the defined digraph to be 0 on the arcs with
a head in A and c((Z, z)) on the arc with a tail (Z, z) for every (Z, z) € A, then a minimum cost reachability-based packing
of matroid-rooted arborescences in (G, M, S, 7) gives rise to a minimum cost reachability-based packing of matroid-rooted
hyperarborescences in (#, M, S, ) with the same cost. By using the above algorithms and similar deductions, we obtain
the following result.

Theorem 9. There exist polynomial algorithms that, for an input consisting of a dypergraph H = (V, A), a cost function c on A,
and a family R of some non-empty subsets of V or a matroid M on S along with amap = : S — V, output the following:

(a) a minimum cost packing of spanning R-hyperbranchings in (¥, R),

(b) a minimum cost packing of reachability R-hyperbranchings in (#, R), .

(c) a minimum cost matroid-based packing of matroid-rooted hyperarborescences in (H, M, S, 7),

(d) a minimum cost reachability-based packing of matroid-rooted hyperarborescences in (H, M, S, 7). R

6. Packing mixed hyperarborescences
A common generalization of Theorem 7 and Corollary 1 can be formulated as follows.

Theorem 10. There exists a matroid-based packing of matroid-rooted mixed hyperarborescences in a matroid-rooted mixed
hypergraph (F = (V, £ U A), M, S, ) if and only if  is M-independent and

4
ex(P) = Y (ram(8) — ra(Sy) — 0.a4(Vi)) (12)
1

holds for every partition P = {Vo, V1, ..., Vi) of V.



32 Q. Fortier et al. / Discrete Applied Mathematics 242 (2018) 26-33

We prove this theorem using the method of Frank [8]. To this end, we need the following general orientation result on
hypergraphs. The proof of [9, Theorem 15.4.13] (the corresponding result for graphs) — with the necessary straightforward
modifications - can be extended to hypergraphs. We mention that this result can also be obtained by using the techniques
from [10].

Theorem 11. Let H = (V, £) be a hypergraph and h an integer-valued, intersecting supermodular function (with possible negative
values) such that h(V') = 0. There exists an orientation of # that covers h if and only if

14
es(P)= Y h(Vy) (13)
1

holds for every partition P = {Vy, V4, ..., Vi} of V.

Note that in (12) and in (13) the index i starts at 1 (and not at 0). This means that we consider here all the subpartitions
of V.
Now we are ready to prove Theorem 10.

Proof of Theorem 10. Let (F = (V, £U A), M, S, ) be a matroid-rooted mixed hypergraph. Let us introduce the following
function h*, which is integer-valued, intersecting supermodular and satisfies h*(V) = 0.

Theorem 11, applied for (V, &) (the undirected part of the mixed hypergraph F) and h*, provides the following result.

Lemma 1. There exists an orientation of a matroid-rooted mixed hypergraph (F, M, S, ) satisfying (11) if and only if (12) is
satisfied. W

We get Theorem 10 by Corollary 1 and Lemma 1. ®

Note that Theorem 10 reduces to the following result when .A = . This result is a generalization of a result of Katoh and
Tanigawa [ 15] for hypergraphs. Recall that by a matroid-based packing of matroid-rooted hypertrees we mean that the
hypertrees can be oriented such that we get a matroid-based packing of matroid-rooted hyperarborescences with the same
roots.

Corollary 2. Let (H, M, S, ) be a matroid-rooted hypergraph. There exists a matroid-based packing of matroid-rooted
hypertrees in (#, M, S, 7) if and only if 7 is M-independent and

ex(P) = Y (ra(8) — ra(Sx)) (14)

XeP
holds for every partition P of V. ®

Remark 3. We note that Theorem 10 in the case where F is a mixed graph is a common generalization of the above
mentioned result of Katoh and Tanigawa [15] and Theorem 5.

By Remark 2, we get the following corollary of Theorem 10 that, in the case where F is a mixed graph, generalizes
Theorem 7 for packing of mixed branchings.

Corollary 3. In a rooted mixed hypergraph (F = (V, £ U A), R), there exists a packing of spanning mixed R-hyperbranchings if
and only if

12

es(P)= Y _(P™(Vi) — 0a(Vi) (15)

1
holds for every partition P = {Vo, V1, ..., Vel of V. B
7. Concluding remarks
We finish this paper with some remarks on other possible generalizations.
7.1. Packing of reachability mixed-arborescences

The first problem is about packing reachability mixed-arborescences. We just mention the orientation version of the
problem. Let (F = (V, E U A), R) be a rooted mixed graph. For a set X C V, we denote by Qgua(X) the set of vertices that
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can be reached from X in Ij and by q;f:f,A(X) thﬂe number of indices i such that R; N X = @ and Qgua(R;) N X # . When does
there exist an orientation E of E such that (V, EUA) covers q?u 47 Let us consider the following two conditions that are clearly
necessary: for every partition ? = {Vo, Vy, ..., V;} of V,

4

ex(P) = Y (ara(Vi) — ea(Vi), (16)
:

ex(P) = Y @RV \ Vi) — oa(V \ Vi)). (17)

1

The following example shows that conditions (16) and (17) are not sufficient. Let F = (V, E U A)and R = {{ry}, {r.}} be
defined as follows. V = {a, b, ¢, d}, E = {ab}, A = {ca, cb, ad, bd},r1 = aand r, = b. Itis easy to check that (16) and (17) are
satisfied. However, the required orientation does not exist since the edge ab should be oriented in both directions.

7.2. Infinite dypergraphs

In this paper, we considered finite dypergraphs; however, some results can also be proved for infinite dypergraphs.
Jo6 [12] showed that Theorem 2 is also true in infinite digraphs that contain no forward-infinite paths. Furthermore, in his
recent paper Jo6 [13] also extended Theorem 6 for infinite digraphs holding some extra conditions. Hence, by using the proof
technique of Theorem 8 to this result, one can extend Theorem 3 to infinite dypergraphs that contain no forward-infinite
paths and Theorem 8 to infinite dypergraphs holding the extra conditions of Jo6 [13].

7.3. Covering intersecting bi-set families under matroid constraints in dypergraphs

Finally, we mention that Bérczi, T. Kiraly, Kobayashi [3] have provided an abstract result on covering intersecting bi-set
families under matroid constraints that generalizes Theorem 6 and another result of Bérczi and Frank [1]. Without going
into details, we just mention that their proof also works for dypergraphs.
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