
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. DISCRETE MATH. c© 2016 Society for Industrial and Applied Mathematics
Vol. 30, No. 4, pp. 2107–2114

ON MAXIMAL INDEPENDENT ARBORESCENCE PACKING∗

CSABA KIRÁLY†

Abstract. By generalizing the results of [N. Kamiyama, N. Katoh, and A. Takizawa, Combi-
natorica, 29 (2009), pp. 197–214], we solve the following problem. Given a digraph D = (V,A) and
a matroid on a set S = {s1, . . . , sk} along with a map π : S → V , find k edge-disjoint arborescences
T1, . . . , Tk with roots π(s1), . . . , π(sk), respectively, such that, for any v ∈ V , the set {si : v ∈ Ti}
is independent and its rank reaches the theoretical maximum. We also give a simplified proof for a
result of [S. Fujishige, Combinatorica, 30 (2010), pp. 247–252].
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1. Introduction. Recent research in rigidity theory has motivated new exten-
sions of the well-known results of Tutte [13] and Nash-Williams [12, 11] on packing
and covering with trees. Katoh and Tanigawa [8] recently proved that minimal rigidity
of “bar-slider frameworks” is equivalent to some colored rooted-forest packing prop-
erties. This result inspired extensive research on the possible extensions of Tutte’s
and Nash-Williams’ results. Katoh and Tanigawa [9] proved a theorem on the ex-
istence of colored rooted-forest packings. In [10], they generalized this result so as
to include matroidal constraints on the roots and they also showed an overview of
possible applications in rigidity theory.

Frank [4] showed how to derive Nash-Williams’ [11] result from the weak form
of Edmonds’ theorem [3] on arborescence packings. Following this idea, Durand de
Gevigney, Nguyen, and Szigeti [2] generalized Edmonds’ weak theorem so as to obtain
an alternative proof of the packing part of [10]. Actually, [2] also generalizes the strong
form of the result of Edmonds. This raises the question whether earlier extensions of
[3] such as the one of Kamiyama, Katoh, and Takizawa [7] can be generalized to such
a form. We answer the question positively by extending [7]. In addition, it is also
shown how another extension due to Fujishige [6] can easily be derived from [7]. (For
a survey on tree and arborescence packing, see [1] and [5, Chapter 10].)

The following definitions are used throughout the paper. In a digraph D =
(V,A), %D(X) and δD(X) denote the in-degree and the out-degree of a set X ⊆ V ,
respectively. For a nonempty set R ⊆ V , B = (V,A′) is said to be an R-branching if
it consists of |R| node-disjoint arborescences whose roots are in R. Let D = (V,A)
be a digraph. Then an R-branching is said to be spanning if it spans the node set V
and it is said to be maximal if it spans all the nodes that are reachable from R in D.
For nonempty sets X,Z ⊆ V , let Z 7→ X denote that X and Z are disjoint and X is
reachable from Z, that is, there is a directed path from Z to X. For simplicity, we
will denote the set {v} by v.
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Throughout the paper, D = (V,A) is a digraph, M is a matroid on a set S with
rank function rM, and π : S → V is a (not necessarily injective) map. For P ⊆ S,
SpanM(P) denotes the subset of S spanned by P, that is, the maximal set X ⊆ S for
which P ⊆ X and rM(X) = rM(P). For related definitions and properties of matroids,
we refer to [5]. We say that the quadruple (D,M,S, π) is a matroid-based rooted
digraph. As in [2], π is called M-independent if π−1(v) is independent in M for each
v ∈ V . For X ⊆ V , we will denote by SX the set π−1(X).

2. Preliminaries. The weak form of the result of Edmonds [3] asserts the fol-
lowing.

Theorem 1 (Edmonds’ weak arborescence theorem). In a digraph D = (V,A),
there are k edge-disjoint spanning arborescences with root r0 if and only if

(1) %D(X) ≥ k

holds for every ∅ 6= X ⊂ V − r0.

The strong form of Edmonds’ theorem considers a more general problem when
we want to find k edge-disjoint branchings in D.

Theorem 2 (Edmonds [3]). In a digraph D = (V,A), let R := {R1, . . . , Rk} be
a family of nonempty subsets of V . There are edge-disjoint spanning Ri-branchings
in D for i = 1, . . . , k if and only if

(2) %D(X) ≥ pR(X)

holds for every ∅ 6= X ⊆ V, where pR(X) denotes the number of the members of R
disjoint from X.

When one wants to extend this result, it is natural to ask the following.

Problem 2.1. Given two families R = {R1, . . . , Rk} and U = {U1, . . . , Uk} of
nonempty subsets of nodes in a digraph D such that Ri ⊆ Ui, find edge-dijoint Ri-
branchings in D spanning Ui for i = 1, . . . , k.

This problem is NP-hard generally but it is polynomially solvable for some special
cases. When U1 = · · · = Uk = V , the problem is solved by Theorem 2. When each
Ui is the set of nodes reachable from Ri on a directed path in D for i = 1, . . . , k (that
is, we want to find edge-disjoint maximal Ri-branchings for i = 1, . . . k), then the
problem is solved by Kamiyama, Katoh, and Takizawa [7], as follows.

Theorem 3 (Kamiyama, Katoh, and Takizawa [7]). In a digraph D = (V,A),
let R := {R1, . . . , Rk} be a family of nonempty subsets of V . There are edge-disjoint
maximal Ri-branchings in D for i = 1, . . . , k if and only if

(3) %D(X) ≥ p′R(X)

holds for every ∅ 6= X ⊆ V , where p′R(X) denotes the number of Ri’s for which
Ri 7→ X.

A set of nodes U is called convex if there is no node v ∈ V − U for which v 7→ U
and U 7→ v. Fujishige [6] used Theorem 3 to solve Problem 2.1 for the case where
each Ui is convex. We present here a simplified proof for Fujishige’s theorem which
shows that, in fact, it follows more easily from Theorem 3.
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Theorem 4 (Fujishige [6]). In a digraph D = (V,A), let R := {R1, . . . , Rk} be
a family of nonempty subsets of V and let Ui ⊆ V be convex sets with Ri ⊆ Ui. There
are edge-disjoint Ri-branchings spanning Ui in D for i = 1, . . . , k if and only if

(4) %D(X) ≥ p{U1,...,Uk}
R (X)

holds for every ∅ 6= X ⊆ V , where p
{U1,...,Uk}
R (X) denotes the number of Ui’s for which

Ui ∩X 6= ∅ and X ∩Ri = ∅.

Proof. As the proof of necessity of (4) is straightforward, only sufficiency will be
proved.

It is easy to see that (4) ensures the the existence of an Ri-branching spanning
Ui for each i ∈ {1, . . . , k}. Let Zi be the set of nodes reachable from Ri on a directed
path in D and let R′i := Zi − (Ui −Ri) for i = 1, . . . , k. Observe that δD(Zi) = 0 by
definition, thus δD(R′i−Ri) = δD(Zi−Ui) = 0 by convexity of Ui as Ui 7→ v for each
v ∈ R′i − Ri. Thus a maximal R′i-branching consists of the single nodes as roots in
R′i−{Ri} and an Ri-branching spanning Ui for i = 1, . . . , k. Therefore, the existence
of edge-disjoint maximal R′i-branchings for i = 1, . . . , k is equivalent to the existence
of edge-disjoint Ri-branchings spanning Ui for i = 1, . . . , k.

p
{U1,...,Uk}
R (X) ≥ p′{R′

1,...,R
′
k}

(X) holds for X ⊆ V since Ui∩X 6= ∅ and Ri∩X = ∅
if R′i 7→ X (i = 1, . . . , k). Thus, for X ⊆ V , if (4) holds, then (3) also holds. Therefore,
the statement follows by Theorem 3.

Next we present a recent result of Durand de Gevigney, Nguyen, and Szigeti
[2] that generalizes Edmonds’ results [3] in another direction. An M-based pack-
ing of arborescences in (D,M,S, π) is a set {T1, . . . , T|S|} of pairwise edge-disjoint
arborescences in D such that Ti has root π(si) for i = 1, . . . , |S| and also the set
{sj ∈ S : v ∈ V (Tj)} forms a base of M for each v ∈ V . The result of [2] is the
following.

Theorem 5 (Durand de Gevigney, Nguyen, and Szigeti [2]). Let (D,M,S, π)
be a matroid-based rooted digraph. There exists an M-based packing of arborescences
in (D,M,S, π) if and only if π is M-independent and

(5) %D(X) ≥ rM(S)− rM(SX)

holds for every ∅ 6= X ⊆ V .

Let R = {R1, . . . , Rk} be a family of nonempty subsets of V . If S :=
⋃
R (as a

multiset), π maps each occurrence of r in S to the node r ∈ V , andM is the partition
matroid on S given by R, where a set P ⊆ S is independent if and only if |P∩Ri| ≤ 1
for i = 1, . . . , k, then the problem of M-based packing of arborescences and that of
edge-disjoint spanning Ri-branchings for i = 1, ...k coincide. Moreover, in this case π
is always M-independent and (5) is equivalent to (2). Therefore, Theorem 2 follows
from Theorem 5. In the next section, we will extend Theorem 5 to a theorem from
which Theorem 3 follows.

In our proof, we will use the following technical lemma pointed out in [2].

Lemma 6 (see [2]). Let M be a matroid on S with rank function rM and let
P,Q ⊆ S such that rM(P) + rM(Q) = rM(P ∩ Q) + rM(P ∪ Q). Then SpanM(P) ∩
SpanM(Q) ⊆ SpanM(P ∩ Q).
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3. The main result. Let P (X) := X∪{v ∈ V −X : v 7→ X}. We call a maximal
M-independent packing of arborescences a set {T1, . . . , T|S|} of pairwise edge-disjoint
arborescences for which Ti has root π(si) for i = 1, . . . , |S|, the set {sj ∈ S : v ∈ V (Tj)}
is independent in M, and |{sj ∈ S : v ∈ V (Tj)}| = rM(SP (v)) for each v ∈ V . (We
will also say that si is the root of Ti.) Our main result is the following.

Theorem 7. Let (D,M,S, π) be a matroid-based rooted digraph. There exists a
maximal M-independent packing of arborescences in (D,M,S, π) if and only if π is
M-independent and

(6) %D(X) ≥ rM(SP (X))− rM(SX)

holds for each X ⊆ V .

One can see that Theorem 3 follows from this theorem in the same way as Theorem
2 did from Theorem 5.

Before proving Theorem 7, we prove some lemmas that will be useful in the proof.
For X ⊆ V , let p(X) := rM(SP (X)) − rM(SX). X is called tight if p(X) = %D(X).
Two sets X and Y are called intersecting if X − Y, Y − X, and X ∩ Y are non-
empty sets. Although p is not crossing supermodular, in general, we will prove the
supermodular inequality for specific pairs in the next lemma.

Lemma 8. Let X and Y be two intersecting tight subsets of V for which v 7→ X∩Y
for every v ∈ Y −X. Then

(7) p(X) + p(Y ) ≤ p(X ∪ Y ) + p(X ∩ Y ).

Proof. As v 7→ X ∩ Y for every v ∈ Y −X and the reachability is transitive, we
get P (Y ) ⊆ P (X ∩ Y ). Furthermore, P (X) ⊆ P (X ∪ Y ) is obvious. Thus by the
monotonicity of the rank function,

(8) rM(SP (X)) + rM(SP (Y )) ≤ rM(SP (X∪Y )) + rM(SP (X∩Y )).

Clearly, SX ∩ SY = SX∩Y and SX ∪ SY = SX∪Y . Thus by the submodularity of the
rank function,

(9) rM(SX) + rM(SY ) ≥ rM(SX∪Y ) + rM(SX∩Y ).

Subtracting (9) from (8) we get (7).

Next we use Lemma 8 to prove that the intersection of two tight sets is tight in
this special case.

Lemma 9. Let X and Y be two intersecting tight subsets of V . If v 7→ X ∩ Y for
every v ∈ Y −X, then X∩Y is tight and SpanM(SX)∩SpanM(SY ) ⊆ SpanM(SX∩Y ).

Proof. The tightness of X and Y , along with inequalities (7), (6), and the sub-
modularity of %D implies

%D(X) + %D(Y ) = p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y )

(10) ≤ %D(X ∩ Y ) + %D(X ∪ Y ) ≤ %D(X) + %D(Y ).

Hence p(X ∩ Y ) + p(X ∪ Y ) = %D(X ∩ Y ) + %D(X ∪ Y ). Thus X ∩ Y and X ∪ Y are
tight. Moreover, p(X)+p(Y ) = p(X ∩Y )+p(X ∪Y ). Therefore, in (9) equality must
hold. Thus by Lemma 6 and by SX∩SY = SX∩Y , we get SpanM(SX)∩SpanM(SY ) ⊆
SpanM(SX∩Y ).
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The following statement follows easily from Lemma 9.

Corollary 3.1. Let X and Y be two intersecting subsets of V such that X is
tight and %D(Y ) = 0. If v 7→ X ∩ Y for every v ∈ Y − X, then X ∩ Y is tight and
SpanM(SX) ∩ SpanM(SY ) ⊆ SpanM(SX∩Y ).

Proof. By (6) and the monotonicity of the rank function, we get

0 = %D(Y ) ≥ rM(SP (Y ))− rM(SY ) ≥ 0.

Thus Y is tight and the claim follows by Lemma 9.

Following [2], we introduce some definitions. For X,Y ⊆ V , Y dominates X if
SX ⊆ SpanM(SY ). It is easy to see that domination is a transitive relation. An edge
uv ∈ A is said to be bad if v dominates u, otherwise it is good. A good edge is called
s-good if π(s) = u and s 6∈ SpanM(Sv). Note that a good edge is s-good for at least
one s ∈ S. For s ∈ S, a tight set X ⊆ V is s-critical if s ∈ SpanM(SX) and there exists
a node v for which π(s)v is an s-good edge of D that enters X. We call a set critical
if there exists an s ∈ S for which it is s-critical.

Next we prove a useful property of minimal s-critical sets. Let D[X] denote the
subgraph of D = (V,A) induced by X ⊆ V .

Lemma 10. Let (D,M,S, π) be a matroid-based rooted digraph for which (6)
holds. For s ∈ S, let π(s)v be an s-good edge and let X be a minimal s-critical
set with v ∈ X. Then X ⊆ P (v). Moreover, v is reachable from all points of X in
D[X].

Proof. Assume for a contradiction that X is not a subset of Y := P (v). Then
X and Y are intersecting sets, %D(Y ) = 0, and v ∈ X ∩ Y is reachable from all
elements of Y −X. As X is tight, X ∩ Y is also tight by Corollary 3.1. Moreover, X
is s-critical, hence, s ∈ SpanM(SX); furthermore, s ∈ SpanM(SY ) as π(s) ∈ Y . Thus
s ∈ SpanM(SX∩Y ) also holds by Corollary 3.1. Therefore, X ∩ Y ⊂ X is an s-critical
set such that π(s)v enters it, contradicting the minimality of X.

To prove the second part, assume for a contradiction that v is not reachable from
all elements of X in D[X]. Let Y ′ denote the subset of X from which v is reachable
in D[X]. Then %D(Y ′) ≤ %D(X). Furthermore, P (Y ′) = P (X) = Y by the first part
of the lemma. As Y ′ is not s-critical by the minimality of X, s 6∈ SpanM(SY ′) and
thus rM(SY ′) < rM(SX). Therefore,

%D(Y ′) ≤ %D(X) = rM(SP (X))− rM(SX) < rM(SP (Y ′))− rM(SY ′),

contradicting (6).

Now we are ready to prove Theorem 7.

Proof of Theorem 7. As necessity of (6) and M-independency are straightfor-
ward, only sufficiency will be proved. We use induction on |A|. Consider first the
case when no good edge exists (this includes the case A = ∅).

Claim 3.2. If there are only bad edges, then the arborescences T root
i = ({π(si)}, ∅)

consisting only of their roots for all i ∈ {1, . . . , |S|} form a maximal M-independent
packing of arborescences in (D,M,S, π).

Proof. By transitivity of the domination, if there are only bad edges, then SP (v) ⊆
SpanM(Sv) for every v ∈ V . Thus rM(Sv) ≤ rM(SP (v)) ≤ rM(Sv) holds for every
v ∈ V . By the definition of the arborescences T root

i ’s, {sj ∈ S : v ∈ V (T root
j )} = Sv.

Moreover the M-independency of π ensures the independency of Sv. Therefore, the
set {sj ∈ S : v ∈ V (T root

j )} is independent for every v ∈ V and
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|{sj ∈ S : v ∈ V (T root
j )}| = |Sv| = rM(Sv) = rM(SP (v)).

Assume now that there is a good edge in (D,M,S, π). For induction, we need
the following stronger property.

Claim 3.3. If there exists a good edge in (D,M,S, π), then there exists an s ∈ S
and an s-good edge of the form π(s)v such that it enters no s-critical set.

Proof. Suppose that for all s ∈ S and for each s-good edge, there exists an s-
critical set entered by π(s)v. Choose a minimal critical set X. We can assume that,
say, X is s-critical for s ∈ S and π(s)v is an s-good edge entering X.

If X induces no good edges, then SpanM(SX) ⊆ SpanM(Sv) by the minimality
of X and Lemma 10. Moreover, as X is s-critical, s ∈ SpanMSX . Thus s ∈ SpanMSv,
that is, v dominates π(s) contradicting that π(s)v is an s-good edge.

Thus there is a good edge u′v′ spanned by X. By our assumption, there is an
s′-critical set X ′ for any s′ ∈ Su′ − SpanM(Sv′) such that u′v′ enters X ′. Let us use
the notation Z := P (v′). Then, by Corollary 3.1, Z ∩ X is tight as %D(Z) = 0 and
v′ ∈ Z∩X is reachable from all elements of Z−X. Moreover, Z∩X ∩X ′ is also tight
by Lemma 9 since (Z∩X)−X ′ ⊆ Z−v′ = P (v′)−v′ and v′ ∈ Z∩X∩X ′ is reachable
fom each element of P (v′)− v′. Thus Z ∩X ∩X ′ is s′-critical and Z ∩X ∩X ′ ⊂ X
because u′ ∈ X −X ′ and v′ ∈ Z ∩X ∩X ′. Therefore, Z ∩X ∩X ′ is a proper critical
subset of X, contradicting the minimality of X.

Let π(s)v be an s-good edge entering no s-critical set, where s ∈ S. Let D′ :=
D− π(s)v, S′ := S∪ {s′}, where s′ 6∈ S, π′ : S′ → V such that π′|S ≡ π, and π′(s′) = v
and let M′ be the matroid on S′ that is obtained from M by considering s′ as an
element parallel to s. For X ⊆ V , let P ′(X) := X ∪ {v ∈ V : v 7→D′ X} and
S′X := (π′)−1(X).

The content of the next claim is that the conditions of Theorem 7 remain valid
for (D′,M′,S′, π′).

Claim 3.4. π′ is M′-independent and

(11) %D′(X) ≥ rM′(S′P ′(X))− rM′(S′X)

holds for every X ⊆ V .

Proof. π′ is M′-independent since π(s)v was an s-good edge.
Take an arbitrary set X ⊆ V . To prove (11), first observe that P ′(X) ⊆ P (X)

and they are not equal if and only if v ∈ P ′(X) and π(s) 6∈ P ′(X) both hold. Thus
rM′(S′P ′(X)) ≤ rM(SP (X)) by the definition of M′. Also by definition, rM(S′X) ≥
rM(SX). Thus the right-hand side of (6) is at most that of (11). Therefore, if X ⊆ V
is not tight, then (11) holds trivially as %D′(X)+ 1 ≥ %D(X) and (6) holds with strict
inequality; if X ⊆ V is tight but π(s)v does not enter X, then (11) holds trivially
as %D′(X) = %D(X). If X is tight and π(s)v enters X, then rM(S′X) > rM(SX)
because s ∈ SpanM′(S′X) as s′ ∈ S′X but s 6∈ SpanM(SX) since π(s)v enters no s-
critical set. Thus in this case, %D(X) = %D′(X) + 1 and rM(SP (X)) − rM(SX) ≥
rM′(S′P ′(X))− rM′(S′X) + 1, hence, (11) is again a consequence of (6).

Claim 3.4 ensures that there exists a maximal M′-independent packing of ar-
borescences P ′ in (D′,M′,S′, π′) by induction.

Since s and s′ are parallel in M′, the arborescences T, T ′ ∈ P ′ rooted at s and
s′ are node disjoint. Therefore, T ∪ T ′ ∪ π(s)v is an arborescence rooted at π(s) and
P = P − {T, T ′} ∪ {T ∪ T ′ ∪ π(s)v} is a packing of arborescences rooted at S in D.
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Claim 3.5. P is a maximal M-independent packing of arborescences
in (D,M,S, π).

Proof. First observe that the M-rank of the root set of the arborescences in
P covering an arbitrary node u is the same as the M′-rank of the root set of the
arborescences in P ′ covering u by the definitions of M′ and P ′. As P ′ is a maximal
M′-independent packing of arborescences, this latter value is equal to rM′(S′P ′(u)).
Hence the only thing we need to show is that

rM′(S′P ′(u)) = rM(SP (u)) for all u ∈ V.

As rM′(S′P ′(u)) ≤ rM(SP (u)) is obvious, we only prove that rM′(S′P ′(u)) ≥ rM(SP (u)).

Suppose to the contrary that rM′(S′P ′(u)) < rM(SP (u)) for a given u ∈ V . Since

rM′(S′Q) ≥ rM(SQ) holds for any Q ⊆ V , P ′(u) 6= P (u) in this case. Thus v ∈ P ′(u)
follows but π(s) 6∈ P ′(u) because D and D′ differ only on the edge π(s)v. Therefore,
π(s)v is the single edge of D that enters P ′(u). Thus inequality (6) for X = P ′(u)
transforms to

1 = %D(P ′(u)) ≥ rM(SP (P ′(u)))− rM(SP ′(u)) = rM(SP (u))− rM(SP ′(u))

and hence, by our assumption that rM′(S′P ′(u)) < rM(SP (u)),

rM(SP ′(u)) + 1 ≥ rM(SP (u)) ≥ rM′(S′P ′(u)) + 1 ≥ rM(SP ′(u)) + 1.

Therefore, equality must hold throughout. From rM(SP ′(u)) + 1 = rM(SP (u)), we get
that P ′(u) is tight, and by rM′(S′P ′(u)) = rM(SP ′(u)), we get that s ∈ SpanM(SP ′(u)).

Thus P ′(u) is s-critical, a contradiction to the assumption that π(s)v is an s-good
edge that enters no s-critical sets.

This completes the proof of Theorem 7.

4. Concluding remarks. The proof of Theorem 7 gives rise to an algorithm if
the matroid is given by an oracle for the rank function. Durand de Gevigney, Nguyen,
and Szigeti [2] gave an algorithm also for the weighted case of their problem using
polyhedral techniques. This, along with their proof for the undirected case, uses the
fact that the right-hand side function of (5) is supermodular. As we noted, p is
not crossing supermodular, in general, though the supermodular inequality holds for
specific pairs of sets. It would be interesting to prove some more properties of this
function. Developing such a property could help to give an algorithm for the weighted
case as well and to prove an undirected version of Theorem 7. These problems remain
open.
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