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ABSTRACT 

Let 5, and O2 be finite digraphs, both with vertex set V, let a and b be 
given functions from Vto Z,, and let k be a positive integer. In this paper 
we give a necessary and sufficient condition for the existence of k arc- 
disjoint arborescences in each of D, and D2 satisfying the condition that 
for each u in V 

a(u) s r,(u) = r2(u) s b(u) ,  

where r!(u) denotes the number of the arborescences in D, rooted at U, 
i = 1.2. 

Let D = ( V , A )  be a finite digraph with vertex set V and arc set A .  Multiple arcs 
are allowed but loops are not. For V’ C V, the indegree d - ( V ’ )  is the number 
of arcs in D entering V’,  and 7’ = V - V’. 

An arborescence of D is defined as a spanning tree directed in such a way 
that each vertex of D, except one called the root of the arborescence, has one 
arc entering it. 

Iffis a rational function defined on V, and V’  V, we writef(V’) = CUEvf(u), 
and set f(0) = 0. Let Z ,  denote the set of nonnegative integers. 

A function r: V + Z ,  is called a root function of a digraph D = ( V , A )  if D 
contains r ( V )  arc-disjoint arborescences such that exactly r (u)  of them are 
rooted at u for each u E V. 

Two subsets S and T of V are intersecting if none of S n T, and S - T and 
T - S is empty. A family F of subsets of V is called intersecting if S n T and 
S U T belong to F for all intersecting pairs S, T of F. Let IS] denote the cardi- 
nality of set S. 
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A rational functionfdefined on an intersecting family F is called submodular 
on intersecting pairs iff(S) + f ( T )  b f ( S  n T )  + f ( S  U T )  for all intersecting 
members S and T of F. 

A polymatroid P in the space R y  is a compact nonempty subset of R y  such 
that (a) 0 i y S x E P -+ y E P,  and (b) for every a E R y ,  every maximal 
x E P with x S a has the same sum x ( V ) .  

For real number q ,  let L4l denote the largest integer less than or equal to q. 
The present paper is a natural continuation of [ 11. Its purpose is to further 

generalize the following theorem of Edmonds, which will be used in the proof 
of the main theorem of this paper: 

Theorem 1 [3]. 
( V , A )  if and only if for each V '  C V 

A function r: V +- Z ,  is a root function of a diagraph D = 

Let us consider the following: 

Problem. Let D, = ( V , A , )  and D2 = ( V , A , )  be two digraphs, both with ver- 
tex set V, let a and b be given functions: V - +  Z ,  such that a S b,  and let k be 
a positive integer. What conditions are needed for D ,  and D ,  to have a common 
root function r satisfying 

r ( V )  = k and a d  r S b?  (2) 

Remark. 
due to A .  Schrijver. 

The problem without lower and upper bounds on root function r is 

Let d , ( V ' )  denote the indegree of subset V '  in D,, i = 1,  2,  and F* the fam- 
ily of all nonempty subsets of V. Obviously, F* is intersecting. The problem 
can be formulated with the help of the following linear programming (Q). 

min x ( V )  

a c x s b .  
(Q) :  x ( S )  3 k - d i ( S )  for all S E F * ,  i = 1 , 2 ,  (3) 

The main result of this paper is 

Theorem 2. 
lowing statements are equivalent: 

Let D , ,  D,, a ,  b, and k be given as in the problem. Then the fol- 

(i) D, and D ,  have a common root function r satisfying (2). 
(ii) (Q) has an integral optimum solution x with x ( V )  = k .  

(iii) For any two families F,  and F2 (possibly empty) of disjoint nonempty 
subsets of V 



COMMON ROOT FUNCTIONS 251 

In order to prove the theorem we need the following result that is well- 
known in polymatroid theory, due to Edmonds [2]. 

Polymatroid Intersection Theorem. For i = I ,  2, let function A :  F* + Z ,  
be submodular on intersecting pairs, let Pi = { y E RY: y ( S )  6 J(S) for every 
S E F*} be the polymatroid associated, and let h E Z , .  Then there exists an 
integral vector y E PI r l  P2 with y ( V )  = h if and only if for every choice of 
S , ,  . . . , S, , TI, . . . , T, E F* such that S , ,  . . . , S,  are pairwise disjoint, TI, . . . , T, 
are painvise disjoint, and S ,  U . . . U S, U TI U . . . U T, = V, one has 

Proof of Theorem 2 .  First note that, by taking S = V in (3), x ( V )  3 k 
for any feasible solution x of (Q). Therefore a feasible solution x of (Q)  with 
x ( V )  = k is optimum. 

It is easy to show the equivalence of (i) and (ii). Indeed, if D, and D, have a 
common root function r satisfying (2 ) ,  it follows from ( I )  that for every R E F*,  
r(R) = k - r(R) 3 k - d;(R),  i = 1,2.  So r is an integral optimum solution 
of (Q) with r (V)  = k .  Conversely, let x be an integral optimum solution with 
x ( V )  = k .  Then x(R) 3 k - d ; ( R )  for every R E F * ,  i = I ,  2.  Hence 
x(R)  = k - x(R) d d,:(R) for every R C V, i = 1,2.  By Theorem 1, x is a 
common root function satisfying (2). 

It is easy to prove the implication (ii) + (iii). Indeed, let x be an integral op- 
timum solution of (Q) with x ( V )  = k .  Then, for any two families F,  and F2 as 
in (iii) (Recall V, = U R E F ,  R) ,  

= k .  
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Now let us show the converse. We first deduce from (4) the inequalities 

b(R) 2 k - d,-(R) for every R E F * ,  i = I ,  2 .  

Indeed, by taking F ,  = {R} and F2 = {V}, (4) yields 

h(R) 2 k - d,(R) .  

for i = 1 ,2 ,  and h = b(V)  - k .  T h e n i  is nonnegative, integral, and submodu- 
lar on intersecting pairs. The submodularity of J;  follows from that of d, . 

Let P, be the polymatroid associated withf; , i = 1,2. Then clearly there ex- 
ists an integral vector y € P, n P2 with y ( V )  = h if and only if (Q) has an in- 
tegral optimum solution x with x ( V )  = k (indeed, y = b - x). So, by the 
Polymatroid Intersection Theorem, to complete the proof it suffices to show the 
implication (4) +- (5). 

Let S, ,  . . . , S , ,  T , ,  . . . , T, be chosen as in Polymatroid Intersection Theorem. 
Put 

Then 

+ d i ( T )  - k ]  

The last inequality follows from (4). This is the end of the proof for Theorem 2. 
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By taking (I = 0, b = k in Theorem 2 ,  an immediate consequence is 

Corollary 1. Two digraphs D ,  = ( V , A , )  and D ,  = ( V , A , )  have a common 
root function r with r ( V )  = k if and only if for every family F of disjoint 
nonempty subsets of V 

Proof. For F, define 

FI = {S E F :  d,(S) S d,(S)}, F2 = F - F,  

It follows from (4) that 

Conversely, let F,  and F2 be two families given in (iii) of Theorem 2 .  Define 

FS = {S E F2: S f l  V ,  = 01, F = F ,  U FI 

Using a = 0 and b = k ,  one deduces from (6) that 

Applying Theorem 2 yields the required result. 
The corollary can be stated in a min-max form. 

Corollary 1'. 
mum value k' of common root functions of D ,  and D, is equal to 

Let D I  and D2 be digraphs, both with vertex set V. The maxi- 

szigetiz
Crayon 
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where the minimum ranges over all families F of disjoint nonempty subsets of 
V with IF1 3 2 .  

Proof. 

As k' satisfies (6), we obtain 

First note that (6) holds for any nonnegative integer k when IF1 = 0 
or 1 .  So we only consider the families F in (7) with IF1 3 2. 

which yields 

On the other hand, it follows from (7) that k" satisfies (6). By Corollary 1 ,  D ,  
and D, have a common root function r with r ( V )  = k". By the definition of k ' ,  

This concludes the proof. 

Another consequence of Theorem 2 is 

Corollary 2. 
D = ( V , A )  has a root function r satisfying (2) if and only if 

Let a ,  b,  and k be given as in the problem. Then a diagraph 

(a) b ( S )  3 k - L ( S )  for every S E F*  and 
(b) CsEF, [k - d -(S)j + a ( c )  k for every family F' (possibly empty) of 

disjoint nonempty subsets of V, where V i  = USE,. S .  

Proof. By taking F,  = {S} and F, = {V}, (4) yields (a). Setting Fz = 0 in 

Conversely, let D ,  = D and D, be a k-strongly connected digraph in Theo- 

If Fz = 0, (4) becomes (b). 
If F2 = {V} ,  then it follows from (a) that 

(4), one gets (b). 

rem 2 .  We show that (4) follows from (a) and (b). 
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= 2 [ k  - d- (S )  - b(S)] + k 
SEF 1 

G k. 

If F2 f 0, {V}, we deduce from (b) and the assumption of D2 that 

The proof is completed. 

Corollary 2 has been stated in the following way: 

Corollary 2' [l]. Let a,  b ,  and k be given as above. Then a diagraph 
D = (V,A)  has a root function r satisfying (2) if and only if for any partition 
P = {S,, . . . ,s,> of v, 

n 

2 max{a(S,), k - b ( s ) ,  k - d-(Si ) }  4 k .  (8) 
1 - 1  

Proof. For P = {S,s} and F'  U {c}, (8) yields (a) and (b), respectively. 

Conversely, for a partition P = {S,, . . . , S,,}, define 

V '  = u s ,  V" = U S .  
SEF S E F  

If F" = 0, then (b) yields (8); otherwise, using (b), we obtain 

n c max{a(S,), k - b(q ) ,  k - d - ( S i ) }  
I = I  

= C [ k  - d - ( S ) ]  + C [ k  - b(S)]  + a(V' U V " )  
SEF'  S E F  

< c b(S )  + c [k - b(3)l  + a(V' u V " )  
SEF' S E P  
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= b(V’ )  + lF”l[k - b(V)]  + b(V”) + u(V‘ U V ” )  

d b(V’)  + k - b ( V )  + b(V”) + u(V’ U V ” )  

= k - b(V‘ U V ” )  + a(V’ U V ” )  

d k .  

The equivalence of their conditions is proved 
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