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1. Introduction

Temporal networks were introduced to model the exchange of information in a network or the spread of
a disease in a population. We are given a directed graph D and a time label function 7 on the arcs of D, the
pair (D, 7) is called a temporal network. Intuitively, for an arc a of D, 7(a) is the time when the end-vertices
of a communicate, that is when the tail of a can transmit a piece of information to the head of a. Then the
information can propagate through a path P if it is time-respecting, meaning that the time labels of the arcs
of P in the order they are passed are non-decreasing. For a nice introduction to temporal networks, see [1].

Problems about packing arborescences in temporal networks were investigated in [2]. An arborescence is
called time-respecting if all the directed paths it contains are time-respecting. The main result of [2] provides
a packing of time-respecting arborescences, each vertex belonging to many of them, if the network is pre-flow
and acyclic. Here pre-flow means intuitively that each vertex different from the root has at least as many arcs
entering as leaving, while acyclic means that no directed cycle exists. Kamiyama and Kawase [2] presented
examples to show that these conditions cannot be dropped.

Two questions naturally arise from these results: Must all kinds of directed cycles be forbidden?
Does high time-respecting root-connectivity imply the existence of 2 arc-disjoint spanning time-respecting
arborescences in a non-pre-flow temporal network?
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Fig. 1. Three temporal networks N where the 7-value of an arc is presented on the arc. The first two are non-acyclic pre-flow, the
second one is consistent. The third one is acyclic but not pre-flow. They contain no 2 arc-disjoint 7-respecting s-arborescences such
that each vertex v belongs to min{2, Ay (s,v)} of them.

Let us now present our contributions that give an answer to those questions.

We first propose a generalized version of the result of [2] with a simplified proof in Theorem 2.

Our main result, Theorem 4, is about packing time-respecting arborescences in pre-flow temporal
networks that may contain directed cycles. The condition in Theorem 4 is that the arcs in the same strongly
connected component must have the same 7-value. If this condition holds then our intuition would be to
use regular arborescences in the strongly connected components and then to try to extend them to obtain a
packing of time-respecting arborescences in the temporal network. This idea is a step in the right direction,
however the exact process used in the proof is a bit more complex, see Section 4.

By the famous result of Edmonds [3], we know that k-root-connectivity implies the existence of a packing
of k spanning s-arborescences. The authors of [1] show that for any positive integer k, time-respecting
k-root-connectivity does not imply the existence of 2 arc-disjoint spanning time-respecting arborescences in a
temporal network. To explain this construction (or more precisely, a slightly modified version of it), we point
out and recall in Section 5 the close relation between packings of spanning time-respecting arborescences,
packings of Steiner arborescences and proper 2-colorings of hypergraphs. We remark in Theorem 12 that the
decision problem, whether there exist 2 arc-disjoint spanning time-respecting arborescences, is NP-complete.

We show in Theorem 11 that time-respecting (n — 1)-root-connectivity implies the existence of a
packing of 2 spanning time-respecting s-arborescences in an arbitrary temporal network on n vertices.
This result becomes more interesting if we note that the examples of Fig. 1 show that time-respecting
(n — 3)-root-connectivity is not enough.

Finally, in Theorem 13, we show that in an acyclic temporal network (D, 7), it is NP-complete to decide
whether there exists a spanning arborescence whose directed paths consist of arcs of the same 7-value.

2. Definitions

Let D = (VUs, A) be a directed graph with a special vertex s, called root, such that no arc enters s. The
set of arcs entering, leaving a vertex set X of D is denoted by pp(X), dp(X), respectively. Sometimes we use
pa(X) for pp(X) and similarly §4(X) for 6p(X). We denote |pp(X)| and [6p(X)| by dj,(X) and df(X),
respectively. We call the directed graph D acyclic if D contains no directed cycle. If dp,(v) = dj,(v) for all
v € V, then D is called Eulerian. We say that D is pre-flow if dj,(v) > dj;(v) for all v € V. A subgraph
F=(V'Us,A") of D is called an s-arborescence if F' is acyclic and d(v) =1 for all v € V. We say that F'
is spanning if V' = V. For U C V, F is called a Steiner s-arborescence or an (s, U)-arborescence if F is an
s-arborescence and it contains all the vertices in U. A packing of arborescences means a set of arc-disjoint
arborescences. For v € V, a path from s to v is called an (s,v)-path and Ap(s,v) denotes the maximum
number of arc-disjoint (s, v)-paths in D. For some k € N, we say that D is k-root-connected if Ap(s,v) > k
for all v € V. For some U C V and k € N, we say that D is Steiner k-root-connected if Ap(s,v) > k for all
v € U. We call a directed graph D’ = (V U {s,t}, A’) almost Eulerian if d;,(v) = df,(v) for all v € V and
dpi(s) =0=di(¢).
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For a function 7 : A — N, N = (D, 7) is called a temporal network. For i € N, let pi (v)= {a €
pp(v) : 7(a) < i} and 0% (v)= {a € dp(v) : 7(a) < i}. We call the temporal network N acyclic if D
is acyclic. We say that N is pre-flow if |p% (v)| > |65 (v)| for all i € N and for all v € V. Note that if a
temporal network (D, 7) is pre-flow, then the directed graph D is pre-flow. We say that (D, 7) is consistent
if arcs of different 7-values cannot belong to the same strongly connected component of D. In this case in
each strongly connected component @Q of D that contains at least one arc, each arc has the same 7-value,
that we denote by 7(Q). A directed path P of D, consisting of the arcs aj,...,a; in this order, is called
time-respecting or T-respecting if 7(a;) < 7(a;y1) for 1 < i < £ — 1. An s-arborescence F' of D is called
time-respecting or T-respecting if for every vertex v of F', the unique (s,v)-path in F' is 7-respecting. For
v € V, An(s,v) denotes the maximum number of arc-disjoint 7-respecting (s, v)-paths in D. We say that
N is time-respecting k-root-connected if Ay (s,v) > k for allv € V. If N’ = (D’,7') is a temporal network
where D' = (V U {s,t}, A’) is almost Eulerian, then for a vertex v € V', we call a bijection p from dp/(v)
to ppr(v) T'-respecting it ' (ul,(f)) < 7/(f) for all f € §ps(v).

A hypergraph H = (V,€) is defined by its vertex set V' and its hyperedge set £ where a hyperedge is
a subset of V. For some r € N, the hypergraph H is called r-uniform if each hyperedge in £ is of size r
and r-regular if each vertex in V' belongs to exactly r hyperedges. A 2-coloring of the vertex set V is called
proper if each hyperedge in £ contains vertices of both colors, in other words no monochromatic hyperedge
exists in £. We call &' C &€ an exact cover of H if each vertex in V belongs to exactly one hyperedge in £’.

3. Packing time-respecting arborescences in acyclic pre-flow temporal networks

The aim of this section is to generalize the following result of Kamiyama and Kawase [2] on packing
time-respecting arborescences in acyclic pre-flow temporal networks.

Theorem 1 (/2]). Let N = (V U s, A),7) be an acyclic pre-flow temporal network and k € N. There exists
a packing of k T-respecting s-arborescences such that each vertex v in'V belongs to min{k, Anx(s,v)} of them.

Note that Theorem 1 implies that in a time-respecting k-root-connected acyclic pre-flow temporal network
there exists a packing of k spanning time-respecting s-arborescences.
We now present our first result, a slight extension of Theorem 1.

Theorem 2. Let N = ((V Us, A),T) be an acyclic temporal network and k € N such that
min{k, |p% (v)|} > min{k, |64 (v)|} for alli €N, for allv € V. (1)

There exists a packing of k T-respecting s-arborescences such that each vertex v in V' belongs to min{k, d, (v)}
of them.

We will partially follow the proof of [2] but we will point out that Lemmas 3 and 4 in [2] are not needed to
prove Theorem 2. Hence the proof of Theorem 2 is simpler than that of Theorem 1. The following algorithm
is a slightly modified version of the algorithm of Kamiyama and Kawase [2]. Its input is an acyclic temporal
network N = ((V Us,A),7) and k € N such that (1) is satisfied. Its output is a packing of 7-respecting
s-arborescences 11, . .., Ty such that each vertex v in V' belongs to min{k, d; (v)} of them. For every v € V,
let I(v) be a set of arcs of smallest 7-values entering v of size min{k,d, (v)}. The algorithm will use arcs
only in J, ¢y I(v). The algorithm heavily relies on the fact that the network is acyclic. It is well-known that
a directed graph D is acyclic if and only if a topological ordering vy, ..., v, of its vertex set exists, that is if
v;v; is an arc of D then ¢ > j. Since no arc enters s, we may suppose that in a topological ordering v,, = s.
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Algorithm "PACKING TIME-RESPECTING ARBORESCENCES”

Let v, = s,..., v1 be a topological ordering of V U s.
Let A; =0 foralll <i<k.
For j =1ton—1, let
IZ{ISiSk:&qi(Uj)#@},
a; be an arc in 04, (v;) of minimum 7-value for all i € I,
{@1,...,a)} be an ordering of {a; : i € I'} such that 7(a;) <--- < 7(ay),

m: I — {1,...,|I|} be the bijection such that a; = a,; for alli € I,
J be a subset of {1,...,k}\ I of size |I(v;)| — |1,
o:J—={1,...,|J|} be a bijection,

{ex,-.. e, f1,- -+, flg)} be an ordering of I(v;) such that
T(er) < <7ley) <7(f1) < < 7(fa));
A; = A U €x(4) foralli eI,
A; = A U fo(i) forall ¢ € J.
Let T; = (V;, A;) where Vj is the vertex set of the arc set A; for all 1 <i < k.
Stop.

Theorem 3. Given an acyclic temporal network N = (VU s, A),7) and k € N such that (1) is satisfied,
Algorithm PACKING TIME-RESPECTING ARBORESCENCES outputs a packing of k T-respecting s-arborescences
such that each vertex v in 'V belongs to min{k,d,(v)} of them.

Proof. Forall 1 < j < n — 1, in the jth iteration of the algorithm, by the definition of I, (1) and
the definition of I(v;), we have |I| < min{k,d}(v;)} < min{k,d;(v;)} = |I(v;)|. This implies that .J
exists. By construction, the digraphs 77,...,Ty are pairwise arc-disjoint and the in-degree of each vertex
v; € V; — s is 1 in T;. Then, since N is acyclic, T; is an s-arborescence for all 1 < ¢ < k. Moreover,
H1<i<k:v; €eVi}| = [I| +|J]| = |I(vj)] = min{k,d,(vj)} for all 1 < j < n — 1. To see that T; is
time-respecting for all 1 <i <k, let v; be a vertex in V; — s and a € d4,(v;). Then e,y € pa,(v;). Suppose
on the contrary that 7(er(;)) > 7(a). Since 7(g9) > 7(er@)) > 7(a) for all g € pa(vj) \ {e1,...,ex@)y-1}, We
have [pi™ (v;)] < [{e1,- -+, engiy_1} = m(i)— 1. Since 7(a) > 7(a;) = T(@n(s)) > 7(ag) forall 1 < £ < 7(i) and
w(i) < [I| < k, we have 7(i) = [{a1, ..., an@}| < min{[63" (v;)], k}. Thus [pR™ (v;)] < min{|on* (v;)], k}
that contradicts (1). This contradiction completes the proof. N

Note that Theorem 3 implies Theorem 2. Note also that Theorem 2 implies Theorem 1. Indeed, if N
is pre-flow, then (1) is satisfied, so, by Theorem 2, there exists a packing of k T-respecting s-arborescences
such that each vertex v in V belongs to exactly min{k, d (v)} of them. This implies that min{k, Ay (s,v)} =
min{k,d, (v)} and hence Theorem 1 follows.

4. Packing time-respecting arborescences in non-acyclic pre-flow temporal networks

In [2], Kamiyama and Kawase provide an example of 7 vertices and 12 arcs that shows that in Theorem 1
one cannot delete the condition that D is acyclic. Here we provide a smaller example with 5 vertices and
7 arcs, see the first temporal network in Fig. 1. Note that this temporal network contains a directed cycle
whose arcs are not of the same 7-values and hence the temporal network is not consistent.

The second temporal network in Fig. 1 is another example that shows that in Theorem 1 one cannot delete
the condition that D is acyclic. Here the temporal network contains one directed cycle C' and all the arcs of
C are of the same 7-values and hence the temporal network is consistent. Note that in this example there

4
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exists a packing of three 7-respecting s-arborescences such that each vertex v belongs to exactly Ay (s,v) of
them.

Kamiyama and Kawase [2] also provide an example of 7 vertices and 12 arcs that shows that in Theorem 1
one cannot delete the condition that D is pre-flow. Here we provide a smaller example with 5 vertices and
8 arcs, see the third temporal network in Fig. 1.

We now present the main result of this paper on packing of time-respecting arborescences in consistent
pre-flow temporal networks where only the natural upper bound is given on the number of arborescences.

Theorem 4. Let N = (D = (VUs, A),7) be a consistent pre-flow temporal network. There exists a packing
of d},(s) T-respecting s-arborescences, each vertex v in V belonging to An(s,v) of them.

To prove Theorem 4, we need an easy observation on almost Eulerian acyclic pre-flow temporal networks.
A similar result has already been presented in [2].

Proposition 1. If N = (D = (V U{s,t}, A),7) is an almost Eulerian acyclic temporal network and pi,
is a T-respecting bijection from dp(v) to pp(v) for allv € V, then D decomposes into dj,(s) T-respecting
(s,t)-paths such that each vertex v € V belongs to d,(v) of them.

Proof. We prove the claim by induction on df(s). If dj;(s) = 0, then, since D is almost Eulerian and
acyclic, we have d(v) = 0 for all v € V' and we are done. Otherwise, there exists an arc leaving s. Then,
using the bijections u; ! and the facts that D is acyclic and p, is a 7-respecting, we find a 7T-respecting
directed (s,t)-path P. By deleting the arcs of P and applying the induction, the claim follows. N

We also need the following result of Bang-Jensen, Frank, Jackson [4].

Theorem 5 ([/]). Let D = (V Us, A) be a pre-flow directed graph. There exists a packing of s-arborescences,
each vertex v € V' belonging to Ap(s,v) of them.

We are ready to prove our main result.

Proof of Theorem 4. First we transform the instance into another one N’ = (D’,7') as follows. The
directed graph D’ = (V U {s,t}, AU A’) is obtained from D by adding a new vertex t and dp(v) — dj;(v)
parallel arcs from v to ¢ for all v € V and we define 7/(a) to be equal to 7(a) if a € A and to M if a € A’,
where M = max{7(a) : a € A}. Since N is pre-flow, so is D, that is d(v) — d},(v) > 0 for allv € V
and hence the construction is correct. This way we get an instance which remains consistent ({t} is a new
strongly connected component) and pre-flow (by the definition of M) and D’ is almost Eulerian.

For each vertex v € V, let us fix orderings of pps(v) and dp/(v) such that 7/'(e;) < -+ < Tl(ed;,/(v))
and 7'(f1) < -+ < T/(fd;,(v))’ respectively. Then p,(f;) = e; for all 1 < j < d},(v) is a 7/-respecting
bijection for all v € V. Indeed, if there exists j such that 7'(e;) = 7'(u,(f;)) > 7'(f;) = 4, then
Iph (V)] <j—1<j<16%/(v)| that contradicts the fact that N’ is pre-flow.

To reduce the problem to an easy acyclic problem that can be treated by Proposition 1 and some problems
that can be treated by Theorem 5, let us denote the strongly connected components of D’ by Q/,..., Q).
Let U; denote the vertex set of Q’ for all 1 < j < £. Then the directed graph D" obtained from D’ by
contracting each Q; into a vertex q;’ is acyclic. By changing the indices if it is necessary, we may suppose
that ¢/ = s,...,¢{ =t is a topological ordering of the vertices of D”. Let N” = (D", 7") be the temporal
network where 7/(a) = 7/(a) for all a € A(D"). Note that since D’ is almost Eulerian, so is D”. Indeed, we
have d,, (q}) — d;,,(q;.') =d,(U;)—d},(U;) = Zver (dp (v) —dj,(v)) =0 for all 2 < j < £—1. Note also
that djs(s) = d},(s) = d}.(s).
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To define a convenient 7”-respecting bijection pf from dpr(q}) = 6p/(U;) to ppr(q})) = ppr(U;) for all
2<j</{—1,let us fix such a j and let us define the following sets:

R} = {vw € dp/(U;) : 7'(p, (vw)) > 7' (Q))},

R? = {vw € op/(Uj) : 7' (vw) < T/(Q;)},

R} =dp/(U;j) \ (Rj URY),

S} = {p,(vw) :vw € le-},

SJQ- = {p, (vw) :vw € R?} and

(

S]3 = ppr UJ) \ (Sjl U 832)
Claim 1. {R},RJZ,R?} is a partition of §p/(U;) and {S},SJZ,S?} is a partition of pp/(Uj).

Proof. If vw € R}, v'w' € RZ, uv = i (vw) € Sj and w'v" = pl,(v'w') € S7, then, since p;, and p!, are 7'-
respecting bijections, we have 7'(vw) > 7/(u;, (vw)) = 7' (uwv) > 7(Q}) > 7' (v'w’) > 7' (1, (v'w")) = 7' (W'V).
Thus vw # v'w’ and uv # u'v’, so le- N R? = () and S]1 N SJQ- = (). By the definition of le- and R?, we have
R} UR? C 6p/(U;). If vw € Rj, then 7/(p, (vw)) > 7/(Q%). If vw € R7, then, since i, is a 7'-respecting
bijection, we get 7'(u;, (vw)) < 7'(vw) < 7/(Q}). Then, using that each arc in Q) has 7'-value 7/(Q;

), we
J
have S} U S? C pp/(Uj). By the definition of R? and S?, Claim 1 follows. W

"

We now start to define . For vw € R} U Rz, let pff(vw) = pi,(vw). Since each p, is 7'-respecting,
we have 7 (vw) = 7'(vw) > 7'(p;,(vw)) = 7" () (vw)). Note that for all zy € R} and for all uv € S,
' (xy) > 7'(Q}) > 7'(uv). However, we cannot take an arbitrary bijection from R? to S? because we have
to guarantee that the vertices in Q; also belong to the required number of arborescences. In order to do
this, let us define the temporal network N} = (D, ;) where the directed graph D’ is obtained from D’ by
contracting [, ; U; into a vertex s;, contracting (J
tj and 7;(a) = 7'(a) for all a € A(DY).

i< U; into a vertex ¢; and deleting the arcs from s; to

Claim 2. Nj’- satisfies the following.

(a) Dj is almost Eulerian,
(0) Apr (sj:t5) = d,}; (),
(c) )\ij_(sj,v) > Ay (s, v) for allv € Uj.

Proof. (a) Since D' is almost Eulerian, so is Dj. Indeed, we have d;);_ (v) = dp,(v) =dj,(v) = d;;;_ (v) for
all v € U;.

(b) By (a) and dB;(sj) =0= dE; (t;), (b) easily follows. Indeed, let r; = dB; (t;) and let us define D
by adding r; arcs {h1,...,h,;} from ¢; to s; in D}. Then, by (a), D; is Eulerian. Thus it decomposes into
directed cycles. Let C1,...,C; be the arc-disjoint directed cycles that contain the arcs hq, ..., h,;. Then
P =C1—h,..., Py =C,; — hy; are arc-disjoint directed (sj,t;)-paths. Hence r; < )\D;(sj,tj) <rj, and
we have (b).

(c) For all v € Uj, any 7'-respecting (s, v)-path in N’ provides a 7/-respecting (s;,v)-path in N}, and (c)
follows. W

To be able to use normal arborescences (not time-respecting ones), we have to modify D;. No 7-respecting
directed path in D may contain an arc in S} and an arc in @}, hence the corresponding arcs in R} and S} will
be deleted from D’;. A 7-respecting s-arborescence in D may contain an arc u,(vw) in S7 (where vw € R3)
and an arc in Q;-, but this arborescence must contain vw. To guarantee this property we use a trick: we
replace the corresponding two arcs in R? and 5]2 in D;- by two convenient arcs. More precisely, let H; be

6
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obtained from D;- by deleting s;v and vt; that correspond to ) (vw) and vw for all vw € R} and replacing
sjv and vt; that correspond to p) (vw) and vw for all vw € R? by eyw = s;t; and f, = t;v. Let Ej;
= {epw : VW € RJQ} and Fj = {fuw : vw € RJQ}

Claim 3. Hj satisfies the following.

(a) H; is pre-flow,
(b) Am;(s5,t5) = dig, (1),
(¢) Amj(s5,v) 2 Ani(s5,v) = dgy (v) for allv € Uj.
J J

Proof. (a) By Claim 2(a), Dj is almost Eulerian. Then, by JD/( ;) = 0, Dj is pre-flow. By deleting from
D’ the arcs s;v and vt; that correspond to p! (vw) and vw for all vw € Rl, we decreased the in-degree
and the out-degree of each vertex by the same value so the directed graph obtained this way remained
pre-flow. By replacing sjv and vt; that correspond to pl(vw) and vw for all vw € R? by s;t; and t;v,
we may decrease the out-degrees of the vertices in Q; but the in-degrees remained unchanged. Further,
di ( )= d+ ( )+ Fi| = |Ej| <dj ( /). It follows that H; is pre-flow.

(b) Note that for all tp € X CUjUty, dy (X) = dp, (X) - |R}|. Then, by Claim 2(b), we have
i, (1) 2 Ay (31:85) = Apy (55,85) = | B = di, (6) = |R3| = i (1) and. (b) follows.

(¢) On the one hand, by deleting the arcs correspondmg to Psi (v), we destroyed at most d, (v) 7;-

respecting (s;, v)-paths in N} and we did not destroy a 7;-respecting (s;, u)-path in N for u € U;\v because
each arc in Q) has 7/-value 77(Q’) and each arc in pg1(v) has 7/-value strictly larger than 7/(Q}). On the
other hand, if a 7}-respecting (s, u)-path P contains ]sjv (corresponding to ul, (vw) for some vw € Rjz) in
N} then P — s;v + ey + fow is a directed (s;, u)-path in Hj;. These arguments imply (c). H

By Claim 3(a) and Theorem 5, there exists a packing B, of s;-arborescences T; in Hj, each vertex
v € U; Ut; belonging to )\H (sj,v) of them. Let us choose such a packing B; that minimizes the size of
the set F; B, of the arcs fy., € F such that an arborescence Tf v in B; contains fy,, but not eyy.

Claim 4. B, satisfies the following.

(a) djy (s;) = |Bj| = d (t;),

(b) F, =0, |

(¢) {T} — s; —t; : Tj € B;} is a packing of arborescences in Q’;, each vertex v € U; belonging to Ay, (sj,v)
of them.

Proof. (a) By Claim 3(b), t; belongs to Ay, (s;,t;) = dI_{j (t;) of the s;-arborescences in B;. Thus each arc
entering ¢; belongs to some s;-arborescence in B; and d;{j (tj) < |Bj|. Moreover, by construction and since
DY is almost Eulerian, we have dy ( ) =dp (t;) — |R1| = d ( i) — |Sl| =d}; (sJ) > |B;|, and (a) follows.

(b) Suppose that Fg, # (. Let Ep;, = {evw fow € Fp; } By (a), every ey, € Ep; is contained in an
sj-arborescence Te“” in B;.

First suppose that for some e, € EB Te”w contains only the arc e,,,. Note that Tf YW — fow consists
of an s;-arborescence T " and a v- arborescence T’ Let B’ be obtained from B; by replacmg T fow by T} ! and
T:°% by epw + fow + T]" Then B’ is a packing of s5- arborescences in Hj such that each vertex v E U Ut
belongs to )\H (sj,v) of them. Moreover, f,, and e,, belong to the same s;-arborescence in B;-, that is
|FB/ | < |Fg;| and we have a contradiction.

We may hence suppose that for every e, € Eg;, Tp”“’ contains another arc, so by (a), contains an arc
in Fp;. Let B} be the set of those s;- arborescences in B that contain an arc of Fp;. Then |Fp,| = |Ep,|
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< |Bj| < |Fp,|. Hence we have equality everywhere. It follows that every s;-arborescences in B} contains
exactly one arc from both Fjg; and Ep;. Then for every fu, € Fp;, T’ jf " contains an arc e, € Ep;. Let
B’ be obtained from B; by replacing e, by €y € Ep, in ij““ for every fu., € Fjg;. Then B} is a packing
of sj-arborescences in H; such that each vertex v € U; Ut; belongs to Ay, (s;, v) of them. Moreover, F| B = 0
and we have a contradiction.

(c) follows from the definition of B;, (a) and (b). W

We now finish the definition of u;-’ . Let vw € R;’. Then vw corresponds in Hj; to an arc gy, = vi;
entering t;. By Claim 4(a), g, belongs to an sj-arborescence TJT(’““ in Bj. Let us define pj(vw) € S?
to be the arc zq] of D" that corresponds to the arc s;u in Hj of the unique (s;,?;)-path of Tjng_ Then
7 (vw) = 7} (vw) > TH(Q) > T} (xq]) = 7 (] (vw)) for all vw € R3.

By the definition of z/ and Claim 1, we have a 7"-respecting bijection ] from dpr(gj) to ppr(q;) for all
2 < j < {—1. Recall that D" is acyclic and almost Eulerian. Then, by Proposition 1 and df(s) = d},(s), D"
decomposes into 7”-respecting (s, t)-paths P, ..., de{)(s) such that each vertex ¢ # s belongs to d,,(g})
of them. These paths can be extended, using from Claim 4(c) the arborescences T; —sj — t; in Q) for
1 <4< d}gj(sj) and 2 < 7 < £ — 1, to get s-arborescences in D’ such that each vertex v € V belongs
to Am;(s5,0) + dg (v) = )\N]/_(sj,fu) > An(s,v) of them, by Claims 3(b) and 2(c). Since the directed paths

J
Py, P (s) Q1€ 7"-respecting, that is 7/-respecting and D’ is consistent, the arborescences constructed are
D
7/-respecting. Hence N’ has a packing of 7/-respecting s-arborescences T7, ... ,Tl;+ (@) such that each vertex
D

v of D" distinct from s and ¢ belongs to Ay/(s,v) = An(s,v) of them, and hence {T1 = T] —t,..., T + )
D
_ !
= Tir
belongs to Ay (s,v) of them. MW

— t} is a packing of 7-respecting s-arborescences such that each vertex v of D distinct from s

5. Arc-disjoint spanning time-respecting arborescences

Edmonds’ arborescence packing theorem [3] states that k-root-connectivity from s implies the existence
of a packing of k spanning s-arborescences. The following observation of [1] shows that the natural extension
of Edmonds theorem for k =1 is true for temporal networks.

Theorem 6 ([1]). Any T-respecting root-connected temporal network N = (VUs, A), T) contains a spanning
T-respecting s-arborescence.

The authors of [1] show that high time-respecting root-connectivity of a temporal network does not imply
the existence of 2 arc-disjoint spanning time-respecting arborescences.

Theorem 7 ([1]). For all k € NT, there exist temporal networks N = ((V U s, A),T) such that Ay (s,v) >k
for allv € V and no packing of 2 spanning T-respecting s-arborescences exists in N.

Their construction contains directed cycles but it can be easily modified to get an acyclic example. This
acyclic example for k = 2 is presented in Figure 2 in [2].

We now relate the spanning time-respecting arborescence packing problem to known problems, namely
the Steiner arborescence packing problem and the hypergraph proper 2-coloring problem. To do that
we explain how the above mentioned modified construction can be obtained in 3 steps. First, take a
k-uniform hypergraph without proper 2-coloring. Then construct a directed graph that is Steiner k-root-
connected without 2 arc-disjoint Steiner arborescences. Finally, construct an acyclic temporal network that
is time-respecting k-root-connected without 2 arc-disjoint spanning time-respecting arborescences.

8
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There exist many constructions for k-uniform hypergraphs without proper 2-coloring, see [1,5] and
Exercise 13.45(b) of [6]. We mention that, by a result of Erdés [7], all examples contain exponentially many
hyperedges in k.

Theorem 8 ([7]). Any k-uniform hypergraph without a proper 2-coloring contains at least 2°~1 hyperedges.

We now show that starting from an arbitrary k-uniform hypergraph Hy; = (Vj, &) without proper 2-
coloring how to construct an acyclic directed graph D and a vertex set Uy such that Ap, (s,u) = k for
all u € Uy and there exists no packing of two (s, Uy)-arborescences in Dy. Let Gy := (Vi,Uy; Ex) be the
bipartite incidence graph of the hypergraph Hj, where the elements of Uy correspond to the hyperedges in
Er. Let Dy = (Vi U Ui U s, Ag) be obtained from G}, by adding a vertex s and an arc sv for all v € Vj
and directing each edge of Ey from Vj, to Ug. By construction Dy is acyclic. Since Hy, is k-uniform, we have
Ap, (s,u) = k for all u € Uy.

Theorem 9. Dy, has no packing of two (s, Ug)-arborescences.

Proof. Suppose that there exists a packing of 2 (s, Uy)-arborescences Fy and Fy in Dy. Using this packing,
we can define a 2-coloring of Vj: let v € V}, be colored by 1 if sv € A(Fy) and by 2 otherwise. Since each
vertex in Uy belongs to both F; and F5, no hyperedge of £ is monochromatic, that is the above defined
2-coloring of Hj, is proper. This contradicts the fact that Hy has no proper 2-coloring. W

As a next step, we show that starting from the acyclic directed graph Dy and the vertex set Uy, how to
construct a temporal network Ny, such that Ay, (s,v) = k for all vertices v and no packing of 2 spanning
time-respecting s-arborescences exists in N. Let us define Ny, := (Dj, 7)) as follows: Dj is obtained from
Dy, by adding the set of arcs A} consisting of k — 1 parallel arcs from s to all v € V}, and we define 75 (a) =1
if a € Ay, and 2 if a € Aj. Note that since Dy, is acyclic, so is Dj}. Then a spanning s-arborescence F™* of
Dy is 7-respecting if and only if F* — A} is an (s, Ug)-arborescence in Dj. Thus a packing of 2 spanning
Ty -respecting s-arborescences in D} would provide a packing of 2 (s, Uy)-arborescences in Dy. Hence, the
following result is an immediate consequence of Theorem 9.

Theorem 10. For all k € Nt there exist acyclic temporal networks N = ((V U s, A),7) such that
ANn(s,v) >k for allv € V and no packing of 2 spanning T-respecting s-arborescences exists in N.

These examples of acyclic temporal networks that are time-respecting k-root-connected without 2 arc-
disjoint spanning time-respecting arborescences contain, by Theorem 8, exponentially many vertices in k.
In other words, k < log(n) where n is the number of vertices. In the light of this fact, it is natural to ask
whether there exist 2 arc-disjoint spanning time-respecting arborescences in a temporal network if & is linear
in n. The examples of Fig. 1 show that time-respecting (n— 3)-root-connectivity does not imply the existence
of 2 arc-disjoint spanning time-respecting arborescences. We propose the first steps in this direction. We first
remark that n-root-connectivity is enough.

Claim 5. Let N = (V Us, A),7) be a temporal network on n > 1 vertices such that Ay (s,v) > n for all
v € V.. Then there ezists a packing of 2 spanning T-respecting s-arborescences in N.

Proof. Since Ay(s,v) > n > 1 for all v € V, there exists, by Theorem 6, a spanning 7-respecting
s-arborescence F in N. Further, there exist n arc-disjoint 7-respecting (s, v)-paths Py,...,PY forallv € V.
By deleting the arcs of F, we can destroy at most |A(F)| of the (s,v)-paths Py, ..., PY for all v € V. Since
|A(F)| = n — 1, this implies that Ay_a(p)(s,v) > n — (n —1) = 1 for all v € V. Then, there exists, by
Theorem 6, a spanning 7-respecting s-arborescence F' in N — A(F), and we are done. W

9
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With some effort we can improve the previous result by 1.

Theorem 11. Let N = ((VUs, A),7) be a temporal network on n > 2 vertices such that An(s,v) >n —1
for allv € V. Then there exists a packing of 2 spanning T-respecting s-arborescences in N.

Proof. Since Ay(s,v) > n—1 > 1 for all v € V, there exists, by Theorem 6, a spanning 7-respecting
s-arborescence F in N. Let F(v) be the unique arc of F entering v for all v € V. Note that A(F) = {F(v) :
v e VE If An_awmy(s,v) > 1 for all v € V then there exists, by Theorem 6, a spanning 7-respecting
s-arborescence in N — A(F'), and we are done.

Otherwise, Ay_a(r)(s,u) = 0 for some u € V. By assumption, there exist n — 1 arc-disjoint 7-respecting
(s,u)-paths Pi,..., P,_1. Then, since |V| = n — 1, there exists a bijection 7 from V to {1,...,n — 1} such
that F'(v) is contained in P,y for all v € V. It follows that no arc leaves u in F. Let w € V — u be a
vertex for which 7(F(w)) is maximum. Let the last arc of Py, be denoted by zu. Then, since F(u) is the
last arc of the path Py, and the paths are arc-disjoint, F'(u) # xu. By the choice of w and since Py (.
is 7-respecting, we have 7(F(z)) < 7(F(w)) < 7(xu). We obtain that F' :== F — F(u) + zu # F is also a
spanning T-respecting s-arborescence in V.

By assumption and |A(F) — F(u)| =n — 2, we have Ay_(a(p)—p(u))(5,v) > (n—1) = (n — 2) = 1 for all
v € V. Then, by Theorem 6, there exists a spanning 7-respecting s-arborescence F” in N — (A(F) — F(u)).
Since F” contains a unique arc entering u, it does not contain either F'(u) or zu. Thus, F" is arc-disjoint
from either F or F’, and we are done. W

We conjecture that the following is true.

Conjecture 1. Let N = ((V U s,A),7) be an acyclic temporal network on n > 4 wvertices such that
An(s,v) > 5 for allv € V. Then a packing of 2 spanning T-respecting s-arborescences exists in N.

The third example presented in Fig. 1 is of 5 vertices, acyclic, time-respecting 2-root-connected and has
no packing of 2 spanning 7-respecting s-arborescences. It follows that time-respecting 2?"—1"0ot—cormectivity
is not enough to have a packing of 2 spanning time-respecting s-arborescences in acyclic temporal networks.

6. Complexity results

Lovész [8] proved that the problem of 2-colorings of k-uniform hypergraphs is NP-complete. This implies
that the problem of packing 2 Steiner arborescences is also NP-complete. An easier way to see this is to
use the NP-complete problem of two arc-disjoint directed paths in a directed graph D, one from r to t
and the other from t to r. (See [9].) Construct D’ from D by adding a new vertex s and the two arcs sr
and st. Then D has an (r,t)-path and a (t,r)-path that are arc-disjoint if and only if D’ has a packing
of 2 (s, {r,t})-arborescences. This with the construction presented in the previous section finally imply the
following.

Theorem 12. The problem of packing k spanning time-respecting arborescences is NP-complete even for
k=2

Let us check what happens if we replace the inequality with equality in the definition of time-respecting
directed paths and we consider the values of 7 as colors. Then we get monochromatic directed paths. We
may hence study the following problem MOCHPASPAR:

10
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S

Fig. 2. A 3-regular 3-uniform hypergraph and the constructed colored directed graph for it.

Problem 1. Given a directed graph D = (ZUs, A) and a coloring ¢ of the arcs, decide whether there exists
a spanning s-arborescence containing only monochromatic directed paths.

We show that this decision problem is difficult. We will reduce the exact cover in 3-regular 3-uniform
hypergraphs problem (RXC3) to our problem. In RXC3, we are given a 3-regular 3-uniform hypergraph
H = (V,€), and the problem consists of determining whether there exists a subset £ of £ such that each
vertex in V occurs in exactly one hyperedge in £'. Gonzalez proved in [10] that RXC3 is NP-complete.

Theorem 13. The problem MOCHPASPAR is NP-complete even for acyclic directed graphs and for two
colors.

Proof. It is clear that MOCHPASPAR is in NP. Let us take an instance of RXC3, that is let H be a
3-regular 3-uniform hypergraph. We construct a polynomial size instance (D,c) of MOCHPASPAR such
that # has an exact cover if and only if (D, ¢) has a spanning s-arborescence containing only monochromatic
directed paths. Since H is a 3-regular 3-uniform hypergraph, the number of vertices of A and the number
of hyperedges of H coincide. Let us denote the vertices of H by V' = {v1,...,v,} and the hyperedges of H
by & ={Hi,...,Hp}.

Let D = (Z U s, A) be the directed graph where Z = U UV UW and A = A; U As U A3 U Ay with U
= {up,...,un}, W =A{w;; : ;N H; # 0}, Ay = {e} = su; : 1 <i <h}, Ay = {e? = su; : 1 < i < h},
As = {uv; 1wy € Uyu; € Vyu; € H;} and Ay = {ww; j,u;w; j : u,u; € Uyw;; € W} Let ¢(a) be equal
to black if @ € A; U Az and gray if a € A; U Ay. Note that D is acyclic and ¢ uses only two colors. For an
example see Fig. 2.

The size of D is polynomial in A. Indeed, since H is a 3-regular 3-uniform hypergraph, [W| < $-3-2-h, so
|Z Us| = |U|+|V|+|W|+1 < h+h+3h+1 = 5h+1 and |A| = |A1|+]|Az|+|As|+|A4| < h+h+3h+2-3h = 11h.

Suppose first that H has an exact cover H'. Let Z’ be the set of vertices of D that can be reached from s
by a black directed path starting with an arc su; with H; € H' and Z"” by a gray directed path starting with
an arc su; with H; ¢ H’. Since H' is a cover, we have Z/ = VU{u; : H; € H'}. Since the hyperedges in H’ are
disjoint, we have Z"” = {u; : H; ¢ H'}UW. Since Z'NZ" = s, the desired spanning s-arborescence containing
only monochromatic directed paths exists. In the example of Fig. 2, H' = {Hy,Hg}, Z' = V U {u1,ug},
Z" = {ug,us,uq,us} UW and the arborescence is represented by bold arcs.

Now suppose that (D, ¢) has a spanning s-arborescence F' containing only monochromatic directed paths.
Let H' = {H; : u; € U,v; € V,ujv; € F}. Since F is a spanning s-arborescence, each vertex v; has exactly
one black arc u;v; in F entering. This implies that H' covers V. Let H;, H (j < k) be hyperedges in #H'. If
wj x € W, then, since the directed paths are monochromatic in F, su; and suy are black and hence u;w;
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and upw; ;, are not contained in F that contradicts the fact that F' is a spanning s-arborescence. Thus H;
and Hj, are disjoint. It follows that H’ is an exact cover. W
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