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a b s t r a c t

We present a slight generalization of the result of Kamiyama and Kawase (2015)
on packing time-respecting arborescences in acyclic pre-flow temporal networks.
Our main contribution is to provide the first results on packing time-respecting
arborescences in non-acyclic temporal networks. As negative results, we prove the
NP-completeness of the decision problem of the existence of 2 arc-disjoint spanning
time-respecting arborescences and of a related problem proposed in this paper.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Temporal networks were introduced to model the exchange of information in a network or the spread of
a disease in a population. We are given a directed graph D and a time label function τ on the arcs of D, the
air (D, τ) is called a temporal network. Intuitively, for an arc a of D, τ(a) is the time when the end-vertices
f a communicate, that is when the tail of a can transmit a piece of information to the head of a. Then the
nformation can propagate through a path P if it is time-respecting, meaning that the time labels of the arcs
f P in the order they are passed are non-decreasing. For a nice introduction to temporal networks, see [1].

Problems about packing arborescences in temporal networks were investigated in [2]. An arborescence is
alled time-respecting if all the directed paths it contains are time-respecting. The main result of [2] provides
packing of time-respecting arborescences, each vertex belonging to many of them, if the network is pre-flow
nd acyclic. Here pre-flow means intuitively that each vertex different from the root has at least as many arcs
ntering as leaving, while acyclic means that no directed cycle exists. Kamiyama and Kawase [2] presented
xamples to show that these conditions cannot be dropped.

Two questions naturally arise from these results: Must all kinds of directed cycles be forbidden?
oes high time-respecting root-connectivity imply the existence of 2 arc-disjoint spanning time-respecting
rborescences in a non-pre-flow temporal network?
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Fig. 1. Three temporal networks N where the τ-value of an arc is presented on the arc. The first two are non-acyclic pre-flow, the
second one is consistent. The third one is acyclic but not pre-flow. They contain no 2 arc-disjoint τ-respecting s-arborescences such
hat each vertex v belongs to min{2, λN (s, v)} of them.

Let us now present our contributions that give an answer to those questions.
We first propose a generalized version of the result of [2] with a simplified proof in Theorem 2.
Our main result, Theorem 4, is about packing time-respecting arborescences in pre-flow temporal

etworks that may contain directed cycles. The condition in Theorem 4 is that the arcs in the same strongly
onnected component must have the same τ -value. If this condition holds then our intuition would be to
se regular arborescences in the strongly connected components and then to try to extend them to obtain a
acking of time-respecting arborescences in the temporal network. This idea is a step in the right direction,
owever the exact process used in the proof is a bit more complex, see Section 4.

By the famous result of Edmonds [3], we know that k-root-connectivity implies the existence of a packing
f k spanning s-arborescences. The authors of [1] show that for any positive integer k, time-respecting
-root-connectivity does not imply the existence of 2 arc-disjoint spanning time-respecting arborescences in a
emporal network. To explain this construction (or more precisely, a slightly modified version of it), we point
ut and recall in Section 5 the close relation between packings of spanning time-respecting arborescences,
ackings of Steiner arborescences and proper 2-colorings of hypergraphs. We remark in Theorem 12 that the
ecision problem, whether there exist 2 arc-disjoint spanning time-respecting arborescences, is NP-complete.

We show in Theorem 11 that time-respecting (n − 1)-root-connectivity implies the existence of a
acking of 2 spanning time-respecting s-arborescences in an arbitrary temporal network on n vertices.
his result becomes more interesting if we note that the examples of Fig. 1 show that time-respecting

n − 3)-root-connectivity is not enough.
Finally, in Theorem 13, we show that in an acyclic temporal network (D, τ), it is NP-complete to decide

hether there exists a spanning arborescence whose directed paths consist of arcs of the same τ -value.

. Definitions

Let D = (V ∪ s, A) be a directed graph with a special vertex s, called root, such that no arc enters s. The
et of arcs entering, leaving a vertex set X of D is denoted by ρD(X), δD(X), respectively. Sometimes we use

ρA(X) for ρD(X) and similarly δA(X) for δD(X). We denote |ρD(X)| and |δD(X)| by d−
D(X) and d+

D(X),
respectively. We call the directed graph D acyclic if D contains no directed cycle. If d−

D(v) = d+
D(v) for all

v ∈ V , then D is called Eulerian. We say that D is pre-flow if d−
D(v) ≥ d+

D(v) for all v ∈ V . A subgraph
F = (V ′ ∪ s, A′) of D is called an s-arborescence if F is acyclic and d−

F (v) = 1 for all v ∈ V ′. We say that F

is spanning if V ′ = V . For U ⊆ V , F is called a Steiner s-arborescence or an (s, U)-arborescence if F is an
s-arborescence and it contains all the vertices in U . A packing of arborescences means a set of arc-disjoint
arborescences. For v ∈ V , a path from s to v is called an (s, v)-path and λD(s, v) denotes the maximum
number of arc-disjoint (s, v)-paths in D. For some k ∈ N, we say that D is k-root-connected if λD(s, v) ≥ k

for all v ∈ V . For some U ⊆ V and k ∈ N, we say that D is Steiner k-root-connected if λD(s, v) ≥ k for all
v ∈ U . We call a directed graph D′ = (V ∪ {s, t}, A′) almost Eulerian if d−

D′(v) = d+
D′(v) for all v ∈ V and

− +
dD′(s) = 0 = dD′(t).
2
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For a function τ : A → N, N = (D, τ) is called a temporal network. For i ∈ N, let ρi
N (v):= {a ∈

ρD(v) : τ(a) ≤ i} and δi
N (v):= {a ∈ δD(v) : τ(a) ≤ i}. We call the temporal network N acyclic if D

is acyclic. We say that N is pre-flow if |ρi
N (v)| ≥ |δi

N (v)| for all i ∈ N and for all v ∈ V . Note that if a
emporal network (D, τ) is pre-flow, then the directed graph D is pre-flow. We say that (D, τ) is consistent
f arcs of different τ -values cannot belong to the same strongly connected component of D. In this case in
ach strongly connected component Q of D that contains at least one arc, each arc has the same τ -value,
hat we denote by τ(Q). A directed path P of D, consisting of the arcs a1, . . . , aℓ in this order, is called
ime-respecting or τ -respecting if τ(ai) ≤ τ(ai+1) for 1 ≤ i ≤ ℓ − 1. An s-arborescence F of D is called

time-respecting or τ -respecting if for every vertex v of F , the unique (s, v)-path in F is τ -respecting. For
v ∈ V , λN (s, v) denotes the maximum number of arc-disjoint τ -respecting (s, v)-paths in D. We say that
N is time-respecting k-root-connected if λN (s, v) ≥ k for all v ∈ V . If N ′ = (D′, τ ′) is a temporal network
where D′ = (V ∪ {s, t}, A′) is almost Eulerian, then for a vertex v ∈ V , we call a bijection µ′

v from δD′(v)
to ρD′(v) τ ′-respecting if τ ′(µ′

v(f)) ≤ τ ′(f) for all f ∈ δD′(v).
A hypergraph H = (V, E) is defined by its vertex set V and its hyperedge set E where a hyperedge is

a subset of V . For some r ∈ N, the hypergraph H is called r-uniform if each hyperedge in E is of size r

and r-regular if each vertex in V belongs to exactly r hyperedges. A 2-coloring of the vertex set V is called
proper if each hyperedge in E contains vertices of both colors, in other words no monochromatic hyperedge
exists in E . We call E ′ ⊆ E an exact cover of H if each vertex in V belongs to exactly one hyperedge in E ′.

3. Packing time-respecting arborescences in acyclic pre-flow temporal networks

The aim of this section is to generalize the following result of Kamiyama and Kawase [2] on packing
time-respecting arborescences in acyclic pre-flow temporal networks.

Theorem 1 ([2]). Let N = ((V ∪ s, A), τ) be an acyclic pre-flow temporal network and k ∈ N. There exists
a packing of k τ -respecting s-arborescences such that each vertex v in V belongs to min{k, λN (s, v)} of them.

Note that Theorem 1 implies that in a time-respecting k-root-connected acyclic pre-flow temporal network
there exists a packing of k spanning time-respecting s-arborescences.

We now present our first result, a slight extension of Theorem 1.

Theorem 2. Let N = ((V ∪ s, A), τ) be an acyclic temporal network and k ∈ N such that

min{k, |ρi
N (v)|} ≥ min{k, |δi

N (v)|} for all i ∈ N, for all v ∈ V. (1)

There exists a packing of k τ -respecting s-arborescences such that each vertex v in V belongs to min{k, d−
A(v)}

of them.

We will partially follow the proof of [2] but we will point out that Lemmas 3 and 4 in [2] are not needed to
prove Theorem 2. Hence the proof of Theorem 2 is simpler than that of Theorem 1. The following algorithm
is a slightly modified version of the algorithm of Kamiyama and Kawase [2]. Its input is an acyclic temporal
network N = ((V ∪ s, A), τ) and k ∈ N such that (1) is satisfied. Its output is a packing of τ -respecting
s-arborescences T1, . . . , Tk such that each vertex v in V belongs to min{k, d−

A(v)} of them. For every v ∈ V ,
let I(v) be a set of arcs of smallest τ -values entering v of size min{k, d−

A(v)}. The algorithm will use arcs
only in

⋃
v∈V I(v). The algorithm heavily relies on the fact that the network is acyclic. It is well-known that

a directed graph D is acyclic if and only if a topological ordering v1, . . . , vn of its vertex set exists, that is if

vivj is an arc of D then i > j. Since no arc enters s, we may suppose that in a topological ordering vn = s.

3
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Algorithm ”Packing Time-Respecting Arborescences”
Let vn = s, . . . , v1 be a topological ordering of V ∪ s.
Let Ai = ∅ for all 1 ≤ i ≤ k.

For j = 1 to n − 1, let
I = {1 ≤ i ≤ k : δAi

(vj) ̸= ∅},

ai be an arc in δAi
(vj) of minimum τ -value for all i ∈ I,

{ā1, . . . ,ā|I|} be an ordering of {ai : i ∈ I} such that τ(ā1) ≤ · · · ≤ τ(ā|I|),
π : I → {1, . . . , |I|} be the bijection such that ai = āπ(i) for all i ∈ I,

J be a subset of {1, . . . , k} \ I of size |I(vj)| − |I|,
σ : J → {1, . . . , |J |} be a bijection,
{e1, . . . , e|I|, f1, . . . , f|J|} be an ordering of I(vj) such that

τ(e1) ≤ · · · ≤ τ(e|I|) ≤ τ(f1) ≤ · · · ≤ τ(f|J|),
Ai = Ai ∪ eπ(i) for all i ∈ I,

Ai = Ai ∪ fσ(i) for all i ∈ J.

Let Ti = (Vi, Ai) where Vi is the vertex set of the arc set Ai for all 1 ≤ i ≤ k.

Stop.

Theorem 3. Given an acyclic temporal network N = ((V ∪ s, A), τ) and k ∈ N such that (1) is satisfied,
Algorithm Packing Time-Respecting Arborescences outputs a packing of k τ -respecting s-arborescences
such that each vertex v in V belongs to min{k, d−

A(v)} of them.

Proof. For all 1 ≤ j ≤ n − 1, in the jth iteration of the algorithm, by the definition of I, (1) and
he definition of I(vj), we have |I| ≤ min{k, d+

A(vj)} ≤ min{k, d−
A(vj)} = |I(vj)|. This implies that J

xists. By construction, the digraphs T1, . . . , Tk are pairwise arc-disjoint and the in-degree of each vertex
j ∈ Vi − s is 1 in Ti. Then, since N is acyclic, Ti is an s-arborescence for all 1 ≤ i ≤ k. Moreover,
{1 ≤ i ≤ k : vj ∈ Vi}| = |I| + |J | = |I(vj)| = min{k, d−

A(vj)} for all 1 ≤ j ≤ n − 1. To see that Ti is
ime-respecting for all 1 ≤ i ≤ k, let vj be a vertex in Vi − s and a ∈ δAi

(vj). Then eπ(i) ∈ ρAi
(vj). Suppose

on the contrary that τ(eπ(i)) > τ(a). Since τ(g) ≥ τ(eπ(i)) > τ(a) for all g ∈ ρA(vj) \ {e1, . . . , eπ(i)−1}, we
have |ρτ(a)

N (vj)| ≤ |{e1, . . . , eπ(i)−1}| = π(i)−1. Since τ(a) ≥ τ(ai) = τ(āπ(i)) ≥ τ(āℓ) for all 1 ≤ ℓ ≤ π(i) and
π(i) ≤ |I| ≤ k, we have π(i) = |{ā1, . . . , āπ(i)}| ≤ min{|δτ(a)

N (vj)|, k}. Thus |ρτ(a)
N (vj)| < min{|δτ(a)

N (vj)|, k}
that contradicts (1). This contradiction completes the proof. ■

Note that Theorem 3 implies Theorem 2. Note also that Theorem 2 implies Theorem 1. Indeed, if N

is pre-flow, then (1) is satisfied, so, by Theorem 2, there exists a packing of k τ -respecting s-arborescences
such that each vertex v in V belongs to exactly min{k, d−

A(v)} of them. This implies that min{k, λN (s, v)} =
min{k, d−

A(v)} and hence Theorem 1 follows.

4. Packing time-respecting arborescences in non-acyclic pre-flow temporal networks

In [2], Kamiyama and Kawase provide an example of 7 vertices and 12 arcs that shows that in Theorem 1
one cannot delete the condition that D is acyclic. Here we provide a smaller example with 5 vertices and
7 arcs, see the first temporal network in Fig. 1. Note that this temporal network contains a directed cycle
whose arcs are not of the same τ -values and hence the temporal network is not consistent.

The second temporal network in Fig. 1 is another example that shows that in Theorem 1 one cannot delete
the condition that D is acyclic. Here the temporal network contains one directed cycle C and all the arcs of

C are of the same τ -values and hence the temporal network is consistent. Note that in this example there

4
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exists a packing of three τ -respecting s-arborescences such that each vertex v belongs to exactly λN (s, v) of
hem.

Kamiyama and Kawase [2] also provide an example of 7 vertices and 12 arcs that shows that in Theorem 1
ne cannot delete the condition that D is pre-flow. Here we provide a smaller example with 5 vertices and
arcs, see the third temporal network in Fig. 1.
We now present the main result of this paper on packing of time-respecting arborescences in consistent

re-flow temporal networks where only the natural upper bound is given on the number of arborescences.

heorem 4. Let N = (D = (V ∪s, A), τ) be a consistent pre-flow temporal network. There exists a packing
f d+

D(s) τ -respecting s-arborescences, each vertex v in V belonging to λN (s, v) of them.

To prove Theorem 4, we need an easy observation on almost Eulerian acyclic pre-flow temporal networks.
similar result has already been presented in [2].

roposition 1. If N = (D = (V ∪ {s, t}, A), τ) is an almost Eulerian acyclic temporal network and µv

s a τ -respecting bijection from δD(v) to ρD(v) for all v ∈ V , then D decomposes into d+
D(s) τ -respecting

s, t)-paths such that each vertex v ∈ V belongs to d−
D(v) of them.

roof. We prove the claim by induction on d+
D(s). If d+

D(s) = 0, then, since D is almost Eulerian and
cyclic, we have d−

D(v) = 0 for all v ∈ V and we are done. Otherwise, there exists an arc leaving s. Then,
sing the bijections µ−1

v and the facts that D is acyclic and µv is a τ -respecting, we find a τ -respecting
irected (s, t)-path P . By deleting the arcs of P and applying the induction, the claim follows. ■

We also need the following result of Bang-Jensen, Frank, Jackson [4].

heorem 5 ([4]). Let D = (V ∪ s, A) be a pre-flow directed graph. There exists a packing of s-arborescences,
ach vertex v ∈ V belonging to λD(s, v) of them.

We are ready to prove our main result.

Proof of Theorem 4. First we transform the instance into another one N ′ = (D′, τ ′) as follows. The
directed graph D′ = (V ∪ {s, t}, A ∪ A′) is obtained from D by adding a new vertex t and d−

D(v) − d+
D(v)

parallel arcs from v to t for all v ∈ V and we define τ ′(a) to be equal to τ(a) if a ∈ A and to M if a ∈ A′,
where M = max{τ(a) : a ∈ A}. Since N is pre-flow, so is D, that is d−

D(v) − d+
D(v) ≥ 0 for all v ∈ V

and hence the construction is correct. This way we get an instance which remains consistent ({t} is a new
strongly connected component) and pre-flow (by the definition of M) and D′ is almost Eulerian.

For each vertex v ∈ V , let us fix orderings of ρD′(v) and δD′(v) such that τ ′(e1) ≤ · · · ≤ τ ′(e
d−

D′ (v))
and τ ′(f1) ≤ · · · ≤ τ ′(f

d+
D′ (v)), respectively. Then µ′

v(fj) = ej for all 1 ≤ j ≤ d+
D′(v) is a τ ′-respecting

bijection for all v ∈ V . Indeed, if there exists j such that τ ′(ej) = τ ′(µ′
v(fj)) > τ ′(fj) =: i, then

|ρi
N ′(v)| ≤ j − 1 < j ≤ |δi

N ′(v)| that contradicts the fact that N ′ is pre-flow.
To reduce the problem to an easy acyclic problem that can be treated by Proposition 1 and some problems

that can be treated by Theorem 5, let us denote the strongly connected components of D′ by Q′
1, . . . , Q′

ℓ.
Let Uj denote the vertex set of Q′

j for all 1 ≤ j ≤ ℓ. Then the directed graph D′′ obtained from D′ by
contracting each Q′

j into a vertex q′′
j is acyclic. By changing the indices if it is necessary, we may suppose

that q′′
ℓ = s, . . . , q′′

1 = t is a topological ordering of the vertices of D′′. Let N ′′ = (D′′, τ ′′) be the temporal
network where τ ′′(a) = τ ′(a) for all a ∈ A(D′′). Note that since D′ is almost Eulerian, so is D′′. Indeed, we
have d−

D′′(q′′
j ) − d+

D′′(q′′
j ) = d−

D′(Uj) − d+
D′(Uj) =

∑
v∈Uj

(d−
D′(v) − d+

D′(v)) = 0 for all 2 ≤ j ≤ ℓ − 1. Note also
that d+(s) = d+ (s) = d+ (s).
D D′ D′′

5
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To define a convenient τ ′′-respecting bijection µ′′
j from δD′′(q′′

j ) = δD′(Uj) to ρD′′(q′′
j ) = ρD′(Uj) for all

≤ j ≤ ℓ − 1, let us fix such a j and let us define the following sets:
R1

j = {vw ∈ δD′(Uj) : τ ′(µ′
v(vw)) > τ ′(Q′

j)},
R2

j = {vw ∈ δD′(Uj) : τ ′(vw) < τ ′(Q′
j)},

R3
j = δD′(Uj) \ (R1

j ∪ R2
j ),

S1
j = {µ′

v(vw) : vw ∈ R1
j },

S2
j = {µ′

v(vw) : vw ∈ R2
j } and

S3
j = ρD′(Uj) \ (S1

j ∪ S2
j ).

laim 1. {R1
j , R2

j , R3
j } is a partition of δD′(Uj) and {S1

j , S2
j , S3

j } is a partition of ρD′(Uj).

roof. If vw ∈ R1
j , v′w′ ∈ R2

j , uv = µ′
v(vw) ∈ S1

j and u′v′ = µ′
v′(v′w′) ∈ S2

j , then, since µ′
v and µ′

v′ are τ ′-
respecting bijections, we have τ ′(vw) ≥ τ ′(µ′

v(vw)) = τ ′(uv) > τ ′(Q′
j) > τ ′(v′w′) ≥ τ ′(µ′

v(v′w′)) = τ ′(u′v′).
Thus vw ̸= v′w′ and uv ̸= u′v′, so R1

j ∩ R2
j = ∅ and S1

j ∩ S2
j = ∅. By the definition of R1

j and R2
j , we have

1
j ∪ R2

j ⊆ δD′(Uj). If vw ∈ R1
j , then τ ′(µ′

v(vw)) > τ ′(Q′
j). If vw ∈ R2

j , then, since µ′
v is a τ ′-respecting

ijection, we get τ ′(µ′
v(vw)) ≤ τ ′(vw) < τ ′(Q′

j). Then, using that each arc in Q′
j has τ ′-value τ ′(Q′

j), we
ave S1

j ∪ S2
j ⊆ ρD′(Uj). By the definition of R3

j and S3
j , Claim 1 follows. ■

We now start to define µ′′
j . For vw ∈ R1

j ∪ R2
j , let µ′′

j (vw) = µ′
v(vw). Since each µ′

v is τ ′-respecting,
e have τ ′′(vw) = τ ′(vw) ≥ τ ′(µ′

v(vw)) = τ ′′(µ′′
v(vw)). Note that for all xy ∈ R3

j and for all uv ∈ S3
j ,

′(xy) ≥ τ ′(Q′
j) ≥ τ ′(uv). However, we cannot take an arbitrary bijection from R3

j to S3
j because we have

o guarantee that the vertices in Q′
j also belong to the required number of arborescences. In order to do

his, let us define the temporal network N ′
j = (D′

j , τ ′
j) where the directed graph D′

j is obtained from D′ by
ontracting

⋃
i>j Ui into a vertex sj , contracting

⋃
i<j Ui into a vertex tj and deleting the arcs from sj to

j and τ ′
j(a) = τ ′(a) for all a ∈ A(D′

j).

laim 2. N ′
j satisfies the following.

a) D′
j is almost Eulerian,

(b) λD′
j
(sj , tj) = d−

D′
j
(tj),

(c) λN ′
j
(sj , v) ≥ λN ′(s, v) for all v ∈ Uj.

roof. (a) Since D′ is almost Eulerian, so is D′
j . Indeed, we have d−

D′
j
(v) = d−

D′(v) = d+
D′(v) = d+

D′
j
(v) for

ll v ∈ Uj .
(b) By (a) and d−

D′
j
(sj) = 0 = d+

D′
j
(tj), (b) easily follows. Indeed, let rj = d−

D′
j
(tj) and let us define D∗

j

y adding rj arcs {h1, . . . ,hrj
} from tj to sj in D′

j . Then, by (a), D∗
j is Eulerian. Thus it decomposes into

irected cycles. Let C1, . . . , Crj
be the arc-disjoint directed cycles that contain the arcs h1, . . . , hrj

. Then
1 = C1 − h1, . . . , Prj

= Crj
− hrj

are arc-disjoint directed (sj , tj)-paths. Hence rj ≤ λD′
j
(sj , tj) ≤ rj , and

e have (b).
(c) For all v ∈ Uj , any τ ′-respecting (s, v)-path in N ′ provides a τ ′

j-respecting (sj , v)-path in N ′
j , and (c)

ollows. ■

To be able to use normal arborescences (not time-respecting ones), we have to modify D′
j . No τ -respecting

irected path in D may contain an arc in S1
j and an arc in Q′

j , hence the corresponding arcs in R1
j and S1

j will
e deleted from D′

j . A τ -respecting s-arborescence in D may contain an arc µ′
v(vw) in S2

j (where vw ∈ R2
j )

nd an arc in Q′
j , but this arborescence must contain vw. To guarantee this property we use a trick: we

2 2 ′
eplace the corresponding two arcs in Rj and Sj in Dj by two convenient arcs. More precisely, let Hj be
6
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obtained from D′
j by deleting sjv and vtj that correspond to µ′

v(vw) and vw for all vw ∈ R1
j and replacing

jv and vtj that correspond to µ′
v(vw) and vw for all vw ∈ R2

j by evw = sjtj and fvw = tjv. Let Ej

{evw : vw ∈ R2
j } and Fj = {fvw : vw ∈ R2

j }.

laim 3. Hj satisfies the following.

a) Hj is pre-flow,
(b) λHj

(sj , tj) = d−
Hj

(tj),
(c) λHj

(sj , v) ≥ λN ′
j
(sj , v) − d−

S1
j

(v) for all v ∈ Uj.

roof. (a) By Claim 2(a), D′
j is almost Eulerian. Then, by δD′

j
(tj) = ∅, D′

j is pre-flow. By deleting from
D′

j the arcs sjv and vtj that correspond to µ′
v(vw) and vw for all vw ∈ R1

j , we decreased the in-degree
and the out-degree of each vertex by the same value so the directed graph obtained this way remained
pre-flow. By replacing sjv and vtj that correspond to µ′

v(vw) and vw for all vw ∈ R2
j by sjtj and tjv,

we may decrease the out-degrees of the vertices in Q′
j but the in-degrees remained unchanged. Further,

+
Hj

(tj) = d+
D′

j
(tj) + |Fj | = |Ej | ≤ d−

Hj
(tj). It follows that Hj is pre-flow.

(b) Note that for all tj ∈ X ⊆ Uj ∪ tj , d−
Hj

(X) = d−
D′

j
(X) − |R1

j |. Then, by Claim 2(b), we have
d−

Hj
(tj) ≥ λHj

(sj , tj) ≥ λD′
j
(sj , tj) − |R1

j | = d−
D′

j
(tj) − |R1

j | = d−
Hj

(tj) and (b) follows.
(c) On the one hand, by deleting the arcs corresponding to ρS1

j
(v), we destroyed at most d−

S1
j

(v) τ ′
j-

respecting (sj , v)-paths in N ′
j and we did not destroy a τ ′

j-respecting (sj , u)-path in N ′
j for u ∈ Uj \v because

each arc in Q′
j has τ ′

j-value τ ′
j(Q′

j) and each arc in ρS1
j
(v) has τ ′

j-value strictly larger than τ ′
j(Q′

j). On the
other hand, if a τ ′

j-respecting (sj , u)-path P contains sjv (corresponding to µ′
v(vw) for some vw ∈ R2

j ) in
N ′

j then P − sjv + evw + fvw is a directed (sj , u)-path in Hj . These arguments imply (c). ■

By Claim 3(a) and Theorem 5, there exists a packing Bj of sj-arborescences T i
j in Hj , each vertex

v ∈ Uj ∪ tj belonging to λHj
(sj , v) of them. Let us choose such a packing Bj that minimizes the size of

the set FBj
of the arcs fvw ∈ Fj such that an arborescence T fvw

j in Bj contains fvw but not evw.

Claim 4. Bj satisfies the following.

a) d+
Hj

(sj) = |Bj | = d−
Hj

(tj),
(b) FBj

= ∅,
(c) {T i

j − sj − tj : T i
j ∈ Bj} is a packing of arborescences in Q′

j, each vertex v ∈ Uj belonging to λHj
(sj , v)

of them.

Proof. (a) By Claim 3(b), tj belongs to λHj
(sj , tj) = d−

Hj
(tj) of the sj-arborescences in Bj . Thus each arc

entering tj belongs to some sj-arborescence in Bj and d−
Hj

(tj) ≤ |Bj |. Moreover, by construction and since
D′

j is almost Eulerian, we have d−
Hj

(tj) = d−
D′

j
(tj) − |R1

j | = d+
D′

j
(sj) − |S1

j | = d+
Hj

(sj) ≥ |Bj |, and (a) follows.
(b) Suppose that FBj

̸= ∅. Let EBj
= {evw : fvw ∈ FBj

}. By (a), every evw ∈ EBj
is contained in an

sj-arborescence T evw
j in Bj .

First suppose that for some evw ∈ EBj
, T evw

j contains only the arc evw. Note that T fvw
j − fvw consists

of an sj-arborescence T ′
j and a v-arborescence T ′′

j . Let B′
j be obtained from Bj by replacing T fvw

j by T ′
j and

T evw
j by evw + fvw + T ′′

j . Then B′
j is a packing of sj-arborescences in Hj such that each vertex v ∈ Uj ∪ tj

belongs to λHj
(sj , v) of them. Moreover, fvw and evw belong to the same sj-arborescence in B′

j , that is
|FB′

j
| < |FBj

| and we have a contradiction.
We may hence suppose that for every evw ∈ EBj

, T evw
j contains another arc, so by (a), contains an arc

′
in FBj
. Let Bj be the set of those sj-arborescences in Bj that contain an arc of FBj

. Then |FBj
| = |EBj

|
7
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B
o
a

b

≤ |B′
j | ≤ |FBj

|. Hence we have equality everywhere. It follows that every sj-arborescences in B′
j contains

exactly one arc from both FBj
and EBj

. Then for every fvw ∈ FBj
, T fvw

j contains an arc ev′w′ ∈ EBj
. Let

′′
j be obtained from Bj by replacing ev′w′ by evw ∈ EBj

in T fvw
j for every fvw ∈ FBj

. Then B′′
j is a packing

f sj-arborescences in Hj such that each vertex v ∈ Uj ∪tj belongs to λHj
(sj , v) of them. Moreover, FB′′

j
= ∅

nd we have a contradiction.
(c) follows from the definition of Bj , (a) and (b). ■

We now finish the definition of µ′′
j . Let vw ∈ R3

j . Then vw corresponds in Hj to an arc gvw = vtj

entering tj . By Claim 4(a), gvw belongs to an sj-arborescence T gvw
j in Bj . Let us define µ′′

j (vw) ∈ S3
j

to be the arc xq′′
j of D′′ that corresponds to the arc sju in Hj of the unique (sj , tj)-path of T gvw

j . Then
τ ′′

j (vw) = τ ′
j(vw) ≥ τ ′

j(Q′
j) ≥ τ ′

j(xq′′
j ) = τ ′′

j (µ′′
j (vw)) for all vw ∈ R3

j .
By the definition of µ′′

j and Claim 1, we have a τ ′′-respecting bijection µ′′
j from δD′′(q′′

j ) to ρD′′(q′′
j ) for all

2 ≤ j ≤ ℓ−1. Recall that D′′ is acyclic and almost Eulerian. Then, by Proposition 1 and d+
D(s) = d+

D′′(s), D′′

decomposes into τ ′′-respecting (s, t)-paths P1, . . . , P
d+

D
(s) such that each vertex q′′

j ̸= s belongs to d−
D′′(q′′

j )
of them. These paths can be extended, using from Claim 4(c) the arborescences T i

j − sj − tj in Q′
j for

1 ≤ i ≤ d+
Hj

(sj) and 2 ≤ j ≤ ℓ − 1, to get s-arborescences in D′ such that each vertex v ∈ V belongs
to λHj

(sj , v) + d−
S1

j

(v) ≥ λN ′
j
(sj , v) ≥ λN ′(s, v) of them, by Claims 3(b) and 2(c). Since the directed paths

P1, . . . , P
d+

D
(s) are τ ′′-respecting, that is τ ′-respecting and D′ is consistent, the arborescences constructed are

τ ′-respecting. Hence N ′ has a packing of τ ′-respecting s-arborescences T ′
1, . . . , T ′

d+
D

(s)
such that each vertex

v of D′ distinct from s and t belongs to λN ′(s, v) = λN (s, v) of them, and hence {T1 = T ′
1 − t, . . . , T

d+
D

(s)
= T ′

d+
D

(s)
− t} is a packing of τ -respecting s-arborescences such that each vertex v of D distinct from s

elongs to λN (s, v) of them. ■

5. Arc-disjoint spanning time-respecting arborescences

Edmonds’ arborescence packing theorem [3] states that k-root-connectivity from s implies the existence
of a packing of k spanning s-arborescences. The following observation of [1] shows that the natural extension
of Edmonds theorem for k = 1 is true for temporal networks.

Theorem 6 ([1]). Any τ -respecting root-connected temporal network N = ((V ∪s, A), τ) contains a spanning
τ -respecting s-arborescence.

The authors of [1] show that high time-respecting root-connectivity of a temporal network does not imply
the existence of 2 arc-disjoint spanning time-respecting arborescences.

Theorem 7 ([1]). For all k ∈ N+, there exist temporal networks N = ((V ∪ s, A), τ) such that λN (s, v) ≥ k

for all v ∈ V and no packing of 2 spanning τ -respecting s-arborescences exists in N .

Their construction contains directed cycles but it can be easily modified to get an acyclic example. This
acyclic example for k = 2 is presented in Figure 2 in [2].

We now relate the spanning time-respecting arborescence packing problem to known problems, namely
the Steiner arborescence packing problem and the hypergraph proper 2-coloring problem. To do that
we explain how the above mentioned modified construction can be obtained in 3 steps. First, take a
k-uniform hypergraph without proper 2-coloring. Then construct a directed graph that is Steiner k-root-
connected without 2 arc-disjoint Steiner arborescences. Finally, construct an acyclic temporal network that

is time-respecting k-root-connected without 2 arc-disjoint spanning time-respecting arborescences.

8
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There exist many constructions for k-uniform hypergraphs without proper 2-coloring, see [1,5] and
xercise 13.45(b) of [6]. We mention that, by a result of Erdős [7], all examples contain exponentially many
yperedges in k.

heorem 8 ([7]). Any k-uniform hypergraph without a proper 2-coloring contains at least 2k−1 hyperedges.

We now show that starting from an arbitrary k-uniform hypergraph Hk = (Vk, Ek) without proper 2-
oloring how to construct an acyclic directed graph Dk and a vertex set Uk such that λDk

(s, u) = k for
ll u ∈ Uk and there exists no packing of two (s, Uk)-arborescences in Dk. Let Gk := (Vk, Uk; Ek) be the

bipartite incidence graph of the hypergraph Hk, where the elements of Uk correspond to the hyperedges in
Ek. Let Dk = (Vk ∪ Uk ∪ s, Ak) be obtained from Gk by adding a vertex s and an arc sv for all v ∈ Vk

and directing each edge of Ek from Vk to Uk. By construction Dk is acyclic. Since Hk is k-uniform, we have
λDk

(s, u) = k for all u ∈ Uk.

Theorem 9. Dk has no packing of two (s, Uk)-arborescences.

roof. Suppose that there exists a packing of 2 (s, Uk)-arborescences F1 and F2 in Dk. Using this packing,
we can define a 2-coloring of Vk: let v ∈ Vk be colored by 1 if sv ∈ A(F1) and by 2 otherwise. Since each
ertex in Uk belongs to both F1 and F2, no hyperedge of Ek is monochromatic, that is the above defined
-coloring of Hk is proper. This contradicts the fact that Hk has no proper 2-coloring. ■

As a next step, we show that starting from the acyclic directed graph Dk and the vertex set Uk, how to
onstruct a temporal network Nk such that λNk

(s, v) = k for all vertices v and no packing of 2 spanning
time-respecting s-arborescences exists in N . Let us define Nk := (D∗

k, τ∗
k ) as follows: D∗

k is obtained from
Dk by adding the set of arcs A∗

k consisting of k −1 parallel arcs from s to all v ∈ Vk and we define τ∗
k (a) = 1

if a ∈ Ak and 2 if a ∈ A∗
k. Note that since Dk is acyclic, so is D∗

k. Then a spanning s-arborescence F ∗ of
D∗

k is τ∗
k -respecting if and only if F ∗ − A∗

k is an (s, Uk)-arborescence in Dk. Thus a packing of 2 spanning
τ∗

k -respecting s-arborescences in D∗
k would provide a packing of 2 (s, Uk)-arborescences in Dk. Hence, the

following result is an immediate consequence of Theorem 9.

Theorem 10. For all k ∈ N+, there exist acyclic temporal networks N = ((V ∪ s, A), τ) such that
λN (s, v) ≥ k for all v ∈ V and no packing of 2 spanning τ -respecting s-arborescences exists in N .

These examples of acyclic temporal networks that are time-respecting k-root-connected without 2 arc-
disjoint spanning time-respecting arborescences contain, by Theorem 8, exponentially many vertices in k.
In other words, k ≤ log(n) where n is the number of vertices. In the light of this fact, it is natural to ask
whether there exist 2 arc-disjoint spanning time-respecting arborescences in a temporal network if k is linear
in n. The examples of Fig. 1 show that time-respecting (n−3)-root-connectivity does not imply the existence
of 2 arc-disjoint spanning time-respecting arborescences. We propose the first steps in this direction. We first
remark that n-root-connectivity is enough.

Claim 5. Let N = ((V ∪ s, A), τ) be a temporal network on n ≥ 1 vertices such that λN (s, v) ≥ n for all
v ∈ V . Then there exists a packing of 2 spanning τ -respecting s-arborescences in N .

Proof. Since λN (s, v) ≥ n ≥ 1 for all v ∈ V , there exists, by Theorem 6, a spanning τ -respecting
s-arborescence F in N . Further, there exist n arc-disjoint τ -respecting (s, v)-paths P v

1 , . . . , P v
n for all v ∈ V .

By deleting the arcs of F , we can destroy at most |A(F )| of the (s, v)-paths P v
1 , . . . , P v

n for all v ∈ V . Since
|A(F )| = n − 1, this implies that λN−A(F )(s, v) ≥ n − (n − 1) = 1 for all v ∈ V . Then, there exists, by

′
Theorem 6, a spanning τ -respecting s-arborescence F in N − A(F ), and we are done. ■

9
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With some effort we can improve the previous result by 1.

Theorem 11. Let N = ((V ∪ s, A), τ) be a temporal network on n ≥ 2 vertices such that λN (s, v) ≥ n − 1
or all v ∈ V . Then there exists a packing of 2 spanning τ -respecting s-arborescences in N .

Proof. Since λN (s, v) ≥ n − 1 ≥ 1 for all v ∈ V , there exists, by Theorem 6, a spanning τ -respecting
-arborescence F in N . Let F (v) be the unique arc of F entering v for all v ∈ V . Note that A(F ) = {F (v) :

∈ V }. If λN−A(F )(s, v) ≥ 1 for all v ∈ V then there exists, by Theorem 6, a spanning τ -respecting
-arborescence in N − A(F ), and we are done.

Otherwise, λN−A(F )(s, u) = 0 for some u ∈ V . By assumption, there exist n − 1 arc-disjoint τ -respecting
s, u)-paths P1, . . . , Pn−1. Then, since |V | = n − 1, there exists a bijection π from V to {1, . . . , n − 1} such
hat F (v) is contained in Pπ(v) for all v ∈ V . It follows that no arc leaves u in F . Let w ∈ V − u be a
ertex for which τ(F (w)) is maximum. Let the last arc of Pπ(w) be denoted by xu. Then, since F (u) is the
ast arc of the path Pπ(u) and the paths are arc-disjoint, F (u) ̸= xu. By the choice of w and since Pπ(w)
s τ -respecting, we have τ(F (x)) ≤ τ(F (w)) ≤ τ(xu). We obtain that F ′ := F − F (u) + xu ̸= F is also a
panning τ -respecting s-arborescence in N .

By assumption and |A(F ) − F (u)| = n − 2, we have λN−(A(F )−F (u))(s, v) ≥ (n − 1) − (n − 2) = 1 for all
∈ V . Then, by Theorem 6, there exists a spanning τ -respecting s-arborescence F ′′ in N − (A(F ) − F (u)).
ince F ′′ contains a unique arc entering u, it does not contain either F (u) or xu. Thus, F ′′ is arc-disjoint
rom either F or F ′, and we are done. ■

We conjecture that the following is true.

onjecture 1. Let N = ((V ∪ s, A), τ) be an acyclic temporal network on n ≥ 4 vertices such that
N (s, v) ≥ n

2 for all v ∈ V . Then a packing of 2 spanning τ -respecting s-arborescences exists in N .

The third example presented in Fig. 1 is of 5 vertices, acyclic, time-respecting 2-root-connected and has
o packing of 2 spanning τ -respecting s-arborescences. It follows that time-respecting 2n

5 -root-connectivity
s not enough to have a packing of 2 spanning time-respecting s-arborescences in acyclic temporal networks.

6. Complexity results

Lovász [8] proved that the problem of 2-colorings of k-uniform hypergraphs is NP-complete. This implies
that the problem of packing 2 Steiner arborescences is also NP-complete. An easier way to see this is to
use the NP-complete problem of two arc-disjoint directed paths in a directed graph D, one from r to t

nd the other from t to r. (See [9].) Construct D′ from D by adding a new vertex s and the two arcs sr

and st. Then D has an (r, t)-path and a (t, r)-path that are arc-disjoint if and only if D′ has a packing
of 2 (s, {r, t})-arborescences. This with the construction presented in the previous section finally imply the
following.

Theorem 12. The problem of packing k spanning time-respecting arborescences is NP-complete even for
k = 2.

Let us check what happens if we replace the inequality with equality in the definition of time-respecting
directed paths and we consider the values of τ as colors. Then we get monochromatic directed paths. We

may hence study the following problem MoChPaSpAr:

10
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Fig. 2. A 3-regular 3-uniform hypergraph and the constructed colored directed graph for it.

Problem 1. Given a directed graph D = (Z ∪s, A) and a coloring c of the arcs, decide whether there exists
spanning s-arborescence containing only monochromatic directed paths.

We show that this decision problem is difficult. We will reduce the exact cover in 3-regular 3-uniform
ypergraphs problem (RXC3) to our problem. In RXC3, we are given a 3-regular 3-uniform hypergraph

= (V, E), and the problem consists of determining whether there exists a subset E ′ of E such that each
ertex in V occurs in exactly one hyperedge in E ′. Gonzalez proved in [10] that RXC3 is NP-complete.

heorem 13. The problem MoChPaSpAr is NP-complete even for acyclic directed graphs and for two
olors.

roof. It is clear that MoChPaSpAr is in NP. Let us take an instance of RXC3, that is let H be a
-regular 3-uniform hypergraph. We construct a polynomial size instance (D, c) of MoChPaSpAr such
hat H has an exact cover if and only if (D, c) has a spanning s-arborescence containing only monochromatic
irected paths. Since H is a 3-regular 3-uniform hypergraph, the number of vertices of H and the number
f hyperedges of H coincide. Let us denote the vertices of H by V = {v1, . . . , vh} and the hyperedges of H
y E = {H1, . . . , Hh}.

Let D = (Z ∪ s, A) be the directed graph where Z = U ∪ V ∪ W and A = A1 ∪ A2 ∪ A3 ∪ A4 with U

{u1, . . . , uh}, W = {wi,j : Hi ∩ Hj ̸= ∅}, A1 = {e1
i = sui : 1 ≤ i ≤ h}, A2 = {e2

i = sui : 1 ≤ i ≤ h},
3 = {uivj : ui ∈ U, vj ∈ V, vj ∈ Hi} and A4 = {uiwi,j , ujwi,j : ui, uj ∈ U, wi,j ∈ W}. Let c(a) be equal

o black if a ∈ A1 ∪ A3 and gray if a ∈ A2 ∪ A4. Note that D is acyclic and c uses only two colors. For an
xample see Fig. 2.

The size of D is polynomial in h. Indeed, since H is a 3-regular 3-uniform hypergraph, |W | ≤ 1
2 ·3 ·2 ·h, so

Z ∪ s| = |U |+|V |+|W |+1 ≤ h+h+3h+1 = 5h+1 and |A| = |A1|+|A2|+|A3|+|A4| ≤ h+h+3h+2·3h = 11h.
Suppose first that H has an exact cover H′. Let Z ′ be the set of vertices of D that can be reached from s

y a black directed path starting with an arc sui with Hi ∈ H′ and Z ′′ by a gray directed path starting with
n arc sui with Hi /∈ H′. Since H′ is a cover, we have Z ′ = V ∪{ui : Hi ∈ H′}. Since the hyperedges in H′ are
isjoint, we have Z ′′ = {ui : Hi /∈ H′}∪W . Since Z ′∩Z ′′ = s, the desired spanning s-arborescence containing

only monochromatic directed paths exists. In the example of Fig. 2, H′ = {H1, H6}, Z ′ = V ∪ {u1, u6},
′′ = {u2, u3, u4, u5} ∪ W and the arborescence is represented by bold arcs.
Now suppose that (D, c) has a spanning s-arborescence F containing only monochromatic directed paths.

Let H′ = {Hj : uj ∈ U, vi ∈ V, ujvi ∈ F}. Since F is a spanning s-arborescence, each vertex vi has exactly
one black arc ujvi in F entering. This implies that H′ covers V . Let Hj , Hk (j < k) be hyperedges in H′. If
w ∈ W , then, since the directed paths are monochromatic in F , su and su are black and hence u w
j,k j k j j,k

11
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and ukwj,k are not contained in F that contradicts the fact that F is a spanning s-arborescence. Thus Hj

and Hk are disjoint. It follows that H′ is an exact cover. ■

References

[1] D. Kempe, J. Kleinberg, A. Kumar, Connectivity and inference problems for temporal networks, J. Comput. System
Sci. 64 (4) (2002) 820–842.

[2] N. Kamiyama, Y. Kawase, On packing arborescences in temporal networks, Informat. Proc Lett 115 (2015) 321–325.
[3] J. Edmonds, Edge-disjoint branchings, in: B. Rustin (Ed.), Combinatorial Algorithms, Academic Press, New York, 1973,

pp. 91–96.
[4] J. Bang-Jensen, A. Frank, B. Jackson, Preserving and augmenting local edge-connectivity in mixed graphs, SIAM J.

Disc. Math. 8 (2) (1995) 155–178.
[5] H.L. Abbot, L. Moser, On a combinatorial problem of Erdős and Hajnal, Canad. Math. Bull 7 (1964) 177–181.
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